/* Face-API homepage: author: ' */ var iF=Object.defineProperty;var jr=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var ib=(e,t)=>{for(var n in t)iF(e,n,{get:t[n],enumerable:!0})};var Oe={};ib(Oe,{Abs:()=>Sl,Acos:()=>Tl,Acosh:()=>Nl,AdadeltaOptimizer:()=>lf,AdagradOptimizer:()=>uf,AdamOptimizer:()=>pf,AdamaxOptimizer:()=>cf,Add:()=>fs,AddN:()=>bi,All:()=>Cl,Any:()=>El,ArgMax:()=>xi,ArgMin:()=>ic,Asin:()=>_l,Asinh:()=>Al,Atan:()=>$l,Atan2:()=>Dl,Atanh:()=>Fl,AvgPool:()=>vi,AvgPool3D:()=>oc,AvgPool3DGrad:()=>Zh,AvgPoolGrad:()=>Yh,BackendWasm:()=>TA,BatchMatMul:()=>wi,BatchToSpaceND:()=>Rl,Bincount:()=>Jh,BroadcastArgs:()=>Qh,BroadcastTo:()=>OI,Callback:()=>t2,CallbackList:()=>sN,Cast:()=>ki,Ceil:()=>Ii,ClipByValue:()=>gs,Complex:()=>em,ComplexAbs:()=>lc,Concat:()=>Ml,Conv2D:()=>Si,Conv2DBackpropFilter:()=>tm,Conv2DBackpropInput:()=>Ti,Conv3D:()=>uc,Conv3DBackpropFilterV2:()=>nm,Conv3DBackpropInputV2:()=>am,Cos:()=>Ni,Cosh:()=>Ci,CropAndResize:()=>Ol,Cumprod:()=>Pl,Cumsum:()=>Ei,CustomCallback:()=>oN,DataStorage:()=>qh,DenseBincount:()=>rm,DepthToSpace:()=>Ll,DepthwiseConv2dNative:()=>_i,DepthwiseConv2dNativeBackpropFilter:()=>sm,DepthwiseConv2dNativeBackpropInput:()=>im,Diag:()=>om,Dilation2D:()=>pc,Dilation2DBackpropFilter:()=>yh,Dilation2DBackpropInput:()=>gh,ENV:()=>Nx,EarlyStopping:()=>n2,Einsum:()=>lm,Elu:()=>$i,EluGrad:()=>um,Environment:()=>MI,Equal:()=>Wl,Erf:()=>zl,Exp:()=>Fi,ExpandDims:()=>Bl,Expm1:()=>Vl,FFT:()=>pm,Fill:()=>cc,FlipLeftRight:()=>Ul,Floor:()=>Di,FloorDiv:()=>Ri,FromPixels:()=>bh,FusedBatchNorm:()=>Mi,FusedConv2D:()=>ni,FusedDepthwiseConv2D:()=>ai,GPGPUContext:()=>ch,GatherNd:()=>Hl,GatherV2:()=>Gl,GraphModel:()=>T0,Greater:()=>jl,GreaterEqual:()=>Pi,History:()=>iN,IFFT:()=>cm,Identity:()=>Oi,Imag:()=>dm,InputSpec:()=>zt,IsFinite:()=>ql,IsInf:()=>Kl,IsNan:()=>Li,KernelBackend:()=>sc,LRN:()=>dc,LRNGrad:()=>mm,LayerVariable:()=>JT,LayersModel:()=>Er,LeakyRelu:()=>zi,Less:()=>Xl,LessEqual:()=>Yl,LinSpace:()=>hm,Log:()=>Wi,Log1p:()=>Zl,LogSoftmax:()=>zI,LogicalAnd:()=>Jl,LogicalNot:()=>Ql,LogicalOr:()=>eu,LogicalXor:()=>LI,LowerBound:()=>YF,MathBackendWebGL:()=>Mf,Max:()=>Bi,MaxPool:()=>Ui,MaxPool3D:()=>hc,MaxPool3DGrad:()=>gm,MaxPoolGrad:()=>fm,MaxPoolWithArgmax:()=>ym,Maximum:()=>Vi,Mean:()=>Gi,Min:()=>Hi,Minimum:()=>ji,MirrorPad:()=>qi,Mod:()=>tu,MomentumOptimizer:()=>df,Multinomial:()=>bm,Multiply:()=>Ki,Neg:()=>nu,NonMaxSuppressionV3:()=>ru,NonMaxSuppressionV4:()=>su,NonMaxSuppressionV5:()=>iu,NotEqual:()=>au,OP_SCOPE_SUFFIX:()=>Ax,OneHot:()=>Xi,OnesLike:()=>ou,Optimizer:()=>Dr,OptimizerConstructors:()=>qr,Pack:()=>lu,PadV2:()=>Yi,Pool:()=>ZF,Pow:()=>Zi,Prelu:()=>Ji,Prod:()=>Qi,RMSPropOptimizer:()=>hf,RNN:()=>mr,RaggedGather:()=>xm,RaggedRange:()=>vm,RaggedTensorToTensor:()=>wm,Range:()=>mc,Rank:()=>Nb,Real:()=>km,RealDiv:()=>Ai,Reciprocal:()=>eo,Reduction:()=>vn,Relu:()=>to,Relu6:()=>ro,Reshape:()=>uu,ResizeBilinear:()=>ao,ResizeBilinearGrad:()=>Sm,ResizeNearestNeighbor:()=>no,ResizeNearestNeighborGrad:()=>Im,Reverse:()=>so,RotateWithOffset:()=>Tu,Round:()=>io,Rsqrt:()=>oo,SGDOptimizer:()=>Vc,ScatterNd:()=>pu,SearchSorted:()=>Tm,Select:()=>cu,Selu:()=>du,Sequential:()=>gl,Sigmoid:()=>uo,Sign:()=>fu,Sin:()=>lo,Sinh:()=>mu,Slice:()=>hu,Softmax:()=>ho,Softplus:()=>gu,SpaceToBatchND:()=>yu,SparseFillEmptyRows:()=>fc,SparseReshape:()=>xu,SparseSegmentMean:()=>gc,SparseSegmentSum:()=>yc,SparseToDense:()=>Nm,SplitV:()=>bu,Sqrt:()=>po,Square:()=>bc,SquaredDifference:()=>mo,Step:()=>bs,StridedSlice:()=>vu,StringNGrams:()=>xc,StringSplit:()=>vc,StringToHashBucketFast:()=>wc,Sub:()=>fo,Sum:()=>co,SymbolicTensor:()=>Va,Tan:()=>go,Tanh:()=>yo,Tensor:()=>Te,TensorBuffer:()=>qt,Tile:()=>ys,TopK:()=>wu,Transform:()=>ku,Transpose:()=>Cr,Unique:()=>Cm,Unpack:()=>Iu,UnsortedSegmentSum:()=>kc,UpperBound:()=>JF,Variable:()=>ss,ZerosLike:()=>Su,_FusedMatMul:()=>ti,abs:()=>Lt,acos:()=>Gx,acosh:()=>Hx,add:()=>Y,addN:()=>AS,all:()=>Fm,any:()=>Kp,argMax:()=>ii,argMin:()=>jx,asin:()=>qx,asinh:()=>Kx,atan:()=>Xx,atan2:()=>Yx,atanh:()=>Zx,avgPool:()=>ya,avgPool3d:()=>Qx,backend:()=>dS,backend_util:()=>N,basicLSTMCell:()=>RS,batchNorm:()=>ws,batchNorm2d:()=>ev,batchNorm3d:()=>tv,batchNorm4d:()=>nv,batchToSpaceND:()=>$c,bincount:()=>av,booleanMaskAsync:()=>gT,broadcastArgs:()=>MS,broadcastTo:()=>Zs,broadcast_util:()=>Nu,browser:()=>bo,buffer:()=>Pe,callbacks:()=>kH,cast:()=>le,ceil:()=>rv,clipByValue:()=>tn,clone:()=>sr,complex:()=>_r,concat:()=>Ze,concat1d:()=>sv,concat2d:()=>iv,concat3d:()=>ov,concat4d:()=>lv,constraints:()=>tN,conv1d:()=>Dm,conv2d:()=>Ft,conv2dTranspose:()=>Rm,conv3d:()=>pv,conv3dTranspose:()=>cv,copyRegisteredKernels:()=>nD,cos:()=>Fc,cosh:()=>Mm,cosineWindow:()=>nf,cumprod:()=>Xp,cumsum:()=>Pm,customGrad:()=>ur,data:()=>N2,denseBincount:()=>Th,deprecationWarn:()=>Ox,depthToSpace:()=>dv,depthwiseConv2d:()=>ks,deregisterOp:()=>TH,device_util:()=>Nc,diag:()=>OS,dilation2d:()=>hv,disableDeprecationWarnings:()=>AR,dispose:()=>Ee,disposeVariables:()=>$R,div:()=>me,divNoNan:()=>mv,dot:()=>fv,dropout:()=>Vv,einsum:()=>LS,elu:()=>Cu,enableDebugMode:()=>_R,enableProdMode:()=>ER,enclosingPowerOfTwo:()=>Uv,engine:()=>Ca,env:()=>H,equal:()=>Jn,erf:()=>gv,euclideanNorm:()=>xv,exp:()=>gn,expandDims:()=>Qt,expm1:()=>vv,eye:()=>Om,fft:()=>Wc,fill:()=>yn,findBackend:()=>LR,findBackendFactory:()=>zR,floor:()=>_u,floorDiv:()=>$m,forceHalfFloat:()=>HE,fused:()=>hl,gather:()=>Au,gatherND:()=>vT,gather_util:()=>Lx,getBackend:()=>PR,getGradient:()=>Sb,getKernel:()=>xh,getKernelsForBackend:()=>vh,getThreadsCount:()=>wpe,gpgpu_util:()=>IE,grad:()=>uO,grads:()=>pO,greater:()=>Nn,greaterEqual:()=>$r,ifft:()=>dl,imag:()=>Ec,image:()=>_a,inTopKAsync:()=>wT,initializers:()=>nN,input:()=>wN,io:()=>Gt,irfft:()=>Jm,isFinite:()=>wv,isInf:()=>kv,isNaN:()=>Iv,keep:()=>Ht,kernel_impls:()=>hr,layers:()=>aN,leakyRelu:()=>Dc,less:()=>Lm,lessEqual:()=>Is,linalg:()=>jv,linspace:()=>US,loadGraphModel:()=>_6,loadGraphModelSync:()=>A6,loadLayersModel:()=>vU,localResponseNormalization:()=>Sv,log:()=>Qn,log1p:()=>Rc,logSigmoid:()=>Tv,logSoftmax:()=>Wm,logSumExp:()=>Bm,logicalAnd:()=>$a,logicalNot:()=>Mc,logicalOr:()=>Vm,logicalXor:()=>Nv,losses:()=>DT,lowerBound:()=>HS,matMul:()=>Fe,math:()=>cS,max:()=>ha,maxPool:()=>Dt,maxPool3d:()=>Cv,maxPoolWithArgmax:()=>jS,maximum:()=>dr,mean:()=>Nt,memory:()=>Ih,meshgrid:()=>qS,metrics:()=>JN,min:()=>pl,minimum:()=>$u,mirrorPad:()=>Ev,mod:()=>_v,model:()=>IU,models:()=>QN,moments:()=>Pc,movingAverage:()=>yT,mul:()=>z,multiRNNCell:()=>KS,multinomial:()=>XS,neg:()=>bt,nextFrame:()=>qv,norm:()=>Eu,notEqual:()=>ui,oneHot:()=>ll,ones:()=>Zn,onesLike:()=>ea,op:()=>L,outerProduct:()=>YS,pad:()=>ba,pad1d:()=>ZS,pad2d:()=>JS,pad3d:()=>QS,pad4d:()=>eT,pool:()=>Av,pow:()=>Ar,prelu:()=>Lc,print:()=>Rx,prod:()=>$v,profile:()=>FR,raggedGather:()=>tT,raggedRange:()=>nT,raggedTensorToTensor:()=>aT,rand:()=>rT,randomGamma:()=>sT,randomNormal:()=>Gm,randomStandardNormal:()=>iT,randomUniform:()=>Fu,range:()=>pi,ready:()=>MR,real:()=>ul,reciprocal:()=>Rv,registerBackend:()=>Am,registerCallbackConstructor:()=>TU,registerGradient:()=>WI,registerKernel:()=>Ic,registerOp:()=>SH,regularizers:()=>e2,relu:()=>Xe,relu6:()=>Hm,removeBackend:()=>OR,reshape:()=>W,reverse:()=>ga,reverse1d:()=>oT,reverse2d:()=>lT,reverse3d:()=>uT,reverse4d:()=>pT,rfft:()=>Bc,round:()=>jm,rsqrt:()=>qm,scalar:()=>xe,scatterND:()=>bT,scatter_util:()=>zx,searchSorted:()=>Um,selu:()=>Km,separableConv2d:()=>Ss,sequential:()=>SU,serialization:()=>ne,setBackend:()=>RR,setPlatform:()=>WR,setThreadsCount:()=>vpe,setWasmPath:()=>bpe,setWasmPaths:()=>xpe,setWebGLContext:()=>qC,setdiff1dAsync:()=>cT,sigmoid:()=>da,sign:()=>Mv,signal:()=>FT,sin:()=>Xm,sinh:()=>Ym,slice:()=>Be,slice1d:()=>zc,slice2d:()=>Zm,slice3d:()=>vo,slice4d:()=>cl,slice_util:()=>Kt,softmax:()=>Xa,softplus:()=>xo,spaceToBatchND:()=>Oc,sparse:()=>RT,sparseToDense:()=>xT,spectral:()=>$T,split:()=>zn,sqrt:()=>un,square:()=>ot,squaredDifference:()=>Qm,squeeze:()=>Ts,stack:()=>$t,step:()=>wo,stridedSlice:()=>Pv,string:()=>MT,sub:()=>pe,sum:()=>fe,sumOutType:()=>_m,tan:()=>Ov,tanh:()=>oi,tensor:()=>mn,tensor1d:()=>Ke,tensor2d:()=>Aa,tensor3d:()=>_c,tensor4d:()=>Da,tensor5d:()=>dT,tensor6d:()=>hT,tensor_util:()=>Ua,test_util:()=>CS,tidy:()=>P,tile:()=>Ln,time:()=>DR,topk:()=>Lv,train:()=>Us,transpose:()=>_e,truncatedNormal:()=>ef,unique:()=>zv,unregisterGradient:()=>tD,unregisterKernel:()=>eD,unsortedSegmentSum:()=>tf,unstack:()=>ut,upcastType:()=>ma,upperBound:()=>mT,util:()=>v,valueAndGrad:()=>cO,valueAndGrads:()=>dO,variable:()=>Wv,variableGrads:()=>GS,version:()=>Epe,version_converter:()=>F6,version_core:()=>bM,version_layers:()=>fw,version_wasm:()=>kpe,version_webgl:()=>uJ,webgl:()=>pJ,webgl_util:()=>jC,where:()=>fn,whereAsync:()=>Bv,zeros:()=>It,zerosLike:()=>qe});var oF=Object.create,kx=Object.defineProperty,lF=Object.getOwnPropertyDescriptor,uF=Object.getOwnPropertyNames,pF=Object.getPrototypeOf,cF=Object.prototype.hasOwnProperty,II=(e=>typeof jr!="undefined"?jr:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof jr!="undefined"?jr:t)[n]}):e)(function(e){if(typeof jr!="undefined")return jr.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),Bt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Ae=(e,t)=>{for(var n in t)kx(e,n,{get:t[n],enumerable:!0})},dF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of uF(t))!cF.call(e,r)&&r!==n&&kx(e,r,{get:()=>t[r],enumerable:!(a=lF(t,r))||a.enumerable});return e},hs=(e,t,n)=>(n=e!=null?oF(pF(e)):{},dF(t||!e||!e.__esModule?kx(n,"default",{value:e,enumerable:!0}):n,e)),hF=Bt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,B){this.low=S|0,this.high=M|0,this.unsigned=!!B}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var B,U,G;return M?(S>>>=0,(G=0<=S&&S<256)&&(U=i[S],U)?U:(B=u(S,(S|0)<0?-1:0,!0),G&&(i[S]=B),B)):(S|=0,(G=-128<=S&&S<128)&&(U=s[S],U)?U:(B=u(S,S<0?-1:0,!1),G&&(s[S]=B),B))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?w:x;if(M){if(S<0)return w;if(S>=g)return $}else{if(S<=-y)return R;if(S+1>=y)return _}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,B){return new a(S,M,B)}a.fromBits=u;var p=Math.pow;function d(S,M,B){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(B=M,M=!1):M=!!M,B=B||10,B<2||360)throw Error("interior hyphen");if(U===0)return d(S.substring(1),M,B).neg();for(var G=l(p(B,8)),q=x,K=0;K>>0:this.low},F.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},F.toString=function(S){if(S=S||10,S<2||36>>0,ee=J.toString(S);if(q=Z,q.isZero())return ee+K;for(;ee.length<6;)ee="0"+ee;K=""+ee+K}},F.getHighBits=function(){return this.high},F.getHighBitsUnsigned=function(){return this.high>>>0},F.getLowBits=function(){return this.low},F.getLowBitsUnsigned=function(){return this.low>>>0},F.getNumBitsAbs=function(){if(this.isNegative())return this.eq(R)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<=0},F.isOdd=function(){return(this.low&1)===1},F.isEven=function(){return(this.low&1)===0},F.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},F.eq=F.equals,F.notEquals=function(S){return!this.eq(S)},F.neq=F.notEquals,F.ne=F.notEquals,F.lessThan=function(S){return this.comp(S)<0},F.lt=F.lessThan,F.lessThanOrEqual=function(S){return this.comp(S)<=0},F.lte=F.lessThanOrEqual,F.le=F.lessThanOrEqual,F.greaterThan=function(S){return this.comp(S)>0},F.gt=F.greaterThan,F.greaterThanOrEqual=function(S){return this.comp(S)>=0},F.gte=F.greaterThanOrEqual,F.ge=F.greaterThanOrEqual,F.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),B=S.isNegative();return M&&!B?-1:!M&&B?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},F.comp=F.compare,F.negate=function(){return!this.unsigned&&this.eq(R)?R:this.not().add(I)},F.neg=F.negate,F.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,B=this.high&65535,U=this.low>>>16,G=this.low&65535,q=S.high>>>16,K=S.high&65535,Z=S.low>>>16,J=S.low&65535,ee=0,ae=0,te=0,ie=0;return ie+=G+J,te+=ie>>>16,ie&=65535,te+=U+Z,ae+=te>>>16,te&=65535,ae+=B+K,ee+=ae>>>16,ae&=65535,ee+=M+q,ee&=65535,u(te<<16|ie,ee<<16|ae,this.unsigned)},F.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},F.sub=F.subtract,F.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(R))return S.isOdd()?R:x;if(S.eq(R))return this.isOdd()?R:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var B=this.high>>>16,U=this.high&65535,G=this.low>>>16,q=this.low&65535,K=S.high>>>16,Z=S.high&65535,J=S.low>>>16,ee=S.low&65535,ae=0,te=0,ie=0,oe=0;return oe+=q*ee,ie+=oe>>>16,oe&=65535,ie+=G*ee,te+=ie>>>16,ie&=65535,ie+=q*J,te+=ie>>>16,ie&=65535,te+=U*ee,ae+=te>>>16,te&=65535,te+=G*J,ae+=te>>>16,te&=65535,te+=q*Z,ae+=te>>>16,te&=65535,ae+=B*ee+U*J+G*Z+q*K,ae&=65535,u(ie<<16|oe,ae<<16|te,this.unsigned)},F.mul=F.multiply,F.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?w:x;var B,U,G;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return w;if(S.gt(this.shru(1)))return T;G=w}else{if(this.eq(R)){if(S.eq(I)||S.eq(C))return R;if(S.eq(R))return I;var q=this.shr(1);return B=q.div(S).shl(1),B.eq(x)?S.isNegative()?I:C:(U=this.sub(S.mul(B)),G=B.add(U.div(S)),G)}else if(S.eq(R))return this.unsigned?w:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();G=x}for(U=this;U.gte(S);){B=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var K=Math.ceil(Math.log(B)/Math.LN2),Z=K<=48?1:p(2,K-48),J=l(B),ee=J.mul(S);ee.isNegative()||ee.gt(U);)B-=Z,J=l(B,this.unsigned),ee=J.mul(S);J.isZero()&&(J=I),G=G.add(J),U=U.sub(ee)}return G},F.div=F.divide,F.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},F.mod=F.modulo,F.rem=F.modulo,F.not=function(){return u(~this.low,~this.high,this.unsigned)},F.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},F.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},F.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},F.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<>>32-S,this.unsigned):u(0,this.low<>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},F.shr=F.shiftRight,F.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var B=this.low;return u(B>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},F.shru=F.shiftRightUnsigned,F.shr_u=F.shiftRightUnsigned,F.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},F.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},F.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},F.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},F.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,B){return B?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),mF=Bt(()=>{}),fF=Bt(()=>{}),gF=Bt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),yF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),vF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),wF=Bt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),kF=Bt(()=>{}),IF=Bt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,C){var _=[];T=T==!0?{entropy:!0}:T||{};var $=b(y(T.entropy?[I,w(a)]:I==null?x():I,3),_),R=new f(_),F=function(){for(var S=R.g(i),M=u,B=0;S=d;)S/=2,M/=2,B>>>=1;return(S+B)/M};return F.int32=function(){return R.g(4)|0},F.quick=function(){return R.g(4)/4294967296},F.double=F,b(w(R.S),a),(T.pass||C||function(S,M,B,U){return U&&(U.S&&g(U,R),S.state=function(){return g(R,{})}),B?(r[l]=S,M):S})(F,$,"global"in T?T.global:this==r,T.state)}function f(I){var T,C=I.length,_=this,$=0,R=_.i=_.j=0,F=_.S=[];for(C||(I=[C++]);${var n=gF(),a=yF(),r=bF(),s=xF(),i=vF(),o=wF(),l=IF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),SI=Bt(()=>{}),Ix=Bt(()=>{}),hh=Bt(()=>{}),SF=Bt(()=>{}),TF=Bt(()=>{}),NF=Bt(()=>{}),CF=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return ue.buffer!=ze&&it(ue.buffer),dt}function i(){return ue.buffer!=ze&&it(ue.buffer),Hn}function o(){return ue.buffer!=ze&&it(ue.buffer),Mt}function l(){return ue.buffer!=ze&&it(ue.buffer),on}function u(){return ue.buffer!=ze&&it(ue.buffer),Fn}function p(){return ue.buffer!=ze&&it(ue.buffer),ia}function d(){return ue.buffer!=ze&&it(ue.buffer),Dn}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(D,j){h=D,m=j});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(D,j)=>{throw j},w=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=c.ENVIRONMENT_IS_PTHREAD||!1,_="";function $(D){return c.locateFile?c.locateFile(D,_):_+D}var R,F,S,M;function B(D){D instanceof Ls||J("exiting due to exception: "+D)}if(T){I?_=hh().dirname(_)+"/":_=__dirname+"/";var U,G;typeof II=="function"&&(U=Ix(),G=hh()),R=(j,re)=>(j=G.normalize(j),U.readFileSync(j,re?void 0:"utf8")),S=j=>{var re=R(j,!0);return re.buffer||(re=new Uint8Array(re)),re},F=(j,re,de)=>{j=G.normalize(j),U.readFile(j,function(Ie,je){Ie?de(Ie):re(je.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Ls))throw j}),process.on("unhandledRejection",function(j){throw j}),x=(j,re)=>{if(ka())throw process.exitCode=j,re;B(re),process.exit(j)},c.inspect=function(){return"[Emscripten Module object]"};let D;try{D=SF()}catch(j){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),j}global.Worker=D.Worker}else(w||I)&&(I?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof a!="undefined"&&a&&(_=a),_.indexOf("blob:")!==0?_=_.substr(0,_.replace(/[?#].*/,"").lastIndexOf("/")+1):_="",T||(R=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.send(null),j.responseText},I&&(S=D=>{var j=new XMLHttpRequest;return j.open("GET",D,!1),j.responseType="arraybuffer",j.send(null),new Uint8Array(j.response)}),F=(D,j,re)=>{var de=new XMLHttpRequest;de.open("GET",D,!0),de.responseType="arraybuffer",de.onload=()=>{if(de.status==200||de.status==0&&de.response){j(de.response);return}re()},de.onerror=re,de.send(null)}),M=D=>document.title=D);T&&typeof performance=="undefined"&&(global.performance=TF().performance);var q=console.log.bind(console),K=console.warn.bind(console);T&&(q=D=>U.writeSync(1,D+` `),K=D=>U.writeSync(2,D+` `));var Z=c.print||q,J=c.printErr||K;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ee=4,ae=Atomics.load,te=Atomics.store,ie=Atomics.compareExchange,oe;c.wasmBinary&&(oe=c.wasmBinary);var ye=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Uo("no native wasm support detected");var ue,be,ke=!1,Se;function Le(D,j){D||Uo(j)}var Ue=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function nt(D,j,re){for(var de=j+re,Ie=j;D[Ie]&&!(Ie>=de);)++Ie;if(Ie-j>16&&D.buffer&&Ue)return Ue.decode(D.buffer instanceof SharedArrayBuffer?D.slice(j,Ie):D.subarray(j,Ie));for(var je="";j>10,56320|la&1023)}}return je}function st(D,j){return D?nt(i(),D,j):""}function Qe(D,j,re,de){if(!(de>0))return 0;for(var Ie=re,je=re+de-1,Ce=0;Ce=55296&&De<=57343){var Ot=D.charCodeAt(++Ce);De=65536+((De&1023)<<10)|Ot&1023}if(De<=127){if(re>=je)break;j[re++]=De}else if(De<=2047){if(re+1>=je)break;j[re++]=192|De>>6,j[re++]=128|De&63}else if(De<=65535){if(re+2>=je)break;j[re++]=224|De>>12,j[re++]=128|De>>6&63,j[re++]=128|De&63}else{if(re+3>=je)break;j[re++]=240|De>>18,j[re++]=128|De>>12&63,j[re++]=128|De>>6&63,j[re++]=128|De&63}}return j[re]=0,re-Ie}function at(D,j,re){return Qe(D,i(),j,re)}var ze,dt,Hn,Mt,sa,on,Fn,ia,Dn;C&&(ze=c.buffer);function it(D){ze=D,c.HEAP8=dt=new Int8Array(D),c.HEAP16=Mt=new Int16Array(D),c.HEAP32=on=new Int32Array(D),c.HEAPU8=Hn=new Uint8Array(D),c.HEAPU16=sa=new Uint16Array(D),c.HEAPU32=Fn=new Uint32Array(D),c.HEAPF32=ia=new Float32Array(D),c.HEAPF64=Dn=new Float64Array(D)}var Rn=c.INITIAL_MEMORY||16777216;if(C)ue=c.wasmMemory,ze=c.buffer;else if(c.wasmMemory)ue=c.wasmMemory;else if(ue=new WebAssembly.Memory({initial:Rn/65536,maximum:32768,shared:!0}),!(ue.buffer instanceof SharedArrayBuffer))throw J("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");ue&&(ze=ue.buffer),Rn=ze.byteLength,it(ze);var jn,br=[],Wo=[],Qa=[],fp=!1;function ka(){return ye}function Bo(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)xg(c.preRun.shift());xp(br)}function Zt(){fp=!0,!C&&xp(Wo)}function xd(){if(!C){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)N1(c.postRun.shift());xp(Qa)}}function xg(D){br.unshift(D)}function vg(D){Wo.unshift(D)}function N1(D){Qa.unshift(D)}var Ur=0,Vo=null,xr=null;function C1(D){Ur++,c.monitorRunDependencies&&c.monitorRunDependencies(Ur)}function E1(D){if(Ur--,c.monitorRunDependencies&&c.monitorRunDependencies(Ur),Ur==0&&(Vo!==null&&(clearInterval(Vo),Vo=null),xr)){var j=xr;xr=null,j()}}function Uo(D){C?postMessage({cmd:"onAbort",arg:D}):c.onAbort&&c.onAbort(D),D="Aborted("+D+")",J(D),ke=!0,Se=1,D+=". Build with -sASSERTIONS for more info.";var j=new WebAssembly.RuntimeError(D);throw m(j),j}var wg="data:application/octet-stream;base64,";function vd(D){return D.startsWith(wg)}function gp(D){return D.startsWith("file://")}var bn;bn="tfjs-backend-wasm-threaded-simd.wasm",vd(bn)||(bn=$(bn));function wd(D){try{if(D==bn&&oe)return new Uint8Array(oe);if(S)return S(D);throw"both async and sync fetching of the wasm failed"}catch(j){Uo(j)}}function kg(){if(!oe&&(w||I)){if(typeof fetch=="function"&&!gp(bn))return fetch(bn,{credentials:"same-origin"}).then(function(D){if(!D.ok)throw"failed to load wasm binary file at '"+bn+"'";return D.arrayBuffer()}).catch(function(){return wd(bn)});if(F)return new Promise(function(D,j){F(bn,function(re){D(new Uint8Array(re))},j)})}return Promise.resolve().then(function(){return wd(bn)})}function Ig(){var D={env:Dd,wasi_snapshot_preview1:Dd};function j(Ce,De){var Ot=Ce.exports;if(c.asm=Ot,Dg(c.asm._emscripten_tls_init),jn=c.asm.__indirect_function_table,vg(c.asm.__wasm_call_ctors),be=De,!C){var la=$e.unusedWorkers.length;$e.unusedWorkers.forEach(function(wr){$e.loadWasmModuleToWorker(wr,function(){--la||E1("wasm-instantiate")})})}}C||C1("wasm-instantiate");function re(Ce){j(Ce.instance,Ce.module)}function de(Ce){return kg().then(function(De){return WebAssembly.instantiate(De,D)}).then(function(De){return De}).then(Ce,function(De){J("failed to asynchronously prepare wasm: "+De),Uo(De)})}function Ie(){return!oe&&typeof WebAssembly.instantiateStreaming=="function"&&!vd(bn)&&!gp(bn)&&!T&&typeof fetch=="function"?fetch(bn,{credentials:"same-origin"}).then(function(Ce){var De=WebAssembly.instantiateStreaming(Ce,D);return De.then(re,function(Ot){return J("wasm streaming compile failed: "+Ot),J("falling back to ArrayBuffer instantiation"),de(re)})}):de(re)}if(c.instantiateWasm)try{var je=c.instantiateWasm(D,j);return je}catch(Ce){J("Module.instantiateWasm callback failed with error: "+Ce),m(Ce)}return Ie().catch(m),{}}var Sg,_1,Tg={};function Ls(D){this.name="ExitStatus",this.message="Program terminated with exit("+D+")",this.status=D}function Ng(D){var j=$e.pthreads[D];delete $e.pthreads[D],j.terminate(),ab(D),$e.runningWorkers.splice($e.runningWorkers.indexOf(j),1),j.pthread_ptr=0}function Cg(D){var j=$e.pthreads[D];j.postMessage({cmd:"cancel"})}function yp(D){var j=$e.pthreads[D];Le(j),$e.returnWorkerToPool(j)}function kd(D){var j=$e.getNewWorker();if(!j)return 6;$e.runningWorkers.push(j),$e.pthreads[D.pthread_ptr]=j,j.pthread_ptr=D.pthread_ptr;var re={cmd:"run",start_routine:D.startRoutine,arg:D.arg,pthread_ptr:D.pthread_ptr};return j.runPthread=()=>{re.time=performance.now(),j.postMessage(re,D.transferList)},j.loaded&&(j.runPthread(),delete j.runPthread),0}var Id={varargs:void 0,get:function(){Id.varargs+=4;var D=l()[Id.varargs-4>>2];return D},getStr:function(D){var j=st(D);return j}};function bp(D){if(C)return Gr(1,1,D);Se=D,ka()||($e.terminateAllThreads(),c.onExit&&c.onExit(D),ke=!0),x(D,new Ls(D))}function A1(D,j){if(Se=D,!j&&C)throw Td(D),"unwind";bp(D)}var Sd=A1;function Eg(D){if(D instanceof Ls||D=="unwind")return Se;x(1,D)}var $e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],pthreads:{},init:function(){C?$e.initWorker():$e.initMainThread()},initMainThread:function(){for(var D=8;D--;)$e.allocateUnusedWorker()},initWorker:function(){ye=!1},setExitStatus:function(D){Se=D},terminateAllThreads:function(){for(var D of Object.values($e.pthreads))$e.returnWorkerToPool(D);for(var D of $e.unusedWorkers)D.terminate();$e.unusedWorkers=[]},returnWorkerToPool:function(D){var j=D.pthread_ptr;delete $e.pthreads[j],$e.unusedWorkers.push(D),$e.runningWorkers.splice($e.runningWorkers.indexOf(D),1),D.pthread_ptr=0,ab(j)},receiveObjectTransfer:function(D){},threadInitTLS:function(){$e.tlsInitFunctions.forEach(D=>D())},loadWasmModuleToWorker:function(D,j){D.onmessage=re=>{var de=re.data,Ie=de.cmd;if(D.pthread_ptr&&($e.currentProxiedOperationCallerThread=D.pthread_ptr),de.targetThread&&de.targetThread!=zd()){var je=$e.pthreads[de.targetThread];je?je.postMessage(de,de.transferList):J('Internal error! Worker sent a message "'+Ie+'" to target pthread '+de.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}Ie==="processProxyingQueue"?vp(de.queue):Ie==="spawnThread"?kd(de):Ie==="cleanupThread"?yp(de.thread):Ie==="killThread"?Ng(de.thread):Ie==="cancelThread"?Cg(de.thread):Ie==="loaded"?(D.loaded=!0,j&&j(D),D.runPthread&&(D.runPthread(),delete D.runPthread)):Ie==="print"?Z("Thread "+de.threadId+": "+de.text):Ie==="printErr"?J("Thread "+de.threadId+": "+de.text):Ie==="alert"?alert("Thread "+de.threadId+": "+de.text):de.target==="setimmediate"?D.postMessage(de):Ie==="onAbort"?c.onAbort&&c.onAbort(de.arg):Ie&&J("worker sent an unknown command "+Ie),$e.currentProxiedOperationCallerThread=void 0},D.onerror=re=>{var de="worker sent an error!";throw J(de+" "+re.filename+":"+re.lineno+": "+re.message),re},T&&(D.on("message",function(re){D.onmessage({data:re})}),D.on("error",function(re){D.onerror(re)}),D.on("detachedExit",function(){})),D.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:ue,wasmModule:be})},allocateUnusedWorker:function(){var D=$("tfjs-backend-wasm-threaded-simd.worker.js");$e.unusedWorkers.push(new Worker(D))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.pop()}};c.PThread=$e;function xp(D){for(;D.length>0;)D.shift()(c)}function _g(D){var j=rb(),re=D();return Wd(j),re}function $1(D){return D}function F1(D){var j=/\b_Z[\w\d_]+/g;return D.replace(j,function(re){var de=re;return re===de?re:de+" ["+re+"]"})}function Ag(){var D=zd(),j=l()[D+44>>2],re=l()[D+48>>2],de=j-re;z1(j,de),Wd(j)}c.establishStackSpace=Ag;function Td(D){if(C)return Gr(2,0,D);try{Sd(D)}catch(j){Eg(j)}}var Go=[];function $g(D){var j=Go[D];return j||(D>=Go.length&&(Go.length=D+1),Go[D]=j=jn.get(D)),j}function Fg(D,j){var re=$g(D)(j);ka()?$e.setExitStatus(re):L1(re)}c.invokeEntryPoint=Fg;function D1(){var D=new Error;if(!D.stack){try{throw new Error}catch(j){D=j}if(!D.stack)return"(no stack trace available)"}return D.stack.toString()}function Dg(D){$e.tlsInitFunctions.push(D)}function Rg(D,j){s().set(D,j)}function Mg(D){M1(D,!I,1,!w),$e.threadInitTLS()}function Pg(D){C?postMessage({cmd:"cleanupThread",thread:D}):yp(D)}function Nd(D,j,re,de){return C?Gr(3,1,D,j,re,de):Cd(D,j,re,de)}function Cd(D,j,re,de){if(typeof SharedArrayBuffer=="undefined")return J("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ie=[],je=0;if(C&&(Ie.length===0||je))return Nd(D,j,re,de);if(je)return je;var Ce={startRoutine:re,pthread_ptr:D,arg:de,transferList:Ie};return C?(Ce.cmd="spawnThread",postMessage(Ce,Ie),0):kd(Ce)}function Og(){return 2097152}var Lg=!0;function zg(){return Lg}function vp(D){Atomics.store(l(),D>>2,1),zd()&&O1(D),Atomics.compareExchange(l(),D>>2,1,0)}c.executeNotifiedProxyingQueue=vp;function Wg(D,j,re,de){if(D==j)setTimeout(()=>vp(de));else if(C)postMessage({targetThread:D,cmd:"processProxyingQueue",queue:de});else{var Ie=$e.pthreads[D];if(!Ie)return;Ie.postMessage({cmd:"processProxyingQueue",queue:de})}return 1}function Bg(D,j,re){return-1}function Vg(){Uo("")}function zs(D){zs.shown||(zs.shown={}),zs.shown[D]||(zs.shown[D]=1,T&&(D="warning: "+D),J(D))}function Ug(){T||I||zs("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Gg(){return Date.now()}function Ed(){return 2147483648}function Hg(){return Ed()}var Ho;T?Ho=()=>{var D=process.hrtime();return D[0]*1e3+D[1]/1e6}:C?Ho=()=>performance.now()-c.__performance_now_clock_drift:Ho=()=>performance.now();function jg(D,j,re){i().copyWithin(D,j,j+re)}function qg(){return T?NF().cpus().length:navigator.hardwareConcurrency}function Gr(D,j){var re=arguments.length-2,de=arguments;return _g(()=>{for(var Ie=re,je=Bd(Ie*8),Ce=je>>3,De=0;De>3,Ie=0;Ie>>16),it(ue.buffer),1}catch(j){}}function Yg(D){var j=i().length;if(D=D>>>0,D<=j)return!1;var re=Ed();if(D>re)return!1;let de=(Ot,la)=>Ot+(la-Ot%la)%la;for(var Ie=1;Ie<=4;Ie*=2){var je=j*(1+.2/Ie);je=Math.min(je,D+100663296);var Ce=Math.min(re,de(Math.max(D,je),65536)),De=Xg(Ce);if(De)return!0}return!1}function Zg(){throw"unwind"}function _d(D){return C?Gr(4,1,D):52}function Ad(D,j,re,de,Ie){return C?Gr(5,1,D,j,re,de,Ie):70}var Jg=[null,[],[]];function Qg(D,j){var re=Jg[D];j===0||j===10?((D===1?Z:J)(nt(re,0)),re.length=0):re.push(j)}function $d(D,j,re,de){if(C)return Gr(6,1,D,j,re,de);for(var Ie=0,je=0;je>2],De=u()[j+4>>2];j+=8;for(var Ot=0;Ot>2]=Ie,0}function Fd(D){var j=c["_"+D];return j}function ey(D,j,re,de,Ie){var je={string:ua=>{var Xo=0;if(ua!=null&&ua!==0){var V1=(ua.length<<2)+1;Xo=Bd(V1),at(ua,Xo,V1)}return Xo},array:ua=>{var Xo=Bd(ua.length);return Rg(ua,Xo),Xo}};function Ce(ua){return j==="string"?st(ua):j==="boolean"?Boolean(ua):ua}var De=Fd(D),Ot=[],la=0;if(de)for(var wr=0;wrCe==="number"||Ce==="boolean"),je=j!=="string";return je&&Ie&&!de?Fd(D):function(){return ey(D,j,re,arguments,de)}}$e.init();var ny=[null,bp,Td,Nd,_d,Ad,$d],Dd={__emscripten_init_main_thread_js:Mg,__emscripten_thread_cleanup:Pg,__pthread_create_js:Cd,_emscripten_default_pthread_stack_size:Og,_emscripten_get_now_is_monotonic:zg,_emscripten_notify_task_queue:Wg,_emscripten_set_offscreencanvas_size:Bg,abort:Vg,emscripten_check_blocking_allowed:Ug,emscripten_date_now:Gg,emscripten_get_heap_max:Hg,emscripten_get_now:Ho,emscripten_memcpy_big:jg,emscripten_num_logical_cores:qg,emscripten_receive_on_main_thread_js:Kg,emscripten_resize_heap:Yg,emscripten_unwind_to_js_event_loop:Zg,exit:Sd,fd_close:_d,fd_seek:Ad,fd_write:$d,memory:ue||c.wasmMemory},R1=Ig(),ay=c.___wasm_call_ctors=function(){return(ay=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},ry=c._init=function(){return(ry=c._init=c.asm.init).apply(null,arguments)},sy=c._init_with_threads_count=function(){return(sy=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},iy=c._get_threads_count=function(){return(iy=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},oy=c._register_tensor=function(){return(oy=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},ly=c._dispose_data=function(){return(ly=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},uy=c._dispose=function(){return(uy=c._dispose=c.asm.dispose).apply(null,arguments)},py=c._Abs=function(){return(py=c._Abs=c.asm.Abs).apply(null,arguments)},cy=c._Add=function(){return(cy=c._Add=c.asm.Add).apply(null,arguments)},dy=c._AddN=function(){return(dy=c._AddN=c.asm.AddN).apply(null,arguments)},hy=c._All=function(){return(hy=c._All=c.asm.All).apply(null,arguments)},my=c._Any=function(){return(my=c._Any=c.asm.Any).apply(null,arguments)},fy=c._ArgMax=function(){return(fy=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},gy=c._AvgPool=function(){return(gy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},yy=c._BatchMatMul=function(){return(yy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},by=c._Ceil=function(){return(by=c._Ceil=c.asm.Ceil).apply(null,arguments)},xy=c._ClipByValue=function(){return(xy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},vy=c._Conv2D=function(){return(vy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},wy=c._Conv2DBackpropInput=function(){return(wy=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},ky=c._Cos=function(){return(ky=c._Cos=c.asm.Cos).apply(null,arguments)},Iy=c._Cosh=function(){return(Iy=c._Cosh=c.asm.Cosh).apply(null,arguments)},Sy=c._CropAndResize=function(){return(Sy=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},Ty=c._Cumprod=function(){return(Ty=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},Ny=c._Cumsum=function(){return(Ny=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},Cy=c._DepthToSpace=function(){return(Cy=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},Ey=c._DepthwiseConv2dNative=function(){return(Ey=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},_y=c._Elu=function(){return(_y=c._Elu=c.asm.Elu).apply(null,arguments)},Ay=c._Equal=function(){return(Ay=c._Equal=c.asm.Equal).apply(null,arguments)},$y=c._Exp=function(){return($y=c._Exp=c.asm.Exp).apply(null,arguments)},Fy=c._FlipLeftRight=function(){return(Fy=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},Dy=c._Floor=function(){return(Dy=c._Floor=c.asm.Floor).apply(null,arguments)},Ry=c._FloorDiv=function(){return(Ry=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},My=c._FusedBatchNorm=function(){return(My=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},Py=c._FusedConv2D=function(){return(Py=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},Oy=c._FusedDepthwiseConv2D=function(){return(Oy=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},Ly=c._Gather=function(){return(Ly=c._Gather=c.asm.Gather).apply(null,arguments)},zy=c._GatherNd=function(){return(zy=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},Wy=c._Greater=function(){return(Wy=c._Greater=c.asm.Greater).apply(null,arguments)},By=c._GreaterEqual=function(){return(By=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},Vy=c._IsNan=function(){return(Vy=c._IsNan=c.asm.IsNan).apply(null,arguments)},Uy=c._LeakyRelu=function(){return(Uy=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Gy=c._Less=function(){return(Gy=c._Less=c.asm.Less).apply(null,arguments)},Hy=c._LessEqual=function(){return(Hy=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},jy=c._Log=function(){return(jy=c._Log=c.asm.Log).apply(null,arguments)},qy=c._LogicalAnd=function(){return(qy=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},Ky=c._LogicalNot=function(){return(Ky=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},Xy=c._LogicalOr=function(){return(Xy=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},Yy=c._LogicalXor=function(){return(Yy=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},Zy=c._Max=function(){return(Zy=c._Max=c.asm.Max).apply(null,arguments)},Jy=c._MaxPool=function(){return(Jy=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Rd=c._Maximum=function(){return(Rd=c._Maximum=c.asm.Maximum).apply(null,arguments)},Md=c._Mean=function(){return(Md=c._Mean=c.asm.Mean).apply(null,arguments)},kp=c._Min=function(){return(kp=c._Min=c.asm.Min).apply(null,arguments)},Qy=c._Minimum=function(){return(Qy=c._Minimum=c.asm.Minimum).apply(null,arguments)},eb=c._MirrorPad=function(){return(eb=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},jo=c._Multiply=function(){return(jo=c._Multiply=c.asm.Multiply).apply(null,arguments)},Pd=c._Neg=function(){return(Pd=c._Neg=c.asm.Neg).apply(null,arguments)},qo=c._NonMaxSuppressionV3=function(){return(qo=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},Ko=c._NonMaxSuppressionV4=function(){return(Ko=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},tb=c._NonMaxSuppressionV5=function(){return(tb=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},X=c._NotEqual=function(){return(X=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},se=c._OneHot=function(){return(se=c._OneHot=c.asm.OneHot).apply(null,arguments)},we=c._PadV2=function(){return(we=c._PadV2=c.asm.PadV2).apply(null,arguments)},He=c._Pow=function(){return(He=c._Pow=c.asm.Pow).apply(null,arguments)},wt=c._Prelu=function(){return(wt=c._Prelu=c.asm.Prelu).apply(null,arguments)},kt=c._Prod=function(){return(kt=c._Prod=c.asm.Prod).apply(null,arguments)},Ge=c._RealDiv=function(){return(Ge=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},We=c._Reciprocal=function(){return(We=c._Reciprocal=c.asm.Reciprocal).apply(null,arguments)},Pt=c._Relu=function(){return(Pt=c._Relu=c.asm.Relu).apply(null,arguments)},oa=c._Relu6=function(){return(oa=c._Relu6=c.asm.Relu6).apply(null,arguments)},vr=c._ResizeBilinear=function(){return(vr=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},Od=c._ResizeNearestNeighbor=function(){return(Od=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},Ip=c._Reverse=function(){return(Ip=c._Reverse=c.asm.Reverse).apply(null,arguments)},nb=c._RotateWithOffset=function(){return(nb=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},Mn=c._Round=function(){return(Mn=c._Round=c.asm.Round).apply(null,arguments)},Hr=c._Rsqrt=function(){return(Hr=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},Ld=c._ScatterNd=function(){return(Ld=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},C$=c._SelectV2=function(){return(C$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},E$=c._Sigmoid=function(){return(E$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},_$=c._Sin=function(){return(_$=c._Sin=c.asm.Sin).apply(null,arguments)},A$=c._Softmax=function(){return(A$=c._Softmax=c.asm.Softmax).apply(null,arguments)},$$=c._SparseFillEmptyRows=function(){return($$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},F$=c._SparseReshape=function(){return(F$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},D$=c._SparseSegmentReduction=function(){return(D$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},R$=c._Sqrt=function(){return(R$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},M$=c._Square=function(){return(M$=c._Square=c.asm.Square).apply(null,arguments)},P$=c._SquaredDifference=function(){return(P$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},O$=c._Step=function(){return(O$=c._Step=c.asm.Step).apply(null,arguments)},L$=c._StridedSlice=function(){return(L$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},z$=c._Sub=function(){return(z$=c._Sub=c.asm.Sub).apply(null,arguments)},W$=c._Sum=function(){return(W$=c._Sum=c.asm.Sum).apply(null,arguments)},B$=c._Tan=function(){return(B$=c._Tan=c.asm.Tan).apply(null,arguments)},V$=c._Tanh=function(){return(V$=c._Tanh=c.asm.Tanh).apply(null,arguments)},U$=c._Tile=function(){return(U$=c._Tile=c.asm.Tile).apply(null,arguments)},G$=c._TopK=function(){return(G$=c._TopK=c.asm.TopK).apply(null,arguments)},H$=c._Transform=function(){return(H$=c._Transform=c.asm.Transform).apply(null,arguments)},j$=c._Transpose=function(){return(j$=c._Transpose=c.asm.Transpose).apply(null,arguments)},q$=c.__FusedMatMul=function(){return(q$=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},K$=c._malloc=function(){return(K$=c._malloc=c.asm.malloc).apply(null,arguments)},X$=c._free=function(){return(X$=c._free=c.asm.free).apply(null,arguments)},Y$=c.__emscripten_tls_init=function(){return(Y$=c.__emscripten_tls_init=c.asm._emscripten_tls_init).apply(null,arguments)},zd=c._pthread_self=function(){return(zd=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},Z$=c.___errno_location=function(){return(Z$=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},M1=c.__emscripten_thread_init=function(){return(M1=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},J$=c.__emscripten_thread_crashed=function(){return(J$=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},Q$=c._emscripten_main_thread_process_queued_calls=function(){return(Q$=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},eF=c._emscripten_main_browser_thread_id=function(){return(eF=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},P1=c._emscripten_run_in_main_runtime_thread_js=function(){return(P1=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},tF=c._emscripten_dispatch_to_thread_=function(){return(tF=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},O1=c.__emscripten_proxy_execute_task_queue=function(){return(O1=c.__emscripten_proxy_execute_task_queue=c.asm._emscripten_proxy_execute_task_queue).apply(null,arguments)},ab=c.__emscripten_thread_free_data=function(){return(ab=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},L1=c.__emscripten_thread_exit=function(){return(L1=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},z1=c._emscripten_stack_set_limits=function(){return(z1=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},rb=c.stackSave=function(){return(rb=c.stackSave=c.asm.stackSave).apply(null,arguments)},Wd=c.stackRestore=function(){return(Wd=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},Bd=c.stackAlloc=function(){return(Bd=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},nF=c.dynCall_iijjiiii=function(){return(nF=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},aF=c.dynCall_jiji=function(){return(aF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)};c.keepRuntimeAlive=ka,c.wasmMemory=ue,c.cwrap=ty,c.ExitStatus=Ls,c.PThread=$e;var Vd;xr=function D(){Vd||W1(),Vd||(xr=D)};function W1(D){if(D=D||y,Ur>0)return;if(C){h(c),Zt(),postMessage({cmd:"loaded"});return}if(Bo(),Ur>0)return;function j(){Vd||(Vd=!0,c.calledRun=!0,!ke&&(Zt(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),xd()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),j()},1)):j()}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();W1();var Ud;f&&(Ud={uncaughtException:process.listeners("uncaughtException").filter(function(D){return!f.uncaughtException.indexOf(D)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(D){return!f.unhandledRejection.indexOf(D)>-1})});var Gd;if(typeof WasmBackendModule!="undefined")Gd=WasmBackendModule;else if(typeof r!="undefined")Gd=r;else throw new Error("Could not find wasm module in post.js");if(Ud){var rF=Gd._dispose;Gd._dispose=function(){rF(),Ud.uncaughtException.forEach(function(D){process.removeListener("uncaughtException",D)}),Ud.unhandledRejection.forEach(function(D){process.removeListener("unhandledRejection",D)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),EF=Bt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",data=>onmessage({data:data}));var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}var initializedJS=false;var pendingNotifiedProxyingQueues=[];function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+" ");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=(info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports};self.onunhandledrejection=e=>{throw e.reason??e};self.onmessage=e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob=="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.pthread_ptr,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInitTLS();if(!initializedJS){pendingNotifiedProxyingQueues.forEach(queue=>{Module["executeNotifiedProxyingQueue"](queue)});pendingNotifiedProxyingQueues=[];initializedJS=true}try{Module["invokeEntryPoint"](e.data.start_routine,e.data.arg)}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processProxyingQueue"){if(initializedJS){Module["executeNotifiedProxyingQueue"](e.data.queue)}else{pendingNotifiedProxyingQueues.push(e.data.queue)}}else if(e.data.cmd){err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}};`}),_F=Bt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(X,se){i=X,o=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(X,se)=>{throw se},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(X){return s.locateFile?s.locateFile(X,g):g+X}var b,x,w,I;function T(X){X instanceof Vo||R("exiting due to exception: "+X)}if(f){m?g=hh().dirname(g)+"/":g=__dirname+"/";var C,_;typeof II=="function"&&(C=Ix(),_=hh()),b=(X,se)=>(X=_.normalize(X),C.readFileSync(X,se?void 0:"utf8")),w=X=>{var se=b(X,!0);return se.buffer||(se=new Uint8Array(se)),se},x=(X,se,we)=>{X=_.normalize(X),C.readFile(X,function(He,wt){He?we(He):se(wt.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Vo))throw X}),process.on("unhandledRejection",function(X){throw X}),c=(X,se)=>{if(Hn())throw process.exitCode=X,se;T(se),process.exit(X)},s.inspect=function(){return"[Emscripten Module object]"}}else(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},m&&(w=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=(X,se,we)=>{var He=new XMLHttpRequest;He.open("GET",X,!0),He.responseType="arraybuffer",He.onload=()=>{if(He.status==200||He.status==0&&He.response){se(He.response);return}we()},He.onerror=we,He.send(null)},I=X=>document.title=X);var $=s.print||console.log.bind(console),R=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var F=4,S;s.wasmBinary&&(S=s.wasmBinary);var M=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Qa("no native wasm support detected");var B,U=!1,G;function q(X,se){X||Qa(se)}var K=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Z(X,se,we){for(var He=se+we,wt=se;X[wt]&&!(wt>=He);)++wt;if(wt-se>16&&X.buffer&&K)return K.decode(X.subarray(se,wt));for(var kt="";se>10,56320|oa&1023)}}return kt}function J(X,se){return X?Z(oe,X,se):""}function ee(X,se,we,He){if(!(He>0))return 0;for(var wt=we,kt=we+He-1,Ge=0;Ge=55296&&We<=57343){var Pt=X.charCodeAt(++Ge);We=65536+((We&1023)<<10)|Pt&1023}if(We<=127){if(we>=kt)break;se[we++]=We}else if(We<=2047){if(we+1>=kt)break;se[we++]=192|We>>6,se[we++]=128|We&63}else if(We<=65535){if(we+2>=kt)break;se[we++]=224|We>>12,se[we++]=128|We>>6&63,se[we++]=128|We&63}else{if(we+3>=kt)break;se[we++]=240|We>>18,se[we++]=128|We>>12&63,se[we++]=128|We>>6&63,se[we++]=128|We&63}}return se[we]=0,we-wt}function ae(X,se,we){return ee(X,oe,se,we)}var te,ie,oe,ye,ue,be,ke,Se,Le;function Ue(X){te=X,s.HEAP8=ie=new Int8Array(X),s.HEAP16=ye=new Int16Array(X),s.HEAP32=be=new Int32Array(X),s.HEAPU8=oe=new Uint8Array(X),s.HEAPU16=ue=new Uint16Array(X),s.HEAPU32=ke=new Uint32Array(X),s.HEAPF32=Se=new Float32Array(X),s.HEAPF64=Le=new Float64Array(X)}var nt=s.INITIAL_MEMORY||16777216,st,Qe=[],at=[],ze=[],dt=!1;function Hn(){return M}function Mt(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Fn(s.preRun.shift());xr(Qe)}function sa(){dt=!0,xr(at)}function on(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Dn(s.postRun.shift());xr(ze)}function Fn(X){Qe.unshift(X)}function ia(X){at.unshift(X)}function Dn(X){ze.unshift(X)}var it=0,Rn=null,jn=null;function br(X){it++,s.monitorRunDependencies&&s.monitorRunDependencies(it)}function Wo(X){if(it--,s.monitorRunDependencies&&s.monitorRunDependencies(it),it==0&&(Rn!==null&&(clearInterval(Rn),Rn=null),jn)){var se=jn;jn=null,se()}}function Qa(X){s.onAbort&&s.onAbort(X),X="Aborted("+X+")",R(X),U=!0,G=1,X+=". Build with -sASSERTIONS for more info.";var se=new WebAssembly.RuntimeError(X);throw o(se),se}var fp="data:application/octet-stream;base64,";function ka(X){return X.startsWith(fp)}function Bo(X){return X.startsWith("file://")}var Zt;Zt="tfjs-backend-wasm.wasm",ka(Zt)||(Zt=y(Zt));function xd(X){try{if(X==Zt&&S)return new Uint8Array(S);if(w)return w(X);throw"both async and sync fetching of the wasm failed"}catch(se){Qa(se)}}function xg(){if(!S&&(h||m)){if(typeof fetch=="function"&&!Bo(Zt))return fetch(Zt,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Zt+"'";return X.arrayBuffer()}).catch(function(){return xd(Zt)});if(x)return new Promise(function(X,se){x(Zt,function(we){X(new Uint8Array(we))},se)})}return Promise.resolve().then(function(){return xd(Zt)})}function vg(){var X={env:bp,wasi_snapshot_preview1:bp};function se(Ge,We){var Pt=Ge.exports;s.asm=Pt,B=s.asm.memory,Ue(B.buffer),st=s.asm.__indirect_function_table,ia(s.asm.__wasm_call_ctors),Wo("wasm-instantiate")}br("wasm-instantiate");function we(Ge){se(Ge.instance)}function He(Ge){return xg().then(function(We){return WebAssembly.instantiate(We,X)}).then(function(We){return We}).then(Ge,function(We){R("failed to asynchronously prepare wasm: "+We),Qa(We)})}function wt(){return!S&&typeof WebAssembly.instantiateStreaming=="function"&&!ka(Zt)&&!Bo(Zt)&&!f&&typeof fetch=="function"?fetch(Zt,{credentials:"same-origin"}).then(function(Ge){var We=WebAssembly.instantiateStreaming(Ge,X);return We.then(we,function(Pt){return R("wasm streaming compile failed: "+Pt),R("falling back to ArrayBuffer instantiation"),He(we)})}):He(we)}if(s.instantiateWasm)try{var kt=s.instantiateWasm(X,se);return kt}catch(Ge){R("Module.instantiateWasm callback failed with error: "+Ge),o(Ge)}return wt().catch(o),{}}var N1,Ur;function Vo(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}function xr(X){for(;X.length>0;)X.shift()(s)}function C1(X){return X}function E1(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(we){var He=we;return we===He?we:He+" ["+we+"]"})}function Uo(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function wg(X,se){ie.set(X,se)}function vd(){Qa("")}function gp(){return 2147483648}function bn(){return gp()}function wd(X,se,we){oe.copyWithin(X,se,se+we)}function kg(X){try{return B.grow(X-te.byteLength+65535>>>16),Ue(B.buffer),1}catch(se){}}function Ig(X){var se=oe.length;X=X>>>0;var we=gp();if(X>we)return!1;let He=(Pt,oa)=>Pt+(oa-Pt%oa)%oa;for(var wt=1;wt<=4;wt*=2){var kt=se*(1+.2/wt);kt=Math.min(kt,X+100663296);var Ge=Math.min(we,He(Math.max(X,kt),65536)),We=kg(Ge);if(We)return!0}return!1}var Sg={varargs:void 0,get:function(){Sg.varargs+=4;var X=be[Sg.varargs-4>>2];return X},getStr:function(X){var se=J(X);return se}};function _1(X){return 52}function Tg(X,se,we,He,wt){return 70}var Ls=[null,[],[]];function Ng(X,se){var we=Ls[X];se===0||se===10?((X===1?$:R)(Z(we,0)),we.length=0):we.push(se)}function Cg(X,se,we,He){for(var wt=0,kt=0;kt>2],We=ke[se+4>>2];se+=8;for(var Pt=0;Pt>2]=wt,0}function yp(X){var se=s["_"+X];return se}function kd(X,se,we,He,wt){var kt={string:Mn=>{var Hr=0;if(Mn!=null&&Mn!==0){var Ld=(Mn.length<<2)+1;Hr=kp(Ld),ae(Mn,Hr,Ld)}return Hr},array:Mn=>{var Hr=kp(Mn.length);return wg(Mn,Hr),Hr}};function Ge(Mn){return se==="string"?J(Mn):se==="boolean"?Boolean(Mn):Mn}var We=yp(X),Pt=[],oa=0;if(He)for(var vr=0;vrGe==="number"||Ge==="boolean"),kt=se!=="string";return kt&&wt&&!He?yp(X):function(){return kd(X,se,we,arguments,He)}}var bp={abort:vd,emscripten_get_heap_max:bn,emscripten_memcpy_big:wd,emscripten_resize_heap:Ig,fd_close:_1,fd_seek:Tg,fd_write:Cg},A1=vg(),Sd=s.___wasm_call_ctors=function(){return(Sd=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Eg=s._init=function(){return(Eg=s._init=s.asm.init).apply(null,arguments)},$e=s._init_with_threads_count=function(){return($e=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},xp=s._get_threads_count=function(){return(xp=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},_g=s._register_tensor=function(){return(_g=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},$1=s._dispose_data=function(){return($1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},F1=s._dispose=function(){return(F1=s._dispose=s.asm.dispose).apply(null,arguments)},Ag=s._Abs=function(){return(Ag=s._Abs=s.asm.Abs).apply(null,arguments)},Td=s._Add=function(){return(Td=s._Add=s.asm.Add).apply(null,arguments)},Go=s._AddN=function(){return(Go=s._AddN=s.asm.AddN).apply(null,arguments)},$g=s._All=function(){return($g=s._All=s.asm.All).apply(null,arguments)},Fg=s._Any=function(){return(Fg=s._Any=s.asm.Any).apply(null,arguments)},D1=s._ArgMax=function(){return(D1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},Dg=s._AvgPool=function(){return(Dg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},Rg=s._BatchMatMul=function(){return(Rg=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Mg=s._Ceil=function(){return(Mg=s._Ceil=s.asm.Ceil).apply(null,arguments)},Pg=s._ClipByValue=function(){return(Pg=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Nd=s._Conv2D=function(){return(Nd=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Cd=s._Conv2DBackpropInput=function(){return(Cd=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},Og=s._Cos=function(){return(Og=s._Cos=s.asm.Cos).apply(null,arguments)},Lg=s._Cosh=function(){return(Lg=s._Cosh=s.asm.Cosh).apply(null,arguments)},zg=s._CropAndResize=function(){return(zg=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},vp=s._Cumprod=function(){return(vp=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},Wg=s._Cumsum=function(){return(Wg=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Bg=s._DepthToSpace=function(){return(Bg=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},Vg=s._DepthwiseConv2dNative=function(){return(Vg=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},zs=s._Elu=function(){return(zs=s._Elu=s.asm.Elu).apply(null,arguments)},Ug=s._Equal=function(){return(Ug=s._Equal=s.asm.Equal).apply(null,arguments)},Gg=s._Exp=function(){return(Gg=s._Exp=s.asm.Exp).apply(null,arguments)},Ed=s._FlipLeftRight=function(){return(Ed=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},Hg=s._Floor=function(){return(Hg=s._Floor=s.asm.Floor).apply(null,arguments)},Ho=s._FloorDiv=function(){return(Ho=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},jg=s._FusedBatchNorm=function(){return(jg=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},qg=s._FusedConv2D=function(){return(qg=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Gr=s._FusedDepthwiseConv2D=function(){return(Gr=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},wp=s._Gather=function(){return(wp=s._Gather=s.asm.Gather).apply(null,arguments)},Kg=s._GatherNd=function(){return(Kg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},Xg=s._Greater=function(){return(Xg=s._Greater=s.asm.Greater).apply(null,arguments)},Yg=s._GreaterEqual=function(){return(Yg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},Zg=s._IsNan=function(){return(Zg=s._IsNan=s.asm.IsNan).apply(null,arguments)},_d=s._LeakyRelu=function(){return(_d=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},Ad=s._Less=function(){return(Ad=s._Less=s.asm.Less).apply(null,arguments)},Jg=s._LessEqual=function(){return(Jg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Qg=s._Log=function(){return(Qg=s._Log=s.asm.Log).apply(null,arguments)},$d=s._LogicalAnd=function(){return($d=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Fd=s._LogicalNot=function(){return(Fd=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},ey=s._LogicalOr=function(){return(ey=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},ty=s._LogicalXor=function(){return(ty=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},ny=s._Max=function(){return(ny=s._Max=s.asm.Max).apply(null,arguments)},Dd=s._MaxPool=function(){return(Dd=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},R1=s._Maximum=function(){return(R1=s._Maximum=s.asm.Maximum).apply(null,arguments)},ay=s._Mean=function(){return(ay=s._Mean=s.asm.Mean).apply(null,arguments)},ry=s._Min=function(){return(ry=s._Min=s.asm.Min).apply(null,arguments)},sy=s._Minimum=function(){return(sy=s._Minimum=s.asm.Minimum).apply(null,arguments)},iy=s._MirrorPad=function(){return(iy=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},oy=s._Multiply=function(){return(oy=s._Multiply=s.asm.Multiply).apply(null,arguments)},ly=s._Neg=function(){return(ly=s._Neg=s.asm.Neg).apply(null,arguments)},uy=s._NonMaxSuppressionV3=function(){return(uy=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},py=s._NonMaxSuppressionV4=function(){return(py=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},cy=s._NonMaxSuppressionV5=function(){return(cy=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},dy=s._NotEqual=function(){return(dy=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},hy=s._OneHot=function(){return(hy=s._OneHot=s.asm.OneHot).apply(null,arguments)},my=s._PadV2=function(){return(my=s._PadV2=s.asm.PadV2).apply(null,arguments)},fy=s._Pow=function(){return(fy=s._Pow=s.asm.Pow).apply(null,arguments)},gy=s._Prelu=function(){return(gy=s._Prelu=s.asm.Prelu).apply(null,arguments)},yy=s._Prod=function(){return(yy=s._Prod=s.asm.Prod).apply(null,arguments)},by=s._RealDiv=function(){return(by=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},xy=s._Reciprocal=function(){return(xy=s._Reciprocal=s.asm.Reciprocal).apply(null,arguments)},vy=s._Relu=function(){return(vy=s._Relu=s.asm.Relu).apply(null,arguments)},wy=s._Relu6=function(){return(wy=s._Relu6=s.asm.Relu6).apply(null,arguments)},ky=s._ResizeBilinear=function(){return(ky=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Iy=s._ResizeNearestNeighbor=function(){return(Iy=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},Sy=s._Reverse=function(){return(Sy=s._Reverse=s.asm.Reverse).apply(null,arguments)},Ty=s._RotateWithOffset=function(){return(Ty=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Ny=s._Round=function(){return(Ny=s._Round=s.asm.Round).apply(null,arguments)},Cy=s._Rsqrt=function(){return(Cy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Ey=s._ScatterNd=function(){return(Ey=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},_y=s._SelectV2=function(){return(_y=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Ay=s._Sigmoid=function(){return(Ay=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},$y=s._Sin=function(){return($y=s._Sin=s.asm.Sin).apply(null,arguments)},Fy=s._Softmax=function(){return(Fy=s._Softmax=s.asm.Softmax).apply(null,arguments)},Dy=s._SparseFillEmptyRows=function(){return(Dy=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Ry=s._SparseReshape=function(){return(Ry=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},My=s._SparseSegmentReduction=function(){return(My=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Py=s._Sqrt=function(){return(Py=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Oy=s._Square=function(){return(Oy=s._Square=s.asm.Square).apply(null,arguments)},Ly=s._SquaredDifference=function(){return(Ly=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},zy=s._Step=function(){return(zy=s._Step=s.asm.Step).apply(null,arguments)},Wy=s._StridedSlice=function(){return(Wy=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},By=s._Sub=function(){return(By=s._Sub=s.asm.Sub).apply(null,arguments)},Vy=s._Sum=function(){return(Vy=s._Sum=s.asm.Sum).apply(null,arguments)},Uy=s._Tan=function(){return(Uy=s._Tan=s.asm.Tan).apply(null,arguments)},Gy=s._Tanh=function(){return(Gy=s._Tanh=s.asm.Tanh).apply(null,arguments)},Hy=s._Tile=function(){return(Hy=s._Tile=s.asm.Tile).apply(null,arguments)},jy=s._TopK=function(){return(jy=s._TopK=s.asm.TopK).apply(null,arguments)},qy=s._Transform=function(){return(qy=s._Transform=s.asm.Transform).apply(null,arguments)},Ky=s._Transpose=function(){return(Ky=s._Transpose=s.asm.Transpose).apply(null,arguments)},Xy=s.__FusedMatMul=function(){return(Xy=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Yy=s._malloc=function(){return(Yy=s._malloc=s.asm.malloc).apply(null,arguments)},Zy=s._free=function(){return(Zy=s._free=s.asm.free).apply(null,arguments)},Jy=s.___errno_location=function(){return(Jy=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},Rd=s.stackSave=function(){return(Rd=s.stackSave=s.asm.stackSave).apply(null,arguments)},Md=s.stackRestore=function(){return(Md=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},kp=s.stackAlloc=function(){return(kp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Qy=s.dynCall_iijjiiii=function(){return(Qy=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},eb=s.dynCall_jiji=function(){return(eb=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Id;var jo;jn=function X(){jo||Pd(),jo||(jn=X)};function Pd(X){if(X=X||p,it>0||(Mt(),it>0))return;function se(){jo||(jo=!0,s.calledRun=!0,!U&&(sa(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),on()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),se()},1)):se()}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Pd();var qo;l&&(qo={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Ko;if(typeof r!="undefined")Ko=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Ko=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(qo){var tb=Ko._dispose;Ko._dispose=function(){tb(),qo.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),qo.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),qh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},sc=class{refCount(e){return qn("refCount")}incRef(e){return qn("incRef")}timerAvailable(){return!0}time(e){return qn("time")}read(e){return qn("read")}readSync(e){return qn("readSync")}readToGPU(e,t){return qn("readToGPU")}numDataIds(){return qn("numDataIds")}disposeData(e,t){return qn("disposeData")}write(e,t,n){return qn("write")}move(e,t,n,a,r){return qn("move")}createTensorFromTexture(e,t,n){return qn("createTensorFromTexture")}memory(){return qn("memory")}floatPrecision(){return qn("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return qn("dispose")}};function qn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function TI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,mh(e,t,n)}function AF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,mh(e,n,a),mh(t,n,a)}function Up(e,t,n){return Math.max(e,Math.min(t,n))}function $F(e){return e%2===0?e:e+1}function mh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function FF(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function yi(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ei(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a0,n,a){return new Promise((r,s)=>{let i=0,o=()=>{if(e()){r();return}i++;let l=t(i);if(n!=null&&i>=n){s();return}a!=null?a(o,l):setTimeout(o,l)};o()})}function WF(e,t){let n=1,a=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Fa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>sl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function NI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Fa(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function CI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function EI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function _I(e,t){for(let n=0;nt+=n.length),t}function Zr(e){return typeof e=="string"||e instanceof String}function FI(e){return typeof e=="boolean"}function DI(e){return typeof e=="number"}function Kh(e){return Array.isArray(e)?Kh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":DI(e)?"float32":Zr(e)?"string":FI(e)?"bool":"float32"}function rs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function fh(e,t){for(let n=t;n=0;--a)n[a]=n[a+1]*e[a+1];return n}function RI(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;il*u)*(a?2:1);for(let l=0;lr*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return RI(0,e,t,n)}function Sx(e,t){let n=Xh(e,t);for(let a=0;aa*r,1);if(t==null||t==="float32")return tl(e,new Float32Array(n));if(t==="int32")return tl(e,new Int32Array(n));if(t==="bool")return tl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function na(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function UF(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r{let[n,a]=t.split(":");this.urlFlags[n]=qF(n,a)})}};function HF(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(jF(t,a[0],a[1]),a.join("="))),t}function jF(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function qF(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return Nx}var Nx=null;function KF(e){Nx=e}var ob;function PI(){if(ob==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");ob=e}return ob}function XF(){let e=PI();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Cx(e,t){let n=XF();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Sl="Abs",Tl="Acos",Nl="Acosh",fs="Add",bi="AddN",Cl="All",El="Any",xi="ArgMax",ic="ArgMin",_l="Asin",Al="Asinh",$l="Atan",Fl="Atanh",Dl="Atan2",vi="AvgPool",Yh="AvgPoolGrad",oc="AvgPool3D",Zh="AvgPool3DGrad",wi="BatchMatMul",Rl="BatchToSpaceND",Jh="Bincount",OI="BroadcastTo",Qh="BroadcastArgs",ki="Cast",Ii="Ceil",gs="ClipByValue",em="Complex",lc="ComplexAbs",Ml="Concat",Si="Conv2D",tm="Conv2DBackpropFilter",Ti="Conv2DBackpropInput",uc="Conv3D",nm="Conv3DBackpropFilterV2",am="Conv3DBackpropInputV2",Ni="Cos",Ci="Cosh",Pl="Cumprod",Ei="Cumsum",Ol="CropAndResize",rm="DenseBincount",Ll="DepthToSpace",_i="DepthwiseConv2dNative",sm="DepthwiseConv2dNativeBackpropFilter",im="DepthwiseConv2dNativeBackpropInput",om="Diag",pc="Dilation2D",gh="Dilation2DBackpropInput",yh="Dilation2DBackpropFilter",Ai="RealDiv",lm="Einsum",$i="Elu",um="EluGrad",zl="Erf",Wl="Equal",Fi="Exp",Bl="ExpandDims",Vl="Expm1",pm="FFT",cc="Fill",Ul="FlipLeftRight",Di="Floor",Ri="FloorDiv",Mi="FusedBatchNorm",Gl="GatherV2",Hl="GatherNd",jl="Greater",Pi="GreaterEqual",Oi="Identity",cm="IFFT",dm="Imag",ql="IsFinite",Kl="IsInf",Li="IsNan",zi="LeakyRelu",Xl="Less",Yl="LessEqual",hm="LinSpace",Wi="Log",Zl="Log1p",Jl="LogicalAnd",Ql="LogicalNot",eu="LogicalOr",LI="LogicalXor",zI="LogSoftmax",YF="LowerBound",dc="LRN",mm="LRNGrad",Bi="Max",Vi="Maximum",Ui="MaxPool",fm="MaxPoolGrad",hc="MaxPool3D",gm="MaxPool3DGrad",ym="MaxPoolWithArgmax",Gi="Mean",Hi="Min",ji="Minimum",qi="MirrorPad",tu="Mod",bm="Multinomial",Ki="Multiply",nu="Neg",au="NotEqual",ru="NonMaxSuppressionV3",su="NonMaxSuppressionV4",iu="NonMaxSuppressionV5",ou="OnesLike",Xi="OneHot",lu="Pack",Yi="PadV2",ZF="Pool",Zi="Pow",Ji="Prelu",Qi="Prod",xm="RaggedGather",vm="RaggedRange",wm="RaggedTensorToTensor",mc="Range",km="Real",eo="Reciprocal",to="Relu",uu="Reshape",no="ResizeNearestNeighbor",Im="ResizeNearestNeighborGrad",ao="ResizeBilinear",Sm="ResizeBilinearGrad",ro="Relu6",so="Reverse",io="Round",oo="Rsqrt",pu="ScatterNd",Tm="SearchSorted",cu="Select",du="Selu",hu="Slice",lo="Sin",mu="Sinh",fu="Sign",uo="Sigmoid",gu="Softplus",po="Sqrt",co="Sum",yu="SpaceToBatchND",bu="SplitV",ho="Softmax",fc="SparseFillEmptyRows",xu="SparseReshape",gc="SparseSegmentMean",yc="SparseSegmentSum",Nm="SparseToDense",mo="SquaredDifference",bc="Square",vu="StridedSlice",xc="StringNGrams",vc="StringSplit",wc="StringToHashBucketFast",fo="Sub",go="Tan",yo="Tanh",ys="Tile",wu="TopK",ku="Transform",Cr="Transpose",Cm="Unique",Iu="Unpack",kc="UnsortedSegmentSum",JF="UpperBound",Su="ZerosLike",bs="Step",bh="FromPixels",Tu="RotateWithOffset",ti="_FusedMatMul",ni="FusedConv2D",ai="FusedDepthwiseConv2D";function Yr(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function QF(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var il=Cx("kernelRegistry",()=>new Map),Gp=Cx("gradRegistry",()=>new Map);function xh(e,t){let n=Ex(e,t);return il.get(n)}function Sb(e){return Gp.get(e)}function vh(e){let t=il.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Ic(e){let{kernelName:t,backendName:n}=e,a=Ex(t,n);il.has(a)&&Yr(`The kernel '${t}' for backend '${n}' is already registered`),il.set(a,e)}function WI(e){let{kernelName:t}=e;Gp.has(t)&&H().getBool("DEBUG")&&Yr(`Overriding the gradient for '${t}'`),Gp.set(t,e)}function eD(e,t){let n=Ex(e,t);if(!il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);il.delete(n)}function tD(e){if(!Gp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Gp.delete(e)}function nD(e,t){vh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Ic(a)})}function Ex(e,t){return`${t}_${e}`}var v={};Ae(v,{arraysEqual:()=>ms,assert:()=>A,assertNonNegativeIntegerDimensions:()=>na,assertNonNull:()=>yi,assertShapesMatch:()=>Sn,bytesFromStringArray:()=>$I,bytesPerElement:()=>Ib,checkConversionForErrors:()=>_I,clamp:()=>Up,computeStrides:()=>Il,createScalarValue:()=>lD,createShuffledIndices:()=>LF,decodeString:()=>wh,distSquared:()=>RF,encodeString:()=>Tc,fetch:()=>pD,fingerPrint64:()=>oD,flatten:()=>ei,getArrayFromDType:()=>EI,getTypedArrayFromDType:()=>CI,hasEncodingLoss:()=>BF,hexToLong:()=>Sc,indexToLoc:()=>GF,inferDtype:()=>Kh,inferFromImplicitShape:()=>WF,isBoolean:()=>FI,isFunction:()=>rs,isInt:()=>sl,isNumber:()=>DI,isPromise:()=>Tx,isScalarShape:()=>MF,isString:()=>Zr,isTypedArray:()=>hn,isValidDtype:()=>AI,locToIndex:()=>UF,makeOnesTypedArray:()=>Sx,makeZerosNestedTypedArray:()=>VF,makeZerosTypedArray:()=>Xh,nearestDivisor:()=>fh,nearestLargerEven:()=>$F,now:()=>Hp,parseAxisParam:()=>Fa,randUniform:()=>DF,repeatedTry:()=>zF,rightPad:()=>zp,shuffle:()=>TI,shuffleCombo:()=>AF,sizeFromShape:()=>mt,sizeToSquarishShape:()=>OF,squeezeShape:()=>NI,sum:()=>FF,swap:()=>mh,tanh:()=>PF,toNestedArray:()=>tl,toTypedArray:()=>Em});var G1=hs(hF()),Gs=G1.default||G1;function Sc(e){return Gs.fromString(e,!0,16)}var BI=Sc("c3a5c85c97cb3127"),Vs=Sc("b492b66fbe98f273"),xn=Sc("9ae16a3b2f90404f");function Tb(e){return e.xor(e.shru(47))}function VI(e,t,n){let a=e.slice(t,t+n);return Gs.fromBytes(Array.from(a),!0,!0)}function ht(e,t){return VI(e,t,8)}function H1(e,t){return VI(e,t,4)}function Jt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function ts(e,t,n=Sc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function aD(e,t,n,a,r,s){r=r.add(e),s=Jt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Jt(r,44)),[r.add(a),s.add(i)]}function Hd(e,t,n,a){return aD(ht(e,t),ht(e,t+8),ht(e,t+16),ht(e,t+24),n,a)}function rD(e,t=e.length){if(t>=8){let n=xn.add(t*2),a=ht(e,0).add(xn),r=ht(e,t-8),s=Jt(r,37).mul(n).add(a),i=Jt(a,25).add(r).mul(n);return ts(s,i,n)}if(t>=4){let n=xn.add(t*2),a=H1(e,0);return ts(a.shl(3).add(t),H1(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Tb(xn.mul(s).xor(BI.mul(i))).mul(xn)}return xn}function sD(e,t=e.length){let n=xn.add(t*2),a=ht(e,0).mul(Vs),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(xn);return ts(Jt(a.add(r),43).add(Jt(s,30)).add(i),a.add(Jt(r.add(xn),18)).add(s),n)}function iD(e,t=e.length){let n=xn.add(t*2),a=ht(e,0).mul(xn),r=ht(e,8),s=ht(e,t-8).mul(n),i=ht(e,t-16).mul(xn),o=Jt(a.add(r),43).add(Jt(s,30)).add(i),l=ts(o,a.add(Jt(r.add(xn),18)).add(s),n),u=ht(e,16).mul(n),p=ht(e,24),d=o.add(ht(e,t-32)).mul(n),c=l.add(ht(e,t-24)).mul(n);return ts(Jt(u.add(p),43).add(Jt(d,30)).add(c),u.add(Jt(p.add(a),18)).add(d),n)}function oD(e,t=e.length){let n=Gs.fromNumber(81,!0);if(t<=32)return t<=16?rD(e,t):sD(e,t);if(t<=64)return iD(e,t);let a=n,r=n.mul(Vs).add(113),s=Tb(r.mul(xn).add(113)).mul(xn),i=[Gs.UZERO,Gs.UZERO],o=[Gs.UZERO,Gs.UZERO];a=a.mul(xn).add(ht(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Jt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(Vs),r=Jt(r.add(i[1]).add(ht(e,l+48)),42).mul(Vs),a=a.xor(o[1]),r=r.add(i[0]).add(ht(e,l+40)),s=Jt(s.add(o[0]),33).mul(Vs),i=Hd(e,l,i[1].mul(Vs),a.add(o[0])),o=Hd(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=Vs.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Jt(a.add(r).add(i[0]).add(ht(e,l+8)),37).mul(d),r=Jt(r.add(i[1]).add(ht(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(ht(e,l+40))),s=Jt(s.add(o[0]),33).mul(d),i=Hd(e,l,i[1].mul(d),a.add(o[0])),o=Hd(e,l+32,s.add(o[1]),r.add(ht(e,l+16))),[s,a]=[a,s],ts(ts(i[0],o[0],d).add(Tb(r).mul(BI)).add(s),ts(i[1],o[1],d).add(a),d)}function lD(e,t){return t==="string"?Tc(e):Em([e],t)}function uD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Em(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ei(e)),H().getBool("DEBUG")&&_I(e,t),uD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a{a=n()},s,i=Hp();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Hp()-i})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{dD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function dD(e,t,n){if(t!=="float32")return!1;for(let a=0;a0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function mD(e,t,n){let a={},r={};for(let l=0;la[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!ms(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var j1=20,Sp=3,lb=7;function gD(e,t,n,a){let r=Il(t),s=yD(e,t,n,r),i=t.length,o=rh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(` `)),l.join(` `)}function yD(e,t,n,a){let r=mt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Ap(e):e;if(o>1)for(let u=0;uj1){let f=Sp*i,g=Array.from(e.slice(0,f)),y=Array.from(e.slice((o-Sp)*i,o*i));return n==="complex64"&&(g=Ap(g),y=Ap(y)),["["+g.map((b,x)=>_p(b,r[x],n)).join(", ")+", ..., "+y.map((b,x)=>_p(b,r[o-Sp+x],n)).join(", ")+"]"]}return["["+(n==="complex64"?Ap(e):Array.from(e)).map((f,g)=>_p(f,r[g],n)).join(", ")+"]"]}let u=t.slice(1),p=a.slice(1),d=a[0]*i,c=[];if(o>j1){for(let f=0;f`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||EI(t,this.size),this.strides=Il(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;awh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Wa().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Wa().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>wh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Wa().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Wa().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jo.print(this,e)}clone(){return this.throwIfDisposed(),Jo.clone(this)}toString(e=!1){let t=this.dataSync();return gD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Wa().makeVariable(this,e,t,n)}};Object.defineProperty(Te,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return Cx("Tensor",()=>Te)}Q();var ss=class extends Te{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ms(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Wa().disposeTensor(this),this.dataId=e.dataId,Wa().incRef(this,null)}dispose(){Wa().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ss,Symbol.hasInstance,{value:e=>e instanceof Te&&e.assign!=null&&e.assign instanceof Function});var Ua={};Ae(Ua,{assertTypesMatch:()=>GI,getTensorsInContainer:()=>_x,isTensorInList:()=>ID,makeTypesMatch:()=>Et});var Nb;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Nb||(Nb={}));var Cb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Cb||(Cb={}));var Eb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Eb||(Eb={}));var _b;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(_b||(_b={}));var Ab;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ab||(Ab={}));var kD={float32:_b,int32:Cb,bool:Eb,complex64:Ab};function ma(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return kD[e][t]}function _m(e){return ma(e,"int32")}function Et(e,t){if(e.dtype===t.dtype)return[e,t];let n=ma(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function GI(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function ID(e,t){return t.some(n=>n.id===e.id)}function _x(e){let t=[];return HI(e,t,new Set),t}function HI(e,t,n){if(e==null)return;if(e instanceof Te){t.push(e);return}if(!SD(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),HI(s,t,n))}}function SD(e){return Array.isArray(e)||typeof e=="object"}function ub(e){return e.kernelName!=null}var q1=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},jp=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new q1}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){vh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof sc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a(athis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return jp.nextTensorId++}nextVariableId(){return jp.nextVariableId++}clone(e){let t=O.runKernel(Oi,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return O.runKernel(ki,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,xh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=ub(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ub(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=xh(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let x=b.map(w=>w.rank!=null?w:this.makeTensorFromTensorInfo(w));if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:p}=e,d=ub(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,d,n,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Sb(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Zr(e[0])&&(r=e.map(o=>Tc(o)));let s=a.write(r,t,n),i=new Te(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=$I(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,a)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:a,dtype:r}=e,s=new Te(a,r,n,this.nextTensorId());return this.trackTensor(s,t),s}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new ss(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Ib(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ss||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Ib(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Sb(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,p)=>{if(u==null){let d=n[p],c=Xh(d.size,d.dtype);return this.makeTensor(c,d.shape,d.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=_x(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Te,()=>"The result y returned by f() must be a tensor.");let s=mD(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?TD(r.shape):n,fD(i,s,l=>this.tidy(l),ND);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(rs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Te),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Te,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(rs(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];A(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(u.every(d=>d instanceof Te),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return u.forEach((d,c)=>{p[c]=()=>d}),p};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Hp(),n=await this.backend.time(e);return n.wallMs=Hp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new q1;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};jp.nextTensorId=0;jp.nextVariableId=0;function TD(e){let t=Sx(mt(e),"float32");return O.makeTensor(t,e,"float32")}function jI(){let e=PI();if(e._tfengine==null){let t=new MI(e);e._tfengine=new jp(t)}return KF(e._tfengine.ENV),xD(()=>e._tfengine),e._tfengine}var O=jI();function ND(e,t){let n={a:e,b:t};return O.runKernel(fs,n)}var Nc={};Ae(Nc,{isBrowser:()=>qI,isMobile:()=>_D,mockIsMobile:()=>ED});function CD(){return typeof navigator!="undefined"&&navigator!=null}var $b;function ED(e){$b=e}function _D(e){if($b!==void 0)return $b;if(e||CD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function qI(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var fa=H();fa.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});fa.registerFlag("IS_BROWSER",()=>qI());fa.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");fa.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));fa.registerFlag("PROD",()=>!1);fa.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>fa.getBool("DEBUG"));fa.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);fa.registerFlag("IS_TEST",()=>!1);fa.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);fa.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);fa.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);fa.registerFlag("USE_SETTIMEOUTCUSTOM",()=>!1);function lr(e,t){let n=e;if(hn(e))return t==="string"?[]:[e.length];if(typeof e=="object"&&"texture"in e){let r=e.channels||"RGBA";return[e.height,e.width*r.length]}if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||hn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&KI(e,a,[]),a}function KI(e,t,n){if(n=n||[],!Array.isArray(e)&&!hn(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r=0&&(r=a),K1(a,r,t,n),e==null||!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=lr(e,r);!hn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Em(e,r):ei(e,[],!0);return O.makeTensor(i,s,r)}function qp(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var Ax="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Ax;let r=(...s)=>{O.startScope(n);try{let i=a(...s);return Tx(i)&&console.error("Cannot return a Promise inside of tidy."),O.endScope(i),i}catch(i){throw O.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function AD(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");Sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return O.runKernel(em,r)}var _r=L({complex_:AD});function xs(e,t,n,a){if(a==null&&(a=Kh(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(typeof e=="object"&&"texture"in e){if(a!=="float32"&&a!=="int32")throw new Error(`Creating tensor from texture only supports 'float32'|'int32' dtype, while the dtype is ${a}.`);return e.channels=e.channels||"RGBA",O.backend.createTensorFromTexture(e,t||n,a)}if(!hn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){na(t);let r=mt(t),s=mt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!hn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?Em(e,a):ei(e,[],!0),O.makeTensor(e,t,a)}function mn(e,t,n){let a=lr(e,n);return xs(e,t,a,n)}var Fb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},kh=4;async function $D(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+kh*c.length,m=new Uint8Array(h),f=0;for(let g=0;g{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var $x=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function X1(e){return $x?Buffer.byteLength(e):new Blob([e]).size}function DD(e){if($x)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Y1(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function YI(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(n.initializerSignature=e.initializerSignature),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}function ZI(e,t,n){let a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(a.trainingConfig=e.trainingConfig),e.weightsManifest!=null){if(!t)throw new Error("modelJSON has weightsManifest but weightSpecs is null");if(!n)throw new Error("modelJSON has weightsManifest but weightData is null");a.weightSpecs=t,a.weightData=n}return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),e.initializerSignature!=null&&(a.initializerSignature=e.initializerSignature),a}async function Dx(e,t){let n,a;return e.weightsManifest!=null&&([n,a]=await t(e.weightsManifest)),ZI(e,n,a)}function Cc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:X1(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:X1(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function JI(e){let t=[];for(let n of e)t.push(...n.weights);return t}function MD(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)===0;)r-=8388608,a<<=1;return a&=-8388609,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function PD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function OD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function LD(){let e=MD(),t=PD(),n=OD();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var At=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return At.instance==null&&(At.instance=new At),At.instance}static registerSaveRouter(e){At.getInstance().saveRouters.push(e)}static registerLoadRouter(e){At.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return At.getHandlers(e,"save")}static getLoadHandlers(e,t){return At.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?At.getInstance().loadRouters:At.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},zD=e=>At.registerSaveRouter(e),WD=e=>At.registerLoadRouter(e),BD=e=>At.getSaveHandlers(e),VD=(e,t)=>At.getLoadHandlers(e,t),Db="tensorflowjs",Rb=1,Ks="models_store",Jr="model_info_store";function QI(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Mb(e){let t=e.result;t.createObjectStore(Ks,{keyPath:"modelPath"}),t.createObjectStore(Jr,{keyPath:"modelPath"})}var ri=class{constructor(e){if(this.indexedDB=QI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Db,Rb);r.onupgradeneeded=()=>Mb(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Ks,"readonly"),o=i.objectStore(Ks).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Cc(t),o=s.transaction(Jr,"readwrite"),l=o.objectStore(Jr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;u.onsuccess=()=>{p=s.transaction(Ks,"readwrite");let d=p.objectStore(Ks).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=c=>{l=o.objectStore(Jr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(d.error)),h.onerror=m=>(s.close(),a(d.error))}},u.onerror=d=>(s.close(),a(u.error)),o.oncomplete=()=>{p==null?s.close():p.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ri.URL_SCHEME="indexeddb://";var eS=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ri.URL_SCHEME)?UD(e.slice(ri.URL_SCHEME.length)):null;At.registerSaveRouter(eS);At.registerLoadRouter(eS);function UD(e){return new ri(e)}function GD(e){return e.startsWith(ri.URL_SCHEME)?e.slice(ri.URL_SCHEME.length):e}var HD=class{constructor(){this.indexedDB=QI()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Db,Rb);n.onupgradeneeded=()=>Mb(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Jr,"readonly"),s=r.objectStore(Jr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=GD(e),new Promise((t,n)=>{let a=this.indexedDB.open(Db,Rb);a.onupgradeneeded=()=>Mb(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Jr,"readwrite"),i=s.objectStore(Jr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),p=()=>{l=r.transaction(Ks,"readwrite");let d=l.objectStore(Ks).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=c=>n(o.error)};u.onsuccess=p,u.onerror=d=>(p(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},Nr="/",Qo="tensorflowjs_models",tS="info",jD="model_topology",qD="weight_specs",KD="weight_data",XD="model_metadata";function nS(e){return{info:[Qo,e,tS].join(Nr),topology:[Qo,e,jD].join(Nr),weightSpecs:[Qo,e,qD].join(Nr),weightData:[Qo,e,KD].join(Nr),modelMetadata:[Qo,e,XD].join(Nr)}}function aS(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function YD(e){let t=e.split(Nr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Nr)}function ZD(e){return e.startsWith(si.URL_SCHEME)?e.slice(si.URL_SCHEME.length):e}var si=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=nS(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Cc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,DD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,initializerSignature:e.initializerSignature!=null?e.initializerSignature:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw aS(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.initializerSignature!=null&&(t.initializerSignature=i.initializerSignature),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=RD(s),t}};si.URL_SCHEME="localstorage://";var rS=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(si.URL_SCHEME)?JD(e.slice(si.URL_SCHEME.length)):null;At.registerSaveRouter(rS);At.registerLoadRouter(rS);function JD(e){return new si(e)}var QD=class{constructor(){A(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qo+Nr,n=Nr+tS;for(let a=0;a"scheme must not be undefined or null."),e.endsWith(nl)&&(e=e.slice(0,e.indexOf(nl))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Pn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=Pn.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(Pn.getInstance().managers)}};function sh(e){if(e.indexOf(nl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Pn.getSchemes().join(",")}`);return{scheme:e.split(nl)[0],path:e.split(nl)[1]}}async function sS(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=At.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=At.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=sh(e).scheme,l=sh(e).path,u=o===sh(e).scheme,p=await r.load();n&&u&&await Pn.getManager(o).removeModel(l);let d=await i.save(p);return n&&!u&&await Pn.getManager(o).removeModel(l),d.modelArtifactsInfo}async function eR(){let e=Pn.getSchemes(),t={};for(let n of e){let a=await Pn.getManager(n).listModels();for(let r in a){let s=n+nl+r;t[s]=a[r]}}return t}async function tR(e){let t=sh(e);return Pn.getManager(t.scheme).removeModel(t.path)}async function nR(e,t){return sS(e,t,!1)}async function aR(e,t){return sS(e,t,!0)}var rR=class{constructor(){this.messageName="setTimeoutCustom",this.functionRefs=[],this.handledMessageCount=0,this.hasEventListener=!1}fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}setTimeoutCustom(e,t){if(typeof window=="undefined"||!H().getBool("USE_SETTIMEOUTCUSTOM")){setTimeout(e,t);return}this.functionRefs.push(e),setTimeout(()=>{window.postMessage({name:this.messageName,index:this.functionRefs.length-1},"*")},t),this.hasEventListener||(this.hasEventListener=!0,window.addEventListener("message",n=>{if(n.source===window&&n.data.name===this.messageName){n.stopPropagation();let a=this.functionRefs[n.data.index];a(),this.handledMessageCount++,this.handledMessageCount===this.functionRefs.length&&(this.functionRefs=[],this.handledMessageCount=0)}},!0))}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new rR);try{Pn.registerManager(si.URL_SCHEME,new QD)}catch(e){}try{Pn.registerManager(ri.URL_SCHEME,new HD)}catch(e){}}var sR={importFetch:()=>mF()},pb,iR=class{constructor(){this.util=fF(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(pb==null&&(pb=sR.importFetch()),pb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new iR);function Pe(e,t="float32",n){return t=t||"float32",na(e),new qt(e,t,n)}function oR(e,t){let n=E(e,"x","cast");if(!AI(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return O.runKernel(ki,a,r)}var le=L({cast_:oR});function lR(e){let t={x:E(e,"x","clone","string_or_numeric")};return O.runKernel(Oi,t)}var sr=L({clone_:lR});function Rx(e,t=!1){console.log(e.toString(t))}jI();var uR={buffer:Pe,cast:le,clone:sr,print:Rx};vD(uR);var Gt={};Ae(Gt,{browserFiles:()=>gR,browserHTTPRequest:()=>wR,concatenateArrayBuffers:()=>Fx,copyModel:()=>nR,decodeWeights:()=>XI,encodeWeights:()=>$D,fromMemory:()=>IR,fromMemorySync:()=>pS,getLoadHandlers:()=>VD,getModelArtifactsForJSON:()=>Dx,getModelArtifactsForJSONSync:()=>ZI,getModelArtifactsInfoForJSON:()=>Cc,getSaveHandlers:()=>BD,getWeightSpecs:()=>JI,http:()=>Px,isHTTPScheme:()=>Pb,listModels:()=>eR,loadWeights:()=>yR,moveModel:()=>aR,registerLoadRouter:()=>WD,registerSaveRouter:()=>zD,removeModel:()=>tR,weightsLoaderFactory:()=>oS,withSaveHandler:()=>SR,withSaveHandlerSync:()=>TR});var pR="model",cR=".json",dR=".weights.bin";function Z1(e){return new Promise(t=>setTimeout(t)).then(e)}var ol=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ol.URL_SCHEME)&&(e=e.slice(ol.URL_SCHEME.length)),(e==null||e.length===0)&&(e=pR),this.modelJsonFileName=e+cR,this.weightDataFileName=e+dR}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a=YI(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(s.download=this.modelJsonFileName,s.href=r,await Z1(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Z1(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Cc(e)}}}};ol.URL_SCHEME="downloads://";var hR=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=a=>{let r=JSON.parse(a.target.result),s=r.modelTopology;if(s==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:s});return}let i=Dx(r,o=>this.loadWeights(o));e(i)},n.onerror=a=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let s of e)t.push(...s.weights),n.push(...s.paths);let a=this.checkManifestAndWeightFiles(e),r=n.map(s=>this.loadWeightsFile(s,a[s]));return Promise.all(r).then(s=>[t,Fx(s)])}loadWeightsFile(e,t){return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=s.target.result;n(i)},r.onerror=s=>a(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>Y1(r.name)),a={};for(let r of e)r.paths.forEach(s=>{let i=Y1(s);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);a[s]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return a}},mR=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ol.URL_SCHEME)?fR(e.slice(ol.URL_SCHEME.length)):null;At.registerSaveRouter(mR);function fR(e="model"){return new ol(e)}function gR(e){return new hR(e)}function J1(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let p=n+ ++r/e.length*(a-n);return t(p),u}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function iS(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await J1(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await J1(i,t.onProgress,o,l)}async function yR(e,t="",n,a){return oS(r=>iS(r,{requestInit:a}))(e,t,n)}function oS(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=Fb[y]*mt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((w,I)=>{w===g.name&&(x(),i[I]=!0)}):x(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let p=await e(u),d={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x{let w=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=XI(w,[x.manifestEntry]);for(let T in I)d[T]=I[T]}),c+=m}),d}}var bR="application/octet-stream",xR="application/json",Mx=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a=YI(e,n);t.body.append("model.json",new Blob([JSON.stringify(a)],{type:xR}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:bR}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Cc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let s=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?s+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":s+=" Please make sure the server is serving valid JSON for this request.",new Error(s)}let n=t.modelTopology,a=t.weightsManifest;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Dx(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=vR(t),r=this.weightPathPrefix||n,s=JI(e),i=[],o=[];for(let u of e)for(let p of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(p)):i.push(r+p+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await iS(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Fx(l)]}};Mx.URL_SCHEME_REGEX=/^https?:\/\//;function vR(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Pb(e){return e.match(Mx.URL_SCHEME_REGEX)!=null}var lS=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Pb(a)):n=Pb(e),n)return Px(e,t)}return null};At.registerSaveRouter(lS);At.registerLoadRouter(lS);function Px(e,t){return new Mx(e,t)}function wR(e,t){return Px(e,t)}var cb=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},uS=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},kR=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function IR(e,t,n,a){let r=arguments;return new kR(pS(...r))}function pS(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new cb(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cb({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cb({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function SR(e){return new uS(e)}function TR(e){return new uS(e)}var cS={};Ae(cS,{confusionMatrix:()=>jR});function NR(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Et(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return O.runKernel(wi,i,o)}var Fe=L({matMul_:NR});function CR(e,t,n=1,a=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let s={indices:E(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:a};return O.runKernel(Xi,s,i)}var ll=L({oneHot_:CR});function ER(){H().set("PROD",!0)}function _R(){H().set("DEBUG",!0)}function AR(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ox(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}wD(Ox);function $R(){O.disposeVariables()}function Ca(){return O}function Ih(){return O.memory()}function FR(e){return O.profile(e)}function P(e,t){return O.tidy(e,t)}function Ee(e){_x(e).forEach(t=>t.dispose())}function Ht(e){return O.keep(e)}function DR(e){return O.time(e)}function RR(e){return O.setBackend(e)}function MR(){return O.ready()}function PR(){return O.backendName}function OR(e){O.removeBackend(e)}function LR(e){return O.findBackend(e)}function zR(e){return O.findBackendFactory(e)}function Am(e,t,n=1){return O.registerBackend(e,t,n)}function dS(){return O.backend}function WR(e,t){H().setPlatform(e,t)}function BR(e){let t={input:E(e,"input","imag")};return O.runKernel(dm,t)}var Ec=L({imag_:BR});function VR(e){let t={x:E(e,"x","neg")};return O.runKernel(nu,t)}var bt=L({neg_:VR});function UR(e){let t={input:E(e,"input","real")};return O.runKernel(km,t)}var ul=L({real_:UR});function GR(e,t,n){let a=E(e,"x","transpose");if(t==null&&(t=a.shape.map((i,o)=>o).reverse()),A(a.rank===t.length,()=>`Error in transpose: rank of input ${a.rank} must match length of perm ${t}.`),t.forEach(i=>{A(i>=0&&i`All entries in 'perm' must be between 0 and ${a.rank-1} but got ${t}`)}),a.rank<=1)return a.clone();let r={x:a},s={perm:t};return a.dtype==="complex64"?P(()=>{let i=ul(a),o=Ec(a);return i=O.runKernel(Cr,{x:i},s),o=O.runKernel(Cr,{x:o},s),n&&(o=bt(o)),_r(i,o)}):O.runKernel(Cr,r,s)}var _e=L({transpose_:GR});function HR(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ll(le(a,"int32"),n),i=ll(le(r,"int32"),n),o=_e(s),l=Fe(o,i);return le(l,"int32")}var jR=L({confusionMatrix_:HR}),Nu={};Ae(Nu,{assertAndGetBroadcastShape:()=>lt,getBroadcastDims:()=>hS,getReductionAxes:()=>Wt});function hS(e,t){let n=e.length,a=[];for(let r=0;r1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a1)&&n.unshift(s)}return n}function lt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;rQR,fromPixelsAsync:()=>ZR,toPixels:()=>JR});function _c(e,t,n){if(yi(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=lr(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return xs(e,t,a,n)}var Ws;function mS(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(xh(bh,O.backendName)!=null){let c={pixels:e},h={numChannels:t};return O.runKernel(bh,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,u).data;else if(a||n)p=e.data;else if(s||r||o){if(Ws==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ws=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ws=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Ws.canvas.width=l,Ws.canvas.height=u,Ws.drawImage(e,0,0,l,u),p=Ws.getImageData(0,0,l,u).data}let d;if(t===4)d=new Int32Array(p);else{let c=l*u;d=new Int32Array(c*t);for(let h=0;h4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(p[0]=h*o,p[1]=h*o,p[2]=h*o):p[c]=h*o}let d=u*4;l[d+0]=Math.round(p[0]),l[d+1]=Math.round(p[1]),l[d+2]=Math.round(p[2]),l[d+3]=Math.round(p[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),p=new ImageData(l,r,a);u.putImageData(p,0,0)}return n!==e&&n.dispose(),l}var QR=L({fromPixels_:mS}),Lx={};Ae(Lx,{prepareAndValidate:()=>fS});function fS(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let d=0;dd/u),1].slice(0,s);return[l,i,u,p]}var zx={};Ae(zx,{calculateShapes:()=>gS,validateInput:()=>Bx,validateUpdateShape:()=>Wx});function Wx(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank1?t.shape[a-1]:1,s=n.length,i=1;for(let d=r;dtM,computeFlatOffset:()=>iM,computeOutShape:()=>aM,getNormalizedAxes:()=>rM,isSliceContinous:()=>sM,maskToAxes:()=>nM,parseSliceParams:()=>TS,sliceInfo:()=>oM,startForAxis:()=>IS,startIndicesWithElidedDims:()=>vS,stopForAxis:()=>SS,stopIndicesWithElidedDims:()=>wS,stridesForAxis:()=>kS,stridesWithElidedDims:()=>yS});var Ob=-2,eM=-1;function tM(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function nM(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function aM(e,t,n){let a=[];for(let r=0;r0){let h=t[0],m=n+1;p=vS(i,h,m,a,e),d=wS(o,h,m,r,e),c=yS(s,h,m,e)}else for(let h=0;h-1)s[o]=0;else{let l=bS(t,n,o),u=a[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=bS(t,n,o),u=a[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Up(0,i,l-1),i}function SS(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Up(0,i,l):i=Up(-1,i,l-1),i}function sM(e,t,n){let a=n.length;for(let r=0;r1){a=r;break}for(let r=a+1;r0||n[r]!==e[r])return!1;return!0}function iM(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.lengthi>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function oM(e,t,n,a,r,s,i,o,l){let u;if(a==null?(u=new Array(t.length),u.fill(1)):u=a,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let p=!1,d={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};for(let b=0;b0?0:-1,c.strides[b]>0?w:w-1];if(x&&c.strides[b]<=0)throw Error("only stride 1 allowed on non-range indexing.");f=f&&c.strides[b]===1;let C=!!(c.beginMask&1<=w)throw Error(`slice index ${c.begin[b]} of dimension ${b} out of bounds.`)}else c.begin[b]=Q1(c.begin[b],0,c.strides[b],w,I,T),c.end[b]=Q1(c.end[b],1,c.strides[b],w,I,T);let R=c.strides[b]===1&&c.begin[b]===0&&c.end[b]===w;h=h&&R,m=m&&(b===0&&c.strides[b]===1||R)}else h=h&&c.strides[b]===1&&C,m=m&&(b===0&&c.strides[b]===1||C);let _,$=!1;if(c.beginValid&&c.endValid?(_=c.end[b]-c.begin[b],$=!0):x?(_=1,$=!0):C&&w>=0&&(c.strides[b]<0?_=-w:_=w,$=!0),$){let R;_===0||_<0!=c.strides[b]<0?R=0:R=Math.trunc(_/c.strides[b])+(_%c.strides[b]!==0?1:0),g.push(R)}else g.push(-1)}for(let b=0;b=0?y.push(g[x]):x===Ob&&y.push(1)}return{finalShapeSparse:y.filter((b,x)=>c.finalShapeGatherIndices[x]!==Ob),finalShape:y,isIdentity:h,sliceDim0:m,isSimpleSlice:f,begin:c.begin,end:c.end,strides:c.strides}}function lM(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let a=0;a0?s[t]:s[t+1&1];{let i=e<0?a+e:e;return is[1]?s[1]:i}}var ne={};Ae(ne,{Serializable:()=>NS,SerializationMap:()=>Hs,registerClass:()=>vs});var NS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Hs=class{constructor(){this.classNameMap={}}static getMap(){return Hs.instance==null&&(Hs.instance=new Hs),Hs.instance}static register(e){Hs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function vs(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Hs.register(e)}var CS={};Ae(CS,{TEST_EPSILON_FLOAT16:()=>ES,createVideoElement:()=>gM,encodeStrings:()=>_S,expectArrayBuffersEqual:()=>fM,expectArraysClose:()=>pM,expectArraysEqual:()=>dM,expectNumbersClose:()=>hM,expectPromiseToFail:()=>cM,expectValuesInRange:()=>mM,play:()=>yM,testEpsilon:()=>Vx});var uM=.001,ES=.1;function pM(e,t,n){return n==null&&(n=Vx()),Lb(e,t,(a,r)=>Ux(a,r,n))}function Vx(){return O.backend.floatPrecision()===32?uM:ES}function Lb(e,t,n){let a=!0;if((hn(e)||hn(t))&&(a=!1),hn(e)&&hn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=lr(e),o=lr(t);if(!ms(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=hn(e)?e:ei(e),s=hn(t)?t:ei(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}. Actual: ${r}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function dM(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Zr(e)||Zr(e[0])||Zr(t)||Zr(t[0])?Lb(e,n,(a,r)=>a==r):Lb(e,t,(a,r)=>Ux(a,r,0))}function hM(e,t,n){if(n==null&&(n=Vx()),!Ux(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function Ux(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function mM(e,t,n){for(let a=0;an)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function fM(e,t){let n=new Float32Array(e),a=new Float32Array(t);if(n.length!==a.length)throw new Error(`Expected ArrayBuffer to be of length ${a.length}, but it was ${n.length}`);for(let r=0;r{t.addEventListener("loadeddata",a=>n(t)),t.load()})}async function yM(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var bM="4.1.0";function xM(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(fs,r)}var Y=L({add_:xM});function vM(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(Ri,r)}var $m=L({floorDiv_:vM});function wM(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Et(n,a),n.dtype==="int32"&&a.dtype==="int32")return $m(n,a);let r={a:n,b:a},s={};return O.runKernel(Ai,r,s)}var me=L({div_:wM});function kM(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(Ki,r)}var z=L({mul_:kM});function IM(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return O.runKernel(lc,n)}else{let n={x:t};return O.runKernel(Sl,n)}}var Lt=L({abs_:IM});function SM(e){let t={x:E(e,"x","acos")};return O.runKernel(Tl,t)}var Gx=L({acos_:SM});function TM(e){let t={x:E(e,"x","acosh")};return O.runKernel(Nl,t)}var Hx=L({acosh_:TM});function NM(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!ms(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return O.runKernel(bi,a)}var AS=L({addN_:NM});function CM(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return O.runKernel(Cl,a,r)}var Fm=L({all_:CM});function EM(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return O.runKernel(El,a,r)}var Kp=L({any_:EM});function _M(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return O.runKernel(xi,n,a)}var ii=L({argMax_:_M});function AM(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return O.runKernel(ic,n,a)}var jx=L({argMin_:AM});function $M(e){let t={x:E(e,"x","asin")};return O.runKernel(_l,t)}var qx=L({asin_:$M});function FM(e){let t={x:E(e,"x","asinh")};return O.runKernel(Al,t)}var Kx=L({asinh_:FM});function DM(e){let t={x:E(e,"x","atan")};return O.runKernel($l,t)}var Xx=L({atan_:DM});function RM(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(Dl,r)}var Yx=L({atan2_:RM});function MM(e){let t={x:E(e,"x","atanh")};return O.runKernel(Fl,t)}var Zx=L({atanh_:MM});function PM(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=DS(r);return Ac(e,o,n,s,a,null,null,l)}function $S(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Sh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ac(e,u,n,a,r,s,!1,i)}function OM(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=zb(t),p,d;if(i==="NDHWC")d="channelsLast",p=[o,l,u,e[4],e[4]];else if(i==="NCDHW")d="channelsFirst",p=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return FS(e,p,n,a,r,!1,d,s)}function Ac(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,p,d]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,p,d]=e;else if(o==="channelsFirst")[l,d,u,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Sh(n),[y,b]=Sh(a),x=al(c,y),w=al(h,b),{padInfo:I,outHeight:T,outWidth:C}=WM(r,u,p,f,g,x,w,s,o),_=i?m*d:m,$;return o==="channelsFirst"?$=[l,_,T,C]:o==="channelsLast"&&($=[l,T,C,_]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:p,inChannels:d,outHeight:T,outWidth:C,outChannels:_,padInfo:I,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:b,inShape:e,outShape:$,filterShape:t}}function FS(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,p,d,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,p,d,c]=e;else if(i==="channelsFirst")[l,c,u,p,d]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,x]=zb(n),[w,I,T]=zb(a),C=al(h,w),_=al(m,I),$=al(f,T),{padInfo:R,outDepth:F,outHeight:S,outWidth:M}=BM(r,u,p,d,y,b,x,C,_,$,o),B=s?g*c:g,U;return i==="channelsFirst"?U=[l,B,F,S,M]:i==="channelsLast"&&(U=[l,F,S,M,B]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:p,inWidth:d,inChannels:c,outDepth:F,outHeight:S,outWidth:M,outChannels:B,padInfo:R,strideDepth:y,strideHeight:b,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:_,effectiveFilterWidth:$,dilationDepth:w,dilationHeight:I,dilationWidth:T,inShape:e,outShape:U,filterShape:t}}function LM(e,t,n,a,r){a==null&&(a=Jx(e,t,n));let s=e[0],i=e[1],o=Ys((s-t+2*a)/n+1,r),l=Ys((i-t+2*a)/n+1,r);return[o,l]}function zM(e,t,n,a,r,s){r==null&&(r=Jx(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ys((i-t+2*r)/a+1,s),p=Ys((o-t+2*r)/a+1,s),d=Ys((l-t+2*r)/a+1,s);return[u,p,d,n]}function Jx(e,t,n,a=1){let r=al(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Sh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function zb(e){return typeof e=="number"?[e,e,e]:e}function al(e,t){return t<=1?e:e+(e-1)*(t-1)}function WM(e,t,n,a,r,s,i,o,l){let u,p,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=LM([t,n],s,a,e,o);p=c[0],d=c[1]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/r);let c=Math.max(0,(p-1)*a+s-t),h=Math.max(0,(d-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},p=Math.ceil((t-s+1)/a),d=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},p=Ys((t-s+c+h)/a+1,o),d=Ys((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:p,outWidth:d}}function BM(e,t,n,a,r,s,i,o,l,u,p){let d,c,h,m;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=zM([t,n,a,1],o,1,r,e,p);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,b=Math.floor(f/2),x=f-b,w=Math.floor(g/2),I=g-w,T=Math.floor(y/2),C=y-T;d={top:w,bottom:I,left:T,right:C,front:b,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:c,outHeight:h,outWidth:m}}function Ys(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function is(e){let[t,n,a]=Sh(e);return t===1&&n===1&&a===1}function cr(e,t){return is(e)||is(t)}function DS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function Tn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")A(sl(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(a=>{a.forEach(r=>{A(sl(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function VM(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return O.runKernel(uu,n,a)}var W=L({reshape_:VM});function UM(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;A(cr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),Tn("avgPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(vi,u,p);return d=le(d,s.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ya=L({avgPool_:UM});function GM(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("avgPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(oc,u,p);return d=le(d,o.dtype),l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Qx=L({avgPool3d_:GM});function HM(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=qp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),n.length===1)return sr(n[0]);let a=n,r={axis:t};return O.runKernel(Ml,a,r)}var Ze=L({concat_:HM});function jM(e){let t={x:E(e,"x","sigmoid","float32")};return O.runKernel(uo,t)}var da=L({sigmoid_:jM});function qM(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return O.runKernel(hu,r,s)}var Be=L({slice_:qM});function KM(e){let t={x:E(e,"x","tanh","float32")};return O.runKernel(yo,t)}var oi=L({tanh_:KM});function XM(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),u=E(a,"data","basicLSTMCell"),p=E(r,"c","basicLSTMCell"),d=E(s,"h","basicLSTMCell"),c=Ze([u,d],1),h=Fe(c,o),m=Y(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=Be(m,[0,0],y),x=Be(m,[0,g],y),w=Be(m,[0,g*2],y),I=Be(m,[0,g*3],y),T=Y(z(da(b),oi(x)),z(p,da(Y(i,w)))),C=z(oi(T),da(I));return[T,C]}var RS=L({basicLSTMCell_:XM});function YM(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r===0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return O.runKernel(Rl,s,i)}var $c=L({batchToSpaceND_:YM});function ZM(e){let t;return e.rank===0||e.rank===1?t=W(e,[1,1,1,e.size]):e.rank===2?t=W(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function JM(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;a!=null&&(p=E(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(p==null||o.rank===p.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:ZM(i),scale:u,offset:p,mean:o,variance:l},c={varianceEpsilon:s},h=O.runKernel(Mi,d,c);return W(h,i.shape)}var ws=L({batchNorm_:JM});function QM(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${p.rank}.`),ws(i,o,l,p,u,s)}var ev=L({batchNorm2d_:QM});function eP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${p.rank}.`),ws(i,o,l,p,u,s)}var tv=L({batchNorm3d_:eP});function tP(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),u;r!=null&&(u=E(r,"scale","batchNorm"));let p;return a!=null&&(p=E(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),p!=null&&A(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${p.rank}.`),ws(i,o,l,p,u,s)}var nv=L({batchNorm4d_:tP});function nP(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return O.runKernel(Jh,s,i)}var av=L({bincount_:nP});function aP(e,t){let n=E(e,"s0","broadcastArgs","int32"),a=E(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(a.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${a.rank}`);let r={s0:n,s1:a};return O.runKernel(Qh,r)}var MS=L({broadcastArgs_:aP});function rP(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(na(t),t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return sr(n);let i={x:n},o={reps:s};return O.runKernel(ys,i,o)}var Zs=L({broadcastTo_:rP});function sP(e){let t={x:E(e,"x","ceil","float32")};return O.runKernel(Ii,t)}var rv=L({ceil_:sP});function yn(e,t,n){na(e);let a={shape:e,value:t,dtype:n};return O.runKernel(cc,{},a)}function iP(e,t,n){let a=E(e,"x","clipByValue");if(A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`),t===n)return yn(a.shape,t,a.dtype);let r={x:a},s={clipValueMin:t,clipValueMax:n};return O.runKernel(gs,r,s)}var tn=L({clipByValue_:iP});function oP(e){return Ze(e,0)}var sv=L({concat1d_:oP});function lP(e,t){return Ze(e,t)}var iv=L({concat2d_:lP});function uP(e,t){return Ze(e,t)}var ov=L({concat3d_:uP});function pP(e,t){return Ze(e,t)}var lv=L({concat4d_:pP});function cP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d","float32"),l=E(t,"filter","conv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),Tn("conv2d",a,i);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),A(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(Si,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Ft=L({conv2d_:cP});function dP(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),u=o,p=!1;o.rank===2&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),Tn("conv1d",a,i),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(cr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=W(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=W(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=Ft(c,d,[1,n],a,"NHWC",[1,s],i);return p?W(h,[h.shape[2],h.shape[3]]):W(h,[h.shape[0],h.shape[2],h.shape[3]])}var Dm=L({conv1d_:dP});function hP(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let p=s==="NHWC"?o[3]:o[1],d=s==="NHWC"?l.shape[3]:l.shape[1];A(p===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${p}) must match input depth for filter ${n.shape[2]}.`),A(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),Tn("conv2dDerInput",r,i);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=O.runKernel(Ti,c,h);return u?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var uv=L({conv2DBackpropInput_:hP});function mP(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return uv(n,i,o,a,r,"NHWC",s)}var Rm=L({conv2dTranspose_:mP});function fP(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(cr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let p={x:l,filter:o},d={strides:n,pad:a,dataFormat:r,dilations:s},c=O.runKernel(uc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var pv=L({conv3d_:fP});function gP(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let p={dy:i,filter:n},d={pad:r,strides:a,inputShape:s},c=O.runKernel(am,p,d);return o?W(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var PS=L({conv3DBackpropInput_:gP});function yP(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return PS(n,s,i,a,r)}var cv=L({conv3dTranspose_:yP});function bP(e){let t={x:E(e,"x","cos","float32")};return O.runKernel(Ni,t)}var Fc=L({cos_:bP});function xP(e){let t={x:E(e,"x","cosh","float32")};return O.runKernel(Ci,t)}var Mm=L({cosh_:xP});function vP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumprod")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Pl,r,s)}var Xp=L({cumprod_:vP});function wP(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return O.runKernel(Ei,r,s)}var Pm=L({cumsum_:wP});function kP(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return O.runKernel(rm,i,o)}var Th=L({denseBincount_:kP});function IP(e,t,n="NHWC"){let a=E(e,"x","depthToSpace","float32"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${r} and ${t} for depthToSpace with input shape ${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${a.shape}`),A(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return O.runKernel(Ll,o,l)}var dv=L({depthToSpace_:IP});function SP(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d","float32"),l=E(t,"filter","depthwiseConv2d","float32"),u=o,p=!1;o.rank===3&&(p=!0,u=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];A(d===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d}) must match the inChannels dimension in filter ${l.shape[2]}.`),Tn("depthwiseConv2d",a,i);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=O.runKernel(_i,c,h);return p?W(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ks=L({depthwiseConv2d_:SP});function TP(e){let t={x:E(e,"x","diag")};return O.runKernel(om,t)}var OS=L({diag_:TP});function NP(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let p={x:l,filter:o},d={strides:n,pad:a,dilations:r},c=O.runKernel(pc,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var hv=L({dilation2d_:NP});function CP(e,t){let n=E(e,"a","equal","string_or_numeric"),a=E(t,"b","equal","string_or_numeric");[n,a]=Et(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Wl,r)}var Jn=L({equal_:CP});function EP(e,t,n){let a=E(t,"a","where"),r=E(n,"b","where"),s=E(e,"condition","where","bool"),i=lt(lt(s.shape,a.shape),r.shape),o=Zs(s,i),l=Zs(a,i),u=Zs(r,i),p={condition:o,t:l,e:u};return O.runKernel(cu,p)}var fn=L({where_:EP});function _P(e){let t={x:E(e,"x","zerosLike")};return O.runKernel(Su,t)}var qe=L({zerosLike_:_P});function AP(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Et(n,a);let r=me(n,a),s=qe(r),i=Jn(a,s);return fn(i,s,r)}var mv=L({divNoNan_:AP});function $P(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=W(n,[1,-1]),o=W(a,[-1,1]),l=Fe(i,o);return W(l,[])}else if(n.rank===1&&a.rank===2){let i=W(n,[1,-1]),o=W(a,[a.shape[0],a.shape[1]]),l=Fe(i,o);return W(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=W(a,[-1,1]),o=Fe(n,i);return W(o,[o.size])}else{let i=W(a,[a.shape[0],a.shape[1]]);return Fe(n,i)}}var fv=L({dot_:$P});function FP(e,...t){let n=t.map((r,s)=>E(r,`tensors${s}`,"einsum")),a={equation:e};return O.runKernel(lm,n,a)}var LS=L({einsum_:FP});function DP(e){let t={x:E(e,"x","elu","float32")};return O.runKernel($i,t)}var Cu=L({elu_:DP});function RP(e){let t=E(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return O.runKernel(zl,n)}var gv=L({erf_:RP});function yv(e,t){for(let n=0;ne[s]);return[n,r]}function li(e,t){let n=t.map(a=>1);return zS(e,n,t)}function MP(e,t,n){A(yv(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function BS(e,t){if(yv(e,t))return null;let n=[];for(let a=0;an.push(a)),n}function bv(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function PP(e,t){let n=[];for(let a=t-e;a"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return O.runKernel(Bl,a,r)}var Qt=L({expandDims_:jP});function qP(e){let t={x:E(e,"x","expm1")};return O.runKernel(Vl,t)}var vv=L({expm1_:qP});function KP(e,t){let n=E(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return O.runKernel(ys,a,r)}var Ln=L({tile_:KP});function XP(e,t,n,a="float32"){t==null&&(t=e);let r=Pe([e,t],a),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),A(sl(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=W(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},p=O.runKernel(dc,l,u);return o?W(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Sv=L({localResponseNormalization_:iO});function oO(e){let t={x:E(e,"x","log","float32")};return O.runKernel(Wi,t)}var Qn=L({log_:oO});function lO(e){let t={x:E(e,"x","log1p")};return O.runKernel(Zl,t)}var Rc=L({log1p_:lO});function uO(e){return A(rs(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(a),[a],r);return r!=null&&Sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),zm(i),i[0]})}}function pO(e){return A(rs(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=qp(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return O.tidy(()=>{let{value:s,grads:i}=O.gradients(()=>e(...a),a,r);return r!=null&&Sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zm(i),i})}}function cO(e){return A(rs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Te,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=O.gradients(()=>e(t),[t],n);return zm(a),{grad:a[0],value:r}}}function dO(e){return A(rs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Te),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Te,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=O.gradients(()=>e(...t),t,n);return n!=null&&Sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zm(a.grads),a}}function GS(e,t){A(rs(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(u=>u instanceof ss),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in O.registeredVariables)t.push(O.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=O.gradients(e,t,null,s);A(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,p)=>{o[p]!=null&&(l[u.name]=o[p])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function ur(e){return O.customGrad(e)}function zm(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function hO(e){let t={x:E(e,"x","softplus")};return O.runKernel(gu,t)}var xo=L({softplus_:hO});function mO(e){let t=E(e,"x","logSigmoid");return ur(n=>({value:bt(xo(bt(n))),gradFunc:a=>z(a,da(bt(n)))}))(t)}var Tv=L({logSigmoid_:mO});function fO(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(fo,r)}var pe=L({sub_:fO});function gO(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ur((a,r)=>{let s=ha(a,t,!0),i=pe(a,s),o=pe(le(i,"float32"),Qn(fe(gn(i),t,!0)));return r([o]),{value:o,gradFunc:(l,u)=>{let[p]=u,d=!0,c=gn(p);return pe(l,z(fe(l,t,d),c))}}})(n)}var Wm=L({logSoftmax_:gO});function yO(e,t=null,n=!1){let a=E(e,"x","logSumExp"),r=Fa(t,a.shape),s=ha(a,r,!0),i=pe(a,s),o=gn(i),l=fe(o,r),u=Qn(l),p=Y(W(s,u.shape),u);if(n){let d=li(p.shape,r);return W(p,d)}return p}var Bm=L({logSumExp_:yO});function bO(e,t){let n=E(e,"a","logicalAnd","bool"),a=E(t,"b","logicalAnd","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Jl,r)}var $a=L({logicalAnd_:bO});function xO(e){let t={x:E(e,"x","logicalNot","bool")};return O.runKernel(Ql,t)}var Mc=L({logicalNot_:xO});function vO(e,t){let n=E(e,"a","logicalOr","bool"),a=E(t,"b","logicalOr","bool");lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(eu,r)}var Vm=L({logicalOr_:vO});function wO(e,t){let n=E(e,"a","logicalXor","bool"),a=E(t,"b","logicalXor","bool");return lt(n.shape,a.shape),$a(Vm(e,t),Mc($a(e,t)))}var Nv=L({logicalXor_:wO}),jd=2147483648;function kO(e,t,n="left"){let a=E(e,"sortedSequence","searchSorted"),r=E(t,"values","searchSorted"),s=a.shape[a.shape.length-1],i=r.shape[r.shape.length-1],o=W(a,[-1,s]),l=W(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(mt(l.shape)>=jd)throw new Error(`values tensor size must less than ${jd}`);if(o.shape[1]>=jd)throw new Error(`trailing dim_size must less than ${jd} for int32 output type, was ${o.shape[1]}`);let u={sortedSequence:o,values:l},p={side:n};return O.runKernel(Tm,u,p)}var Um=L({searchSorted_:kO});function HS(e,t){return Um(e,t,"left")}function IO(e,t,n,a,r){let s=E(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(cr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),Tn("maxPool",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r},d=O.runKernel(Ui,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Dt=L({maxPool_:IO});function SO(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),Tn("maxPool3d",a,r);let u={x:o},p={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},d=O.runKernel(hc,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Cv=L({maxPool3d_:SO});function TO(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=O.runKernel(ym,s,i);return{result:o[0],indexes:o[1]}}var jS=L({maxPoolWithArgmax_:TO});function NO(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Et(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(Vi,r)}var dr=L({maximum_:NO});function CO(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return O.runKernel(Gi,a,r)}var Nt=L({mean_:CO});function It(e,t="float32"){if(na(e),t==="complex64"){let a=It(e,"float32"),r=It(e,"float32");return _r(a,r)}let n=Xh(mt(e),t);return O.makeTensor(n,e,t)}function Zn(e,t="float32"){if(na(e),t==="complex64"){let a=Zn(e,"float32"),r=It(e,"float32");return _r(a,r)}let n=Sx(mt(e),t);return O.makeTensor(n,e,t)}function qS(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=E(e,"x","meshgrid",e instanceof Te?e.dtype:"float32");if(t===void 0)return[a];let r=E(t,"y","meshgrid",t instanceof Te?t.dtype:"float32"),s=mt(a.shape),i=mt(r.shape);return n==="xy"?(a=W(a,[1,-1]),r=W(r,[-1,1]),[Fe(Zn([i,1],a.dtype),a),Fe(r,Zn([1,s],r.dtype))]):(a=W(a,[-1,1]),r=W(r,[1,-1]),[Fe(a,Zn([1,i],a.dtype)),Fe(Zn([s,1],r.dtype),r)])}function EO(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Et(n,a),n.dtype==="bool"&&(n=le(n,"int32"),a=le(a,"int32")),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(ji,r)}var $u=L({minimum_:EO});function _O(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return O.runKernel(qi,i,s)}var Ev=L({mirrorPad_:_O});function AO(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Et(n,a);let r={a:n,b:a};return O.runKernel(tu,r)}var _v=L({mod_:AO});function $O(e,t=null,n=!1){e=E(e,"x","moments");let a=Fa(t,e.shape),r=Nt(e,a,n),s=r.shape;n||(s=li(r.shape,a));let i=ot(pe(le(e,"float32"),W(r,s))),o=Nt(i,a,n);return{mean:r,variance:o}}var Pc=L({moments_:$O});function FO(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=qp(n,"c","multiRNNCell"),i=qp(a,"h","multiRNNCell"),o=r,l=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?W(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=O.runKernel(bm,o,l);return i===1?W(u,[u.size]):u}var XS=L({multinomial_:DO});function RO(e,t){let n=E(e,"a","notEqual","string_or_numeric"),a=E(t,"b","notEqual","string_or_numeric");[n,a]=Et(n,a),lt(n.shape,a.shape);let r={a:n,b:a};return O.runKernel(au,r)}var ui=L({notEqual_:RO});function MO(e){let t={x:E(e,"x","onesLike")};return O.runKernel(ou,t)}var ea=L({onesLike_:MO});function PO(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=W(n,[-1,1]),s=W(a,[1,-1]);return Fe(r,s)}var YS=L({outerProduct_:PO});function OO(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return O.runKernel(Yi,s,r)}var ba=L({pad_:OO});function LO(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ba(e,[t],n)}var ZS=L({pad1d_:LO});function zO(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var JS=L({pad2d_:zO});function WO(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var QS=L({pad3d_:WO});function BO(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ba(e,t,n)}var eT=L({pad4d_:BO});function VO(e,t,n){let a=E(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]===0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return O.runKernel(yu,r,s)}var Oc=L({spaceToBatchND_:VO});function UO(e,t,n,a,r,s,i){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let o=E(e,"x","maxPool"),l=o,u=!1;o.rank===3&&(u=!0,l=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(cr(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let p=$S(l.shape,t,s,r,a),d=[p.dilationHeight,p.dilationWidth],c;a==="same"?c=HO([p.filterHeight,p.filterWidth],d):c=[[0,0],[0,0]];let h=d[0]===1&&d[1]===1,[m,f]=GO([p.inHeight,p.inWidth],d,c),g=h?a:"valid",y=h?l:Oc(l,d,m),b=(n==="avg"?()=>ya(y,t,s,g,i):()=>Dt(y,t,s,g,i))(),x=h?b:$c(b,d,f);return u?W(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function GO(e,t,n){let a=n.map(p=>p[0]),r=n.map(p=>p[1]),s=e.concat(a,r),i=t.map((p,d)=>(p-s[d]%p)%p),o=r.map((p,d)=>p+i[d]),l=t.map((p,d)=>[a[d],o[d]]),u=t.map((p,d)=>[0,i[d]]);return[l,u]}function HO(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Av=L({pool_:UO});function jO(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return O.runKernel(Ji,r)}var Lc=L({prelu_:jO});function qO(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=le(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return O.runKernel(Qi,r,s)}var $v=L({prod_:qO});function KO(e,t,n,a){let r=e.map((p,d)=>E(p,`tensors${d}`,"raggedGather","int32")),s=E(t,"paramsDenseValues","raggedGather"),i=E(n,"indices","raggedGather","int32"),o={paramsNestedSplits:r,paramsDenseValues:s,indices:i},l={outputRaggedRank:a},u=O.runKernel(xm,o,l);return{outputNestedSplits:u.slice(0,u.length-1),outputDenseValues:u[u.length-1]}}var tT=L({raggedGather_:KO});function XO(e,t,n){let a=E(e,"starts","raggedRange"),r=E(t,"limits","raggedRange",a.dtype),s=E(n,"deltas","raggedRange",a.dtype),i={starts:a,limits:r,deltas:s},o=O.runKernel(vm,i);return{rtNestedSplits:o[0],rtDenseValues:o[1]}}var nT=L({raggedRange_:XO});function YO(e,t,n,a,r){let s=E(e,"shape","raggedTensorToTensor","int32"),i=E(t,"values","raggedTensorToTensor"),o=E(n,"defaultValue","raggedTensorToTensor",i.dtype),l=a.map((d,c)=>E(d,`tensors${c}`,"raggedTensorToTensor","int32")),u={shape:s,values:i,defaultValue:o,rowPartitionTensors:l},p={rowPartitionTypes:r};return O.runKernel(wm,u,p)}var aT=L({raggedTensorToTensor_:YO});function ZO(e,t,n){na(e);let a=mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},JO=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=Fv.alea(r.toString()),this.randn=new Dv(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Fv.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function e3(e,t,n=1,a="float32",r){if(na(e),n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new JO(t,n,a,r),i=Pe(e,a);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),ga(t,0)}var oT=L({reverse1d_:l3});function u3(e,t){let n=E(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),ga(n,t)}var lT=L({reverse2d_:u3});function p3(e,t){let n=E(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),ga(n,t)}var uT=L({reverse3d_:p3});function c3(e,t){let n=E(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),ga(n,t)}var pT=L({reverse4d_:c3});function d3(e){let t={x:E(e,"x","round")};return O.runKernel(io,t)}var jm=L({round_:d3});function h3(e){let t={x:E(e,"x","rsqrt","float32")};return O.runKernel(oo,t)}var qm=L({rsqrt_:h3});function m3(e){let t={x:E(e,"x","selu")};return O.runKernel(du,t)}var Km=L({selu_:m3});function f3(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),u=E(n,"pointwiseFilter","separableConv2d"),p=o,d=!1;if(o.rank===3&&(d=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(p.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${p.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];A(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=ks(p,l,a,r,i,s),f=Ft(m,u,1,"valid",i);return d?W(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ss=L({separableConv2d_:f3});async function g3(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let p=0;p`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Be(a,[t],[n])}var zc=L({slice1d_:v3});function w3(e,t,n){let a=E(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var Zm=L({slice2d_:w3});function k3(e,t,n){let a=E(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var vo=L({slice3d_:k3});function I3(e,t,n){let a=E(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Be(a,t,n)}var cl=L({slice4d_:I3});function S3(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return O.runKernel(ho,a,r)}var Xa=L({softmax_:S3});function T3(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(pm,t)}var Wc=L({fft_:T3});function N3(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return O.runKernel(cm,t)}var dl=L({ifft_:N3});function C3(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=W(e,[n,t]);a=dl(r)}else{let r=[n,2*(t-1)],s=W(ul(e),[n,t]),i=W(Ec(e),[n,t]),o=ga(Be(s,[0,1],[n,t-2]),1),l=z(ga(Be(i,[0,1],[n,t-2]),1),xe(-1)),u=Ze([s,o],1),p=Ze([i,l],1),d=W(_r(u,p),[r[0],r[1]]);a=dl(d)}if(a=ul(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=W(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Jm=L({irfft_:C3});function E3(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return O.runKernel(bu,a,r)}var zn=L({split_:E3});function _3(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Be(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Ze([e,It(m)],e.shape.length-1),n=t}else r=e;let s=qe(r),i=W(_r(r,s),[a,n]),o=Wc(i),l=Math.floor(n/2)+1,u=ul(o),p=Ec(o),d=zn(u,[l,n-l],u.shape.length-1),c=zn(p,[l,n-l],p.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,W(_r(d[0],c[0]),h)}var Bc=L({rfft_:_3});function A3(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Et(n,a),lt(n.shape,a.shape);let r={a:n,b:a},s={};return O.runKernel(mo,r,s)}var Qm=L({squaredDifference_:A3});function $3(e,t){let n=E(e,"x","squeeze","string_or_numeric");return W(n,NI(n.shape,t).newShape)}var Ts=L({squeeze_:$3});function F3(e,t=0){let n=qp(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return O.runKernel(lu,a,r)}var $t=L({stack_:F3});function D3(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return O.runKernel(bs,n,a)}var wo=L({step_:D3});function R3(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:E(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return O.runKernel(vu,u,p)}var Pv=L({stridedSlice_:R3});function M3(e){let t={x:E(e,"x","tan","float32")};return O.runKernel(go,t)}var Ov=L({tan_:M3});function Ke(e,t){yi(e);let n=lr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return xs(e,null,n,t)}function Aa(e,t,n){if(yi(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=lr(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return xs(e,t,a,n)}function Da(e,t,n){if(yi(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=lr(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return xs(e,t,a,n)}function dT(e,t,n){if(yi(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=lr(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return xs(e,t,a,n)}function hT(e,t,n){if(yi(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=lr(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,xs(e,t,a,n)}function P3(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=O.runKernel(wu,s,i);return{values:o,indices:l}}var Lv=L({topk_:P3});function O3(e,t=0,n=1,a,r){if(na(e),a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Dv(t,n,a,!0,r),i=Pe(e,a);for(let o=0;o0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=O.runKernel(Cm,a,r);return{values:s,indices:i}}var zv=L({unique_:L3});function z3(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");A(sl(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return O.runKernel(kc,s,i)}var tf=L({unsortedSegmentSum_:z3});function W3(e,t=0){let n=E(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return O.runKernel(Iu,a,r)}var ut=L({unstack_:W3});function mT(e,t){return Um(e,t,"right")}function Wv(e,t=!0,n,a){return O.makeVariable(e,t,n,a)}function fT(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),Sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=xe(1),u=pe(l,o),p=z(pe(i,s),u);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let d=E(a,"step","movingAverage");p=me(p,pe(l,Ar(o,d)))}return Y(s,p)}var yT=L({movingAverage_:U3});function G3(e,t,n){na(n);let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");Bx(r,a,n);let s={indices:a,updates:r},i={shape:n};return O.runKernel(pu,s,i)}var bT=L({scatterND_:G3});function H3(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function j3(e,t,n,a=0){na(n);let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense","string_or_numeric"),i=E(a,"defaultValue","sparseToDense",s.dtype);H3(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return O.runKernel(Nm,o,l)}var xT=L({sparseToDense_:j3});function q3(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND","string_or_numeric"),indices:n};return O.runKernel(Hl,a)}var vT=L({gatherND_:q3});function K3(e,t){if(t==null)return e.shape.slice();if(ms(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Te?r.clone():r;let s=K3(r,n),i=1-t,o=me(_u(Y(Fu(s,0,1,"float32",a),i)),i);return z(r,o)}var Vv=L({dropout_:X3});function Uv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function nf(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),Sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],p=CI("bool",l);for(let d=0;dg.value-f.value),p[d]=0;for(let f=0;fQ3,depthwiseConv2d:()=>aL,matMul:()=>sL});function Z3(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),A(p===n[3],()=>`Error in conv2dDerFilter: depth of dy (${p}) must match output depth for filter (${n[3]}).`),Tn("conv2dDerFilter",r,i);let d={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return O.runKernel(tm,d,c)}var Gv=L({conv2DBackpropFilter_:Z3});function af(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,wo(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function rf(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=fe(n,a)),W(n,e.shape)}function sf(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Xe(e);if(t==="elu")return Cu(e);if(t==="relu6")return Hm(e);if(t==="prelu")return Lc(e,n);if(t==="leakyrelu")return Dc(e,a);if(t==="sigmoid")return da(e);throw new Error(`Unknown fused activation ${t}.`)}var of=(e,t)=>!(e>0)||t==="linear";function J3({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(l=l||"linear",of(O.state.gradientDepth,l)===!1){A(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let T=Ft(e,t,n,a,r,s,i);return o!=null&&(T=Y(T,o)),sf(T,l,u,p)}let d=E(e,"x","conv2d","float32"),c=E(t,"filter","conv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),Tn("fused conv2d",a,i);let f=r==="NHWC"?h.shape[3]:h.shape[1];A(c.shape[2]===f,()=>`Error in conv2d: depth of input (${f}) must match input depth for filter ${c.shape[2]}.`),A(cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let g=Ac(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=E(o,"bias","fused conv2d"),[y]=Et(y,d),r==="NHWC"?lt(g.outShape,y.shape):(A(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),A(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let b;if(u!=null){let T=u.shape;if(A(T.length<=1||T.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${T.length}.`),T.length===1)A(T[0]===1||T[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the number of output channels (${g.outChannels}).`);else if(T.length===3)try{lt(T,g.outShape)}catch(C){let _=`Error in fused conv2d: PReLU activation weights (${T}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(_)}b=E(u,"prelu weights","fused conv2d")}let x=(T,C)=>{A(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[_,$,R,F]=C,S=af(T,R,l);A(is(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let M=uv($.shape,S,_,n,a),B=Gv($,S,_.shape,n,a),U=[M,B];if(F!=null){let G=rf(F,S);U.push(G)}return U},w={x:h,filter:c,bias:y,preluActivationWeights:b},I={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((T,C,_)=>{let $=O.runKernel(ni,w,I);return _([C,T,$]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,c):ur((T,C,_,$)=>{let R=O.runKernel(ni,w,I);return $([C,T,R,_]),m&&(R=W(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,c,y)}var Q3=L({fusedConv2d_:J3});function eL(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=W(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return O.runKernel(sm,u,p)}var kT=L({depthwiseConv2dNativeBackpropFilter_:eL});function tL(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=W(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},p={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},d=O.runKernel(im,u,p);return l?W(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var IT=L({depthwiseConv2dNativeBackpropInput_:tL});function nL({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:p}){if(of(O.state.gradientDepth,l)===!1){let I=ks(e,t,n,a,r,s,i);return o!=null&&(I=Y(I,o)),sf(I,l,u,p)}let d=E(e,"x","depthwiseConv2d","float32"),c=E(t,"filter","depthwiseConv2d","float32"),h=d,m=!1;d.rank===3&&(m=!0,h=W(d,[1,d.shape[0],d.shape[1],d.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),A(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),A(cr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),Tn("fused depthwiseConv2d",a,i);let f=Ac(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Et(g,d),lt(f.outShape,g.shape));let y;u!=null&&(y=E(u,"prelu weights","fused depthwiseConv2d"));let b=(I,T)=>{A(is(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,_,$,R]=T,F=af(I,$,l),S=IT(_.shape,F,C,n,a,s,i),M=kT(_,F,C.shape,n,a,s,i);if(R!=null){let B=rf(g,F);return[S,M,B]}return[S,M]},x={x:h,filter:c,bias:g,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:p};return o==null?ur((I,T,C)=>{let _=O.runKernel(ai,x,w);return C([T,I,_]),m&&(_=W(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:b}})(h,c):ur((I,T,C,_)=>{let $=O.runKernel(ai,x,w);return _([T,I,$,C]),m&&($=W($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,c,g)}var aL=L({fusedDepthwiseConv2d_:nL});function rL({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(of(O.state.gradientDepth,s)===!1){let R=Fe(e,t,n,a);return r!=null&&(R=Y(R,r)),sf(R,s,i,o)}let l=E(e,"a","fused matMul"),u=E(t,"b","fused matMul");[l,u]=Et(l,u);let p=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=mt(m),y=mt(f);A(p===d,()=>`Error in fused matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=lt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([c,h]),x=n?W(l,[g,p,c]):W(l,[g,c,p]),w=a?W(u,[y,h,d]):W(u,[y,d,h]),I;r!=null&&(I=E(r,"bias","fused matMul"),[I]=Et(I,l),lt(b,I.shape));let T;i!=null&&(T=E(i,"prelu weights","fused matMul"));let C=(R,F)=>{let[S,M,B,U]=F,G=af(W(R,B.shape),B,s),q,K;if(!n&&!a?(q=Fe(G,M,!1,!0),K=Fe(S,G,!0,!1)):!n&&a?(q=Fe(G,M,!1,!1),K=Fe(G,S,!0,!1)):n&&!a?(q=Fe(M,G,!1,!0),K=Fe(S,G,!1,!1)):(q=Fe(M,G,!0,!0),K=Fe(G,S,!0,!0)),r!=null){let Z=rf(U,G);return[q,K,Z]}else return[q,K]},_={a:x,b:w,bias:I,preluActivationWeights:T},$={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ur((R,F,S)=>{let M=O.runKernel(ti,_,$);return S([R,F,M]),{value:W(M,b),gradFunc:C}})(x,w):ur((R,F,S,M)=>{let B=O.runKernel(ti,_,$);return M([R,F,B,S]),{value:W(B,b),gradFunc:C}})(x,w,I)}var sL=L({fusedMatMul_:rL});function iL(e){return nf(e,.54,.46)}var oL=L({hammingWindow_:iL});function lL(e){return nf(e,.5,.5)}var ST=L({hannWindow_:lL});function uL(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Be(e,s,t)),s+=n;if(a)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let p={image:i,boxes:o,boxInd:l},d={method:r,extrapolationValue:s,cropSize:a};return O.runKernel(Ol,p,d)}var hL=L({cropAndResize_:dL});function mL(e){let t=E(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return O.runKernel(Ul,n,{})}var fL=L({flipLeftRight_:mL});function gL(e){let t=E(e,"image","grayscaleToRGB"),n=t.rank-1,a=t.shape[n];A(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),A(a===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${a}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ln(t,r)}var yL=L({grayscaleToRGB_:gL});function bL(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return O.runKernel(Tu,s,i)}var xL=L({rotateWithOffset_:bL});function Du(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function vL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression","float32"),i=E(t,"scores","nonMaxSuppression","float32"),o=Du(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return O.runKernel(ru,{boxes:s,scores:i},l)}var wL=L({nonMaxSuppression_:vL});function kL(e,t,n){let a=IL(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function IL(e,t,n){return TL(e,t,n||SL)}function SL(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function NT(e,t,n,a,r){return Hv(e,t,n,a,r,0)}function CT(e,t,n,a,r,s){return Hv(e,t,n,a,r,0,!1,s,!0)}function ET(e,t,n,a,r,s){return Hv(e,t,n,a,r,s,!0)}function Hv(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;gr&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(ek);let p=s>0?-.5/s:0,d=[],c=[];for(;d.length0;){let g=u.pop(),{score:y,boxIndex:b,suppressBeginIndex:x}=g;if(y=x;--I){let T=NL(e,b,d[I]);if(T>=a){w=!0;break}if(g.score=g.score*CL(a,p,T),g.score<=r)break}g.suppressBeginIndex=d.length,w||(g.score===y?(d.push(b),c.push(g.score)):g.score>r&&kL(u,g,ek))}let h=d.length,m=n-h;o&&m>0&&(d.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:d};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function NL(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),p=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(d-u)*(c-p);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,p),y=Math.min(o,d),b=Math.min(l,c),x=Math.max(y-f,0)*Math.max(b-g,0);return x/(h+m-x)}function CL(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function ek(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function EL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=Du(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],p=l[1],{selectedIndices:d}=NT(u,p,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ke(d,"int32")}var _L=EL;function AL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Du(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},p={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},d=O.runKernel(iu,u,p);return{selectedIndices:d[0],selectedScores:d[1]}}var $L=L({nonMaxSuppressionWithScore_:AL});async function FL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Du(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),p=u[0],d=u[1],{selectedIndices:c,selectedScores:h}=ET(p,d,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(c,"int32"),selectedScores:Ke(h)}}var DL=FL;function RL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=Du(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:p,scoreThreshold:d,padToMaxOutputSize:s},m=O.runKernel(su,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var ML=L({nonMaxSuppressionPadded_:RL});async function PL(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=Du(i,o,n,a,r,null),u=l.maxOutputSize,p=l.iouThreshold,d=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=CT(c,h,u,p,d,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ke(m,"int32"),validOutputs:xe(f,"int32")}}var OL=PL;function LL(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(ao,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var _T=L({resizeBilinear_:LL});function zL(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=W(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=O.runKernel(no,o,l);return i?W(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var AT=L({resizeNearestNeighbor_:zL});function WL(e,t="binary",n=!1,a=.5){let r=E(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=z(Ke([a]),255),p,d,c,h;if(A(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),A(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),A(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),A(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[p,d,c]=zn(r,[1,1,1],-1);let f=z(p,s),g=z(d,i),y=z(c,o);h=Y(Y(f,g),y)}else h=e;if(t==="otsu"){let f=av(le(jm(h),"int32"),mn([]),256);u=BL(f,l)}let m=n?Is(h,u):Nn(h,u);return le(z(m,255),"int32")}function BL(e,t){let n=Ke([-1]),a=Ke([0]),r=Ke([0]),s,i,o,l,u,p;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return O.runKernel(ku,l,u)}var GL=L({transform_:UL});function HL(e,t,n){A(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=W(pi(0,s,1,"int32"),[-1,1]),l=pi(0,i,1,"int32"),u=pe(o,l),p=$a(Is(u,xe(+t,"int32")),$r(u,xe(-n,"int32"))),d=It([s,i],a.dtype);return W($t(ut(W(a,[-1,s,i])).map(c=>fn(p,c,d))),r)}var jL=L({bandPart_:HL});function qL(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=zn(e,e.shape[0],0).map(r=>Ts(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r{let s=a[r];if(r>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return tk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=ut(W(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,p]=tk(l,t);r.push(u),s.push(p)});let i=W($t(r,0),e.shape),o=W($t(s,0),e.shape);return[i,o]}}function tk(e,t=!1){return O.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=Om(n),s=sr(e),i=Aa([[1]],[1,1]),o=sr(i),l=n>=a?a:n;for(let u=0;u{let h=Be(s,[u,u],[n-u,1]),m=Eu(h),f=Be(s,[u,u],[1,1]),g=fn(Nn(f,0),Aa([[-1]]),Aa([[1]])),y=pe(f,z(g,m)),b=me(h,y);b.shape[0]===1?o=sr(i):o=Ze([i,Be(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let x=bt(me(Fe(g,y),m)),w=Be(s,[u,0],[n-u,a]),I=z(x,o),T=_e(o);if(u===0)s=pe(w,Fe(I,Fe(T,w)));else{let $=pe(w,Fe(I,Fe(T,w)));s=Ze([Be(s,[0,0],[u,a]),$],0)}let C=_e(I),_=Be(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=pe(_,Fe(Fe(_,o),C));else{let $=pe(_,Fe(Fe(_,o),C));r=Ze([Be(r,[0,0],[n,u]),$],1)}return[o,s,r]}),Ee([p,d,c])}return!t&&n>a&&(r=Be(r,[0,0],[n,a]),s=Be(s,[0,0],[a,a])),[r,s]})}var YL=L({qr_:XL}),vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(vn||(vn={}));function ZL(e,t,n=vn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:z(a,r);if(n===vn.NONE)return s;if(n===vn.SUM)return fe(s);if(n===vn.MEAN){if(r==null)return Nt(s);{let i=a.size/r.size,o=me(fe(s),fe(r));return i>1?me(o,xe(i)):o}}if(n===vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(fe(s),xe(a.size));{let i=z(r,Zn(a.shape)),o=le(fe(ui(i,xe(0))),"float32");return me(fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Fr=L({computeWeightedLoss_:ZL});function JL(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),Sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(pe(r,s));return Fr(o,i,a)}var QL=L({absoluteDifference_:JL});function ez(e,t,n,a,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),Sn(s.shape,i.shape,"Error in cosineDistance: ");let l=xe(1),u=pe(l,fe(z(s,i),n,!0));return Fr(u,o,r)}var tz=L({cosineDistance_:ez});function nz(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),Sn(r.shape,s.shape,"Error in hingeLoss: ");let o=xe(1);r=pe(z(xe(2),r),o);let l=Xe(pe(o,z(r,s)));return Fr(l,i,a)}var az=L({hingeLoss_:nz});function rz(e,t,n,a=1,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),Sn(s.shape,i.shape,"Error in huberLoss: ");let l=xe(a),u=Lt(pe(i,s)),p=$u(u,l),d=pe(u,p),c=Y(z(xe(.5),ot(p)),z(l,d));return Fr(c,o,r)}var sz=L({huberLoss_:rz});function iz(e,t,n,a=1e-7,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),Sn(s.shape,i.shape,"Error in logLoss: ");let l=xe(1),u=xe(a),p=bt(z(s,Qn(Y(i,u)))),d=z(pe(l,s),Qn(Y(pe(l,i),u))),c=pe(p,d);return Fr(c,o,r)}var oz=L({logLoss_:iz});function lz(e,t,n,a=vn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),Sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Qm(r,s);return Fr(o,i,a)}var uz=L({meanSquaredError_:lz});function pz(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");Sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xe(a),s=z(a,n),i=Rc(gn(bt(Lt(a))));return Y(pe(r,s),i)}function cz(e,t,n,a=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),Sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=xe(a),p=xe(1),d=xe(.5);s=Y(z(s,pe(p,u)),z(d,u))}let l=pz(s,i);return Fr(l,o,r)}var dz=L({sigmoidCrossEntropy_:cz});function hz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ur((a,r,s)=>{let i=Bm(r,[n],!0),o=pe(le(r,"float32"),i);s([a,o]);let l=bt(z(o,a));return{value:fe(l,[n]),gradFunc:(u,p)=>{let[d,c]=p,h=li(u.shape,[n]);return[z(W(u,h),pe(le(d,"float32"),gn(c))),z(W(u,h),pe(gn(c),le(d,"float32")))]}}})(e,t)}function mz(e,t,n,a=0,r=vn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),Sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=xe(a),p=xe(1),d=xe(s.shape[1]);s=Y(z(s,pe(p,u)),me(u,d))}let l=hz(s,i);return Fr(l,o,r)}var fz=L({softmaxCrossEntropy_:mz});function gz(e,t,n,a){let r=E(e,"indices","sparseFillEmptyRows","int32"),s=E(t,"values","sparseFillEmptyRows"),i=E(n,"denseShape","sparseFillEmptyRows","int32"),o=E(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=O.runKernel(fc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var yz=L({sparseFillEmptyRows_:gz});function bz(e,t,n){let a=E(e,"inputIndices","sparseReshape","int32"),r=E(t,"inputShape","sparseReshape","int32"),s=E(n,"newShape","sparseReshape","int32");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape ${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=O.runKernel(xu,i);return{outputIndices:o[0],outputShape:o[1]}}var xz=L({sparseReshape_:bz});function vz(e,t,n){let a=E(e,"data","sparseSegmentMean"),r=E(t,"indices","sparseSegmentMean","int32"),s=E(n,"segmentIds","sparseSegmentMean","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(gc,i)}var wz=L({sparseSegmentMean_:vz});function kz(e,t,n){let a=E(e,"data","sparseSegmentSum"),r=E(t,"indices","sparseSegmentSum","int32"),s=E(n,"segmentIds","sparseSegmentSum","int32");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${s.shape}`);let i={data:a,indices:r,segmentIds:s};return O.runKernel(yc,i)}var Iz=L({sparseSegmentSum_:kz});function Sz(e,t,n,a,r,s,i,o){let l=E(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=E(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let p={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},d={data:l,dataSplits:u},c=O.runKernel(xc,d,p);return{nGrams:c[0],nGramsSplits:c[1]}}var Tz=L({stringNGrams_:Sz});function Nz(e,t,n=!0){let a=E(e,"input","stringSplit","string"),r=E(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=O.runKernel(vc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var Cz=L({stringSplit_:Nz});function Ez(e,t){let n=E(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return O.runKernel(wc,r,a)}var _z=L({stringToHashBucketFast_:Ez}),$T={fft:Wc,ifft:dl,rfft:Bc,irfft:Jm},FT={hammingWindow:oL,hannWindow:ST,frame:TT,stft:cL},_a={flipLeftRight:fL,grayscaleToRGB:yL,resizeNearestNeighbor:AT,resizeBilinear:_T,rotateWithOffset:xL,cropAndResize:hL,nonMaxSuppression:wL,nonMaxSuppressionAsync:_L,nonMaxSuppressionWithScore:$L,nonMaxSuppressionWithScoreAsync:DL,nonMaxSuppressionPadded:ML,nonMaxSuppressionPaddedAsync:OL,threshold:VL,transform:GL},jv={bandPart:jL,gramSchmidt:KL,qr:YL},DT={absoluteDifference:QL,computeWeightedLoss:Fr,cosineDistance:tz,hingeLoss:az,huberLoss:sz,logLoss:oz,meanSquaredError:uz,sigmoidCrossEntropy:dz,softmaxCrossEntropy:fz},RT={sparseFillEmptyRows:yz,sparseReshape:xz,sparseSegmentMean:wz,sparseSegmentSum:Iz},MT={stringNGrams:Tz,stringSplit:Cz,stringToHashBucketFast:_z},Dr=class extends NS{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return GS(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:xe(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Dr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var lf=class extends Dr{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:P(()=>qe(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;P(()=>{let l=Y(z(i,this.rho),z(ot(s),1-this.rho)),u=z(me(un(Y(o,this.epsilon)),un(Y(i,this.epsilon))),s),p=Y(z(o,this.rho),z(ot(u),1-this.rho));i.assign(l),o.assign(p);let d=Y(z(u,-this.learningRate),a);a.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};lf.className="Adadelta";vs(lf);var uf=class extends Dr{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:P(()=>yn(a.shape,this.initialAccumulatorValue).variable(!1))});let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;P(()=>{let i=Y(s,ot(r));s.assign(i);let o=Y(z(me(r,un(Y(i,O.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};uf.className="Adagrad";vs(uf);var pf=class extends Dr{constructor(e,t,n,a=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],P(()=>{this.accBeta1=xe(t).variable(),this.accBeta2=xe(n).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=pe(1,this.accBeta2);t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:P(()=>qe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:P(()=>qe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedSecondMoment[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=Y(z(p,this.beta2),z(ot(l),1-this.beta2)),h=me(d,n),m=me(c,a);u.assign(d),p.assign(c);let f=Y(z(me(h,Y(un(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),P(()=>{this.accBeta1.assign(Ar(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ar(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};pf.className="Adam";vs(pf);var cf=class extends Dr{constructor(e,t,n,a=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],P(()=>{this.iteration=xe(0).variable(),this.accBeta1=xe(t).variable()}),a==null&&(this.epsilon=O.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);P(()=>{let n=pe(1,this.accBeta1),a=me(-this.learningRate,Y(z(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=O.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:qe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:qe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,p=this.accumulatedWeightedInfNorm[s].variable,d=Y(z(u,this.beta1),z(l,1-this.beta1)),c=z(p,this.beta2),h=Lt(l),m=dr(c,h);u.assign(d),p.assign(m);let f=Y(z(me(a,n),me(d,Y(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};cf.className="Adamax";vs(cf);var Vc=class extends Dr{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=O.registeredVariables[t];P(()=>{let s=Y(z(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(xe(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Vc.className="SGD";vs(Vc);var df=class extends Vc{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=xe(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t];this.accumulations[n]==null&&(this.accumulations[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(!1))});let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&P(()=>{let i,o=Y(z(this.m,r),s);this.useNesterov?i=Y(z(this.c,Y(s,z(o,this.m))),a):i=Y(z(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};df.className="Momentum";vs(df);var hf=class extends Dr{constructor(e,t=.9,n=0,a=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=O.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=O.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:P(()=>qe(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:P(()=>qe(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;P(()=>{let l=Y(z(i,this.decay),z(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,p=Y(z(u,this.decay),z(s,1-this.decay)),d=me(z(s,this.learningRate),un(pe(l,Y(ot(p),this.epsilon)))),c=Y(z(o,this.momentum),d);i.assign(l),u.assign(p),o.assign(c);let h=pe(a,c);a.assign(h)}else{let u=Y(z(i,this.decay),z(ot(s),1-this.decay)),p=Y(z(o,this.momentum),me(z(s,this.learningRate),un(Y(u,this.epsilon))));i.assign(u),o.assign(p);let d=pe(a,p);a.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};hf.className="RMSProp";vs(hf);var qr=class{static sgd(e){return new Vc(e)}static momentum(e,t,n=!1){return new df(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new hf(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new pf(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new lf(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new cf(e,t,n,a,r)}static adagrad(e,t=.1){return new uf(e,t)}},Us={sgd:qr.sgd,momentum:qr.momentum,adadelta:qr.adadelta,adagrad:qr.adagrad,rmsprop:qr.rmsprop,adamax:qr.adamax,adam:qr.adam},Az=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function qv(){return new Promise(e=>Az(()=>e()))}var N={};Ae(N,{ERF_A1:()=>Hz,ERF_A2:()=>jz,ERF_A3:()=>qz,ERF_A4:()=>Kz,ERF_A5:()=>Xz,ERF_P:()=>Gz,PARALLELIZE_THRESHOLD:()=>Kv,RowPartitionType:()=>tr,SELU_SCALE:()=>OT,SELU_SCALEALPHA:()=>PT,applyActivation:()=>sf,assertAndGetBroadcastShape:()=>lt,assertAxesAreInnerMostDims:()=>MP,assertParamsConsistent:()=>$z,assignToTypedArray:()=>tW,axesAreInnerMostDims:()=>yv,calculateShapes:()=>gS,checkEinsumDimSizes:()=>oW,checkPadOnDimRoundingMode:()=>Tn,combineLocations:()=>zS,combineRaggedTensorToTensorShapes:()=>Dz,complexWithEvenIndex:()=>Jz,complexWithOddIndex:()=>Qz,computeConv2DInfo:()=>Ac,computeConv3DInfo:()=>FS,computeDefaultPad:()=>Jx,computeDilation2DInfo:()=>PM,computeOptimalWindowSize:()=>Oz,computeOutAndReduceShapes:()=>WS,computeOutShape:()=>Fz,computePool2DInfo:()=>$S,computePool3DInfo:()=>OM,convertConv2DDataFormat:()=>DS,decodeEinsumEquation:()=>sW,eitherStridesOrDilationsAreOne:()=>cr,expandShapeToKeepDim:()=>li,exponent:()=>aW,exponents:()=>nW,fromStringArrayToUint8:()=>EW,fromUint8ToStringArray:()=>CW,getAxesPermutation:()=>BS,getBroadcastDims:()=>hS,getComplexWithIndex:()=>eW,getEinsumComputePath:()=>lW,getEinsumPermutation:()=>iW,getFusedBiasGradient:()=>rf,getFusedDyActivation:()=>af,getImageCenter:()=>Lz,getInnerMostAxes:()=>PP,getPermuted:()=>Wz,getRaggedRank:()=>Mz,getReductionAxes:()=>Wt,getReshaped:()=>zz,getReshapedPermuted:()=>Bz,getRowPartitionTypesHelper:()=>Rz,getSliceBeginCoords:()=>Vz,getSliceSize:()=>Uz,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>dW,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>hW,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>mW,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>yW,getSparseReshapeInputOutputMismatchErrorMessage:()=>xW,getSparseReshapeInputOutputMultipleErrorMessage:()=>bW,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>fW,getSparseReshapeNegativeOutputDimErrorMessage:()=>gW,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>IW,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>vW,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>wW,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>kW,getUndoAxesPermutation:()=>bv,isIdentityPermutation:()=>uW,log:()=>QF,mergeRealAndImagArrays:()=>Yz,prepareAndValidate:()=>fS,prepareSplitSize:()=>cW,segment_util:()=>LT,shouldFuse:()=>of,slice_util:()=>Kt,splitRealAndImagArrays:()=>Zz,tupleValuesAreOne:()=>is,upcastType:()=>ma,validateDefaultValueShape:()=>Pz,validateInput:()=>Bx,validateUpdateShape:()=>Wx,warn:()=>Yr});function $z(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function Fz(e,t){let n=e[0].slice();for(let a=1;a=0)if(o>=0){if(o!==s)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${s} but shape[${r+e}] = ${o}`)}else a[i]=s}return a}function Rz(e){let t={FIRST_DIM_SIZE:tr.FIRST_DIM_SIZE,VALUE_ROWIDS:tr.VALUE_ROWIDS,ROW_LENGTHS:tr.ROW_LENGTHS,ROW_SPLITS:tr.ROW_SPLITS,ROW_LIMITS:tr.ROW_LIMITS,ROW_STARTS:tr.ROW_STARTS},n=[];for(let a of e)if(a in t)n.push(t[a]);else break;return n}function Mz(e){return e.length===0?0:e[0]===tr.FIRST_DIM_SIZE?e.length-1:e.length}function Pz(e,t){if(e==null||t==null)return;let n=e.length,a=t.length;if(n>=a)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${a})`);for(let r=0;r=0&&i>=0&&s!==1&&s!==i)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${s} but ragged tensor input.flatValues.shape[${r-e.length}] = ${i}`)}}var Kv=30;function Oz(e){return e<=Kv?e:fh(e,Math.floor(Math.sqrt(e)))}function Lz(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function zz(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i=t*2+1||i%2===1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function Bz(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s/g,nk=",",ak="...";function sW(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(rW,"").length)/db.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${db}").`);let[a,r]=e.split(db);A(a.indexOf(ak)===-1,()=>`The ellipsis notation ("${ak}") is not supported yet.`);let s=a.split(nk),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;cm.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;cr!==-1),{permutationIndices:n,expandDims:a}}function oW(e,t,n){let a=new Array(e);for(let r=0;r`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function lW(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;it===n)}function pW(e,t){let n=[];for(let a=0;a"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}function dW(e){return`Received SparseTensor with denseShape[0] = 0 but indices.shape[0] = ${e}`}function hW(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function mW(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function fW(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function gW(e,t){return`size ${e} must be non-negative, not ${t}`}function yW(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function bW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a SparseTensor with ${n} dense values, but the requested shape requires a multiple of ${a}. inputShape=${e} outputShape= ${t}`}function xW(e,t){let n=mt(e),a=mt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${a}. inputShape=${e} outputShape=${t}`}function vW(){return"segment ids must be >= 0"}function wW(){return"segment ids are not increasing"}function kW(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function IW(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var LT={};Ae(LT,{collectGatherOpShapeInfo:()=>NW,computeOutShape:()=>TW,segOpComputeOptimalWindowSize:()=>SW});function SW(e,t){let n=!1,a;for(e<=Kv?(a=e,n=!0):a=fh(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=fh(e,a+1);return a}function TW(e,t,n){let a=[],r=e.length;for(let s=0;sr))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) ( ${s}).`);if(nwh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function EW(e){return e.map(t=>Tc(t))}var hr={};Ae(hr,{nonMaxSuppressionV3Impl:()=>NT,nonMaxSuppressionV4Impl:()=>CT,nonMaxSuppressionV5Impl:()=>ET,whereImpl:()=>fT});var zT={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,wo(le(n,"float32"),-1))}}},_W={kernelName:Tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(le(n,"float32")),r=un(pe(xe(1),a));return bt(me(e,r))}}}},AW={kernelName:Nl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(pe(ot(le(n,"float32")),1));return me(e,a)}}}},$W={kernelName:fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}},FW={kernelName:bi,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},DW={kernelName:xi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},RW={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>qe(n)}}},MW={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,un(pe(xe(1),ot(le(n,"float32")))))}}},PW={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=un(Y(xe(1),ot(le(n,"float32"))));return me(e,a)}}}},OW={kernelName:Dl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Y(ot(n),ot(a)),i=z(e,me(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=fe(i,o)),W(i,n.shape)},b:()=>{let s=Y(ot(n),ot(a)),i=bt(z(e,me(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=fe(i,o)),W(i,a.shape)}}}},LW={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Y(ot(le(n,"float32")),1))}}},zW={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,pe(xe(1),ot(le(n,"float32"))))}}};function WW(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,u=o,p=!1;o.rank===4&&(p=!0,l=W(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),Tn("avgPool3dGrad",r,s);let d={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=O.runKernel(Zh,d,c);return p?W(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var BW=L({avgPool3dGrad_:WW}),VW={kernelName:oc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>BW(e,a,r,s,i,o)}}};function UW(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=W(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=W(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let p={dy:l,input:o},d={filterSize:n,strides:a,pad:r},c=O.runKernel(Yh,p,d);return u?W(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var GW=L({avgPoolGrad_:UW}),HW={kernelName:vi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>GW(e,a,r,s,i)}}},jW={kernelName:wi,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Fe(e,r,!1,!0),b:()=>Fe(a,e,!0,!1)}:!s&&i?{a:()=>Fe(e,r,!1,!1),b:()=>Fe(e,a,!0,!1)}:s&&!i?{a:()=>Fe(r,e,!1,!0),b:()=>Fe(a,e,!1,!1)}:{a:()=>Fe(r,e,!0,!0),b:()=>Fe(e,a,!0,!0)}}},qW={kernelName:Rl,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Oc(e,a,r)}}},KW={kernelName:OI,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>fe(e,o,!0)}}},XW={kernelName:ki,gradFunc:e=>({x:()=>e.clone()})},YW={kernelName:Ii,gradFunc:e=>({x:()=>qe(e)})},ZW={kernelName:gs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>fn($a($r(a,r),Is(a,s)),e,qe(e))}}},JW={kernelName:lc,inputsToSave:["x"],gradFunc:zT.gradFunc},QW={kernelName:Ml,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=Fa(r,t[0].shape)[0],i=a.map(o=>o[s]);return zn(e,i,s).map(o=>()=>o)}},eB={kernelName:Si,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(is(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>uv(a.shape,e,r,i,o,l),filter:()=>Gv(a,e,r.shape,i,o,l)}}},tB={kernelName:Ti,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Ft(e,r,s,i,o,1,l),filter:()=>Gv(e,a,r.shape,s,i,o,l)}}};function nB(e,t,n,a,r){let s=e;e.rank===4&&(s=W(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=W(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return O.runKernel(nm,o,l)}var aB=L({conv3DBackpropFilter_:nB}),rB={kernelName:uc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(is(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>PS(i.shape,e,o,r,s),filter:()=>aB(i,e,o.shape,r,s)}}},sB={kernelName:Ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(bt(Xm(le(n,"float32"))),e)}}},iB={kernelName:Ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ym(le(n,"float32")),e)}}},oB={kernelName:Ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=BS([r],a.rank),l=Pm(e,r,s,!i);return o!=null&&(l=_e(l,o)),l}}}},lB={kernelName:_i,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(is(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(cr(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),Tn("depthwiseConv2d",s,i),{x:()=>IT(l.shape,e,u,r,s,o,i),filter:()=>kT(l,e,u.shape,r,s,o,i)}}},uB={kernelName:pc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>O.runKernel(gh,s,n),filter:()=>O.runKernel(yh,i,n)}}},pB={kernelName:$i,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>O.runKernel(um,a)}}},cB={kernelName:zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(gn(bt(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,a)}}},dB={kernelName:Fi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},hB={kernelName:Bl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>W(e,n.shape)}}},mB={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,gn(n))}}},fB={kernelName:Di,gradFunc:e=>({x:()=>qe(e)})},gB={kernelName:Ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=me(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ot(a);return bt(me(s,le(o,"float32")))}}}},yB={kernelName:Mi,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?xe(1):o,u=Wt(s.shape,r.shape),p=[];if(s.rank===1){for(let f=0;fs.rank===1?W(z(z(e,Ln(W(h,[1,1,1,s.shape[0]]),p)),l),r.shape):W(z(z(e,h),l),r.shape),mean:()=>{let f=z(z(h,xe(-1)),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},variance:()=>{let f=z(z(m,d),c);return s.rank===1&&(f=fe(f,u)),W(f,s.shape)},scale:()=>{let f=z(d,h),g=z(e,f);return s.rank===1&&(g=fe(g,u)),W(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=fe(f,u)),W(f,s.shape)}}}},bB={kernelName:Gl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=Fa(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),p=u.length,d=o.slice(s,o.length).slice(1),c=d.length,h=rk(0,p),m=rk(p+1,p+1+c),f=sk([u,[l],d]),g=W(e,f),y=W(r,[l]),b=sk([[p],h,m]),x=_e(g,b),w=tf(x,y,a.shape[i]),I=bv(b);return w=_e(w,I),w},indices:()=>r}}};function rk(e,t){let n=[];for(let a=e;a{let[n,a]=t;return{a:()=>qe(n),b:()=>qe(a)}}},vB={kernelName:Oi,gradFunc:e=>({x:()=>le(e,"float32")})},wB={kernelName:ql,gradFunc:e=>({x:()=>qe(e)})},kB={kernelName:Kl,gradFunc:e=>({x:()=>qe(e)})},IB={kernelName:Li,gradFunc:e=>({x:()=>qe(e)})},SB={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Nn(a,0);return{x:()=>fn(s,e,z(e,r))}}},TB={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Y(n,1))}}},NB={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,le(n,"float32"))}}},CB={kernelName:zI,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=gn(a);return pe(e,z(fe(e,r,!0),s))}}}};function EB(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return O.runKernel(mm,o,l)}var _B=L({localResponseNormalizationBackprop_:EB}),AB={kernelName:dc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>_B(a,r,e,s,i,o,l)}}};function WT(e,t,n,a){return t.rankz(e,le(Jn(n,t),e.dtype))}}var ik={kernelName:Bi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=Fa(r,s.shape),l=WT(e,i,s,o);return{x:()=>l.x()}}},$B={kernelName:Vi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,le($r(n,a),"float32")),b:()=>z(e,le(Lm(n,a),"float32"))}}};function FB(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),u=E(n,"output","maxPool3dGrad"),p=o,d=l,c=u,h=!1;l.rank===4&&(h=!0,p=W(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),d=W(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=W(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(p.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),A(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),Tn("maxPool3dGrad",s,i);let m={dy:p,input:d,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=O.runKernel(gm,m,f);return h?W(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var DB=L({maxPool3dGrad_:FB}),RB={kernelName:hc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>DB(e,a,r,s,i,o,l)}}};function MB(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),u=E(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),Tn("maxPoolGrad",s,i);let p={dy:o,input:l,output:u},d={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return O.runKernel(fm,p,d)}var PB=L({maxPoolGrad_:MB}),OB={kernelName:Ui,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>PB(e,a,r,s,i,o)}}},LB={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=Fa(r,a.shape),i=WS(a.shape,s)[1],o=mt(i);return{x:()=>{let l=a.shape.slice();s.forEach(p=>{l[p]=1});let u=W(e,l);return me(z(u,Zn(a.shape,"float32")),o)}}}},zB={kernelName:Hi,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=Fa(r,s.shape),l=WT(e,i,s,o);return{x:()=>l.x()}}},WB={kernelName:ji,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>z(e,le(Is(n,a),"float32")),b:()=>z(e,le(Nn(n,a),"float32"))}}},BB={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},VB={kernelName:tu,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?W(fe(e,s),n.shape):e},b:()=>{let s=z(e,bt(_u(me(n,a)))),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},UB={kernelName:Ki,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=z(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);return i.length>0?W(fe(s,i),a.shape):s}}}},GB={kernelName:nu,gradFunc:e=>({x:()=>bt(e)})},HB={kernelName:Xi,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},jB={kernelName:ou,gradFunc:e=>({x:()=>qe(e)})},qB={kernelName:lu,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return ut(e,a).map(r=>()=>r)}},ok={kernelName:Yi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Be(e,s,a.shape)}}},KB={kernelName:Zi,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=lt(s.shape,i.shape);return{a:()=>{let l=le(i,"float32"),u=z(e,z(l,Ar(s,pe(l,xe(1))))),p=Wt(s.shape,o);return p.length>0&&(u=fe(u,p)),W(u,s.shape)},b:()=>{let l=Nn(s,0),u=fn(l,Qn(s),qe(s)),p=z(e,z(r,u)),d=Wt(i.shape,o);return d.length>0&&(p=fe(p,d)),W(p,i.shape)}}}},XB={kernelName:Ji,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Nn(n,0);return{x:()=>fn(r,e,z(e,a)),alpha:()=>{let s=fn(r,qe(e),z(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=fe(s,i)),W(s,a.shape)}}}};function YB(e,t,n){let a=e.shape.slice();a[n]=1;let r=W(t,a),s=Xp(e,n,!0,!1),i=Xp(e,n,!0,!0),o=z(s,i);return z(r,o)}function ZB(e,t,n){let a=e.shape.length,r=a-n.length,s=N.getAxesPermutation(n,a),i=e;s!=null&&(i=_e(e,s));let o=i.shape.slice(),l=o.splice(a-n.length,n.length).reduce((d,c)=>d*c,1);o.push(l);let u=i.reshape(o),p=YB(u,t,r);if(p=p.reshape(i.shape),s!=null){let d=N.getUndoAxesPermutation(s);p=_e(p,d)}return p}var JB={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=[];return r==null?s=a.shape.map((i,o)=>o):typeof r=="number"?s=[r]:s=r,{x:()=>ZB(a,e,s)}}},QB={kernelName:Ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=me(e,le(a,"float32")),i=Wt(n.shape,r);return i.length>0?W(fe(s,i),n.shape):s},b:()=>{let s=z(e,le(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=W(fe(s,i),a.shape));let o=ot(a);return bt(me(s,le(o,"float32")))}}}},e4={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,bt(ot(n)))}}},t4={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=z(Is(n,6),wo(n));return{x:()=>z(e,le(a,"float32"))}}},n4={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,le(wo(n),"float32"))}}},a4={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n.shape)}}},r4={kernelName:ao,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Sm,r,n)}}},s4={kernelName:no,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>O.runKernel(Im,r,n)}}},i4={kernelName:so,gradFunc:(e,t,n)=>{let{dims:a}=n,r=Fa(a,e.shape);return{x:()=>ga(e,r)}}},o4={kernelName:io,gradFunc:e=>({x:()=>qe(e)})},l4={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>bt(me(e,z(Ar(n,1.5),2)))}}},u4={kernelName:cu,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(qe(n),"float32"),t:()=>z(e,le(n,e.dtype)),e:()=>z(e,le(Mc(n),e.dtype))}}},p4={kernelName:du,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Nn(n,xe(0)),r=xe(PT),s=xe(OT),i=z(e,s),o=z(z(e,r),gn(le(n,"float32")));return fn(a,i,o)}}}},c4={kernelName:uo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,pe(xe(1),n)))}}},d4={kernelName:fu,gradFunc:e=>({x:()=>qe(e)})},h4={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Fc(le(n,"float32")),e)}}},m4={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Mm(le(n,"float32")),e)}}},f4={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=TS(a,r,s),u=[];for(let p=0;pba(e,u)}}},g4={kernelName:ho,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=z(e,a);return{logits:()=>pe(i,z(fe(i,[r],s),a))}}},y4={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,da(n))}}},lk={kernelName:yu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>$c(e,a,r)}}},uk={kernelName:bu,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Ze(e,a)}}},b4={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,z(un(le(n,"float32")),2))}}},x4={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(le(n,"float32"),2))}}},v4={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xe(2);return{a:()=>z(e,z(r,pe(n,a))),b:()=>z(e,z(r,pe(a,n)))}}},w4={kernelName:bs,gradFunc:e=>({x:()=>qe(e)})},k4={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=lt(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=fe(s,i)),W(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=fe(s,i)),W(bt(s),a.shape)}}}},I4={kernelName:co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;Fa(s,a.shape).forEach(l=>{r[l]=1});let i=W(e,r),o=z(i,Zn(a.shape,"float32"));return{x:()=>o}}},S4={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ot(Fc(n)))}}},T4={kernelName:yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(pe(xe(1),ot(n)),e)}}},N4={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=qe(a);if(a.rank===1)for(let i=0;i{let a=n,{perm:r}=a,s=bv(r);return{x:()=>_e(e,s)}}},E4={kernelName:Iu,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>$t(e,r)}}},_4={kernelName:kc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>A4(e,n)}}};function A4(e,t){let n=dr(t,qe(t)),a=Au(e,n),r=$r(t,xe(0,"int32")),s=a.rank-r.rank;for(let o=0;o({x:()=>qe(e)})},F4=[zT,_W,AW,$W,FW,DW,RW,MW,PW,OW,LW,zW,VW,HW,jW,qW,KW,XW,YW,ZW,JW,QW,tB,eB,rB,sB,iB,oB,lB,uB,QB,pB,cB,dB,hB,mB,gB,fB,yB,bB,xB,vB,wB,kB,IB,SB,TB,NB,CB,AB,ik,ik,$B,RB,OB,LB,zB,WB,BB,VB,UB,GB,HB,jB,qB,ok,ok,KB,XB,JB,e4,t4,n4,a4,r4,s4,i4,o4,l4,u4,p4,c4,d4,h4,m4,f4,g4,y4,lk,lk,uk,uk,b4,v4,x4,w4,k4,I4,S4,T4,N4,C4,E4,_4,$4];for(let e of F4)WI(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),Gx(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),Hx(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Fm(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),Kp(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),ii(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),jx(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),W(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),le(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),W(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),W(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),W(this,[e,t,n,a])};Q().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),W(this,[e,t,n,a,r])};Q().prototype.asin=function(){return this.throwIfDisposed(),qx(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),Kx(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),Xx(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),Yx(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Zx(this)};Q().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ya(this,e,t,n,a)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),$c(this,e,t)};Q().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ws(this,e,t,n,a,r)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Zs(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),le(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),rv(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),tn(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Te&&(e=[e]),Ze([this,...e],t)};Q().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Dm(this,e,t,n,a,r,s)};Q().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Rm(this,e,t,n,a,r)};Q().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ft(this,e,t,n,a,r,s)};Q().prototype.cos=function(){return this.throwIfDisposed(),Fc(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),Mm(this)};Q().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Xp(this,e,t,n)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Pm(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),dv(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ks(this,e,t,n,a,r,s)};Q().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),hv(this,e,t,n,a,r)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),mv(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),fv(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),Cu(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),Jn(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),gv(this)};Q().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),xv(this,e,t)};Q().prototype.exp=function(){return this.throwIfDisposed(),gn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),Qt(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),vv(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),Wc(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),W(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),_u(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),$m(this,e)};Q().prototype.gather=function(e,t){return this.throwIfDisposed(),Au(this,e,t)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),$r(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),Nn(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),dl(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),Jm(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),wv(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),kv(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),Iv(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Dc(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),Is(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Lm(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),Sv(this,e,t,n,a)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),Tv(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Wm(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Bm(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),Qn(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),Rc(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),$a(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),Mc(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),Vm(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),Nv(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Fe(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Dt(this,e,t,n,a)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),dr(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Nt(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),pl(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),$u(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Ev(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),_v(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),bt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Eu(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),ui(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ll(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),ea(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),ba(this,e,t)};Q().prototype.pool=function(e,t,n,a,r,s){return this.throwIfDisposed(),Av(this,e,t,n,a,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),Ar(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),Lc(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),$v(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),Rv(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),Xe(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),Hm(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),W(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),W(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),_T(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),AT(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),ga(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),Bc(this)};Q().prototype.round=function(){return this.throwIfDisposed(),jm(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),qm(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),Km(this)};Q().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Ss(this,e,t,n,a,r,s)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),da(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),Mv(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),Xm(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),Ym(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),Be(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Xa(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),xo(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Oc(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),zn(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Qm(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),Ts(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Te?[this,e]:[this,...e];return $t(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),wo(this,e)};Q().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),Pv(this,e,t,n,a,r,s,i,o)};Q().prototype.sub=function(e){return this.throwIfDisposed(),pe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),fe(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),Ov(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),oi(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),Ln(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),le(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),le(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),le(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),Lv(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),_e(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),zv(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),tf(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),ut(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),qe(this)};var kr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,kr.prototype)}},Ba=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Ba.prototype)}},V=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,V.prototype)}},Re=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Re.prototype)}},BT=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,BT.prototype)}},VT=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;tn.toUpperCase())}var Ia={};function Xv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Wb(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Wb(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Wb(a))}}}function Uc(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in Ia)i=Ia[s];else if(i=t[s],i==null)throw new V(`Unknown ${a}: ${e}. This may be due to one of the following reasons: 1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${a}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in Ia?[o,l]=Ia.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${a}: ${i}. This may be due to one of the following reasons: 1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Ia))u[h]=Ia[h];for(let h of Object.keys(n))u[h]=n[h];let p=s.config;p.customObjects=u;let d=Object.assign({},Ia);for(let h of Object.keys(n))Ia[h]=n[h];Wb(s.config);let c=l(o,s.config,n,r);return Ia=Object.assign({},d),c}else{let u=Object.assign({},Ia);for(let d of Object.keys(n))Ia[d]=n[d];let p=new o(s.config);return Ia=Object.assign({},u),p}}}function D4(e,t){return et?1:0}function qd(e,t){return-1*D4(e,t)}function ns(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function R4(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function ko(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Yv(e,t,n=0,a=1/0){return nr(n>=0),nr(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function en(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>en(n,`element ${a+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${UT(e)}.`)}function UT(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>UT(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function M4(e,t,n){let a=n!=null?n():v.now(),r;return(...s)=>{let i=n!=null?n():v.now();return i-a0){let n=`${e}_${t}`;return Yo.set(n,1),n}else return e}var G4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function XT(e){return!!e.match(G4)}function H4(e){return e===parseInt(e.toString(),10)}function as(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;rt&&(t=a)}return t}function ja(e,t){if(t{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Gc(e,1);return Bb(n,[1,t,1])})}function q4(e){let t=[as(e.shape)];return W(e,t)}function K4(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],as(e.shape,1)];return W(e,t)}function Qs(e,t,n){return P(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:return Zm(e,[t,0],[n,e.shape[1]]);case 3:return vo(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return cl(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Be(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Be(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function mb(e,t,n){return P(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:return Zm(e,[0,t],[e.shape[0],n]);case 3:return vo(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return cl(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xd(e,t,n,a){return P(()=>{switch(e.rank){case 1:return zc(e,t,n);case 2:switch(a){case 1:return Qs(e,t,n);case 2:return mb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Qs(e,t,n);case 2:return vo(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return mb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Qs(e,t,n);case 2:return cl(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return cl(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return mb(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${a}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Zv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function dk(e,t){switch(e.rank){case 1:return sv([e,t]);case 2:return iv([e,t],0);case 3:return ov([e,t],0);case 4:return lv([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Bb(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ln(e,t)}function ff(e,t=0,n=1,a,r){return Gm(e,t,n,a,r)}function or(e,t,n,a){if(e.rank<2||t.rank<2)throw new Re(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Re(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return hl.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:a?Vb(e.rank,a,qa()):null,activation:n});{let r=e.shape.slice(),s=r.pop();e=W(e,[-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],p=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=W(_e(t,p),[l,-1]);let d=[...r,...u],c=!1,h=!1;return W(hl.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Vb(e.rank,a,qa()):null,activation:n}),d)}}function YT(e,t,n){return P(()=>(Array.isArray(t)?t=Ke(t,"int32"):t=le(t,"int32"),Au(e,t,n)))}function Hc(e){return z(e,e)}function Vb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1,1]):W(t,[1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1,1]):W(t,[1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,1,a[0]]):W(t,[1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?W(t,[1,a[0],1]):W(t,[1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?W(t,[1,1,a[0]]):W(t,[1].concat(a))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ya(e,t,n){return P(()=>(n==null&&(n=qa()),Rt(n),Y(e,Vb(e.rank,t,n))))}function X4(e,t=1){if(t!==1)throw new Re(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Cu(e)}function Y4(e){return P(()=>me(e,Y(Lt(e),1)))}function ZT(e,t,n,a){return P(()=>Vv(e,t,n,a))}function Z4(e){return P(()=>{let t=Y(.5,z(.2,e));return tn(t,0,1)})}function jc(e,t,n=!1){return n?e():t()}var J4=["fanIn","fanOut","fanAvg"],Q4=["normal","uniform","truncatedNormal"];function eV(e){ko(J4,"FanMode",e)}function tV(e){ko(Q4,"Distribution",e)}var Ra=class extends ne.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Jv=class extends Ra{apply(e,t){return It(e,t)}};Jv.className="Zeros";ne.registerClass(Jv);var gf=class extends Ra{apply(e,t){return Zn(e,t)}};gf.className="Ones";ne.registerClass(gf);var Qv=class extends Ra{constructor(e){if(super(),typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return P(()=>z(xe(this.value),Zn(e,t)))}getConfig(){return{value:this.value}}};Qv.className="Constant";ne.registerClass(Qv);var ew=class extends Ra{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Fu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};ew.className="RandomUniform";ne.registerClass(ew);var tw=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`randomNormal does not support dType ${t}.`);return ff(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};tw.className="RandomNormal";ne.registerClass(tw);var nw=class extends Ra{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`truncatedNormal does not support dType ${t}.`);return ef(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};nw.className="TruncatedNormal";ne.registerClass(nw);var aw=class extends Ra{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return P(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,Om(e[0]))})}getConfig(){return{gain:this.gain}}};aw.className="Identity";ne.registerClass(aw);function nV(e,t="channelsLast"){let n,a;if(Rt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=as(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=as(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=as(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Bn=class extends Ra{constructor(e){if(super(),e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,eV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,tV(this.distribution),this.seed=e.seed}apply(e,t){let n=nV(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Re(`${this.getClassName()} does not support dType ${t}.`);return ef(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Fu(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Bn.className="VarianceScaling";ne.registerClass(Bn);var yf=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};yf.className="GlorotUniform";ne.registerClass(yf);var bf=class extends Bn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};bf.className="GlorotNormal";ne.registerClass(bf);var xf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};xf.className="HeNormal";ne.registerClass(xf);var vf=class extends Bn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};vf.className="HeUniform";ne.registerClass(vf);var wf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};wf.className="LeCunNormal";ne.registerClass(wf);var kf=class extends Bn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Bn.className}};kf.className="LeCunNormal";ne.registerClass(kf);var rw=class extends Ra{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Re("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return P(()=>{if(e.length<2)throw new Re("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=ff(n,0,1,"float32"),r=jv.gramSchmidt(a);return e[0]>e[1]&&(r=_e(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};rw.className="Orthogonal";ne.registerClass(rw);var hk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function mk(e,t={}){return Uc(e,ne.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return Xv(e)}function St(e){if(typeof e=="string"){let t=e in hk?hk[e]:e;if(t==="GlorotNormal")return new bf;if(t==="GlorotUniform")return new yf;if(t==="HeNormal")return new xf;if(t==="HeUniform")return new vf;if(t==="LeCunNormal")return new wf;if(t==="LeCunUniform")return new kf;{let n={};return n.className=t,n.config={},mk(n)}}else return e instanceof Ra?e:mk(e)}function Ub(e){return Array.isArray(e)&&Array.isArray(e[0])}function Nh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ne(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function Je(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Ch(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var fk="Variable",JT=class{constructor(e,t="float32",n=fk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=HT(),n=n==null?fk:n,this.originalName=qT(n),this.name=KT(this.originalName),this.trainable_=a,this.constraint=r,this.val=Wv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),aV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function aV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Gb(e){return e.map(t=>t.read())}function sw(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Va=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=HT(),s!=null&&(this.originalName=qT(s),this.name=KT(this.originalName)),this.rank=t.length}},rV=0,If=class{constructor(e,t){this.callArgs=t,this.id=rV++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},sV=0,Ve=class extends ne.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=sV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ir(n)+"_"+mf(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ba(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return On(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return On(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} is not connected, no input to return.`);return On(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return On(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(p)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build(On(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=On(o),this.activityRegularizer!=null)throw new Re("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=iV(e),i=this.computeOutputShape(s),o,l=oV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,p)=>new Va(l,u,this,yt(e),t,this.name,p)):o=new Va(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Re("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new kr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ba(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Ch(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Gb(e?this.trainableWeights:this.weights)}setWeights(e){P(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Gb(t);for(let r=0;rr.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=yt(e);t=yt(t),n=yt(n),a=yt(a),r=Nh(r),s=Nh(s);let l=[],u=[],p=[];for(let d of o)l.push(d.sourceLayer),u.push(d.nodeIndex),p.push(d.tensorIndex);new If({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:p,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function iV(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return On(t)}function oV(e){return"float32"}function QT(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;sm.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-1/0,a.minNumTensors=1/0);let p=o.join(",")+"|"+t.names().sort().join(","),d=Eh.get(p),c;if(d==null){let m=pV(i,t);d=m.sorted,c=m.recipientCounts,Eh.put(p,d),_h.put(p,c)}c={},r||Object.assign(c,_h.get(p));let h=new Xs(t);for(let m=0;ma.maxNumTensors&&(a.maxNumTensors=$),$0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=gk(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=gk(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:cV(a)}}function cV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function gk(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function dV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a100,uV);var tN={};Ae(tN,{maxNorm:()=>mV,minMaxNorm:()=>yV,nonNeg:()=>gV,unitNorm:()=>fV});function iw(e,t){return P(()=>un(fe(z(e,e),t,!0)))}var qc=class extends ne.Serializable{getConfig(){return{}}},ow=class extends qc{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=iw(e,this.axis),n=tn(t,0,this.maxValue);return z(e,me(n,Y(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};ow.className="MaxNorm";ne.registerClass(ow);var lw=class extends qc{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>me(e,Y(jt(),iw(e,this.axis))))}getConfig(){return{axis:this.axis}}};lw.className="UnitNorm";ne.registerClass(lw);var uw=class extends qc{apply(e){return Xe(e)}};uw.className="NonNeg";ne.registerClass(uw);var pw=class extends qc{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return P(()=>{let t=iw(e,this.axis),n=Y(z(this.rate,tn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,me(n,Y(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};pw.className="MinMaxNorm";ne.registerClass(pw);var yk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Xt(e){return Xv(e)}function bk(e,t={}){return Uc(e,ne.SerializationMap.getMap().classNameMap,t,"constraint")}function Yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in yk?yk[e]:e,config:{}};return bk(t)}else return e instanceof qc?e:bk(e)}function mV(e){return new ow(e)}function fV(e){return new lw(e)}function gV(){return new uw}function yV(e){return new pw(e)}var nN={};Ae(nN,{constant:()=>vV,glorotNormal:()=>CV,glorotUniform:()=>NV,heNormal:()=>EV,heUniform:()=>_V,identity:()=>SV,leCunNormal:()=>AV,leCunUniform:()=>$V,ones:()=>xV,orthogonal:()=>FV,randomNormal:()=>kV,randomUniform:()=>wV,truncatedNormal:()=>IV,varianceScaling:()=>TV,zeros:()=>bV});function bV(){return new Jv}function xV(){return new gf}function vV(e){return new Qv(e)}function wV(e){return new ew(e)}function kV(e){return new tw(e)}function IV(e){return new nw(e)}function SV(e){return new aw(e)}function TV(e){return new Bn(e)}function NV(e){return new yf(e)}function CV(e){return new bf(e)}function EV(e){return new xf(e)}function _V(e){return new vf(e)}function AV(e){return new wf(e)}function $V(e){return new kf(e)}function FV(e){return new rw(e)}var aN={};Ae(aN,{Layer:()=>Ve,RNN:()=>mr,RNNCell:()=>Jc,activation:()=>sG,add:()=>mG,alphaDropout:()=>ZG,average:()=>fG,averagePooling1d:()=>v0,averagePooling2d:()=>w0,averagePooling3d:()=>k0,avgPool1d:()=>SG,avgPool2d:()=>NG,avgPool3d:()=>EG,avgPooling1d:()=>TG,avgPooling2d:()=>CG,avgPooling3d:()=>_G,batchNormalization:()=>wG,bidirectional:()=>UG,categoryEncoding:()=>nH,centerCrop:()=>eH,concatenate:()=>gG,conv1d:()=>YU,conv2d:()=>ZU,conv2dTranspose:()=>JU,conv3d:()=>QU,conv3dTranspose:()=>eG,convLstm2d:()=>zG,convLstm2dCell:()=>WG,cropping2D:()=>nG,dense:()=>iG,depthwiseConv2d:()=>rG,dot:()=>vG,dropout:()=>oG,elu:()=>GU,embedding:()=>hG,flatten:()=>uG,gaussianDropout:()=>YG,gaussianNoise:()=>XG,globalAveragePooling1d:()=>AG,globalAveragePooling2d:()=>$G,globalMaxPool1d:()=>HG,globalMaxPool2d:()=>jG,globalMaxPooling1d:()=>KN,globalMaxPooling2d:()=>XN,gru:()=>DG,gruCell:()=>RG,input:()=>wN,inputLayer:()=>UU,layerNormalization:()=>kG,leakyReLU:()=>jU,lstm:()=>MG,lstmCell:()=>PG,masking:()=>JG,maxPool1d:()=>qG,maxPool2d:()=>KG,maxPooling1d:()=>YN,maxPooling2d:()=>ZN,maxPooling3d:()=>FG,maximum:()=>yG,minimum:()=>bG,multiply:()=>xG,permute:()=>dG,prelu:()=>qU,reLU:()=>HU,repeatVector:()=>pG,rescaling:()=>QG,reshape:()=>cG,resizing:()=>tH,rnn:()=>BG,separableConv2d:()=>tG,simpleRNN:()=>OG,simpleRNNCell:()=>LG,softmax:()=>KU,spatialDropout1d:()=>lG,stackedRNNCells:()=>VG,thresholdedReLU:()=>XU,timeDistributed:()=>GG,upSampling2d:()=>aG,zeroPadding2d:()=>IG});async function Kr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;sY(this.totals[a],z(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:P(()=>{let a=z(me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Ht(t[n])}))}},iN=class extends fl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;inew oN(n,t))}var Na=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Na.checkForDuplicate(t),Na.constructors[e]==null&&(Na.constructors[e]=[]),Na.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Na.constructors)Na.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){Na.constructors={}}static createCallbacks(e){let t=[];for(let n in Na.constructors){let a=+n;e>=a&&t.push(...Na.constructors[a])}return t.map(n=>new n)}};Na.constructors={};function uN(e,t,n,a,r,s,i,o,l){let u=new iN,p=[new RV,...Na.createCallbacks(t)];e!=null&&p.push(...e),p.push(u);let d=new sN(p);return d.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:d,history:u}}function Ga(e,t={},n=!1){return Uc(e,ne.SerializationMap.getMap().classNameMap,t,"layer",n)}function Ah(e,t){return P(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=fe(Hc(e),t,!0),a=yn(n.shape,jt()),r=un(dr(n,a));return me(e,r)})}function Io(e,t){return P(()=>Nt(Hc(pe(t,e)),-1))}function Sf(e,t){return P(()=>Nt(Lt(pe(t,e)),-1))}function Mu(e,t){return P(()=>{let n=pe(e,t),a=tn(Lt(e),jt(),Number.MAX_VALUE),r=Lt(me(n,a));return z(100,Nt(r,-1))})}function MV(e,t){return P(()=>{let n=tn(t,jt(),Number.MAX_VALUE),a=Qn(Y(1,n)),r=tn(e,jt(),Number.MAX_VALUE),s=Qn(Y(1,r));return Nt(Hc(pe(a,s)),-1)})}function PV(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Nt(Hc(n),-1)})}function OV(e,t){return P(()=>{let n=dr(0,pe(1,z(e,t)));return Nt(n,-1)})}function LV(e,t){return P(()=>{let n=fe(z(e,t),-1),a=ha(z(pe(1,e),t),-1);return dr(0,Y(1,pe(a,n)))})}function zV(e,t){return P(()=>{let n=Math.log(2),a=pe(t,e),r=pe(Y(a,xo(z(-2,a))),n);return Nt(r,-1)})}function Yp(e,t,n=!1){return P(()=>{if(n)t=Xa(t);else{let a=fe(t,t.shape.length-1,!0);t=me(t,a)}return t=tn(t,jt(),1-jt()),bt(fe(z(le(e,"float32"),Qn(t)),t.shape.length-1))})}function $h(e,t,n=!1){return P(()=>{let a=le(_u(q4(e)),"int32");t=tn(t,jt(),1-jt());let r=t.shape,s=W(ll(a,r[r.length-1]),r);return Yp(s,t,n)})}function WV(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return P(()=>{let n=Xe(t),a=bt(Lt(t));return Y(pe(n,z(t,e)),Rc(gn(a)))})}function Tf(e,t){return P(()=>{let n;return n=tn(t,jt(),1-jt()),n=Qn(me(n,pe(1,n))),Nt(WV(e,n),-1)})}function BV(e,t){return P(()=>{let n=tn(e,jt(),1),a=tn(t,jt(),1);return fe(z(e,Qn(me(n,a))),-1)})}function VV(e,t){return P(()=>{let n=Qn(Y(jt(),t));return Nt(pe(t,z(e,n)),-1)})}function cw(e,t){return P(()=>{let n=Ah(e,-1),a=Ah(t,-1),r=z(n,a);return bt(fe(r,-1))})}var Fh={meanSquaredError:Io,meanAbsoluteError:Sf,meanAbsolutePercentageError:Mu,meanSquaredLogarithmicError:MV,squaredHinge:PV,hinge:OV,categoricalHinge:LV,logcosh:zV,categoricalCrossentropy:Yp,sparseCategoricalCrossentropy:$h,binaryCrossentropy:Tf,kullbackLeiblerDivergence:BV,poisson:VV,cosineProximity:cw};function fb(e){if(typeof e=="string"){if(e in Fh)return Fh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function dw(e,t){return P(()=>{let n=z(.5,ea(t)),a=ir(Nn(t,n),e.dtype);return Nt(Jn(e,a),-1)})}function hw(e,t){return P(()=>ir(Jn(ii(e,-1),ii(t,-1)),"float32"))}function pN(e,t){return P(()=>le(fe($a(Jn(e,1),Jn(t,1))),"float32"))}function UV(e,t){return P(()=>le(fe($a(Jn(e,1),Jn(t,0))),"float32"))}function GV(e,t){return P(()=>le(fe($a(Jn(e,0),Jn(t,1))),"float32"))}function cN(e,t){return P(()=>{let n=pN(e,t),a=GV(e,t),r=Y(n,a);return le(fn(Nn(r,0),me(n,r),0),"float32")})}function HV(e,t){return P(()=>{let n=pN(e,t),a=UV(e,t),r=Y(n,a);return le(fn(Nn(r,0),me(n,r),0),"float32")})}function dN(e,t){return Tf(e,t)}function hN(e,t){return e.rank===t.rank&&(e=Ts(e,[e.rank-1])),t=ii(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(Jn(e,t),"float32")}var jV=Io,qV=Io,KV=Sf,XV=Sf,YV=Mu,ZV=Mu,mw=Yp,JV=cw,mN=$h,Dh={binaryAccuracy:dw,categoricalAccuracy:hw,precision:cN,categoricalCrossentropy:mw,sparseCategoricalCrossentropy:mN,mse:jV,MSE:qV,mae:KV,MAE:XV,mape:YV,MAPE:ZV,cosine:JV};function QV(e){if(typeof e=="string"&&e in Dh)return Dh[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Yd(e){if(nr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fh))if(Fh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Dh))if(Dh[n]===e){t=n;break}return t!==void 0?t:e.name}}function eU(e){let t={Adagrad:()=>Us.adagrad(.01),Adadelta:()=>Us.adadelta(1,.95,jt()),Adam:()=>Us.adam(.001,.9,.999,jt()),Adamax:()=>Us.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Us.rmsprop(.001,.9,0,jt()),SGD:()=>Us.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}function vk(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Hb(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>1048576&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${1048576}.`)}}function Hb(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Hb(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Hb(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function tU(e,t,n,a=console.log){let r=aU(e),s=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(p=>Math.floor(t*p)));let i;if(!r){s.push("Receives inputs"),i=[];for(let p in e.nodesByDepth)i.push(...e.nodesByDepth[p])}a("_".repeat(t)),Rh(s,n,a),a("=".repeat(t));let o=e.layers;for(let p=0;p1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Rh(e,t,n=console.log){let a="";for(let r=0;r0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function rU(e,t,n){let a,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{a=JSON.stringify(e.outputShape)}catch(l){a="multiple"}let s=e.name,i=e.getClassName(),o=[`${s} (${i})`,r,a,e.countParams().toString()];Rh(o,t,n)}function sU(e,t,n,a){let r,s;try{s=e.inboundNodes.map(d=>JSON.stringify(d.inputShapes)).join(",")}catch(d){s="multiple"}try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let i=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let c=0;cy.name)}`);ns(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let b=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;nr(x===0,"input layer has >1 nodes"),nr(w===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,x,w,I,T)=>{(w==null||I==null||T==null)&&(w=y.sourceLayer,I=y.nodeIndex,T=y.tensorIndex);let C=w.inboundNodes[I];if(x.indexOf(C)!==-1)throw new Ba(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(er.nodeKey(w,I)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(C)===-1&&x.push(C);let _=C.inboundLayers.length;for(let $=0;$<_;$++){let R=C.inputTensors[$],F=C.inboundLayers[$],S=C.nodeIndices[$],M=C.tensorIndices[$];o(R,b,x,F,S,M)}for(b.push(C);x.indexOf(C)>=0;)x.splice(x.indexOf(C),1);i.push(C)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let p=i.slice().reverse();for(let y of p){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,x),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let w=0;wparseInt(y,10)).sort(qd);this.layers=[];for(let y of h){let b=c[y];b.sort((x,w)=>{let I=s[x.id],T=s[w.id];return IT?1:0});for(let x of b)x instanceof er&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(d).map(y=>parseInt(y,10)).sort(qd);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of d[y]){let x=b.outboundLayer;if(x!=null){for(let w of b.inputTensors)if(m.indexOf(w)===-1)throw new Ba(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of b.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(x=>x===y).length;if(b!==1)throw new Ba(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new If({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${a} weights are not set: ${s}`)}sw(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${fw}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=jb(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return P(()=>{e=yt(e);let n=new Xs;for(let a=0;a{e=yt(e);let n;return t==null?n=ci(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Nh(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(qd);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let p=[];for(let m=0;mparseInt(o,10)).sort(qd);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let p=u.outboundLayer,d=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of d)m.id in n&&h.push(n[m.id]);if(h.length===d.length){let m={},f,g,y,b;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),y=yt(p.call(x,m)),b=yt(p.computeMask(x,w)),f=[x],g=[w]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=yt(p.call(f,m)),b=yt(p.computeMask(f,g));if(p.activityRegularizer)throw new Re("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(On(y),b)}function l(f){let g=f.name,y=Ga(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let u=t.name,p=t.layers;for(let f of p)l(f);for(;!R4(s);)for(let f of p){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let d=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];nr(g in r);let x=r[g].inboundNodes[y].outputTensors;d.push(x[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];nr(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[b])}return new e({inputs:d,outputs:c,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){P(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function iU(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function gN(e,t){return iU(e,t,"classWeight")}async function yN(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=P(()=>{if(e.shape.length===1)return sr(e);if(e.shape.length===2){if(e.shape[1]>1)return ii(e,1);if(e.shape[1]===1)return W(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ke(i,"float32")}else return null}function oU(e,t){return z(e,t)}var lU=32;function bN(e,t){let n,a,r=t;n=r.xs,a=r.ys,v.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=wk("input",e.inputNames,n),i=wk("output",e.outputNames,a),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function wk(e,t,n){if(n instanceof Te)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function uU(e){if(e.length===3)throw new Re("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function pU(e,t,n){let a=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(kk(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=uU(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let p=lN(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=uN(p,d,n.epochs,null,null,cU(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:x.done){if(r){let w;kk(n.validationData)?w=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?lU:n.validationBatchSize,verbose:0}));for(let I=0;I0)throw new Re("Verbose mode is not implemented yet.");v.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=dU(t)?t:await t.iterator(),o=0,l=0;for(;!a||l{if(u.value){let{xs:p,ys:d}=bN(e,u.value),c=p.concat(d),h=P(()=>r(c));if(Ee(c),l===0)for(let f=0;fY(s[f],z(m,g))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Tp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Qs(a,t,n-t)):Qs(e,t,n-t)}function qb(e,t){return P(()=>e==null?null:Array.isArray(e)?e.map(n=>qb(n,t)):YT(e,t.dtype==="int32"?t:le(t,"int32")))}function yb(e,t){let n=[],a=0,r=null;for(;a=e&&(r=e),n.push([a,r]),a=r;return n}function xN(e){let t=[];e instanceof Te&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Te)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function mU(e){return e instanceof Te}function Kb(e){return Array.isArray(e)}function Ik(e){return!mU(e)&&!Kb(e)}function Sk(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Kb(e)&&e.length>0)i=!0;else if(Ik(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Ik(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Kb(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=xN(s),n!=null)for(let i=0;i=0&&u!==p)throw new V(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return s}function fU(e,t,n){let a=ns(e.map(s=>s.shape[0]));a.sort();let r=ns(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!v.arraysEqual(a,r))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function gU(e,t,n){let a=[Io,Tf,Yp];for(let r=0;r1)throw new V(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var bU="layers-model",Er=class extends er{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");tU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=eU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Dr))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(fb(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>fb(s))}else{let s=fb(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=yU(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Js("metric",()=>{for(let s=0;s{let l="",u,p,d;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Tf?["accuracy","acc"].indexOf(c)!==-1?p=dw:["crossentropy","ce"].indexOf(c)!==-1&&(p=dN):this.lossFunctions[s]===$h?["accuracy","acc"].indexOf(c)!==-1?p=hN:["crossentropy","ce"].indexOf(c)!==-1&&(p=mN):["accuracy","acc"].indexOf(c)!==-1?p=hw:["crossentropy","ce"].indexOf(c)!==-1&&(p=mw);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),d=p,u=l+f}else d=QV(c),u=l+Yd(c);let h;Js(u,()=>{h=d}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;gb(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return On(l)}finally{za(s[0],e),za(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),hU(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new V(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Xs;if(e instanceof Te&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return P(()=>{let a=this.checkNumSamples(e);if(n)throw new Re("Verbose predictLoop() is not implemented yet.");let r=yb(a,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=r[i][0],l=r[i][1],u=Tp(e,o,l),p=[];if(Array.isArray(u))for(let c=0;cs[l].push(o));return On(s.map(i=>Ze(i,0)))})}predict(e,t={}){let n=xN(e);Tk(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return gb(a),this.predictLoop(n,a)}finally{za(n,e)}}predictOnBatch(e){Tk(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ba("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s0&&e[0].shape[0]%a!==0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=gN(a,this.outputNames);l=[];for(let p=0;p{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Re("Verbose mode is not implemented yet.");if(r!=null)throw new Re("steps mode in testLoop() is not implemented yet");{let o=yb(s,n),l=Ke(ja(0,s));for(let u=0;u1){let s=pk(e.slice(0,n),a);r+=`_${s}`}t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h1&&h{c=Y(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>P(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l0){if(f=!0,n.validationData.length===2)o=n.validationData[0],l=n.validationData[1];else throw n.validationData.length===3?new Re("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${n.validationData} is invalid.`);let C=!0,_=await this.standardizeUserData(o,l,null,null,C,c);u=_[0],p=_[1],g=u.concat(p)}else if(n.validationSplit!=null&&n.validationSplit>0&&n.validationSplit<1){f=!0;let C=Math.floor(a[0].shape[0]*(1-n.validationSplit)),_=a[0].shape[0];u=Tp(a,C,_),s=a,a=Tp(a,0,C),p=Tp(r,C,_),i=r,r=Tp(r,0,C),g=u.concat(p)}else n.validationSteps!=null&&(f=!0);let y=a.concat(r).concat(d);this.checkTrainableWeightsConsistency();let b=this.makeTrainFunction(),x=this.getDedupedMetricsNames(),w,I;f?(this.makeTestFunction(),w=this.testFunction,I=x.slice().concat(x.map(C=>"val_"+C))):(w=null,g=[],I=x.slice());let T=lN(n.callbacks,n.yieldEvery);return await this.fitLoop(b,y,x,c,n.epochs,n.verbose,T,w,g,n.shuffle,I,n.initialEpoch,null,null)}finally{this.isTraining=!1,za(a,e),za(r,t),za(s,e),za(i,t),za(u,o),za(p,l),d!=null&&Ee(d)}}async fitLoop(e,t,n,a,r,s,i,o,l,u,p,d,c,h){a==null&&(a=32),r==null&&(r=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(o!=null&&l!=null&&(m=!0),h!=null&&(m=!0,c==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let f=this.checkNumSamples(t,a,c,"steps_per_epoch"),g;f!=null&&(g=ja(0,f)),s==null&&(s=1);let{callbackList:y,history:b}=uN(i,s,r,d,f,c,a,m,p);y.setModel(this),this.history=b,await y.onTrainBegin(),this.stopTraining_=!1;for(let x=d;x{let $=T[C][0],R=T[C][1],F=Qs(I,$,R-$);_.batch=C,_.size=R-$;let S=qb(t,F),M=e(S);for(let B=0;BIr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Ir(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ir(Yd(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ir(Yd(e)));{let e={};for(let t in this.metrics)e[t]=Ir(Yd(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Zp(e.optimizer_config),n=Ga(t),a;if(typeof e.loss=="string")a=js(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>js(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=js(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>js(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=js(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Gt.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Gt.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:bU,generatedBy:`TensorFlow.js tfjs-layers v${fw}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Gt.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Gt.concatenateArrayBuffers([n.data,o])}return this.userDefinedMetadata!=null&&(vk(this.userDefinedMetadata,this.name,!0),s.userDefinedMetadata=this.userDefinedMetadata),s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){vk(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Er.className="Model";ne.registerClass(Er);var vN=class extends Er{};vN.className="Functional";ne.registerClass(vN);async function xU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Zp(n),r=Ga(a,t);if(e.weightsManifest!=null){let s=await Gt.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function vU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Gt.getLoadHandlers(e,t);if(n.length===0)n.push(Gt.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return wU(e,void 0,t)}async function wU(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ga(Zp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:p}=kU(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&p.length>0&&await o.optimizer.setWeights(p),Ee(u),Ee(p.map(d=>d.tensor))}return o}function kU(e,t){let n=Gt.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var gl=class extends Er{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:mf("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof gl||e instanceof Er,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=eN({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=QT(this.outputs[0])}this.inboundNodes=[],new If({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ci(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Je(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Er({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ba("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof gl))throw new Re(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Ga(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};gl.className="Sequential";ne.registerClass(gl);function IU(e){return new Er(e)}function SU(e){return new gl(e)}function wN(e){return eN(e)}function TU(e,t){Na.registerCallbackConstructor(e,t)}var Un=class extends ne.Serializable{getConfig(){return{}}},kN=class extends Un{apply(e,t=1){return X4(e,t)}};kN.className="elu";ne.registerClass(kN);var IN=class extends Un{apply(e){return Km(e)}};IN.className="selu";ne.registerClass(IN);var SN=class extends Un{apply(e){return Xe(e)}};SN.className="relu";ne.registerClass(SN);var TN=class extends Un{apply(e){return P(()=>$u(6,Xe(e)))}};TN.className="relu6";ne.registerClass(TN);var NN=class extends Un{apply(e){return e}};NN.className="linear";ne.registerClass(NN);var CN=class extends Un{apply(e){return da(e)}};CN.className="sigmoid";ne.registerClass(CN);var EN=class extends Un{apply(e){return Z4(e)}};EN.className="hardSigmoid";ne.registerClass(EN);var _N=class extends Un{apply(e){return xo(e)}};_N.className="softplus";ne.registerClass(_N);var AN=class extends Un{apply(e){return Y4(e)}};AN.className="softsign";ne.registerClass(AN);var $N=class extends Un{apply(e){return oi(e)}};$N.className="tanh";ne.registerClass($N);var gw=class extends Un{apply(e,t=-1){return Xa(e,t)}};gw.className="softmax";ne.registerClass(gw);var FN=class extends Un{apply(e,t=-1){return Wm(e,t)}};FN.className="logSoftmax";ne.registerClass(FN);var DN=class extends Un{apply(e,t=1){return P(()=>z(da(z(e,t)),e))}};DN.className="swish";ne.registerClass(DN);var RN=class extends Un{apply(e){return P(()=>z(e,oi(xo(e))))}};RN.className="mish";ne.registerClass(RN);function ls(e){return e.getClassName()}function bb(e,t={}){return Uc(e,ne.SerializationMap.getMap().classNameMap,t,"activation")}function us(e){if(e==null){let t={};return t.className="linear",t.config={},bb(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},bb(t)}else return e instanceof Un?e:bb(e)}function yw(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var MN=class extends ne.Serializable{},Kc=class extends MN{constructor(e){super(),yw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return P(()=>{let t=It([1]);return this.hasL1&&(t=Y(t,fe(z(this.l1,Lt(e))))),this.hasL2&&(t=Y(t,fe(z(this.l2,Hc(e))))),W(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Kc.className="L1L2";ne.registerClass(Kc);function NU(e){return yw(e),new Kc({l1:e!=null?e.l1:null,l2:0})}function CU(e){return yw(e),new Kc({l2:e!=null?e.l2:null,l1:0})}var Nk={l1l2:"L1L2"};function ct(e){return Xv(e)}function Ck(e,t={}){return Uc(e,ne.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Nk?Nk[e]:e,config:{}};return Ck(t)}else return e instanceof MN?e:Ck(e)}var bw=class extends Ve{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ne(e);let n=Xe(e);return this.maxValue!=null&&(n=tn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};bw.className="ReLU";ne.registerClass(bw);var xw=class extends Ve{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ne(e);return Dc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xw.className="LeakyReLU";ne.registerClass(xw);var vw=class extends Ve{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Yt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Je(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a(Rt(t),t==="channelsFirst"?_e(e,[0,2,3,1]):e))}function PN(e,t){return P(()=>(Rt(t),t==="channelsFirst"?_e(e,[0,2,3,4,1]):e))}function EU(e,t,n,a=1,r="valid",s,i=1){return P(()=>{if(s==null&&(s=qa()),Rt(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=_e(e,[0,2,1])),r==="causal")throw new Re("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Dm(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ya(o,n)),o})}function Ek(e,t,n,a=[1,1],r="valid",s,i,o=null){return P(()=>{if(s==null&&(s=qa()),Rt(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Sw(e,s);if(r==="causal")throw new Re("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=hl.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=_e(l,[0,3,1,2])),l})}function _U(e,t,n,a=[1,1,1],r="valid",s,i){return P(()=>{if(s==null&&(s=qa()),Rt(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=PN(e,s);if(r==="causal")throw new Re("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=pv(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ya(o,n)),s==="channelsFirst"&&(o=_e(o,[0,4,1,2,3])),o})}var Tw=class extends Ve{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Tw.verifyArgs(t),this.rank=e,en(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Re(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=rl(t.kernelSize,e,"kernelSize"),this.strides=rl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,xa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=us(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Yt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=rl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(nr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Yv(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ls(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Xc=class extends Tw{constructor(e,t){super(e,t),this.kernel=null,Xc.verifyArgs(t),this.filters=t.filters,en(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Yt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n,a=this.bias==null?null:this.bias.read(),r=GT(this.activation.getClassName());if(r!=null&&this.rank===2)n=Ek(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=EU(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Ek(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=_U(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Re("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=Je(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},Yc=class extends Xc{constructor(e){super(2,e),Yc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Yv(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Yc.className="Conv2D";ne.registerClass(Yc);var Zc=class extends Xc{constructor(e){super(3,e),Zc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Zc.className="Conv3D";ne.registerClass(Zc);var Nw=class extends Yc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Je(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],p=this.kernelSize[1],d=this.strides[0],c=this.strides[1],h=ar(o,d,u,this.padding),m=ar(l,c,p,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=_e(n,[0,2,3,1]));let g=Rm(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=_e(g,[0,3,1,2])),this.bias!=null&&(g=Ya(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=Je(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=ar(t[a],o,s,this.padding),t[r]=ar(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Nw.className="Conv2DTranspose";ne.registerClass(Nw);var Cw=class extends Zc{constructor(e){if(super(e),this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Je(e),e.length!==5)throw new V("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return P(()=>{let n=Ne(e);if(n.shape.length!==5)throw new V(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],p=a[i],d=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=ar(l,m,d,this.padding),b=ar(u,f,c,this.padding),x=ar(p,g,h,this.padding),w=[r,y,b,x,this.filters];this.dataFormat!=="channelsLast"&&(n=_e(n,[0,2,3,4,1]));let I=cv(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(I=_e(I,[0,4,1,2,3])),this.bias!==null&&(I=Ya(I,this.bias.read(),this.dataFormat)),this.activation!==null&&(I=this.activation.apply(I)),I})}computeOutputShape(e){e=Je(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],p=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[a]=ar(t[a],u,i,this.padding),t[r]=ar(t[r],p,o,this.padding),t[s]=ar(t[s],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Cw.className="Conv3DTranspose";ne.registerClass(Cw);var ON=class extends Xc{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Yt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Yt(t.pointwiseConstraint)}build(e){if(e=Je(e),e.length{e=Ne(e);let n;if(this.rank===1)throw new Re("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=_e(e,[0,2,3,1])),n=Ss(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=_e(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.pointwiseRegularizer=ct(this.pointwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseConstraint),e.pointwiseConstraint=Xt(this.pointwiseConstraint),e}};ON.className="SeparableConv";var Ew=class extends ON{constructor(e){super(2,e)}};Ew.className="SeparableConv2D";ne.registerClass(Ew);var Nf=class extends Xc{constructor(e){super(1,e),Nf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Yv(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Nf.className="Conv1D";ne.registerClass(Nf);var _w=class extends Ve{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return P(()=>{if(e=Ne(e),this.dataFormat==="channelsLast"){let n=Xd(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Xd(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Xd(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Xd(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_w.className="Cropping2D";ne.registerClass(_w);var Aw=class extends Ve{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,V4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return P(()=>{let n=Ne(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=_e(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?_a.resizeNearestNeighbor(n,[r,s]):_a.resizeBilinear(n,[r,s]);return _e(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?_a.resizeNearestNeighbor(n,[r,s]):_a.resizeBilinear(n,[r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};Aw.className="UpSampling2D";ne.registerClass(Aw);function AU(e,t,n=[1,1],a="valid",r,s){return P(()=>{r==null&&(r=qa()),Rt(r);let i=Sw(e,r);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ks(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=_e(i,[0,3,1,2])),i})}var $w=class extends Tw{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Yt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=Je(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{e=Ne(e);let n=AU(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ya(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ha(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ha(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=ct(this.depthwiseRegularizer),e.depthwiseConstraint=Xt(this.depthwiseRegularizer),e}};$w.className="DepthwiseConv2D";ne.registerClass($w);function LN(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function zN(e,t,n,a=!1,r,s,i=!1,o=!1){return P(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(ja(2,l));if(t=_e(t,u),s!=null)throw new Re("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===l-1&&(r=Qt(r,-1)),r=_e(r,u)),a&&(t=ga(t,0),r!=null&&(r=ga(r,0)));let p=[],d,c=n,h=t.shape[0],m=ut(t),f;r!=null&&(f=ut(r));for(let y=0;ye(b,c));if(r==null)d=x[0],c=x[1];else{let w=P(()=>{let I=f[y],T=pe(ea(I),I),C=Y(z(x[0],I),z(c[0],T)),_=c.map(($,R)=>Y(z(x[1][R],I),z($,T)));return{output:C,newStates:_}});d=w.output,c=w.newStates}o&&p.push(d)}let g;return o&&(g=$t(p,1)),[d,g,c]})}var mr=class extends Ve{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new _f({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ja(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ub(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return P(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ns.shape[s.shape.length-1]),r))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=r.map(s=>new zt({shape:[null,s]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>It([n,a])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;aHt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=LN(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Va){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let p=super.apply(o,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Ne(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=zN((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],p=o[2];this.stateful&&this.resetStates(p,a);let d=this.returnSequences?u:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return P(()=>{let t=It(e.shape);return t=fe(t,[1,2]),t=Gc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Bb(t,[1,n]):t):this.cell.stateSize>1?[Bb(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===mr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign(Object.assign(Object.assign({},n),e),t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ga(a,n);return new e(Object.assign(t,{cell:r}))}};mr.className="RNN";ne.registerClass(mr);var Jc=class extends Ve{},Cf=class extends Jc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=us(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=ml([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ml([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0ea(e),rate:this.dropout,training:a,dropoutFunc:this.dropoutFunc})),0ea(n),rate:this.recurrentDropout,training:a,dropoutFunc:this.dropoutFunc}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=or(z(e,s),this.kernel.read()):r=or(e,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),i!=null&&(n=z(n,i));let o=Y(r,or(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ls(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),recurrentRegularizer:ct(this.recurrentRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),recurrentConstraint:Xt(this.recurrentConstraint),biasConstraint:Xt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign(Object.assign({},e),t)}};Cf.className="SimpleRNNCell";ne.registerClass(Cf);var Fw=class extends mr{constructor(e){e.cell=new Cf(e),super(e)}call(e,t){return P(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};Fw.className="SimpleRNN";ne.registerClass(Fw);var Ef=class extends Jc{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,en(this.units,"units"),this.activation=us(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=us(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=ml([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ml([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return P(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0ea(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0ea(a),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dw.className="GRU";ne.registerClass(Dw);var Qc=class extends Jc{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,en(this.units,"units"),this.activation=us(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=us(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Yt(e.kernelConstraint),this.recurrentConstraint=Yt(e.recurrentConstraint),this.biasConstraint=Yt(e.biasConstraint),this.dropout=ml([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ml([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Je(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends Ra{apply(i,o){let l=r.apply([s]),u=new gf().apply([s]),p=r.apply([s*2]);return dk(dk(l,u),p)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0ea(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0ea(a),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,p;0{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Rw.className="LSTM";ne.registerClass(Rw);var _f=class extends Jc{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return P(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i{Js(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign(Object.assign({},e),n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ga(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Gb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;ss!=null?s(t(),n):ZT(t(),n),o=()=>jc(i,t,a);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var $U=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return P(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=It(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){P(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_=[It(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(r)):this.states_[0]=It(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;sHt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],p=Ha(l,a[0],r,s[0],i[0]),d=Ha(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,p,d]:[p,d,n]]}};WN.className="ConvRNN2D";var Af=class extends Qc{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign(Object.assign({},e),{units:t})),this.filters=t,en(this.filters,"filters"),this.kernelSize=rl(n,2,"kernelSize"),this.kernelSize.forEach(o=>en(o,"kernelSize")),this.strides=rl(a||1,2,"strides"),this.strides.forEach(o=>en(o,"strides")),this.padding=r||"valid",xa(this.padding),this.dataFormat=s||"channelsLast",Rt(this.dataFormat),this.dilationRate=rl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>en(o,"dilationRate"))}build(e){var t;e=Je(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ra{apply(p,d){let c=l.apply([u]),h=Zn([u]),m=l.apply([u*2]);return Zv([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return P(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0ea(a),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,l=(Z,J,ee)=>!J||!J[ee]?Z:z(J[ee],Z),u=l(a,o,0),p=l(a,o,1),d=l(a,o,2),c=l(a,o,3);0ea(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[x,w,I,T]=zn(this.kernel.read(),i,b),[C,_,$,R]=this.useBias?zn(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,C,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,I,$,this.padding),c=this.inputConv(c,T,R,this.padding);let[F,S,M,B]=zn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,F),f=this.recurrentConv(f,S),g=this.recurrentConv(g,M),y=this.recurrentConv(y,B);let U=this.recurrentActivation.apply(Y(u,m)),G=this.recurrentActivation.apply(Y(p,f)),q=Y(z(G,s),z(U,this.activation.apply(Y(d,g)))),K=z(this.recurrentActivation.apply(Y(c,y)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=$U(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign(Object.assign({},n),a)}inputConv(e,t,n,a){let r=Ft(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ya(r,n,this.dataFormat):r}recurrentConv(e,t){return Ft(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Af.className="ConvLSTM2DCell";ne.registerClass(Af);var Mw=class extends WN{constructor(e){let t=new Af(e);super(Object.assign(Object.assign({},e),{cell:t}))}static fromConfig(e,t){return new e(t)}};Mw.className="ConvLSTM2D";ne.registerClass(Mw);var $f=class extends Ve{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a{this.invokeCallHook(e,t);let n=Ne(e);if(0ZT(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};$f.className="Dropout";ne.registerClass($f);var Pw=class extends $f{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Pw.className="SpatialDropout1D";ne.registerClass(Pw);var Ow=class extends Ve{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,en(this.units,"units"),this.activation=us(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Yt(e.kernelConstraint),this.biasConstraint=Yt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Je(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Je(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=GT(this.activation.getClassName()),r;return a!=null?r=or(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=or(n,this.kernel.read()),this.bias!=null&&(r=Ya(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ls(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:ct(this.kernelRegularizer),biasRegularizer:ct(this.biasRegularizer),activityRegularizer:ct(this.activityRegularizer),kernelConstraint:Xt(this.kernelConstraint),biasConstraint:Xt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ow.className="Dense";ne.registerClass(Ow);var Lw=class extends Ve{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Je(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],as(e,1)]}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=Ne(e);return this.activation.apply(n)})}getConfig(){let e={activation:ls(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};zw.className="Activation";ne.registerClass(zw);var Ww=class extends Ve{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return P(()=>(e=Ne(e),j4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ww.className="RepeatVector";ne.registerClass(Ww);var Bw=class extends Ve{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Ne(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return W(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Bw.className="Reshape";ne.registerClass(Bw);var Vw=class extends Ve{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ja(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=Je(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return _e(Ne(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Vw.className="Permute";ne.registerClass(Vw);var Uw=class extends Ve{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ne(e),a=-1;return Kp(ui(n,this.maskValue),a)}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e),a=-1,r=!0,s=Kp(ui(n,this.maskValue),a,r);return z(n,le(s,n.dtype))})}};Uw.className="Masking";ne.registerClass(Uw);var Gw=class extends Ve{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,en(this.inputDim,"inputDim"),this.outputDim=e.outputDim,en(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Yt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return P(()=>this.maskZero?(e=Ne(e),ui(e,qe(e))):null)}computeOutputShape(e){if(e=Je(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a{this.invokeCallHook(e,t);let n=Ne(e);n.dtype!=="int32"&&(n=ir(n,"int32"));let a=YT(this.embeddings.read(),W(n,[n.size]));return W(a,Je(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:ct(this.embeddingsRegularizer),activityRegularizer:ct(this.activityRegularizer),embeddingsConstraint:Xt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Gw.className="Embedding";ne.registerClass(Gw);var So=class extends Ve{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Re}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&ns(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return P(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=os(a);for(let s of e){let i=s.rank;for(let o=0;o1){let u=ja(1,l).concat([0]);n.push(_e(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],p=[u].concat(o.slice(0,o.length-1));s=W(_e(W(s,[-1,u]),[1,0]),p)}else if(i>1){let o=[i-1].concat(ja(0,i-1));s=_e(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Qt(a,0));let n=t[0];for(let a=1;a{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return P(()=>Zv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return P(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s3||t.shape.length>3)throw new Re("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Re("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return P(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;ua){i=r-a;let l=[];for(let u=0;u0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let p=l;p"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Re("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new V(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Np(r,e[s].shape.length)):a=[Np(this.axes,t.shape.length),Np(this.axes,n.shape.length)],this.normalize&&(t=Ah(t,a[0]),n=Ah(n,a[1])),FU(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Np(this.axes,e.length),Np(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Re("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zw.className="Dot";ne.registerClass(Zw);var Jw=class extends Ve{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return jc(()=>Y(ff(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Jw.className="GaussianNoise";ne.registerClass(Jw);var Qw=class extends Ve{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{this.invokeCallHook(e,t);let n=Ne(e);return this.rate>0&&this.rate<1?jc(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return z(n,ff(n.shape,1,a))},()=>n,t.training||!1):n})}};Qw.className="GaussianDropout";ne.registerClass(Qw);var e0=class extends Ve{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ne(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return P(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return jc(()=>{let a=Ne(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=$r(Fu(n),this.rate);o=ir(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,p=Y(z(a,o),z(Y(o,-1),i));return Y(z(p,l),u)},()=>Ne(e),t.training||!1)}return e})}};e0.className="AlphaDropout";ne.registerClass(e0);function Jp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=ev(e,t,n,a,r,s);else if(e.rank===3)i=tv(e,t,n,a,r,s);else if(e.rank===4)i=nv(e,t,n,a,r,s);else throw new Re(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function DU(e,t,n,a,r=.001){return P(()=>{let s=Pc(e,a),i=s.mean,o=s.variance;return[Jp(e,i,o,n,t,r),i,o]})}function RU(e,t,n,a,r=.001){return P(()=>{let s=Pc(e,a),i=s.mean,o=s.variance,l=[];for(let h of ja(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=W(i,l),p=W(o,l),d=t==null?null:W(t,l),c=n==null?null:W(n,l);return[Jp(e,u,p,c,d,r),i,o]})}function MU(e,t,n,a,r=.001){return v.arraysEqual(a.slice().sort(),ja(0,e.rank-1))?DU(e,t,n,a,r):RU(e,t,n,a,r)}var t0=class extends Ve{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Yt(e.betaConstraint),this.gammaConstraint=Yt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=Je(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return P(()=>{let n=t.training==null?!1:t.training,a=Ne(e),r=a.shape,s=r.length,i=ja(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ci(1,s);l[o]=r[o];let u=i.slice();u.sort();let p=!v.arraysEqual(u,ja(0,s).slice(0,s-1)),d=()=>{if(p){let g=W(this.movingMean.read(),l),y=W(this.movingVariance.read(),l),b=this.center?W(this.beta.read(),l):null,x=this.scale?W(this.gamma.read(),l):null;return Jp(a,g,y,b,x,this.epsilon)}else return Jp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[c,h,m]=MU(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{P(()=>{let x=1-b,w=g.read(),I=z(pe(w,y),x);g.write(pe(w,I))})};return f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:ct(this.betaRegularizer),gammaRegularizer:ct(this.gammaRegularizer),betaConstraint:Xt(this.betaConstraint),gammaConstraint:Xt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};t0.className="BatchNormalization";ne.registerClass(t0);var n0=class extends Ve{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Je(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ns(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Ne(e),a=n.shape,r=a.length;return P(()=>{let{mean:s,variance:i}=Pc(n,this.axis,!0),o=ci(1,r);for(let h of this.axis)o[h]=a[h];let l=h=>h!=null&&h.shape.length!==r?W(h,o):h,u=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],c=[];for(let h=0;h{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=qa()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],ba(e,a)})}var a0=class extends Ve{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?qa():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=Je(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return P(()=>PU(Ne(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};a0.className="ZeroPadding2D";ne.registerClass(a0);function Ff(e,t,n,a,r,s){return P(()=>{Rt(r),jT(s),xa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=qa()),s==null&&(s="max"),e=Sw(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Dt(e,t,n,o):i=ya(e,t,n,o),r==="channelsFirst"&&(i=_e(i,[0,3,1,2])),i})}function BN(e,t,n,a,r,s){return P(()=>{Rt(r),jT(s),xa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=qa()),s==null&&(s="max"),e=PN(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Cv(e,t,n,o):i=Qx(e,t,n,o),r==="channelsFirst"&&(i=_e(i,[0,4,1,2,3])),i})}var VN=class extends Ve{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(en(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,xa(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=Je(e);let t=Ha(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return P(()=>{this.invokeCallHook(e,t),e=Gc(Ne(e),2);let n=this.poolingFunction(Ne(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ts(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},r0=class extends VN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),Ff(e,t,n,a,r,"max")}};r0.className="MaxPooling1D";ne.registerClass(r0);var s0=class extends VN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),Ff(e,t,n,a,r,"avg")}};s0.className="AveragePooling1D";ne.registerClass(s0);var UN=class extends Ve{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),xa(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},i0=class extends UN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),Ff(e,t,n,a,r,"max")}};i0.className="MaxPooling2D";ne.registerClass(i0);var o0=class extends UN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),Ff(e,t,n,a,r,"avg")}};o0.className="AveragePooling2D";ne.registerClass(o0);var GN=class extends Ve{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];en(this.poolSize,"poolSize"),en(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),xa(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ha(t,this.poolSize[0],this.padding,this.strides[0]),n=Ha(n,this.poolSize[1],this.padding,this.strides[1]),a=Ha(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return P(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ne(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},l0=class extends GN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),BN(e,t,n,a,r,"max")}};l0.className="MaxPooling3D";ne.registerClass(l0);var u0=class extends GN{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Rt(r),xa(a),BN(e,t,n,a,r,"avg")}};u0.className="AveragePooling3D";ne.registerClass(u0);var HN=class extends Ve{constructor(e){super(e),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Re}},p0=class extends HN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return Nt(n,1)})}};p0.className="GlobalAveragePooling1D";ne.registerClass(p0);var c0=class extends HN{constructor(e){super(e||{})}call(e,t){return P(()=>{let n=Ne(e);return ha(n,1)})}};c0.className="GlobalMaxPooling1D";ne.registerClass(c0);var jN=class extends Ve{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Re}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},d0=class extends jN{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?Nt(n,[1,2]):Nt(n,[2,3])})}};d0.className="GlobalAveragePooling2D";ne.registerClass(d0);var h0=class extends jN{call(e,t){return P(()=>{let n=Ne(e);return this.dataFormat==="channelsLast"?ha(n,[1,2]):ha(n,[2,3])})}};h0.className="GlobalMaxPooling2D";ne.registerClass(h0);var qN=class extends Ve{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ga(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},m0=class extends qN{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=Je(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Je(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return P(()=>(e=Ne(e),zN((n,a)=>[Ne(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};m0.className="TimeDistributed";ne.registerClass(m0);function OU(e){ko(B4,"BidirectionalMergeMode",e)}var LU="concat",f0=class extends qN{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ga(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ga(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?LU:e.mergeMode,OU(this.mergeMode),e.weights)throw new Re("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):On(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=LN(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(p=>new zt({shape:p.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new Re("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Va;for(let l of s)if(l instanceof Va!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=p,d}else return super.apply(e,t)}call(e,t){return P(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=ga(r,1));let i;return this.mergeMode==="concat"?i=Zv([a,r]):this.mergeMode==="sum"?i=Y(a,r):this.mergeMode==="ave"?i=z(.5,Y(a,r)):this.mergeMode==="mul"?i=z(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Js(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Js(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ga(t.layer);if(delete t.layer,t.numConstants!=null)throw new Re("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};f0.className="Bidirectional";ne.registerClass(f0);var g0=class extends Ve{constructor(e){super(e),this.scale=e.scale,e.offset?this.offset=e.offset:this.offset=0}getConfig(){let e={scale:this.scale,offset:this.offset},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>(e=Ne(e),e.dtype!=="float32"&&(e=ir(e,"float32")),Y(z(e,this.scale),this.offset)))}};g0.className="Rescaling";ne.registerClass(g0);var{resizeBilinear:zU,cropAndResize:WU}=_a,y0=class extends Ve{constructor(e){super(e),this.height=e.height,this.width=e.width}centerCrop(e,t,n,a,r,s,i,o){return P(()=>{let l,u=!1,p=t/s,d=n/i,c=(a+t)/s,h=(r+n)/i,m=[p,d,c,h],f=[];e.rank===3?(u=!0,l=$t([e])):l=e;for(let x=0;x{let r=zU(e,[t,n]);return ir(r,a)})}call(e,t){return P(()=>{let n=Ne(e),a=n.dtype,r=n.shape,s=r[r.length-3],i=r[r.length-2],o=0;s!==this.height&&(o=Math.floor((s-this.height)/2));let l=0;return i!==this.width&&(l=Math.floor((i-this.width)/2),l===0&&(l=1)),o>=0&&l>=0?this.centerCrop(n,o,l,this.height,this.width,s,i,a):this.upsize(e,this.height,this.width,a)})}getConfig(){let e={height:this.height,width:this.width},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){e=Je(e);let t=e.length-3,n=e.length-2;return e[t]=this.height,e[n]=this.width,e}};y0.className="CenterCrop";ne.registerClass(y0);function BU(e,t,n,a){let r=Ne(e);if(r.dtype!=="int32"&&(r=ir(r,"int32")),t==="int")return r;let s=r.shape;if(r.rank===0&&(r=Qt(r,-1)),t==="oneHot"&&r.shape[r.shape.length-1]!==1&&(r=Qt(r,-1)),r.rank>2)throw new V(`When outputMode is not int, maximum output rank is 2 Received outputMode ${t} and input shape ${s} which would result in output rank ${r.rank}.`);let i=["multiHot","oneHot"].includes(t),o=r,l;if(typeof a!="undefined"&&t==="count"?l=Th(o,a,n,i):l=Th(o,[],n,i),t!=="tfIdf")return l;if(a)return z(l,a);throw new V("When outputMode is 'tfIdf', weights must be provided.")}var b0=class extends Ve{constructor(e){super(e),this.numTokens=e.numTokens,e.outputMode?this.outputMode=e.outputMode:this.outputMode="multiHot"}getConfig(){let e={numTokens:this.numTokens,outputMode:this.outputMode},t=super.getConfig();return Object.assign(e,t),e}computeOutputShape(e){return e=Je(e),e==null?[this.numTokens]:this.outputMode==="oneHot"&&e[e.length-1]!==1?(e.push(this.numTokens),e):(e[e.length-1]=this.numTokens,e)}call(e,t){return P(()=>{e=Ne(e),e.dtype!=="int32"&&(e=ir(e,"int32"));let n;if(typeof t.countWeights!="undefined"){if(this.outputMode!=="count")throw new V(`countWeights is not used when outputMode !== count. Received countWeights=${t.countWeights}`);n=Ne(t.countWeights)}let a=ha(e),r=pl(e),s=Nn(this.numTokens,a).bufferSync().get(0),i=$r(r,0).bufferSync().get(0);if(!(s&&i))throw new V(`Input values must be between 0 < values <= numTokens with numTokens=${this.numTokens}`);return BU(e,this.outputMode,this.numTokens,n)})}};b0.className="CategoryEncoding";ne.registerClass(b0);var VU=["bilinear","nearest"],_k=new Set(VU),x0=class extends Ve{constructor(e){if(super(e),this.height=e.height,this.width=e.width,e.interpolation)if(_k.has(e.interpolation))this.interpolation=e.interpolation;else throw new V(`Invalid interpolation parameter: ${e.interpolation} is not implemented`);else this.interpolation="bilinear";this.cropToAspectRatio=Boolean(e.cropToAspectRatio)}computeOutputShape(e){e=Je(e);let t=e[2];return[this.height,this.width,t]}getConfig(){let e={height:this.height,width:this.width,interpolation:this.interpolation,cropToAspectRatio:this.cropToAspectRatio},t=super.getConfig();return Object.assign(e,t),e}call(e,t){return P(()=>{let n=[this.height,this.width];if(this.interpolation==="bilinear")return _a.resizeBilinear(e,n,!this.cropToAspectRatio);if(this.interpolation==="nearest")return _a.resizeNearestNeighbor(e,n,!this.cropToAspectRatio);throw new Error(`Interpolation is ${this.interpolation} but only ${[..._k]} are supported`)})}};x0.className="Resizing";ne.registerClass(x0);function UU(e){return new Ru(e)}function GU(e){return new ww(e)}function HU(e){return new bw(e)}function jU(e){return new xw(e)}function qU(e){return new vw(e)}function KU(e){return new Iw(e)}function XU(e){return new kw(e)}function YU(e){return new Nf(e)}function ZU(e){return new Yc(e)}function JU(e){return new Nw(e)}function QU(e){return new Zc(e)}function eG(e){return new Cw(e)}function tG(e){return new Ew(e)}function nG(e){return new _w(e)}function aG(e){return new Aw(e)}function rG(e){return new $w(e)}function sG(e){return new zw(e)}function iG(e){return new Ow(e)}function oG(e){return new $f(e)}function lG(e){return new Pw(e)}function uG(e){return new Lw(e)}function pG(e){return new Ww(e)}function cG(e){return new Bw(e)}function dG(e){return new Vw(e)}function hG(e){return new Gw(e)}function mG(e){return new Hw(e)}function fG(e){return new qw(e)}function gG(e){return new Yw(e)}function yG(e){return new Kw(e)}function bG(e){return new Xw(e)}function xG(e){return new jw(e)}function vG(e){return new Zw(e)}function wG(e){return new t0(e)}function kG(e){return new n0(e)}function IG(e){return new a0(e)}function v0(e){return new s0(e)}function SG(e){return v0(e)}function TG(e){return v0(e)}function w0(e){return new o0(e)}function NG(e){return w0(e)}function CG(e){return w0(e)}function k0(e){return new u0(e)}function EG(e){return k0(e)}function _G(e){return k0(e)}function AG(e){return new p0(e)}function $G(e){return new d0(e)}function KN(e){return new c0(e)}function XN(e){return new h0(e)}function YN(e){return new r0(e)}function ZN(e){return new i0(e)}function FG(e){return new l0(e)}function DG(e){return new Dw(e)}function RG(e){return new Ef(e)}function MG(e){return new Rw(e)}function PG(e){return new Qc(e)}function OG(e){return new Fw(e)}function LG(e){return new Cf(e)}function zG(e){return new Mw(e)}function WG(e){return new Af(e)}function BG(e){return new mr(e)}function VG(e){return new _f(e)}function UG(e){return new f0(e)}function GG(e){return new m0(e)}var HG=KN,jG=XN,qG=YN,KG=ZN;function XG(e){return new Jw(e)}function YG(e){return new Qw(e)}function ZG(e){return new e0(e)}function JG(e){return new Uw(e)}function QG(e){return new g0(e)}function eH(e){return new y0(e)}function tH(e){return new x0(e)}function nH(e){return new b0(e)}var JN={};Ae(JN,{MAPE:()=>hH,MSE:()=>gH,binaryAccuracy:()=>aH,binaryCrossentropy:()=>rH,categoricalAccuracy:()=>iH,categoricalCrossentropy:()=>oH,cosineProximity:()=>pH,mape:()=>mH,meanAbsoluteError:()=>cH,meanAbsolutePercentageError:()=>dH,meanSquaredError:()=>fH,mse:()=>yH,precision:()=>lH,recall:()=>uH,sparseCategoricalAccuracy:()=>sH});function aH(e,t){return dw(e,t)}function rH(e,t){return dN(e,t)}function sH(e,t){return hN(e,t)}function iH(e,t){return hw(e,t)}function oH(e,t){return mw(e,t)}function lH(e,t){return cN(e,t)}function uH(e,t){return HV(e,t)}function pH(e,t){return cw(e,t)}function cH(e,t){return Sf(e,t)}function dH(e,t){return Mu(e,t)}function hH(e,t){return Mu(e,t)}function mH(e,t){return Mu(e,t)}function fH(e,t){return Io(e,t)}function gH(e,t){return Io(e,t)}function yH(e,t){return Io(e,t)}var QN={};Ae(QN,{modelFromJSON:()=>xU});var e2={};Ae(e2,{l1:()=>xH,l1l2:()=>bH,l2:()=>vH});function bH(e){return new Kc(e)}function xH(e){return NU(e)}function vH(e){return CU(e)}var t2=class extends fl{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof Er))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Zd(e,t){return et}var n2=class extends t2{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Re("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Zd:this.mode==="max"?this.monitorFunc=Ak:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Ak:this.monitorFunc=Zd,this.monitorFunc===Zd&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Zd?1/0:-1/0}async onEpochEnd(e,t){await Kr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function wH(e){return new n2(e)}var kH={earlyStopping:wH},IH=H();IH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var Ta;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(Ta||(Ta={}));var $k;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})($k||($k={}));var I0={};function SH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};I0[e]=n}function a2(e){return I0[e]}function TH(e){delete I0[e]}function k(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return wn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(d=>wn(d,n,a,r));let u=wn(t.inputNames.slice(o)[0],n,a,r),p=u.dataSync();return s.type==="number"?p[0]:v.toNestedArray(u.shape,p)}let i=t.attrParams[e];return i&&i.value}function wn(e,t,n,a){let[r,s]=Xn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Mh(r,o)]);return i!==void 0?t[Mh(r,i)][s]:void 0}function NH(e,t,n){return t[Mh(e,n.currentContextId)]}function Sr(e,t){let[n,a,r]=Xn(e);return[Mh(n,t&&t.currentContextId),a,r]}function Mh(e,t){return t?`${e}-${t}`:e}function Xn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function ih(e,t,n){let a=k("pad",e,t,n);if(a==="explicit"){a=k("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Tr(e){return e.kept?e:sr(e)}var r2={};Ae(r2,{json:()=>CH});var CH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s2={};Ae(s2,{json:()=>EH});var EH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],i2={};Ae(i2,{json:()=>_H});var _H=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],o2={};Ae(o2,{json:()=>AH});var AH=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],l2={};Ae(l2,{json:()=>$H});var $H=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],u2={};Ae(u2,{json:()=>FH});var FH=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],p2={};Ae(p2,{json:()=>DH});var DH=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],c2={};Ae(c2,{json:()=>RH});var RH=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],d2={};Ae(d2,{json:()=>MH});var MH=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"InitializeTable",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]},{tfOpName:"InitializeTableV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}]}],h2={};Ae(h2,{json:()=>PH});var PH=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],m2={};Ae(m2,{json:()=>OH});var OH=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],f2={};Ae(f2,{json:()=>LH});var LH=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],g2={};Ae(g2,{json:()=>zH});var zH=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],y2={};Ae(y2,{json:()=>WH});var WH=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],b2={};Ae(b2,{json:()=>BH});var BH=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],x2={};Ae(x2,{json:()=>VH});var VH=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],v2={};Ae(v2,{json:()=>UH});var UH=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],w2={};Ae(w2,{json:()=>GH});var GH=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],k2={};Ae(k2,{json:()=>HH});var HH=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Fk=class{constructor(){let e=[r2,s2,i2,o2,l2,u2,p2,c2,d2,h2,m2,f2,g2,y2,b2,x2,v2,w2,k2],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}static get Instance(){return this._instance||(this._instance=new this)}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},p={};t!=null&&(u=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let d=Object.keys(i);d.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[b,,x]=Sr(g),w=i[b];if(w.outputs!=null){let I=w.outputs.indexOf(x);if(I!==-1){let T=`${b}:${I}`;f.inputNames[y]=T}}f.inputs.push(w),w.children.push(f)})}),Object.keys(p).length===0?d.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(p).forEach(m=>{let[f]=Sr(m),g=i[f];g!=null&&(g.signatureKey=p[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Sr(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=a2(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.slice(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=Xb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Xb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=nx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=nx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=Zb(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=Zb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=tx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=tx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Yb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Yb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=rx(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=rx(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=ex(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ex(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=ax(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ax(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Jb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Jb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Qb(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Qb(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Dk(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Dk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,p)=>(u[p.name]=this.mapNode(p),p.op==="Const"&&a.push(u[p.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[p]=Sr(u.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:S0(u.type),type:"dtype"}},children:[]};d.signatureKey=u.name,s.push(d),r[p]=d}),Object.keys(r).forEach(u=>{let p=r[u];p.inputNames.forEach((d,c)=>{let[h,,m]=Sr(d),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;p.inputNames[c]=y}}p.inputs.push(f),f.children.push(p)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[p,d]=Sr(o[u.name]),c=r[p];c!=null&&(c.defaultOutput=d,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function jH(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function I2(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):jH(e);return t?n:n.toLowerCase()}function Xb(e,t,n,a=!1){let r=e[t];return r!=null?I2(r.s,a):n}function Yb(e,t,n){let a=e[t];return a?a.b:n}function Zb(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function S0(e){switch(typeof e=="string"&&(e=Ta[e]),e){case Ta.DT_FLOAT:case Ta.DT_HALF:return"float32";case Ta.DT_INT32:case Ta.DT_INT64:case Ta.DT_INT8:case Ta.DT_UINT8:return"int32";case Ta.DT_BOOL:return"bool";case Ta.DT_DOUBLE:return"float32";case Ta.DT_STRING:return"string";default:return null}}function Dk(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function Jb(e,t,n){let a=e[t];return a&&a.type?S0(a.type):n}function Qb(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>S0(r)):n}function S2(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ex(e,t,n){let a=e[t];return a&&a.shape?S2(a.shape):n}function tx(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function nx(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>I2(s,a)):n}function ax(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>S2(r)):n}function rx(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var qH=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return wn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return wn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Zb(this.node.rawAttrs,e,t);if(n.s!=null)return Xb(this.node.rawAttrs,e,t);if(n.b!=null)return Yb(this.node.rawAttrs,e,t);if(n.shape!=null)return ex(this.node.rawAttrs,e,t);if(n.type!=null)return Jb(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return tx(this.node.rawAttrs,e,t);if(n.list.s!=null)return nx(this.node.rawAttrs,e,t);if(n.list.shape!=null)return ax(this.node.rawAttrs,e,t);if(n.list.b!=null)return rx(this.node.rawAttrs,e,t);if(n.list.type!=null)return Qb(this.node.rawAttrs,e,t)}return t}},an={};Ae(an,{OP_SCOPE_SUFFIX:()=>Ax,abs:()=>Lt,acos:()=>Gx,acosh:()=>Hx,add:()=>Y,addN:()=>AS,all:()=>Fm,any:()=>Kp,argMax:()=>ii,argMin:()=>jx,asin:()=>qx,asinh:()=>Kx,atan:()=>Xx,atan2:()=>Yx,atanh:()=>Zx,avgPool:()=>ya,avgPool3d:()=>Qx,basicLSTMCell:()=>RS,batchNorm:()=>ws,batchNorm2d:()=>ev,batchNorm3d:()=>tv,batchNorm4d:()=>nv,batchToSpaceND:()=>$c,bincount:()=>av,booleanMaskAsync:()=>gT,broadcastArgs:()=>MS,broadcastTo:()=>Zs,buffer:()=>Pe,cast:()=>le,ceil:()=>rv,clipByValue:()=>tn,clone:()=>sr,complex:()=>_r,concat:()=>Ze,concat1d:()=>sv,concat2d:()=>iv,concat3d:()=>ov,concat4d:()=>lv,conv1d:()=>Dm,conv2d:()=>Ft,conv2dTranspose:()=>Rm,conv3d:()=>pv,conv3dTranspose:()=>cv,cos:()=>Fc,cosh:()=>Mm,cosineWindow:()=>nf,cumprod:()=>Xp,cumsum:()=>Pm,denseBincount:()=>Th,depthToSpace:()=>dv,depthwiseConv2d:()=>ks,diag:()=>OS,dilation2d:()=>hv,div:()=>me,divNoNan:()=>mv,dot:()=>fv,dropout:()=>Vv,einsum:()=>LS,elu:()=>Cu,enclosingPowerOfTwo:()=>Uv,equal:()=>Jn,erf:()=>gv,euclideanNorm:()=>xv,exp:()=>gn,expandDims:()=>Qt,expm1:()=>vv,eye:()=>Om,fft:()=>Wc,fill:()=>yn,floor:()=>_u,floorDiv:()=>$m,fused:()=>hl,gather:()=>Au,gatherND:()=>vT,greater:()=>Nn,greaterEqual:()=>$r,ifft:()=>dl,imag:()=>Ec,image:()=>_a,inTopKAsync:()=>wT,irfft:()=>Jm,isFinite:()=>wv,isInf:()=>kv,isNaN:()=>Iv,leakyRelu:()=>Dc,less:()=>Lm,lessEqual:()=>Is,linalg:()=>jv,linspace:()=>US,localResponseNormalization:()=>Sv,log:()=>Qn,log1p:()=>Rc,logSigmoid:()=>Tv,logSoftmax:()=>Wm,logSumExp:()=>Bm,logicalAnd:()=>$a,logicalNot:()=>Mc,logicalOr:()=>Vm,logicalXor:()=>Nv,losses:()=>DT,lowerBound:()=>HS,matMul:()=>Fe,max:()=>ha,maxPool:()=>Dt,maxPool3d:()=>Cv,maxPoolWithArgmax:()=>jS,maximum:()=>dr,mean:()=>Nt,meshgrid:()=>qS,min:()=>pl,minimum:()=>$u,mirrorPad:()=>Ev,mod:()=>_v,moments:()=>Pc,movingAverage:()=>yT,mul:()=>z,multiRNNCell:()=>KS,multinomial:()=>XS,neg:()=>bt,norm:()=>Eu,notEqual:()=>ui,oneHot:()=>ll,ones:()=>Zn,onesLike:()=>ea,op:()=>L,outerProduct:()=>YS,pad:()=>ba,pad1d:()=>ZS,pad2d:()=>JS,pad3d:()=>QS,pad4d:()=>eT,pool:()=>Av,pow:()=>Ar,prelu:()=>Lc,print:()=>Rx,prod:()=>$v,raggedGather:()=>tT,raggedRange:()=>nT,raggedTensorToTensor:()=>aT,rand:()=>rT,randomGamma:()=>sT,randomNormal:()=>Gm,randomStandardNormal:()=>iT,randomUniform:()=>Fu,range:()=>pi,real:()=>ul,reciprocal:()=>Rv,relu:()=>Xe,relu6:()=>Hm,reshape:()=>W,reverse:()=>ga,reverse1d:()=>oT,reverse2d:()=>lT,reverse3d:()=>uT,reverse4d:()=>pT,rfft:()=>Bc,round:()=>jm,rsqrt:()=>qm,scalar:()=>xe,scatterND:()=>bT,searchSorted:()=>Um,selu:()=>Km,separableConv2d:()=>Ss,setdiff1dAsync:()=>cT,sigmoid:()=>da,sign:()=>Mv,signal:()=>FT,sin:()=>Xm,sinh:()=>Ym,slice:()=>Be,slice1d:()=>zc,slice2d:()=>Zm,slice3d:()=>vo,slice4d:()=>cl,softmax:()=>Xa,softplus:()=>xo,spaceToBatchND:()=>Oc,sparse:()=>RT,sparseToDense:()=>xT,spectral:()=>$T,split:()=>zn,sqrt:()=>un,square:()=>ot,squaredDifference:()=>Qm,squeeze:()=>Ts,stack:()=>$t,step:()=>wo,stridedSlice:()=>Pv,string:()=>MT,sub:()=>pe,sum:()=>fe,tan:()=>Ov,tanh:()=>oi,tensor:()=>mn,tensor1d:()=>Ke,tensor2d:()=>Aa,tensor3d:()=>_c,tensor4d:()=>Da,tensor5d:()=>dT,tensor6d:()=>hT,tile:()=>Ln,topk:()=>Lv,transpose:()=>_e,truncatedNormal:()=>ef,unique:()=>zv,unsortedSegmentSum:()=>tf,unstack:()=>ut,upperBound:()=>mT,variable:()=>Wv,where:()=>fn,whereAsync:()=>Bv,zeros:()=>It,zerosLike:()=>qe});var KH=(e,t,n,a=an)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[a.add(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[a.addN(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[a.mod(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[a.mul(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[a.div(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[a.divNoNan(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[a.floorDiv(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[a.sub(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[a.minimum(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[a.maximum(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[a.pow(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[a.squaredDifference(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XH=(e,t,n,a=an)=>{switch(e.op){case"Abs":case"ComplexAbs":return[a.abs(k("x",e,t,n))];case"Acos":return[a.acos(k("x",e,t,n))];case"Acosh":return[a.acosh(k("x",e,t,n))];case"Asin":return[a.asin(k("x",e,t,n))];case"Asinh":return[a.asinh(k("x",e,t,n))];case"Atan":return[a.atan(k("x",e,t,n))];case"Atan2":return[a.atan2(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[a.atanh(k("x",e,t,n))];case"Ceil":return[a.ceil(k("x",e,t,n))];case"Complex":return[a.complex(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[a.cos(k("x",e,t,n))];case"Cosh":return[a.cosh(k("x",e,t,n))];case"Elu":return[a.elu(k("x",e,t,n))];case"Erf":return[a.erf(k("x",e,t,n))];case"Exp":return[a.exp(k("x",e,t,n))];case"Expm1":return[a.expm1(k("x",e,t,n))];case"Floor":return[a.floor(k("x",e,t,n))];case"Log":return[a.log(k("x",e,t,n))];case"Log1p":return[a.log1p(k("x",e,t,n))];case"Imag":return[a.imag(k("x",e,t,n))];case"Neg":return[a.neg(k("x",e,t,n))];case"Reciprocal":return[a.reciprocal(k("x",e,t,n))];case"Real":return[a.real(k("x",e,t,n))];case"Relu":return[a.relu(k("x",e,t,n))];case"Round":return[a.round(k("x",e,t,n))];case"Selu":return[a.selu(k("x",e,t,n))];case"Sigmoid":return[a.sigmoid(k("x",e,t,n))];case"Sin":return[a.sin(k("x",e,t,n))];case"Sign":return[a.sign(k("x",e,t,n))];case"Sinh":return[a.sinh(k("x",e,t,n))];case"Softplus":return[a.softplus(k("x",e,t,n))];case"Sqrt":return[a.sqrt(k("x",e,t,n))];case"Square":return[a.square(k("x",e,t,n))];case"Tanh":return[a.tanh(k("x",e,t,n))];case"Tan":return[a.tan(k("x",e,t,n))];case"ClipByValue":return[a.clipByValue(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[a.relu6(k("x",e,t,n))];case"Rsqrt":return[a.rsqrt(wn(e.inputNames[0],t,n))];case"Prod":return[a.prod(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[a.leakyRelu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[a.prelu(k("x",e,t,n),k("alpha",e,t,n))];case"IsNan":return[a.isNaN(wn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ea(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;an+` Shapes ${e} and ${t} must match`)}}}function Rk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Cp(e,t,n){let a=sx(e,n),r=!Rk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=sx(s.shape,a)}),!Rk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function sx(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var YH=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=xe(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ea(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ut(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];P(()=>{t=W(t,[1,n,r]);for(let o=0;o{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ea(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=xe(0),this.maxNumElements=a,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new yl([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ea(e,this.elementShape,"TensorList shape mismatch: ");let a=Cp(this.elementShape,this.tensors,e);return P(()=>{let r=this.tensors.map(s=>W(s,a));return $t(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Cp(this.elementShape,this.tensors,e),a=this.tensors.pop();return a.kept=!1,Ea(a.shape,e,"TensorList shape mismatch: "),W(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ea(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new yl([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;nthis.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ea(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Cp(this.elementShape,this.tensors,t);return W(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ea(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ea(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Cp(this.elementShape,this.tensors,n);return e.length===0?mn([],[0].concat(a)):P(()=>{let r=e.map(s=>W(this.tensors[s],a));return $t(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ea(this.elementShape,t,"TensorList shape mismatch: ");let n=Cp(this.elementShape,this.tensors,t);return this.size()===0?mn([],[0].concat(n)):P(()=>{let a=this.tensors.map(r=>W(r,n));return Ze(a,0)})}};function ZH(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ea(r,t,"TensorList shape mismatch: ");let s=ut(e);return new yl(s,t,a)}function JH(e,t,n,a){return new yl([],e,t,a)}function QH(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new yl([],n,e.dtype,a),i=ut(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function e6(e,t,n){let a=0,r=t.map(p=>(a+=p,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=sx(s,n),o=a===0?0:e.size/a,l=P(()=>{let p=[];e=W(e,[1,a,o]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let a=k("thenBranch",e,t,n),r=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=k("body",e,t,n),r=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(p=>p.id),l=await i[0].data();i.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&p.dispose()});let u=s;for(;l[0];){let p=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);p.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=k("pred",e,t,n);return[Tr(a)]}case"Switch":{let a=k("pred",e,t,n),r=k("data",e,t,n);return r.kept||(r=Tr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>wn(r,t,n)!==void 0);if(a){let r=wn(a,t,n);return[Tr(r)]}return}case"Enter":{let a=k("frameName",e,t,n),r=k("tensor",e,t,n);return n.enterFrame(a),[Tr(r)]}case"Exit":{let a=k("tensor",e,t,n);return n.exitFrame(),[Tr(a)]}case"NextIteration":{let a=k("tensor",e,t,n);return n.nextIteration(),[Tr(a)]}case"TensorArrayV3":{let a=k("size",e,t,n),r=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),p=new YH(u,r,a,s,l,i,o);return n.addTensorArray(p),[p.idTensor,xe(1)]}case"TensorArrayWriteV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=k("tensorArrayId",e,t,n),r=k("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=k("tensorArrayId",e,t,n),r=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=k("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=k("tensorArrayId",e,t,n),r=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[xe(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=k("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=k("tensorListId",e,t,n),r=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=k("indices",e,t,n),r=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=QH(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=k("elementShape",e,t,n),r=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=e.op==="TensorListReserve"?-1:i,l=JH(a,r,i,o);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let a=k("tensorListId",e,t,n),r=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=ZH(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=k("tensorListId",e,t,n),r=k("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=k("tensorListId",e,t,n),r=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=k("tensor",e,t,n),r=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=e6(a,s,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let a=k("tensorListId",e,t,n),r=n.getTensorList(a.id);return[xe(r.size(),"int32")]}case"TensorListResize":{let a=k("tensorListId",e,t,n),r=k("size",e,t,n),s=n.getTensorList(a.id).resize(r);return n.addTensorList(s),[s.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Mk(e,t,n){let[a,r]=k("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=k("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let p=k("strides",e,t,n),d=ih(e,t,n),c=k("dataFormat",e,t,n).toUpperCase(),h=k("dilations",e,t,n),[m,f]=k("args",e,t,n);i&&(f=m,m=void 0);let g=k("leakyreluAlpha",e,t,n);return{stride:p,pad:d,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var n6=(e,t,n,a=an)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilation",e,t,n);return[a.conv1d(k("x",e,t,n),k("filter",e,t,n),r,s,i,o)]}case"Conv2D":{let r=k("strides",e,t,n),s=ih(e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv2d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,i,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Mk(e,t,n);return[a.fused.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:i,dilations:o,biasArg:l,preluArg:u,activationFunc:p,leakyreluAlpha:d}=Mk(e,t,n);return[a.fused.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:i,dilations:[o[1],o[2]],bias:l,activation:p,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),s=k("strides",e,t,n),i=ih(e,t,n);return[a.conv2dTranspose(k("x",e,t,n),k("filter",e,t,n),r,[s[1],s[2]],i)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),s=ih(e,t,n),i=k("dilations",e,t,n),o=k("dataFormat",e,t,n).toUpperCase();return[a.depthwiseConv2d(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],s,o,[i[1],i[2]])]}case"Conv3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dataFormat",e,t,n).toUpperCase(),o=k("dilations",e,t,n);return[a.conv3d(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],s,i,[o[1],o[2],o[3]])]}case"AvgPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n),o=k("includeBatchInIndex",e,t,n),{result:l,indexes:u}=a.maxPoolWithArgmax(k("x",e,t,n),[i[1],i[2]],[r[1],r[2]],s,o);return[l,u]}case"AvgPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.avgPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("kernelSize",e,t,n);return[a.maxPool3d(k("x",e,t,n),[i[1],i[2],i[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=k("strides",e,t,n),s=k("pad",e,t,n),i=k("dilations",e,t,n),o=r[1],l=r[2],u=i[1],p=i[2];return[a.dilation2d(k("x",e,t,n),k("filter",e,t,n),[o,l],s,[u,p],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},a6=(e,t,n,a=an)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),s=k("dtype",e,t,n),i=k("value",e,t,n);return[a.fill(r,i,s)]}case"LinSpace":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("num",e,t,n);return[a.linspace(r,s,i)]}case"Multinomial":{let r=k("logits",e,t,n),s=k("numSamples",e,t,n),i=k("seed",e,t,n);return[a.multinomial(r,s,i)]}case"OneHot":{let r=k("indices",e,t,n),s=k("depth",e,t,n),i=k("onValue",e,t,n),o=k("offValue",e,t,n),l=k("dtype",e,t,n);return[a.oneHot(r,s,i,o,l)]}case"Ones":return[a.ones(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[a.onesLike(k("x",e,t,n))];case"RandomStandardNormal":return[a.randomStandardNormal(k("shape",e,t,n),k("dtype",e,t,n),k("seed",e,t,n))];case"RandomUniform":return[a.randomUniform(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),s=k("stop",e,t,n),i=k("step",e,t,n);return[a.range(r,s,i,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),s=k("mean",e,t,n),i=k("stdDev",e,t,n),o=k("seed",e,t,n);return[a.truncatedNormal(r,s,i,k("dtype",e,t,n),o)]}case"Zeros":return[a.zeros(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[a.zerosLike(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function xb(e,t,n){let a=k("boxes",e,t,n),r=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var r6=async(e,t,n,a,r=an)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u,softNmsSigma:p}=xb(e,t,n),d=await r.image.nonMaxSuppressionWithScoreAsync(s,i,o,l,u,p);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=xb(e,t,n),p=k("padToMaxOutputSize",e,t,n),d=await r.image.nonMaxSuppressionPaddedAsync(s,i,o,l,u,p);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:i,maxOutputSize:o,iouThreshold:l,scoreThreshold:u}=xb(e,t,n);return[await r.image.nonMaxSuppressionAsync(s,i,o,l,u)]}case"Where":{let s=r.cast(k("condition",e,t,n),"bool"),i=[await r.whereAsync(s)];return s.dispose(),i}case"ListDiff":return r.setdiff1dAsync(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},s6=(e,t,n,a=an)=>{switch(e.op){case"LowerBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.lowerBound(r,s)]}case"TopKV2":{let r=k("x",e,t,n),s=k("k",e,t,n),i=k("sorted",e,t,n),o=a.topk(r,s,i);return[o.values,o.indices]}case"UpperBound":{let r=k("sortedSequence",e,t,n),s=k("values",e,t,n);return[a.upperBound(r,s)]}case"Unique":{let r=k("x",e,t,n),s=a.unique(r);return[s.values,s.indices]}case"UniqueV2":{let r=k("x",e,t,n),s=k("axis",e,t,n),i=a.unique(r,s);return[i.values,i.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},i6=(e,t,n,a=an)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[wn(e.name,t,n)||r];case"Placeholder":return[wn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let p=k("x",e,t,n);return[Tr(p)]}case"IdentityN":return k("x",e,t,n).map(p=>Tr(p));case"Snapshot":let s=k("x",e,t,n);return[Tr(s)];case"Shape":return[a.tensor1d(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(p=>a.tensor1d(p.shape));case"Size":return[a.scalar(k("x",e,t,n).size,"int32")];case"Rank":return[a.scalar(k("x",e,t,n).rank,"int32")];case"NoOp":return[a.scalar(1)];case"Print":let i=k("x",e,t,n),o=k("data",e,t,n),l=k("message",e,t,n),u=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let p=0;pe.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return xe(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),P(()=>{let a=ut(t),r=n.length,s=a.length;v.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i{let a=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=a.getHashTableHandleByName(e.name);if(r!=null)return[r];{let s=k("keyDType",e,t,n),i=k("valueDType",e,t,n),o=new o6(s,i);return a.addHashTable(e.name,o),[o.handle]}}case"InitializeTable":case"InitializeTableV2":case"LookupTableImport":case"LookupTableImportV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=k("tableHandle",e,t,n,a),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=k("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},u6=(e,t,n,a=an)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeBilinear(r,[s[0],s[1]],i,o)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),s=k("size",e,t,n),i=k("alignCorners",e,t,n),o=k("halfPixelCenters",e,t,n);return[a.image.resizeNearestNeighbor(r,[s[0],s[1]],i,o)]}case"CropAndResize":{let r=k("image",e,t,n),s=k("boxes",e,t,n),i=k("boxInd",e,t,n),o=k("cropSize",e,t,n),l=k("method",e,t,n),u=k("extrapolationValue",e,t,n);return[a.image.cropAndResize(r,s,i,o,l,u)]}case"ImageProjectiveTransformV3":{let r=k("images",e,t,n),s=k("transforms",e,t,n),i=k("outputShape",e,t,n),o=k("fillValue",e,t,n),l=k("interpolation",e,t,n),u=k("fillMode",e,t,n);return[a.image.transform(r,s,l.toLowerCase(),u.toLowerCase(),o,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},p6=(e,t,n,a=an)=>{switch(e.op){case"Equal":return[a.equal(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[a.notEqual(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[a.greater(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[a.greaterEqual(k("a",e,t,n),k("b",e,t,n))];case"Less":return[a.less(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[a.lessEqual(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[a.logicalAnd(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[a.logicalNot(k("a",e,t,n))];case"LogicalOr":return[a.logicalOr(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[a.where(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},c6=(e,t,n,a=an)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[a.matMul(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Einsum":return[a.einsum(k("equation",e,t,n),...k("tensors",e,t,n))];case"Transpose":return[a.transpose(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,s]=k("fusedOps",e,t,n),i=r==="biasadd",o=s==="prelu",l=k("numArgs",e,t,n),u=k("leakyreluAlpha",e,t,n);if(i){if(o&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,d]=k("args",e,t,n);return[a.fused.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:p,activation:s,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},d6=(e,t,n,a=an)=>{switch(e.op){case"EuclideanNorm":return[a.euclideanNorm(k("x",e,t,n),k("axis",e,t,n),k("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[a.batchNorm(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[a.localResponseNormalization(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[a.softmax(k("x",e,t,n))];case"LogSoftmax":return[a.logSoftmax(k("x",e,t,n))];case"SparseToDense":return[a.sparseToDense(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},h6=(e,t,n,a=an)=>{switch(e.op){case"RaggedGather":{let{outputNestedSplits:r,outputDenseValues:s}=a.raggedGather(k("paramsNestedSplits",e,t,n),k("paramsDenseValues",e,t,n),k("indices",e,t,n),k("outputRaggedRank",e,t,n));return r.concat(s)}case"RaggedRange":{let{rtNestedSplits:r,rtDenseValues:s}=a.raggedRange(k("starts",e,t,n),k("limits",e,t,n),k("splits",e,t,n));return[r,s]}case"RaggedTensorToTensor":return[a.raggedTensorToTensor(k("shape",e,t,n),k("values",e,t,n),k("defaultValue",e,t,n),k("rowPartitionTensors",e,t,n),k("rowPartitionTypes",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},m6=(e,t,n,a=an)=>{switch(e.op){case"Max":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.max(k("x",e,t,n),o,l)]}case"Mean":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.mean(k("x",e,t,n),o,l)]}case"Min":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.min(k("x",e,t,n),o,l)]}case"Sum":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.sum(k("x",e,t,n),o,l)]}case"All":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.all(k("x",e,t,n),o,l)]}case"Any":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.any(k("x",e,t,n),o,l)]}case"ArgMax":{let o=k("axis",e,t,n);return[a.argMax(k("x",e,t,n),o)]}case"ArgMin":{let o=k("axis",e,t,n);return[a.argMin(k("x",e,t,n),o)]}case"Prod":{let o=k("axis",e,t,n),l=k("keepDims",e,t,n);return[a.prod(k("x",e,t,n),o,l)]}case"Cumprod":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumprod(k("x",e,t,n),o,l,u)]}case"Cumsum":{let o=k("axis",e,t,n),l=k("exclusive",e,t,n),u=k("reverse",e,t,n);return[a.cumsum(k("x",e,t,n),o,l,u)]}case"Bincount":let r=k("x",e,t,n),s=k("weights",e,t,n),i=k("size",e,t,n);return[a.bincount(r,s,i)];case"DenseBincount":{let o=k("x",e,t,n),l=k("weights",e,t,n),u=k("size",e,t,n),p=k("binaryOutput",e,t,n);return[a.denseBincount(o,l,u,p)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},f6=(e,t,n,a=an)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),s=k("axis",e,t,n),i=k("tensors",e,t,n);return i=i.slice(0,r),[a.concat(i,s)]}case"Gather":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gather(r,a.cast(s,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),s=k("batchDims",e,t,n),i=k("x",e,t,n),o=k("indices",e,t,n);return[a.gather(i,a.cast(o,"int32"),r,s)]}case"Reverse":{let r=k("dims",e,t,n),s=[];for(let o=0;o{let r=k("axis",e,t,n),s=k("tensors",e,t,n),i=s[0].shape,o=a.squeeze(s[0]).shape,l=s.map(u=>{let p=v.arraysEqual(u.shape,i);if(!p&&!v.arraysEqual(a.squeeze(u).shape,o))throw new Error("the input tensors shape does not match");return p?u:a.reshape(u,i)});return[a.stack(l,r)]});case"Unpack":{let r=k("axis",e,t,n),s=k("tensor",e,t,n);return a.unstack(s,r)}case"Tile":{let r=k("reps",e,t,n);return[a.tile(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),s=k("numOrSizeSplits",e,t,n),i=k("x",e,t,n);return a.split(i,s,r)}case"ScatterNd":{let r=k("indices",e,t,n),s=k("values",e,t,n),i=k("shape",e,t,n);return[a.scatterND(r,s,i)]}case"GatherNd":{let r=k("x",e,t,n),s=k("indices",e,t,n);return[a.gatherND(r,s)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),s=k("outputShape",e,t,n),i=k("sparseValues",e,t,n),o=k("defaultValue",e,t,n);return[a.sparseToDense(r,i,s,i.dtype===o.dtype?o:a.cast(o,i.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},g6=(e,t,n,a=an)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:i,reverseIndexMap:o}=a.sparse.sparseFillEmptyRows(k("indices",e,t,n),k("values",e,t,n),k("denseShape",e,t,n),k("defaultValue",e,t,n));return[r,s,i,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=a.sparse.sparseReshape(k("inputIndices",e,t,n),k("inputShape",e,t,n),k("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[a.sparse.sparseSegmentMean(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];case"SparseSegmentSum":return[a.sparse.sparseSegmentSum(k("data",e,t,n),k("indices",e,t,n),k("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},y6=(e,t,n,a=an)=>{switch(e.op){case"FFT":return[a.fft(k("x",e,t,n))];case"IFFT":return[a.ifft(k("x",e,t,n))];case"RFFT":return[a.rfft(k("x",e,t,n))];case"IRFFT":return[a.irfft(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},b6=(e,t,n,a=an)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=a.string.stringNGrams(k("data",e,t,n),k("dataSplits",e,t,n),k("separator",e,t,n),k("nGramWidths",e,t,n),k("leftPad",e,t,n),k("rightPad",e,t,n),k("padWidth",e,t,n),k("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:i}=a.string.stringSplit(k("input",e,t,n),k("delimiter",e,t,n),k("skipEmpty",e,t,n));return[r,s,i]}case"StringToHashBucketFast":return[a.string.stringToHashBucketFast(k("input",e,t,n),k("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},x6=(e,t,n,a=an)=>{switch(e.op){case"Cast":return[a.cast(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[a.expandDims(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[a.squeeze(k("x",e,t,n),r)]}case"Reshape":return[a.reshape(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[a.mirrorPad(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[a.pad(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),s=k("paddings",e,t,n);return[a.spaceToBatchND(k("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),s=k("crops",e,t,n);return[a.batchToSpaceND(k("x",e,t,n),r,s)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),s=k("dataFormat",e,t,n).toUpperCase();return[a.depthToSpace(k("x",e,t,n),r,s)]}case"BroadcastTo":return[a.broadcastTo(k("x",e,t,n),k("shape",e,t,n))];case"BroadcastArgs":return[a.broadcastArgs(k("s0",e,t,n),k("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Pk(e,t,n,a,r=P){let s=((i,o,l)=>{switch(i.category){case"arithmetic":return r(()=>KH(i,o,l));case"basic_math":return r(()=>XH(i,o,l));case"control":return t6(i,o,l);case"convolution":return r(()=>n6(i,o,l));case"creation":return r(()=>a6(i,o,l));case"dynamic":return r6(i,o,l);case"evaluation":return r(()=>s6(i,o,l));case"image":return r(()=>u6(i,o,l));case"graph":return r(()=>i6(i,o,l));case"logical":return r(()=>p6(i,o,l));case"matrices":return r(()=>c6(i,o,l));case"normalization":return r(()=>d6(i,o,l));case"ragged":return r(()=>h6(i,o,l));case"reduction":return r(()=>m6(i,o,l));case"slice_join":return r(()=>f6(i,o,l));case"sparse":return r(()=>g6(i,o,l));case"spectral":return r(()=>y6(i,o,l));case"string":return r(()=>b6(i,o,l));case"transformation":return r(()=>x6(i,o,l));case"hash_table":return l6(i,o,l,a);case"custom":let u=a2(i.op);if(u&&u.customExecutor)return u.customExecutor(new qH(i,o,l));throw TypeError(`Custom op ${i.op} is not registered.`);default:throw TypeError(`Unknown op '${i.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(s)?s.then(i=>[].concat(i)):[].concat(s)}var Ok=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Lk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Xn(c)[0]),p=[];a!=null&&(p=a.map(c=>Xn(c.name)[0]));let d=[...t];for(;d.length>0;){let c=d.pop();if((T2(c)||S6(c)||T6(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&p.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function v6(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(p=>Xn(p)[0]).map(p=>e.nodes[p]),o=e.initNodes;i.forEach(p=>{a.has(p.name)&&s.push(p)}),e.weights.forEach(p=>{a.has(p.name)&&s.push(p)}),o!=null&&o.forEach(p=>{a.has(p.name)&&s.push(p)});let l=new Set,u=[];for(;s.length>0;){let p=s.pop();l.add(p.name),t[p.name]||u.push(p),p.children.forEach(d=>{!l.has(d.name)&&a.has(d.name)&&d.inputs.every(c=>l.has(c.name))&&s.push(d)})}return u}var w6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],k6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],I6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function T2(e){return w6.indexOf(e.op)>=0}function S6(e){return k6.indexOf(e.op)>=0}function T6(e){return I6.indexOf(e.op)>=0}var ix=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.keepIntermediateTensors=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new ix(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Lk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return v6(this.graph,this.weightMap,n)}cloneAndKeepTensor(e){if(e==null)return null;let t=e.clone();return Ht(t),t}cloneTensorList(e){return e?e.map(t=>this.cloneAndKeepTensor(t)):null}cloneTensorMap(e){return Object.fromEntries(Object.entries(e).map(([t,n])=>[t,this.cloneTensorList(n)]))}execute(e,t){this.disposeIntermediateTensors(),e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(p=>this.graph.nodes[Xn(p)[0]]),r=t.map(p=>Xn(p)[0]),s=r.map(p=>this.graph.nodes[p]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));try{this.keepIntermediateTensors=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(p){this.keepIntermediateTensors=!1,console.warn(p.message)}let l={},u={};return P(()=>{let p=new Ok(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap)),Object.keys(e).forEach(m=>{let[f,g]=Xn(m),y=[];y[g]=e[m],d[f]=y,this.keepIntermediateTensors&&(this.clonedTensorsMap[f]=this.cloneTensorList(y))});let c=this.getFrozenTensorIds(d),h={};for(let m=0;mwn(m,d,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=NH(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let p=i[u.id];p===1?(u.dispose(),delete i[u.id]):p!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.clonedTensorsMap||(Object.values(this.clonedTensorsMap).forEach(e=>{for(let t of e)t&&!t.isDisposed&&t.dispose()}),this.clonedTensorsMap=null)}getIntermediateTensors(){return this.clonedTensorsMap}async _executeAsync(e,t,n=!1,a={},r={}){this.disposeIntermediateTensors(),n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepIntermediateTensors=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(d){this.keepIntermediateTensors=!1,console.warn(d.message)}let s=new Ok(this.weightMap,a,r,this.functionExecutorMap);this.keepIntermediateTensors&&(this.clonedTensorsMap=this.cloneTensorMap(this.weightMap));let i=await this.executeWithControlFlow(e,s,t,n),o=t.map(d=>wn(d,i,s)),l=o.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),p=new Set([...l,...u,...this.weightIds]);return Object.values(i).forEach(d=>{d.forEach(c=>{c&&!c.isDisposed&&!p.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(p),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[Xn(b)[0]]),i=n.map(b=>Xn(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:p,syncInputs:d}=Lk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[x,w]=Xn(b),I=[];I[w]=e[b],h[x]=I});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let b=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(b)}p==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!T2(b)&&!wn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw p!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let p=t.pop();n.currentContext=p.contexts;let d="";if(p.node.op==="Enter"&&k("isConstant",p.node,a,n)&&([d]=Sr(p.node.name,n)),a[p.node.name]==null){let c=Pk(p.node,a,n,this._resourceManager);d||([d]=Sr(p.node.name,n));let h=n.currentContext;v.isPromise(c)?u.push(c.then(m=>(a[d]=m,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(m)),n.currentContext=h,this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l),m))):(a[d]=c,this.keepIntermediateTensors&&(this.clonedTensorsMap[d]=this.cloneTensorList(c)),this.checkTensorForDisposal(d,p.node,a,n,s,i,o),this.processChildNodes(p.node,t,n,a,r,l))}else this.processChildNodes(p.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Sr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!wn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!wn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Xn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){var t,n;let a={};for(let r in e){let s=(n=(t=this._signature)===null||t===void 0?void 0:t.inputs)===null||n===void 0?void 0:n[r];s!=null?a[s.name]=e[r]:a[r]=e[r]}return a}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Xn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>{var n,a;let r=(a=(n=this._signature)===null||n===void 0?void 0:n.outputs)===null||a===void 0?void 0:a[t];return r!=null?r.name:t},{})}checkOutputs(e){e.forEach(t=>{let[n]=Xn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},N6=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},C6="?tfjs-format=file",E6="model.json",T0=class{constructor(e,t={},n=Gt){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new N6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new ix(Fk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Fk.Instance.transformGraph(e.modelInitializer);this.initializer=new ix(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializerSignature=e.initializerSignature}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}addStructuredOutputNames(e){if(this.structuredOutputKeys){let t=e instanceof Te?[e]:e,n={};return t.forEach((a,r)=>n[this.structuredOutputKeys[r]]=a),n}return e}predict(e,t){let n=this.execute(e,this.outputNodes);return this.addStructuredOutputNames(n)}async predictAsync(e,t){let n=await this.executeAsync(e,this.outputNodes);return this.addStructuredOutputNames(n)}normalizeInputs(e){var t;if(!(e instanceof Te)&&!Array.isArray(e)){let r=(t=this.signature)===null||t===void 0?void 0:t.inputs;if(r!=null)for(let s in r){let i=r[s];i.resourceId!=null&&(e[s]=this.resourceIdToCapturedInput[i.resourceId])}return e}e=Array.isArray(e)?e:[e];let n=Object.keys(this.resourceIdToCapturedInput).length;if(e.length+n!==this.inputNodes.length)throw new Error(`Input tensor count mismatch, the graph model has ${this.inputNodes.length-n} non-resource placeholders, while there are ${e.length} input tensors provided.`);let a=0;return this.inputNodes.reduce((r,s)=>{var i,o,l;let u=(l=(o=(i=this.signature)===null||i===void 0?void 0:i.inputs)===null||o===void 0?void 0:o[s])===null||l===void 0?void 0:l.resourceId;return u!=null?r[s]=this.resourceIdToCapturedInput[u]:r[s]=e[a++],r},{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}executeInitializerGraph(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.execute({},[]):this.initializer.execute({},Object.keys(this.initializerSignature.outputs))}async executeInitializerGraphAsync(){return this.initializer==null?[]:this.initializerSignature==null?this.initializer.executeAsync({},[]):this.initializer.executeAsync({},Object.keys(this.initializerSignature.outputs))}setResourceIdToCapturedInput(e){if(this.resourceIdToCapturedInput={},this.initializerSignature){let t=this.initializerSignature.outputs,n=Object.keys(t);for(let a=0;a1?n:n[0]}async executeAsync(e,t){this.resourceIdToCapturedInput==null&&this.setResourceIdToCapturedInput(await this.executeInitializerGraphAsync()),e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&(this.initializer.dispose(),this.resourceIdToCapturedInput&&Ee(this.resourceIdToCapturedInput)),this.resourceManager.dispose()}};async function _6(e,t={},n=Gt){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=$6(e));let a=new T0(e,t,n);return await a.load(),a}function A6(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide model artifacts or an IOHandler that loads the model");let t;if(e instanceof Array){let[a,r]=e;if(!a)throw new Error("modelJSON must be the first element of the array");if(!r||!(r instanceof ArrayBuffer))throw new Error("An ArrayBuffer of weights must be the second element of the array");if(!("modelTopology"in a))throw new Error("Model JSON is missing 'modelTopology'");if(!("weightsManifest"in a))throw new Error("Model JSON is missing 'weightsManifest'");let s=Gt.getWeightSpecs(a.weightsManifest),i=Gt.getModelArtifactsForJSONSync(a,s,r);t=Gt.fromMemorySync(i)}else if("load"in e)t=e;else if("modelTopology"in e&&"weightSpecs"in e&&"weightData"in e)t=Gt.fromMemorySync(e);else throw new Error("Unknown model format");let n=new T0(t);return n.load(),n}function $6(e){return e.endsWith("/")||(e=e+"/"),`${e}${E6}${C6}`}var F6="4.1.0",N2={};Ae(N2,{CSVDataset:()=>M2,Dataset:()=>Pu,FileDataSource:()=>V2,TextLineDataset:()=>R2,URLDataSource:()=>U2,array:()=>tj,csv:()=>dj,func:()=>hj,generator:()=>mj,microphone:()=>gj,version_data:()=>yj,webcam:()=>fj,zip:()=>nj});var D6=hs(jh()),R6=hs(jh());function M6(e,t){return Ph(e,t)}function Ph(e,t,n=new Map,a=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(bl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Ph(o,t,n,a);s[i]=l}return a.delete(e),e.__proto__&&(s.__proto__=e.__proto__),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function P6(e,t=E2){return C2(e,t)}function C2(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(bl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=C2(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function E2(e){return e===null?null:bl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function _2(e,t){let n=new Map;Ph(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(v.isPromise(r)){let s=await r;n.set(a,s)}}return Ph(e,t,n)}function bl(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=SI();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Te)&&!(e instanceof Promise)&&!t)}function O6(e){return e==null||L6(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Te||v.isTypedArray(e)}function L6(e){return e===null||typeof e!="object"&&typeof e!="function"}function z6(e){return M6(e,W6)}function W6(e){return e instanceof Te?{value:e.clone(),recurse:!1}:bl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var A2=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},N0=class extends A2{constructor(){super(N0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;at===!0)}rowMajorBatch(e,t=!0){return new K6(this,e,t)}columnMajorBatch(e,t=!0,n=E2){return this.rowMajorBatch(e,t).map(a=>P6(a,n))}concatenate(e,t){return new F2($2([this,e]),t)}take(e){return e<0||e==null?this:new q6(this,e)}skip(e){return e<0||e==null?this:new j6(this,e)}prefetch(e){return new D2(this,e)}shuffle(e,t){return new ej(this,e,t)}serial(){return new H6(this)}},U6=class extends nn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:z6(e),done:!1}}},G6=class extends nn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},H6=class extends nn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},j6=class extends nn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},K6=class extends nn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},X6=class extends nn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},Y6=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Z6=class extends nn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},zk=class extends nn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ua.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Ua.getTensorsInContainer(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},E0=class extends nn{constructor(){super(),this.outputQueue=new N0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},J6=class extends E0{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ua.getTensorsInContainer(e.value),n=this.transform(e.value),a=Ua.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Ua.isTensorInList(r,a)||r.dispose();return!0}},F2=class extends nn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Qr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Qr||(Qr={}));var Q6=class extends nn{constructor(e,t=Qr.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof nn?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await _2(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Qr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Qr.SHORTEST:return{value:null,done:!0};case Qr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},D2=class extends nn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new A2(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},ej=class extends D2{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=R6.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Pu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let a;return this.size===1/0||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Kn(async()=>(await n.iterator()).columnMajorBatch(e,t,aj),a)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Kn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Kn(async()=>(await t.iterator()).filter(a=>P(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Kn(async()=>(await t.iterator()).map(n=>P(()=>e(n))),this.size)}mapAsync(e){let t=this;return Kn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Kn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Kn(async()=>{let a=C0(async()=>({value:await t.iterator(),done:!1}));return B6(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=D6.alea(t||v.now().toString());return Kn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Kn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Pu.MAX_BUFFER_SIZE=1e4;function Kn(e,t=null){return new class extends Pu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function tj(e){return Kn(async()=>$2(e),e.length)}function nj(e){if(!bl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await _2(e,a=>{if(a instanceof Pu)return{value:a.iterator(),recurse:!1};if(bl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return V6(n,Qr.SHORTEST)},t)}function aj(e){if(e===null)return null;let t=e[0];return O6(t)?{value:rj(e),recurse:!1}:{value:null,recurse:!0}}function rj(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Te?$t(e):mn(e)}var R2=class extends Pu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Jd='"',Ep=Symbol("out"),Wk=Symbol("field"),Qd=Symbol("quote"),vb=Symbol("quoteafterquote"),Bk=Symbol("quoteinquote"),M2=class extends Pu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new R2(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new P2(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),mn(n,t)}},O2=class extends nn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ke([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Aa([s,r,o,i],[1,4])}else this.cropBox=Aa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new O2(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=bo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return P(()=>{let t=Qt(le(e,"float32"),0),n;n=_a.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return W(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},L2=class{},z2=class extends nn{split(e){return new sj(this,e)}},sj=class extends z2{constructor(e,t){super(),this.upstream=e,this.impl=new ij(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},ij=class extends E0{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},oj=class extends nn{decodeUTF8(){return new lj(this)}},lj=class extends z2{constructor(e){super(),this.upstream=e,this.impl=new uj(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},uj=class extends E0{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=SI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},W2=class extends oj{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function pj(e,t={},n){let a,r;typeof e=="string"?a=e:(a=e.url,r=cj(e));let s=await(n||v.fetch)(a,r);if(s.ok){let i=new Uint8Array(await s.arrayBuffer());return new W2(i,t)}else throw new Error(s.statusText)}var cj=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function B2(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var V2=class extends L2{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(B2(this.input)&&H().get("IS_NODE")){let e=Ix();this.input=e.readFileSync(this.input.slice(7))}return new W2(this.input,this.options)}},U2=class extends L2{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return B2(this.url)?new V2(this.url,this.fileOptions).iterator():pj(this.url,this.fileOptions)}};function dj(e,t={}){return new M2(new U2(e),t)}function hj(e){let t=C0(e);return Kn(async()=>t)}function mj(e){return Kn(async()=>{let t=await e();return C0(()=>t.next())})}async function fj(e,t){return O2.create(e,t)}async function gj(e){return P2.create(e)}var yj="4.1.0";function ge(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var bj=hr.whereImpl,_0=class extends sc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new qh(this,Ca())}nextDataId(){return _0.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&N.warn(` ============================ Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}makeOutput(e,t,n){return Ca().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ge([e],"where");let t=this.readSync(e.dataId);return bj(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};_0.nextDataId=0;var G2={};Ae(G2,{addImpl:()=>q2,bincountImpl:()=>$0,bincountReduceImpl:()=>K2,castImpl:()=>j2,ceilImpl:()=>X2,concatImpl:()=>F0,equalImpl:()=>Y2,expImpl:()=>J2,expm1Impl:()=>eC,floorImpl:()=>tC,gatherNdImpl:()=>nC,gatherV2Impl:()=>aC,greaterEqualImpl:()=>sC,greaterImpl:()=>rC,lessEqualImpl:()=>oC,lessImpl:()=>iC,linSpaceImpl:()=>lC,logImpl:()=>uC,maxImpl:()=>pC,maximumImpl:()=>cC,minimumImpl:()=>dC,multiplyImpl:()=>D0,negImpl:()=>hC,notEqualImpl:()=>mC,prodImpl:()=>fC,raggedGatherImpl:()=>gC,raggedRangeImpl:()=>yC,raggedTensorToTensorImpl:()=>bC,rangeImpl:()=>M0,rsqrtImpl:()=>xC,scatterImpl:()=>el,sigmoidImpl:()=>dq,simpleAbsImpl:()=>H2,sliceImpl:()=>Lh,sparseFillEmptyRowsImpl:()=>wC,sparseReshapeImpl:()=>kC,sparseSegmentReductionImpl:()=>P0,sqrtImpl:()=>fq,squaredDifferenceImpl:()=>IC,stridedSliceImpl:()=>SC,stringNGramsImpl:()=>O0,stringSplitImpl:()=>L0,stringToHashBucketFastImpl:()=>z0,subImpl:()=>TC,tileImpl:()=>NC,topKImpl:()=>EC,transposeImpl:()=>R0,uniqueImpl:()=>_C});function H2(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;ge(t,"abs");let a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=H2(r),n.makeOutput(a,t.shape,t.dtype)},vj={kernelName:Sl,backendName:"cpu",kernelFunc:xj};function Vt(e){return(t,n,a,r,s)=>{let i=N.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),p=v.getTypedArrayFromDType(s,u),d=t.length,c=n.length,h=v.computeStrides(t),m=v.computeStrides(n),f=N.getBroadcastDims(t,i),g=N.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;yx[C]=0);let w=v.locToIndex(x,d,h),I=b.slice(-c);g.forEach(C=>I[C]=0);let T=v.locToIndex(I,c,m);p[y]=e(a[w],r[T])}return[p,i]}}function Yn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var wj={kernelName:em,backendName:"cpu",kernelFunc:Yn};function Oh(e,t,n="float32"){if(n==="complex64"){let r=Oh(e,t,"float32"),s=Oh(e,t,"float32");return Yn({inputs:{real:r,imag:s},backend:e})}let a=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function pr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var kj={kernelName:Oi,backendName:"cpu",kernelFunc:pr};function di(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var Ij={kernelName:km,backendName:"cpu",kernelFunc:di};function j2(e,t,n,a){if(a==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(a==="bool"){let r=v.toTypedArray([0],n),[s,i]=Vt((o,l)=>o!==l?1:0)(t,[],e,r,"bool");return[i,"bool",s]}throw new Error(`Error in Cast: failed to cast ${n} to ${a}`)}function cs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return pr({inputs:{x:r},backend:n});let p=Oh(n,r.shape,r.dtype),d=cs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),c=Yn({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),c}if(r.dtype==="complex64"){let p=di({inputs:{input:r},backend:n}),d=cs({inputs:{x:p},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(p),d}if(!v.hasEncodingLoss(r.dtype,s)){let p=pr({inputs:{x:r},backend:n});return{dataId:p.dataId,shape:p.shape,dtype:s}}let i=n.data.get(r.dataId).values,[o,l,u]=j2(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}var Sj={kernelName:ki,backendName:"cpu",kernelFunc:cs};function rn(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ge([i,o],e);let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=i.dtype==="string"?N.fromUint8ToStringArray(u):u,c=i.dtype==="string"?N.fromUint8ToStringArray(p):p,h=a||i.dtype,[m,f]=t(i.shape,o.shape,d,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=cs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),p=l.data.get(u.dataId),d=p.complexTensorInfos.real,c=p.complexTensorInfos.imag,h=l.data.get(d.dataId).values,m=l.data.get(c.dataId).values,f=cs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,w=l.data.get(b.dataId).values,[I,T,C]=n(i.shape,o.shape,h,m,x,w),_=l.makeTensorInfo(C,"float32",I),$=l.makeTensorInfo(C,"float32",T),R=Yn({inputs:{real:_,imag:$},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(_),l.disposeIntermediateTensorInfo($),R}else{let u=l.data.get(i.dataId).values,p=l.data.get(o.dataId).values,d=a||i.dtype,[c,h]=t(i.shape,o.shape,u,p,d);return l.makeTensorInfo(h,d,c)}}}function A0(e){return(t,n,a,r,s,i)=>{let o=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,p=v.computeStrides(o),d=v.getTypedArrayFromDType("float32",l),c=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,o),m=N.getBroadcastDims(n,o),f=N.mergeRealAndImagArrays(a,r),g=N.mergeRealAndImagArrays(s,i),y=t.length,b=v.computeStrides(t),x=n.length,w=v.computeStrides(n);if(h.length+m.length===0)for(let I=0;IC[S]=0);let _=v.locToIndex(C,y,b),$=T.slice(-x);m.forEach(S=>$[S]=0);let R=v.locToIndex($,x,w),F=e(f[_*2],f[_*2+1],g[R*2],g[R*2+1]);d[I]=F.real,c[I]=F.imag}return[d,c,o]}}var q2=Vt((e,t)=>e+t),Tj=A0((e,t,n,a)=>({real:e+n,imag:t+a})),xl=rn(fs,q2,Tj),Nj={kernelName:fs,backendName:"cpu",kernelFunc:xl};function $0(e,t,n,a,r){let s=v.sizeFromShape(a),i=v.makeZerosTypedArray(r,n);for(let o=0;o=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function K2(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Pe([r,n],t.dtype);for(let o=0;o=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Ns(e){return(t,n,a)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),p=n||i.dtype,d=v.getArrayFromDType(p,u);for(let c=0;c{let{x:i}=a;if(ge(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,p=t(l,u,r);return o.makeTensorInfo(i.shape,u,p)}}var X2=Ns(e=>Math.ceil(e)),Cj=Ou(Ii,X2),Ej={kernelName:Ii,backendName:"cpu",kernelFunc:Cj};function F0(e,t,n,a){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?N.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;ue===t?1:0),Z2=rn(Wl,Y2,null,"bool"),_j={kernelName:Wl,backendName:"cpu",kernelFunc:Z2},J2=Ns(e=>Math.exp(e)),Q2=Ou(Fi,J2,"float32"),Aj={kernelName:Fi,backendName:"cpu",kernelFunc:Q2},eC=Ns(e=>Math.expm1(e)),$j=Ou(Vl,eC),Fj={kernelName:Vl,backendName:"cpu",kernelFunc:$j},tC=Ns(e=>Math.floor(e)),Dj=Ou(Di,tC),Rj={kernelName:Di,backendName:"cpu",kernelFunc:Dj};function nC(e,t,n,a,r,s,i,o,l){let u=Pe([a,s],n);for(let p=0;p=l/s)throw new Error(`Invalid indices: ${d} does not index into ${o}`);for(let h=0;he>t?1:0),Mj=rn(jl,rC,null,"bool"),Pj={kernelName:jl,backendName:"cpu",kernelFunc:Mj},sC=Vt((e,t)=>e>=t?1:0),Oj=rn(Pi,sC,null,"bool"),Lj={kernelName:Pi,backendName:"cpu",kernelFunc:Oj},iC=Vt((e,t)=>ee<=t?1:0),Bj=rn(Yl,oC,null,"bool"),Vj={kernelName:Yl,backendName:"cpu",kernelFunc:Bj};function lC(e,t,n){let a=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;sMath.log(e)),Uj=Ou(Wi,uC),Gj={kernelName:Wi,backendName:"cpu",kernelFunc:Uj};function pC(e,t,n,a){let r=v.getTypedArrayFromDType(a,v.sizeFromShape(n));for(let s=0;so)&&(o=u)}r[s]=o}return r}var cC=Vt((e,t)=>Math.max(e,t)),Hj=rn(Vi,cC),jj={kernelName:Vi,backendName:"cpu",kernelFunc:Hj},dC=Vt((e,t)=>Math.min(e,t)),qj=rn(ji,dC),Kj={kernelName:ji,backendName:"cpu",kernelFunc:qj},D0=Vt((e,t)=>e*t),Xj=A0((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Df=rn(Ki,D0,Xj),Yj={kernelName:Ki,backendName:"cpu",kernelFunc:Df};function hC(e,t,n){let a=v.createScalarValue(-1,n);return D0([],t,a,e,n)}function Zj(e){let{inputs:t,backend:n}=e,{x:a}=t;ge(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=hC(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Jj={kernelName:nu,backendName:"cpu",kernelFunc:Zj},mC=Vt((e,t)=>e!==t?1:0),Qj=rn(au,mC,null,"bool"),eq={kernelName:au,backendName:"cpu",kernelFunc:Qj};function R0(e,t,n,a,r){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let p=0;pn.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var aq={kernelName:Qi,backendName:"cpu",kernelFunc:nq};function rq(e,t,n){e.forEach((a,r)=>{if(a<0||a>=n){let s=v.indexToLoc(r,t.length,v.computeStrides(t)).join(",");throw new Error(`indices[${s}] = ${a} is not in [0, ${n})`)}})}function sq(e,t){for(let n=0;nr)throw new Error("Ragged splits must not point past values");for(let s=1;sa[s])throw new Error("Ragged splits must be sorted in ascending order")}}function iq(e,t,n,a){let r=[],s=0,i=t.length-1+n.length,o=new Array(i).fill(null).map(()=>[0]);sq(n,a);let l=1;for(let u=0;u=0){let f=o[m],g=f[f.length-1]-h[p];for(let y=p;yr[i]=s)}return t}function Vk(e,t){let n=e.slice(0,t);for(;n.length1)throw new Error("starts must be a scalar or vector");if(r.length>1)throw new Error("limits must be a scalar or vector");if(i.length>1)throw new Error("deltas must be a scalar or vector");let o=t.length===0,l=r.length===0,u=i.length===0,p=[];o||p.push(t[0]),l||p.push(r[0]),u||p.push(i[0]);for(let g=1;g0&&by)w=0;else if(w=Math.ceil(Math.abs((b-y)/x)),w>Uk)throw new Error(`Requires ((limit - start) / delta) <= ${Uk}`);c[g+1]=c[g]+w}let h=c[d],m=v.getArrayFromDType(n,h),f=0;for(let g=0;gn&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,a=e[0],r=0;for(let s=1;s"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,a){let r=e.length,s=[];for(let i=0;i0&&s.length!==e[r-1])throw new Error("Invalid row split size.");return s}calculateOutputIndexValueRowID(e,t,n,a){let r=e.length,s=[];if(r===0)return[];let i=0,o=e[0];if(o>=t.length)throw new Error(`Got currentValueRowId=${o}, which is not less than ${t.length}`);let l=t[o];s.push(l);for(let u=1;u=0&&(++i,i=t.length)throw new Error(`Got nextValueRowId=${p} which is not less than ${t.length}`);l=t[p]}s.push(l)}if(s.length!==e.length)throw new Error("Invalid row ids.");return s}calculateOutputIndex(e,t,n,a){let r=this.getRowPartitionTensor(e),s=this.getRowPartitionTypeByDimension(e);switch(s){case Sa.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,a);case Sa.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,a);default:throw new Error(`Unsupported partition type: ${Sa[s]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case Sa.FIRST_DIM_SIZE:return e[0];case Sa.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case Sa.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${Sa[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let e=this.getFirstDimensionSize(),t=this.calculateOutputSize(e),n=new Array(this.raggedRank+1);n[n.length-1]=1;for(let s=n.length-2;s>=0;--s)n[s]=n[s+1]*t[s+1];let a=Hk(t,!1),r=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(a));if(n[0]*t[0]>0){let s=this.calculateFirstParentOutputIndex(e,n[0],t[0]);for(let i=1;i<=this.raggedRank;++i)s=this.calculateOutputIndex(i-1,s,n[i],t[i]);this.setOutput(this.raggedRank,s,r,a)}return[a,r]}setOutput(e,t,n,a){if(n.length===0)return;let r=this.values,s=n,i=a.slice();i=i.slice(e+1);let o=v.sizeFromShape(i),l=t.length,u=this.defaultValue;if(u.length!==o&&u.length!==1){let h=this.defaultValueShape;P(()=>{let m=W(u,h);u=Zs(m,i).dataSync()})}let p=0,d=0,c=0;for(let h=0;h<=l;++h){let m=h=l){let f=n.length;m=Math.floor(f/o)}if(m>c)if(this.defaultValue.length===1)s.subarray(c*o,m*o).fill(this.defaultValue[0]),c=m;else for(;m>c;){let f=s.slice(c*o);Gk(f,u,o),++c}m<0?(p=h+1,d=c):(p=h,d=c,c=d+1)}}};function Gk(e,t,n){for(let a=0;a= 0`);if(a<-1)throw new Error(`Dimension ${a} must be >= -1`);a=-1}n.push(a)}return n}function bC(e,t,n,a,r,s,i,o,l,u){return new ox(e,t,n,a,r,s,i,o,l,u).compute()}function M0(e,t,n,a){let r=e===t,s=e1;if(r||s||i)return v.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,a);t1/Math.sqrt(e)),pq=Ou(oo,xC),cq={kernelName:oo,backendName:"cpu",kernelFunc:pq};function el(e,t,n,a,r,s,i,o,l,u){let p=[a/r,r],d=e.values,c=t.values;if(a===0)return Pe(n,t.dtype);let h=Pe(p,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let m=0;m=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1/(1+Math.exp(-e))),vC=rt(uo,e=>1/(1+Math.exp(-e))),hq={kernelName:uo,backendName:"cpu",kernelFunc:vC};function Lh(e,t,n,a,r){let s=Kt.isSliceContinous(a,t,n),i=v.sizeFromShape(n),o=v.computeStrides(a);if(s){let d=Kt.computeFlatOffset(t,o);return r==="string"?e.slice(d,d+i):e.subarray(d,d+i)}let l=r==="string"?N.fromUint8ToStringArray(e):e,u=Pe(a,r,l),p=Pe(n,r);for(let d=0;dm+t[f]);p.set(u.get(...h),...c)}return r==="string"?N.fromStringArrayToUint8(p.values):p.values}function hi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ge(r,"slice");let[o,l]=Kt.parseSliceParams(r,s,i);Kt.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,p=Lh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}var mq={kernelName:hu,backendName:"cpu",kernelFunc:hi};function wC(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),p=new Array(o),d=t[1];if(l===0){if(o!==0)throw new Error(N.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,d],y,u,p]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g=l)throw new Error(N.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let b=0;b0){c[d-1]=1;for(let f=d-2;f>=0;--f)c[f]=c[f+1]*a[f+1]}let h=[];if(o>0){h[o-1]=1;for(let f=o-2;f>=0;--f)h[f]=h[f+1]*l[f+1]}let m=v.getArrayFromDType(n,i*o);for(let f=0;f0?r[o-1]+1:0;if(p<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let c=d.reduce((b,x)=>b*x,1),h=v.getArrayFromDType(n,c);if(o===0)return p>0&&h.fill(i),[h,d];if(p<=0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,f=1,g=0,y=r[m];for(;;){let b=0;if(f=b)throw new Error(N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>g&&h.fill(i,g*u,y*u);for(let x=m;x=l[0])throw new Error(N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,a[x],l[0]));for(let I=0;Io)break}return gMath.sqrt(e)),gq=rt(po,e=>Math.sqrt(e)),yq={kernelName:po,backendName:"cpu",kernelFunc:gq},IC=Vt((e,t)=>{let n=e-t;return n*n}),bq=rn(mo,IC),xq={kernelName:mo,backendName:"cpu",kernelFunc:bq};function SC(e,t,n,a){let r=Pe(e,t.dtype);for(let s=0;s0?0:i-o),c=0;c+=l*this.leftPad.length;for(let y=0;yy.forEach(b=>m[f++]=b);for(let y=0;y0){g(e[d+p-1]);for(let y=0;y0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=v.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(p=>{u+=this.getNumNGrams(l,p)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o{let d=t[o+1]-t[o],c=this.getNumNGrams(d,p);this.createNGrams(e,l,i,u,c,p),u+=c}),this.preserveShort&&u===s[o]){let p=t[o+1]-t[o];if(p===0)continue;let d=p+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,d)}}return[i,s]}};function O0(e,t,n,a,r,s,i,o){return new vq(n,a,r,s,i,o).compute(e,t)}function wq(e,t,n,a){if(!e.length)return;if(t.length===0){for(let s=0;se-t),kq=A0((e,t,n,a)=>({real:e-n,imag:t-a})),W0=rn(fo,TC,kq),Iq={kernelName:fo,backendName:"cpu",kernelFunc:W0};function NC(e,t){let n=new Array(e.rank);for(let r=0;r{let n=t.value-e.value;return n===0?e.index-t.index:n};function CC(e,t,n=0,a=e.length-1){for(;a>n;){if(a-n>600){let o=a-n+1,l=t-n+1,u=Math.log(o),p=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*p*(o-p)/o)*Math.sign(l-o/2),c=Math.max(n,Math.floor(t-l*p/o+d)),h=Math.min(a,Math.floor(t+(o-l)*p/o+d));CC(e,t,c,h)}let r=e[t],s=n,i=a;for(v.swap(e,n,t),Fp(e[a],r)>0&&v.swap(e,n,a);s0;)i=i-1}Fp(e[n],r)===0?v.swap(e,n,i):(i=i+1,v.swap(e,i,a)),i<=t&&(n=i+1),t<=i&&(a=i-1)}}function EC(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*a),u=v.getTypedArrayFromDType("int32",i*a);for(let d=0;dm[x]={value:b,index:x}),a{for(let g=0;gnew _0,1);var AC=rt($i,e=>e>=0?e:Math.exp(e)-1),Sq={kernelName:$i,backendName:"cpu",kernelFunc:AC};function $C(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ge([r],"leakyRelu");let i=v.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;ue<0?t*e:e);function FC(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ge([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=Nq(a.shape,r.shape,s,i,"float32");return n.makeTensorInfo(l,"float32",o)}var Cq={kernelName:Ji,backendName:"cpu",kernelFunc:FC},DC=rt(to,e=>Math.max(0,e)),Eq={kernelName:to,backendName:"cpu",kernelFunc:DC},RC=rt(ro,e=>Math.min(Math.max(0,e),6)),_q={kernelName:ro,backendName:"cpu",kernelFunc:RC};function zh(e,t,n,a,r){if(n==="linear")return pr({inputs:{x:t},backend:e});if(n==="relu")return DC({inputs:{x:t},backend:e});if(n==="elu")return AC({inputs:{x:t},backend:e});if(n==="relu6")return RC({inputs:{x:t},backend:e});if(n==="prelu")return FC({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return $C({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return vC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ft(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=v.sizeFromShape(r.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;p.shape=o,d.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var Aq={kernelName:uu,backendName:"cpu",kernelFunc:ft};function MC(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ge([r,s],"matMul");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),b=Nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[y,h,d]:[y,d,h],I=ft({inputs:{x:r},backend:n,attrs:{shape:x}}),T=ft({inputs:{x:s},backend:n,attrs:{shape:w}}),C=i?I.shape[1]:I.shape[2],_=i?I.shape[2]:I.shape[1],$=o?T.shape[1]:T.shape[2],R=Math.max(g,y),F=n.data.get(I.dataId).values,S=n.data.get(T.dataId).values,M=v.computeStrides(I.shape),B=v.computeStrides(T.shape),[U,G,q]=i?[M[0],1,M[1]]:[M[0],M[1],1],[K,Z,J]=o?[1,B[1],B[0]]:[B[1],1,B[0]],ee=_*$,ae=Pe([R,_,$],I.dtype),te=ae.values,ie=n.blockSize;for(let oe=0;oeMath.acos(e)),Mq={kernelName:Tl,backendName:"cpu",kernelFunc:Rq},Pq=rt(Nl,e=>Math.acosh(e)),Oq={kernelName:Nl,backendName:"cpu",kernelFunc:Pq};function Lq(e){let{inputs:t,backend:n}=e,a=t;ge(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Pe(a[0].shape,a[0].dtype),i=s.values;for(let o=0;ob&&(b=I,x=w)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var Hq={kernelName:xi,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ge(r,"argMin");let i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=Vn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],N.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[p,d]=N.computeOutAndReduceShapes(l.shape,i),c=v.sizeFromShape(p),h=v.makeZerosTypedArray(c,"int32"),m=v.sizeFromShape(d),f=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(p,"int32",h)}var qq={kernelName:ic,backendName:"cpu",kernelFunc:jq},Kq=rt(_l,e=>Math.asin(e)),Xq={kernelName:_l,backendName:"cpu",kernelFunc:Kq},Yq=rt(Al,e=>Math.asinh(e)),Zq={kernelName:Al,backendName:"cpu",kernelFunc:Yq},Jq=rt($l,e=>Math.atan(e)),Qq={kernelName:$l,backendName:"cpu",kernelFunc:Jq},e5=Vt((e,t)=>Math.atan2(e,t)),t5=rn(Dl,e5),n5={kernelName:Dl,backendName:"cpu",kernelFunc:t5},a5=rt(Fl,e=>Math.atanh(e)),r5={kernelName:Fl,backendName:"cpu",kernelFunc:a5};function B0(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,p=r.effectiveFilterHeight,d=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Pe(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;wq?q=oe:s==="avg"&&(K+=oe,Z++)}if(isNaN(q))break}let J=S+M*x+C;g[J]=s==="avg"?K/Z:q}}}return f}function PC(e,t,n,a,r=!1,s=!1){let i=Pe(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,p=a.dilationWidth,d=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Pe(t,n,e);for(let g=0;gR&&(R=G,r?F=s?((g*a.inHeight+S)*a.inWidth+B)*a.inChannels+y:(S*a.inWidth+B)*a.inChannels+y:F=M*c+U)}}i.set(F,g,b,T,y)}}return i}function OC(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,p=r.dilationHeight,d=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Pe(r.outShape,n),w=x.values,I=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],_=r.outShape[4];for(let $=0;$be?be=dt:s==="avg"&&(ke+=dt,Se++),isNaN(be))break}if(isNaN(be))break}if(isNaN(be))break}let Le=ue+S;w[Le]=s==="avg"?ke/Se:be}}}}return x}function s5(e,t){let n=Pe(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,p=t.effectiveFilterHeight,d=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=M&&(M=ee,B=G*p*d+K*p+J)}}}n.set(B,f,y,I,$,g)}}}return n}function i5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ge(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=B0(c,r.shape,r.dtype,h,p,"avg");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var o5={kernelName:vi,backendName:"cpu",kernelFunc:i5};function l5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"avgPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=OC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var u5={kernelName:oc,backendName:"cpu",kernelFunc:l5};function p5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"avgPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=p.strideDepth,c=p.strideHeight,h=p.strideWidth,m=p.filterDepth,f=p.filterHeight,g=p.filterWidth,y=p.dilationDepth,b=p.dilationHeight,x=p.dilationWidth,w=p.effectiveFilterDepth,I=p.effectiveFilterHeight,T=p.effectiveFilterWidth,C=w-1-p.padInfo.front,_=T-1-p.padInfo.left,$=I-1-p.padInfo.top,R=Pe(s.shape,"float32"),F=1/(m*f*g),S=n.bufferSync(r);for(let M=0;M=p.outDepth||Math.floor(te)!==te))for(let ie=0;ie=p.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye=p.outWidth||Math.floor(ue)!==ue)continue;let be=S.get(M,te,oe,ue,B);ee+=be}}}R.set(ee*F,M,U,G,q,B)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var c5={kernelName:Zh,backendName:"cpu",kernelFunc:p5};function d5(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ge([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=p.strideHeight,c=p.strideWidth,h=p.filterHeight,m=p.filterWidth,f=p.dilationHeight,g=p.dilationWidth,y=p.effectiveFilterHeight,b=p.effectiveFilterWidth,x=b-1-p.padInfo.left,w=y-1-p.padInfo.top,I=Pe(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,_=Pe(r.shape,"float32",C);for(let $=0;$=p.outHeight||Math.floor(q)!==q))for(let K=0;K=p.outWidth||Math.floor(Z)!==Z)continue;let J=_.get($,q,Z,R);U+=J}}I.set(U*T,$,F,S,R)}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var h5={kernelName:Yh,backendName:"cpu",kernelFunc:d5};function m5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ge([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let p=n.data.get(r.dataId).values,d=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(p.length),g=m.length,y=h.length,b=c.length,x=d.length,w=0,I=0,T=0,C=0;for(let _=0;_=g&&(w=0),I>=x&&(I=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var f5={kernelName:Mi,backendName:"cpu",kernelFunc:m5};function g5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ge([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=ft({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Vn({inputs:{x:h},backend:n,attrs:{perm:u}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=hi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var y5={kernelName:Rl,backendName:"cpu",kernelFunc:g5};function b5(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=$0(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var x5={kernelName:Jh,backendName:"cpu",kernelFunc:b5};function v5(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var w5={kernelName:Qh,backendName:"cpu",kernelFunc:v5},k5=rt(gs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;uf.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(f=>v.sizeFromShape(f.shape)>0);if(l.length===1)return pr({inputs:{x:l[0]},backend:n});if(l[0].dtype==="complex64"){let f=l.map(w=>di({inputs:{input:w},backend:n})),g=l.map(w=>vl({inputs:{input:w},backend:n})),y=wl({inputs:f,backend:n,attrs:{axis:s}}),b=wl({inputs:g,backend:n,attrs:{axis:s}}),x=Yn({inputs:{real:y,imag:b},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),x}let u=l.map(f=>{let g=[-1,v.sizeFromShape(f.shape.slice(s))];return ft({inputs:{x:f},backend:n,attrs:{shape:g}})}),p=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));o=N.computeOutShape(u.map(f=>f.shape),1);let d=u[0].shape[0]===1,c=F0(p,o,t[0].dtype,d),h=N.computeOutShape(l.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var C5={kernelName:Ml,backendName:"cpu",kernelFunc:wl};function LC(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a;ge([r,s],"conv2d");let d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,b=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new qt(c.outShape,r.dtype),I=v.computeStrides(r.shape),T=v.computeStrides(s.shape),C=I[0],_=x?I[1]:I[2],$=x?I[2]:1,R=x?1:I[1],F=w.strides[0],S=x?w.strides[1]:w.strides[2],M=x?w.strides[2]:1,B=x?1:w.strides[1],U=n.data.get(r.dataId).values,G=n.data.get(s.dataId).values,q=w.values;for(let K=0;K=c.inHeight)continue;let ye=ie*T[0],ue=Z+oe*_;for(let be=0;be=c.inWidth)continue;let nt=ye+Le*T[1],st=ue+Ue*$,Qe=nt;for(let at=0;at=u.inDepth)continue;let K=G*$[0],Z=F+q*_[1];for(let J=0;J=u.inHeight)continue;let oe=K+te*$[1],ye=Z+ie*_[2];for(let ue=0;ue=u.inWidth)continue;let Ue=oe+Se*$[2],nt=ye+Le*u.inChannels,st=Ue;for(let Qe=0;QeMath.cos(e)),W5={kernelName:Ni,backendName:"cpu",kernelFunc:z5},B5=rt(Ci,e=>Math.cosh(e)),V5={kernelName:Ci,backendName:"cpu",kernelFunc:B5};function U5(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[p,d,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=Pe([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,I=v.computeStrides(r.shape),T=v.computeStrides(y.shape);for(let C=0;C=p)continue;let B=f>1?(F-$)*(d-1)/(f-1):0,U=g>1?(S-R)*(c-1)/(g-1):0;for(let G=0;G1?$*(d-1)+G*B:.5*($+F)*(d-1);if(q<0||q>d-1){for(let K=0;K1?R*(c-1)+ee*U:.5*(R+S)*(c-1);if(ae<0||ae>c-1){for(let ye=0;ye1?R*(c-1)+K*U:.5*(R+S)*(c-1);if(Z<0||Z>c-1){for(let ae=0;aey+m-b-1:(y,b)=>y+b;for(let y=0;yy+m-b-1:(y,b)=>y+b;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],p=r.shape[3],d=l*s,c=u*s,h=p/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*d*c*h),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=N.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,x=b.left,w=b.top,I=h.outChannels/h.inChannels,T=new qt(h.outShape,r.dtype),C=n.data.get(r.dataId).values,_=n.data.get(s.dataId).values,$=T.values;for(let R=0;R=h.inHeight)continue;let K=G*d[0],Z=F+q*p[1];for(let J=0;J=h.inWidth)continue;let oe=K+te*d[1],ye=Z+ie*h.inChannels,ue=ee,be=oe;for(let ke=0;ke{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,p=a.shape.length,d=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:x,strideHeight:w,strideWidth:I,filterHeight:T,filterWidth:C,dilationHeight:_,dilationWidth:$,outShape:R}=N.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),F=v.sizeFromShape(R),S=R.length,M=v.getArrayFromDType(a.dtype,F);for(let B=0;B=0&&te=0&&oeJ&&(J=be)}}}let ee=v.locToIndex([B,U,q,Z],S,v.computeStrides(R));M[ee]=J}}}return{dataId:l.write(v.toTypedArray(M,a.dtype),R,a.dtype),shape:R,dtype:a.dtype}}},o8={kernelName:yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:_,outShape:$}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===$.length,()=>`Error in ${yh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=v.toNestedArray($,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S=0&&ae=0&&ieK&&(K=oe,Z=ee,J=te)}}}F[Z][J][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},l8={kernelName:gh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,p=v.toNestedArray(a.shape,u.data.get(a.dataId).values),d=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:x,strideWidth:w,filterHeight:I,filterWidth:T,dilationHeight:C,dilationWidth:_,outShape:$}=N.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);v.assert(s.rank===$.length,()=>`Error in ${gh}, dy must have the same rank as output ${$.length}, but got ${s.rank}`);let R=v.toNestedArray($,u.data.get(s.dataId).values),F=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S=0&&ae=0&&ieK&&(K=oe,Z=ae,J=ie)}}}F[S][Z][J][q]+=R[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(F,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ed(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"sum");let o;r.dtype==="bool"?o=cs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=pr({inputs:{x:r},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),p=N.getAxesPermutation(u,l),d=u,c=o;p!=null&&(c=Vn({inputs:{x:o},backend:n,attrs:{perm:p}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,c.shape.length);let[h,m]=N.computeOutAndReduceShapes(c.shape,d),f=N.upcastType(c.dtype,"int32"),g=Oh(n,h,f),y=v.sizeFromShape(m),b=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w=0&&(c=ed({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var c8={kernelName:lm,backendName:"cpu",kernelFunc:p8};function d8(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ge([a,r],"eluGrad");let s=new Float32Array(v.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var h8={kernelName:um,backendName:"cpu",kernelFunc:d8},m8=N.ERF_P,f8=N.ERF_A1,g8=N.ERF_A2,y8=N.ERF_A3,b8=N.ERF_A4,x8=N.ERF_A5,v8=rt(zl,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+m8*n);return t*(1-((((x8*a+b8)*a+y8)*a+g8)*a+f8)*a*Math.exp(-n*n))}),w8={kernelName:zl,backendName:"cpu",kernelFunc:v8};function Wh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ft({inputs:{x:r},backend:n,attrs:{shape:o}})}var k8={kernelName:Bl,backendName:"cpu",kernelFunc:Wh},I8=Vt((e,t)=>e/t),V0=rn(Ai,I8),lx={kernelName:Ai,backendName:"cpu",kernelFunc:V0};function WC(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],p=v.sizeFromShape(u),d=v.getTypedArrayFromDType("float32",p),c=v.getTypedArrayFromDType("float32",p);for(let g=0;g{let{image:a}=e,r=n,s=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,p=r.data.get(a.dataId).values;for(let d=0;d=0&&bMath.floor(e/t)),D8=rn(Ri,F8,null,"int32"),R8={kernelName:Ri,backendName:"cpu",kernelFunc:D8};function M8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=LC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;if(p==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let y=ft({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});f=xl({inputs:{a:f,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else f=xl({inputs:{a:f,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=f;if(p==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let y=ft({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});f=zh(n,f,h,y,m),n.disposeIntermediateTensorInfo(y)}else f=zh(n,f,h,o,m);n.disposeIntermediateTensorInfo(g)}return f}var P8={kernelName:ni,backendName:"cpu",kernelFunc:M8};function O8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=zC({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c}});if(i){let g=f;f=xl({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=zh(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var L8={kernelName:ai,backendName:"cpu",kernelFunc:O8};function z8(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=v.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,p,d]=N.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=nC(c,h,a.dtype,u,o,p,d,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var W8={kernelName:Hl,backendName:"cpu",kernelFunc:z8};function B8(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ge([r,s],"gatherV2");let l=v.parseAxisParam(i,r.shape)[0],u=n.data.get(s.dataId).values,p=r.shape[l];for(let w=0;w=0,()=>`GatherV2: the index value ${I} is not in [0, ${p-1}]`)}let d=o;o==null&&(d=0);let c=v.sizeFromShape(s.shape),h=N.segment_util.collectGatherOpShapeInfo(r,s,l,d),m=ft({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),f=ft({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),g=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],y=n.bufferSync(f),b=n.bufferSync(m),x=aC(b,y,g);return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var V8={kernelName:Gl,backendName:"cpu",kernelFunc:B8};function U8(e){let{inputs:t,backend:n}=e,{input:a}=t,r=v.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ft({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=WC(o,!0,n),u=ft({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var G8={kernelName:cm,backendName:"cpu",kernelFunc:U8},H8=rt(ql,e=>Number.isFinite(e)?1:0,"bool"),j8={kernelName:ql,backendName:"cpu",kernelFunc:H8},q8=rt(Kl,e=>Math.abs(e)===1/0?1:0,"bool"),K8={kernelName:Kl,backendName:"cpu",kernelFunc:q8},X8=rt(Li,e=>Number.isNaN(e)?1:0,"bool"),Y8={kernelName:Li,backendName:"cpu",kernelFunc:X8};function Z8(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=lC(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var J8={kernelName:hm,backendName:"cpu",kernelFunc:Z8},Q8=rt(Zl,e=>Math.log1p(e)),eK={kernelName:Zl,backendName:"cpu",kernelFunc:Q8},tK=Vt((e,t)=>e&&t),nK=rn(Jl,tK,null,"bool"),aK={kernelName:Jl,backendName:"cpu",kernelFunc:nK},rK=rt(Ql,e=>e?0:1,"bool"),sK={kernelName:Ql,backendName:"cpu",kernelFunc:rK},iK=Vt((e,t)=>e||t),oK=rn(eu,iK,null,"bool"),lK={kernelName:eu,backendName:"cpu",kernelFunc:oK};function uK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ge(r,"LRN");let u=r.shape[3],p=u-1,d=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,p),x=0;for(;y<=b;y++){let w=d[y];x+=w*w}return x}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l),d;if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))d=pr({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),m=B0(c,r.shape,r.dtype,h,p,"max");d=n.makeTensorInfo(p.outShape,r.dtype,m.values)}return d}var fK={kernelName:Ui,backendName:"cpu",kernelFunc:mK};function gK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;ge(r,"maxPool3d");let p=N.computePool3DInfo(r.shape,s,i,1,o,l,u),d=n.data.get(r.dataId).values,c=OC(d,r.shape,r.dtype,v.computeStrides(r.shape),p,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var yK={kernelName:hc,backendName:"cpu",kernelFunc:gK};function bK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;ge([r,s],"maxPool3DGrad");let p=N.computePool3DInfo(s.shape,i,o,1,l,u),d=n.bufferSync(s),c=s5(d,p),h=p.strideDepth,m=p.strideHeight,f=p.strideWidth,g=p.dilationDepth,y=p.dilationHeight,b=p.dilationWidth,x=p.effectiveFilterDepth,w=p.effectiveFilterHeight,I=p.effectiveFilterWidth,T=x-1-p.padInfo.front,C=I-1-p.padInfo.left,_=w-1-p.padInfo.top,$=Pe(s.shape,"float32"),R=n.bufferSync(r);for(let F=0;F=p.outDepth||Math.floor(ee)!==ee))for(let ae=0;ae=p.outHeight||Math.floor(te)!==te))for(let ie=0;ie=p.outWidth||Math.floor(oe)!==oe)continue;let ye=x*w*I-1-c.get(F,ee,te,oe,S),ue=J*w*I+ae*I+ie,be=ye===ue?1:0;if(be===0)continue;let ke=R.get(F,ee,te,oe,S);Z+=ke*be}}}$.set(Z,F,M,B,U,S)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var xK={kernelName:gm,backendName:"cpu",kernelFunc:bK};function vK(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ge([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=n.data.get(o.dataId).values,m=Pe(c.outShape,o.dtype,PC(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,b=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,I=w-1-c.padInfo.left,T=x-1-c.padInfo.top,C=Pe(o.shape,"float32"),_=n.data.get(r.dataId).values,$=Pe(r.shape,"float32",_);for(let R=0;R=c.outHeight||Math.floor(K)!==K))for(let Z=0;Z=c.outWidth||Math.floor(J)!==J)continue;let ee=x*w-1-m.get(R,K,J,F),ae=q*w+Z,te=ee===ae?1:0;if(te===0)continue;let ie=$.get(R,K,J,F);G+=ie*te}}C.set(G,R,S,M,F)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var wK={kernelName:fm,backendName:"cpu",kernelFunc:vK};function kK(e,t,n,a,r){let s=v.computeStrides(t),i=B0(e,t,n,s,r,"max"),o=PC(e,t,n,r,!0,a);return[i.values,o.values]}var IK={kernelName:ym,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ge(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,p=N.computePool2DInfo(a.shape,r,s,[1,1],i),[d,c]=kK(u,a.shape,a.dtype,o,p),h=l.write(d,p.outShape,a.dtype),m=l.write(c,p.outShape,a.dtype);return[{dataId:h,shape:p.outShape,dtype:a.dtype},{dataId:m,shape:p.outShape,dtype:"int32"}]}};function SK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=v.parseAxisParam(s,r.shape),l=N.computeOutAndReduceShapes(r.shape,o)[1],u=v.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([u]));p.push(d);let c=cs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(c);let h=V0({inputs:{a:c,b:d},backend:n});p.push(h);let m=ed({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var TK={kernelName:Gi,backendName:"cpu",kernelFunc:SK};function NK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ge(r,"min");let o=v.parseAxisParam(s,r.shape),l=o,u=N.getAxesPermutation(l,r.shape.length),p=r;u!=null&&(p=Vn({inputs:{x:r},backend:n,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,p.shape.length);let[d,c]=N.computeOutAndReduceShapes(p.shape,l),h=v.sizeFromShape(c),m=v.makeZerosTypedArray(v.sizeFromShape(d),p.dtype),f=n.data.get(p.dataId).values;for(let y=0;yb[0]+r.shape[x]+b[1]),l=s.map(b=>b[0]),u=s.map((b,x)=>b[0]+r.shape[x]),p=i==="reflect"?0:1,d=n.data.get(r.dataId).values,c=r.shape.length,h=v.computeStrides(r.shape),m=v.sizeFromShape(o),f=o.length,g=v.computeStrides(o),y=v.getTypedArrayFromDType(r.dtype,m);for(let b=0;b=u[I]&&(x[I]=(u[I]-1)*2-x[I]+p);x=x.map((I,T)=>I-l[T]);let w=v.locToIndex(x,c,h);y[b]=d[w]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var _K={kernelName:qi,backendName:"cpu",kernelFunc:EK},AK=Vt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),$K=rn(tu,AK),FK={kernelName:tu,backendName:"cpu",kernelFunc:$K},DK=hs(jh());function VC(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],r.shape),u=BC({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),p=N.expandShapeToKeepDim(u.shape,l),d=ft({inputs:{x:u},backend:n,attrs:{shape:p}}),c=W0({inputs:{a:r,b:d},backend:n}),h=Q2({inputs:{x:c},backend:n}),m=ed({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ft({inputs:{x:m},backend:n,attrs:{shape:p}}),g=V0({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var RK={kernelName:ho,backendName:"cpu",kernelFunc:VC};function MK(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ge(r,"multinomial");let l=o?r:VC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],p=l.shape[1],d=n.data.get(l.dataId).values,c=[u,s],h=v.makeZerosTypedArray(v.sizeFromShape(c),"int32");for(let m=0;m=0&&d[c]{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=Wh({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=wl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var YK={kernelName:lu,backendName:"cpu",kernelFunc:GC};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ge(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),d=r.shape.length,c=v.computeStrides(r.shape),h=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),g=v.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;yw+l[I]),x=v.locToIndex(b,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var HC={kernelName:Yi,backendName:"cpu",kernelFunc:ZK},JK=Vt((e,t)=>Math.pow(e,t)),QK=rn(Zi,JK),eX={kernelName:Zi,backendName:"cpu",kernelFunc:QK};function tX(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(y=>n.data.get(y.dataId).values),u=r.map(y=>y.shape),p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,[c,h,m]=gC(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(y=>n.makeTensorInfo([y.length],"int32",y)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var nX={kernelName:xm,backendName:"cpu",kernelFunc:tX};function aX(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=yC(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var rX={kernelName:vm,backendName:"cpu",kernelFunc:aX};function sX(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,c=o.map(g=>n.data.get(g.dataId).values),h=o.map(g=>g.shape),[m,f]=bC(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var iX={kernelName:wm,backendName:"cpu",kernelFunc:sX};function oX(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=M0(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var lX={kernelName:mc,backendName:"cpu",kernelFunc:oX},uX=rt(eo,e=>1/e),pX={kernelName:eo,backendName:"cpu",kernelFunc:uX};function cX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ge(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,p]=o,[d,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,u,p,m])),y=[s&&u>1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=0,w=y[0]/b[0],I=y[1]/b[1];for(let T=0;T1?u-1:u,i&&h>1?p-1:p],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],x=n.data.get(s.dataId).values,w=0;for(let I=0;I1?c-1:c,s&&p>1?h-1:h],b=[s&&u>1?u-1:u,s&&p>1?p-1:p],x=y[0]/b[0],w=y[1]/b[1],I=0;for(let T=0;T1?p-1:p,i&&m>1?d-1:d],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/b[0],w=y[1]/b[1],I=1/x,T=1/w,C=Math.ceil(I)*2+2,_=Math.ceil(T)*2+2;for(let $=0;$=h)continue;let te=R+ae*l[1],ie=ae*x,oe=Math.min(p-1,i?Math.round(ie):Math.floor(ie));if(F===oe)for(let ye=0;ye<_;ye++){let ue=ye+K;if(ue<0||ue>=m)continue;let be=te+ue*l[2],ke=ue*w,Se=Math.min(d-1,i?Math.round(ke):Math.floor(ke));U===Se&&(J+=g[be+Z])}}f[G+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var bX={kernelName:Im,backendName:"cpu",kernelFunc:yX};function xX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ge(r,"reverse");let i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return pr({inputs:{x:r},backend:n});let l=new qt(r.shape,r.dtype),u=n.bufferSync(r);for(let p=0;pc[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var vX={kernelName:so,backendName:"cpu",kernelFunc:xX},wX={kernelName:Tu,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(a.shape)),[u,p,d,c]=a.shape,[h,m]=N.getImageCenter(i,p,d),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let x=0;x=0&&M=0&&B{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),IX={kernelName:io,backendName:"cpu",kernelFunc:kX};function SX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=el(h,m,i,d,u,l,o,p,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var TX={kernelName:pu,backendName:"cpu",kernelFunc:SX};function NX(e,t){let n=0,a=e.length,r=0;for(;n1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let m=0;me>=0?RX*e:DX*(Math.exp(e)-1)),PX={kernelName:du,backendName:"cpu",kernelFunc:MX},OX=rt(fu,e=>e<0?-1:e>0?1:0),LX={kernelName:fu,backendName:"cpu",kernelFunc:OX},zX=rt(lo,e=>Math.sin(e)),WX={kernelName:lo,backendName:"cpu",kernelFunc:zX},BX=rt(mu,e=>Math.sinh(e)),VX={kernelName:mu,backendName:"cpu",kernelFunc:BX},UX=11920928955078125e-23,jk=Math.log(UX)+2,GX=rt(gu,e=>{let t=e>-jk,n=eNumber(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var XX={kernelName:fc,backendName:"cpu",kernelFunc:KX};function YX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,p,d]=kC(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var ZX={kernelName:xu,backendName:"cpu",kernelFunc:YX};function JX(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=P0(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var QX={kernelName:gc,backendName:"cpu",kernelFunc:JX};function eY(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${s.shape}`);if(r.shape[0]!==s.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,p]=P0(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var tY={kernelName:yc,backendName:"cpu",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f;switch(s.dtype){case"bool":{let g=n.bufferSync(s),y=Boolean(n.data.get(i.dataId).values[0]);f=el(m,g,o,c,p,u,l,d,y,h);break}case"float32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=el(m,g,o,c,p,u,l,d,y,h);break}case"int32":{let g=n.bufferSync(s),y=n.data.get(i.dataId).values[0];f=el(m,g,o,c,p,u,l,d,y,h);break}case"string":{let g=n.bufferSync(s),y=v.decodeString(n.data.get(i.dataId).values[0]);f=el(m,g,o,c,p,u,l,d,y,h);break}default:throw new Error(`Unsupported type ${s.dtype}`)}return n.makeTensorInfo(o,f.dtype,f.values)}var aY={kernelName:Nm,backendName:"cpu",kernelFunc:nY};function rY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=hi({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=d,h})}var sY={kernelName:bu,backendName:"cpu",kernelFunc:rY},iY={kernelName:bc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ge(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),lY={kernelName:bs,backendName:"cpu",kernelFunc:oY};function uY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a;ge(r,"stridedSlice");let{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=ft({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(b,x,w),C=hi({inputs:{x:r},backend:n,attrs:{begin:b,size:T}});I=ft({inputs:{x:C},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(C)}else{let T=n.bufferSync(r),C=SC(h,T,w,b);I=n.makeTensorInfo(m,C.dtype,C.values)}return I}var pY={kernelName:vu,backendName:"cpu",kernelFunc:uY};function cY(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.data.get(p.dataId).values,h=n.data.get(d.dataId).values,[m,f]=O0(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var dY={kernelName:xc,backendName:"cpu",kernelFunc:cY};function hY(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,p,d]=L0(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var mY={kernelName:vc,backendName:"cpu",kernelFunc:hY};function fY(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=z0(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var gY={kernelName:wc,backendName:"cpu",kernelFunc:fY},yY=rt(go,e=>Math.tan(e)),bY={kernelName:go,backendName:"cpu",kernelFunc:yY},xY=rt(yo,e=>Math.tanh(e)),vY={kernelName:yo,backendName:"cpu",kernelFunc:xY};function wY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ge(r,"tile");let i=NC(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var kY={kernelName:ys,backendName:"cpu",kernelFunc:wY};function IY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ge(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=EC(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var SY={kernelName:wu,backendName:"cpu",kernelFunc:IY};function TY(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=v.computeStrides(r.shape),b=y[0],x=y[1],w=y[2],I=v.computeStrides(g),T=I[0],C=I[1],_=I[2],$=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));$.fill(l);let R=a.data.get(r.dataId).values,F=a.data.get(s.dataId).values;for(let S=0;St-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return v.clamp(0,n,t-1)}function EY(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return v.clamp(0,n,t-1)}function _Y(e,t){return e}function AY(e,t){return v.clamp(0,e,t-1)}function Dp(e,t,n,a,r,s,i,o,l,u,p){let d=i*a+o*r+l*s+u;return 0<=o&&on.disposeIntermediateTensorInfo(m)),h}var LY={kernelName:kc,backendName:"cpu",kernelFunc:OY},zY=[Dq,vj,Mq,Oq,Nj,zq,Bq,Uq,Hq,qq,Xq,Zq,Qq,n5,r5,o5,u5,c5,h5,$q,f5,y5,x5,w5,Sj,Ej,I5,wj,T5,C5,E5,A5,F5,R5,P5,L5,W5,V5,G5,j5,K5,Y5,J5,Q5,t8,a8,s8,i8,o8,l8,c8,Sq,h8,_j,w8,Aj,k8,Fj,E8,_8,$8,Rj,R8,P8,L8,W8,V8,Pj,Lj,kj,G8,N5,j8,K8,Y8,Tq,Wj,Vj,J8,Gj,eK,aK,sK,lK,pK,dK,hK,jj,fK,yK,xK,wK,IK,TK,CK,Kj,_K,FK,PK,Yj,Jj,zK,VK,HK,eq,qK,XK,YK,HC,eX,Cq,aq,nX,rX,iX,lX,Ij,lx,pX,Eq,_q,Aq,dX,mX,gX,bX,vX,wX,IX,cq,TX,AX,FX,PX,hq,LX,WX,VX,mq,RK,HX,qX,XX,ZX,QX,tY,aY,sY,yq,iY,xq,lY,pY,dY,mY,gY,Iq,u8,bY,vY,kY,SY,NY,tq,RY,PY,LY,KK];for(let e of zY)Ic(e);var jC={};Ae(jC,{assertNotComplex:()=>zu,bindCanvasToFramebuffer:()=>YY,bindColorTextureToFramebuffer:()=>lh,bindTextureToProgramUniformSampler:()=>lE,bindTextureUnit:()=>sE,bindVertexBufferToProgramAttribute:()=>px,callAndCheck:()=>ce,canBeRepresented:()=>KC,createFragmentShader:()=>ZC,createFramebuffer:()=>rE,createProgram:()=>JC,createStaticIndexBuffer:()=>tE,createStaticVertexBuffer:()=>eE,createTexture:()=>nE,createVertexShader:()=>YC,getBatchDim:()=>mi,getExtensionOrThrow:()=>Rp,getFramebufferErrorMessage:()=>uE,getMaxTexturesInShader:()=>hE,getNumChannels:()=>KY,getProgramUniformLocation:()=>oE,getProgramUniformLocationOrThrow:()=>iE,getRowsCols:()=>fi,getShapeAs3D:()=>Pp,getTextureShapeFromLogicalShape:()=>cE,getWebGLDisjointQueryTimerVersion:()=>mE,getWebGLErrorMessage:()=>XC,getWebGLMaxTextureSize:()=>dE,hasExtension:()=>ca,isCapableOfRenderingToFloatTexture:()=>fE,isDownloadFloatTextureEnabled:()=>gE,isReshapeFree:()=>ec,isWebGLFenceEnabled:()=>yE,isWebGLVersionEnabled:()=>dx,linkProgram:()=>QC,logShaderSourceAndInfoLog:()=>H0,resetMaxTextureSize:()=>ZY,resetMaxTexturesInShader:()=>JY,unbindColorTextureFromFramebuffer:()=>cx,unbindTextureUnit:()=>XY,validateFramebuffer:()=>Mp,validateProgram:()=>oh,validateTextureSize:()=>aE});var qs={},eh={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function qC(e,t){qs[e]=t}function Ka(e,t){if(!(e in qs)||t!=null){let a=BY(e,t);if(a!==null)qs[e]=a;else return console.log("Could not get context for WebGL version",e),null}let n=qs[e];return n==null||n.isContextLost()?(delete qs[e],Ka(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),qs[e])}function WY(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function BY(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?WY(e):t;return n.addEventListener("webglcontextlost",a=>{a.preventDefault(),delete qs[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(eh.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",eh)||n.getContext("experimental-webgl",eh):n.getContext("webgl2",eh)}var Qp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Qp||(Qp={}));var pa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pa||(pa={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function td(e,t){return[t,e]}function VY(e,t){return e*t}function th(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Lu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function UY(e,t){let[n,a]=Lu(e,t);return n*a*4}function G0(e,t){let n=e,a,r,s,i,o,l,u,p,d,c;return H().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,p=1,d=n.HALF_FLOAT,c=n.FLOAT,l=n.RGBA8):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,p=4,d=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT,l=e.RGBA),{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:p,textureTypeHalfFloat:d,textureTypeFloat:c}}function ce(e,t){let n=t();return H().getBool("DEBUG")&&GY(e),n}function GY(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+XC(e,t))}var HY=596e-10,jY=65504;function KC(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||HYe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function YC(e,t){let n=Rr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ce(e,()=>e.shaderSource(n,t)),ce(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function ZC(e,t){let n=Rr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ce(e,()=>e.shaderSource(n,t)),ce(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw H0(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var qY=/ERROR: [0-9]+:([0-9]+):/g;function H0(e,t){let n=qY.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(` `),s=r.length.toString().length+2,i=r.map((d,c)=>v.rightPad((c+1).toString(),s)+d),o=0;for(let d=0;de.createProgram(),"Unable to create WebGLProgram.")}function QC(e,t){if(ce(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function oh(e,t){if(ce(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function eE(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ce(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function tE(e,t){let n=Rr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ce(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function KY(){return H().getNumber("WEBGL_VERSION")===2?1:4}function nE(e){return Rr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function aE(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function rE(e){return Rr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function px(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),ce(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),ce(e,()=>e.enableVertexAttribArray(o)),!0)}function sE(e,t,n){pE(e,n),ce(e,()=>e.activeTexture(e.TEXTURE0+n)),ce(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function XY(e,t){pE(e,t),ce(e,()=>e.activeTexture(e.TEXTURE0+t)),ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function iE(e,t,n){return Rr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function oE(e,t,n){return e.getUniformLocation(t,n)}function lE(e,t,n,a){ce(e,()=>sE(e,t,a)),ce(e,()=>e.uniform1i(n,a))}function YY(e){ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ce(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ce(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function lh(e,t,n){ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function cx(e,t){ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ce(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Mp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+uE(e,t))}function uE(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rr(e,t,n){let a=ce(e,()=>t());if(a==null)throw new Error(n);return a}function pE(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(an){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function mi(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function fi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Pp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[mi(e),...fi(e)]),t}function cE(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE"),a=H().getNumber("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE");a===1/0&&H().getBool("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE")&&(a=n/2),t&&(n=n*2,a=a*2,e=e.map((o,l)=>l>=e.length-2?v.nearestLargerEven(e[l]):e[l]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e),s=null;e.length<=1&&r<=n?s=[1,r]:e.length===2&&e[0]<=n&&e[1]<=n?s=e:e.length===3&&e[0]*e[1]<=n&&e[2]<=n?s=[e[0]*e[1],e[2]]:e.length===3&&e[0]<=n&&e[1]*e[2]<=n?s=[e[0],e[1]*e[2]]:e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n?s=[e[0]*e[1]*e[2],e[3]]:e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n&&(s=[e[0],e[1]*e[2]*e[3]]);let i=s!=null&&Math.max(...s)>a&&Math.min(...s)<=(t?2:1)&&Math.min(...s)>0;if(s==null||i)if(t){let o=mi(e),l=2,u=2;e.length&&([l,u]=fi(e)),r=o*(l/2)*(u/2),s=v.sizeToSquarishShape(r).map(p=>p*2)}else s=v.sizeToSquarishShape(r);return s}function nh(e){return e%2===0}function ec(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||nh(n)&&nh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&nh(e[0])&&nh(t[0])}var uh,ph;function dE(e){if(uh==null){let t=Ka(e);uh=t.getParameter(t.MAX_TEXTURE_SIZE)}return uh}function ZY(){uh=null}function JY(){ph=null}function hE(e){if(ph==null){let t=Ka(e);ph=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ph)}function mE(e){if(e===0)return 0;let t,n=Ka(e);return ca(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ca(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ca(e,t){return e.getExtension(t)!=null}function dx(e){try{if(Ka(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function fE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ca(t,"OES_texture_float"))return!1}else if(!ca(t,"EXT_color_buffer_float"))return!1;return hx(t)}function gE(e){if(e===0)return!1;let t=Ka(e);if(e===1){if(!ca(t,"OES_texture_float")||!ca(t,"WEBGL_color_buffer_float"))return!1}else{if(ca(t,"EXT_color_buffer_float"))return hx(t);let n="EXT_color_buffer_half_float";if(ca(t,n)){let a=t.getExtension(n);return QY(t,a)}return!1}return hx(t)}function hx(e){let t=G0(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function QY(e,t){let n=G0(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function yE(e){return e!==2?!1:Ka(e).fenceSync!=null}function zu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var ve=H();ve.registerFlag("HAS_WEBGL",()=>ve.getNumber("WEBGL_VERSION")>0);ve.registerFlag("WEBGL_VERSION",()=>dx(2)?2:dx(1)?1:0);ve.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);ve.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>ve.get("WEBGL_VERSION")===2);ve.registerFlag("WEBGL_CPU_FORWARD",()=>!0);ve.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);ve.registerFlag("WEBGL_PACK",()=>ve.getBool("HAS_WEBGL"));ve.registerFlag("WEBGL_PACK_NORMALIZATION",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_CLIP",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_PACK_REDUCE",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_LAZILY_UNPACK",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_CONV_IM2COL",()=>ve.getBool("WEBGL_PACK"));ve.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>dE(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>hE(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=ve.getNumber("WEBGL_VERSION");return e===0?0:mE(e)});ve.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>ve.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Nc.isMobile());ve.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>fE(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>ve.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:ve.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));ve.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>gE(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_FENCE_API_ENABLED",()=>yE(ve.getNumber("WEBGL_VERSION")));ve.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>ve.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);ve.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});ve.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Nc.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});ve.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);ve.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);ve.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);ve.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);ve.registerFlag("WEBGL_EXP_CONV",()=>!1);ve.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>ve.getBool("IS_TEST"));ve.registerFlag("WEBGL_MAX_SIZE_FOR_NARROW_TEXTURE",()=>1/0);ve.registerFlag("WEBGL_AUTO_SQUARIFY_NARROW_TEXTURE_SHAPE",()=>!1);ve.registerFlag("WEBGL2_ISNAN_CUSTOM",()=>!1);ve.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Cn(){let e,t,n,a,r,s,i,o,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=H().getBool("WEBGL2_ISNAN_CUSTOM")?` bool isnan_custom(float val) { uint floatToUint = floatBitsToUint(val); return (floatToUint & 0x7fffffffu) > 0x7f800000u; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `:"",l="",u=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,u=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function To(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Rf(e,t,n="index"){let a=v.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / outShapeStrides[${s}]`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * outShapeStrides[${s}]`:`index -= ${e[s]} * outShapeStrides[${s}]`;return`${i}; ${o};`}).join("")}function eZ(e,t){let n=e.length,a=e.map(s=>`${t}[${s}]`),r=new Array(n-1);r[n-2]=a[n-1];for(let s=n-3;s>=0;--s)r[s]=`(${r[s+1]} * ${a[s+1]})`;return r}function tZ(e,t,n="index"){let a=e.map((s,i)=>i),r=eZ(a,t);return r.map((s,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,l=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${l};`}).join("")}function j0(e){let t=v.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}function q0(){return` int getFlatIndex(ivec3 coords) { return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z; } `}var bE=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,{getBroadcastDims:xE}=N;function nZ(e,t,n){let a=[];if(e.forEach(c=>{let h=v.sizeFromShape(c.shapeInfo.logicalShape);if(c.shapeInfo.isUniform?a.push(`uniform float ${c.name}${h>1?`[${h}]`:""};`):(a.push(`uniform sampler2D ${c.name};`),a.push(`uniform int offset${c.name};`)),n.enableShapeUniforms){let{uniformShape:m}=K0(n.packedInputs,c.shapeInfo.logicalShape,c.shapeInfo.texShape);switch(m.length){case 1:a.push(`uniform int ${c.name}Shape;`);break;case 2:a.push(`uniform ivec2 ${c.name}Shape;`);break;case 3:a.push(`uniform ivec3 ${c.name}Shape;`);break;case 4:a.push(`uniform ivec4 ${c.name}Shape;`);break;default:break}a.push(`uniform ivec2 ${c.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:a.push("uniform int outShape;");break;case 2:a.push("uniform ivec2 outShape;"),a.push("uniform int outShapeStrides;");break;case 3:a.push("uniform ivec3 outShape;"),a.push("uniform ivec2 outShapeStrides;");break;case 4:a.push("uniform ivec4 outShape;"),a.push("uniform ivec3 outShapeStrides;");break;default:break}a.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(c=>{a.push(`uniform ${c.type} ${c.name}${c.arrayIndex?`[${c.arrayIndex}]`:""};`)});let r=a.join(` `),s=e.map(c=>aZ(c,t,n.packedInputs,n.enableShapeUniforms)).join(` `),i=t.texShape,o=Cn(),l=iZ(o),u,p,d=uZ(o);return t.isPacked?(u=rZ(t.logicalShape,i,n.enableShapeUniforms),p=lZ(o)):(u=sZ(t.logicalShape,i,n.enableShapeUniforms),p=oZ(o)),n.packedInputs&&(d+=hZ),[d,l,p,r,u,s,n.userCode].join(` `)}function Wu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return TZ(e,t);case 1:return CZ(e,t);case 2:return _Z(e,t);case 3:return $Z(e,t);case 4:return DZ(e,t);case 5:return RZ(e);case 6:return MZ(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function vE(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return SZ(e);case 1:return NZ(e,t);case 2:return EZ(e,t);case 3:return AZ(e,t);default:return FZ(e,t)}}function aZ(e,t,n=!1,a){let r="";n?r+=vE(e,a):r+=Wu(e,a);let s=e.shapeInfo.logicalShape,i=t.logicalShape;return s.length<=i.length&&(n?r+=PZ(e,t):r+=OZ(e,t)),r}function rZ(e,t,n){switch(e.length){case 0:return wE();case 1:return mZ(e,t,n);case 2:return kZ(e,t,n);case 3:return gZ(e,t,n);default:return bZ(e,t,n)}}function sZ(e,t,n){switch(e.length){case 0:return wE();case 1:return fZ(e,t,n);case 2:return IZ(e,t,n);case 3:return yZ(e,t,n);case 4:return xZ(e,t,n);case 5:return vZ(e,t);case 6:return wZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function iZ(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function oZ(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function lZ(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function uZ(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${pZ} ${cZ} ${dZ} `}var pZ=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,cZ=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,dZ=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,hZ=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function wE(){return` int getOutputCoords() { return 0; } `}function mZ(e,t,n){let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return a[0]===1?n?` int getOutputCoords() { return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.x * ${a[1]}.0); } `:a[1]===1?n?` int getOutputCoords() { return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.y * ${a[0]}.0); } `:n?` int getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]})); return 2 * (resTexRC.x * ${a[1]} + resTexRC.y); } `}function fZ(e,t,n){return t[0]===1?n?` int getOutputCoords() { return int(resultUV.x * float(outTexShape[1])); } `:` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?n?` int getOutputCoords() { return int(resultUV.y * float(outTexShape[0])); } `:` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:n?` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); return resTexRC.x * outTexShape[1] + resTexRC.y; } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function gZ(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec3(b, r, c); } `;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),s=r*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${a[0]}, ${a[1]})); int index = resTexRC.x * ${a[1]} + resTexRC.y; int b = index / ${s}; index -= b * ${s}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function yZ(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; ${Rf(["r","c","d"],e)} return ivec3(r, c, d); } `;let a=To(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${a} return ivec3(r, c, d); } `}function bZ(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0)); int texelsInBatchN = texelsInBatch * outShape[1]; int b2 = index / texelsInBatchN; index -= b2 * texelsInBatchN; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec4(b2, b, r, c); } `;let a=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),s=r*Math.ceil(e[e.length-2]/2),i=s,o="",l="b, r, c";for(let u=2;u=1?p="coords = 0;":p=o.map(g=>`coords.${d[g+u]} = 0;`).join(` `);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${d[y+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!f)i===1?h=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:h=` return vec4(outputValue.x); `;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${r}() { ${l} coords = getOutputCoords(); ${p} vec4 outputValue = get${a}(${c}); ${h} } `}function OZ(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return` float ${r}() { return sampleTexture(${n}, resultUV); } `;let u=gt(l),p=xE(e.shapeInfo.logicalShape,t.logicalShape),d=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&p.length>=1?c="coords = 0;":c=p.map(f=>`coords.${h[f+d]} = 0;`).join(` `);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+d]}`).join(", "),` float ${r}() { ${u} coords = getOutputCoords(); ${c} return get${a}(${m}); } `}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function K0(e,t,n){let{newShape:a,keptDims:r}=v.squeezeShape(t),s=t.length,i=e&&s===3&&t[0]===1,o=i?t.slice(1):a,l=!e&&s>1&&!v.arraysEqual(t,n)&&a.lengthe[n]).join(", ")}function LZ(e,t,n,a){let r=n.map((p,d)=>{let c={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(c.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[d],shapeInfo:c}}),s=r.map(p=>p.shapeInfo),i={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},o=nZ(r,i,t),l=ZC(e.gl,o),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:o,webGLProgram:u,inShapeInfos:s,outShapeInfo:i},kE(e,t,u))}function kE(e,t,n){let a={},r={},s={},i=[],o,l,u,p=null,d=null;d=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(p=e.getUniformLocation(n,"INFINITY",!1));let c=!1;for(let h=0;h{i[m]=e.getUniformLocation(n,h.name,c)}),{uniformLocations:a,customUniformLocations:i,infLoc:p,nanLoc:d,inShapesLocations:r,inTexShapesLocations:s,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}}function Kk(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!v.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function zZ(e,t,n,a,r){t.program.enableShapeUniforms||(Kk(t.inShapeInfos,n),Kk([t.outShapeInfo],[a]));let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s.texture,i[0],i[1]):e.setOutputMatrixTexture(s.texture,i[0],i[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let p=t.program.variableNames[u],d=t.uniformLocations[p],c=t.uniformLocations[`offset${p}`],h=t.inShapesLocations[`${p}Shape`],m=t.inTexShapesLocations[`${p}TexShape`];if(h){let{uniformShape:f}=K0(t.program.packedInputs,l.shape,l.texData.texShape);switch(f.length){case 1:e.gl.uniform1iv(h,new Int32Array(f));break;case 2:e.gl.uniform2iv(h,new Int32Array(f));break;case 3:e.gl.uniform3iv(h,new Int32Array(f));break;case 4:e.gl.uniform4iv(h,new Int32Array(f));break;default:break}}if(m&&e.gl.uniform2i(m,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let f=l.uniformValues;f instanceof Float32Array||(f=new Float32Array(f)),e.gl.uniform1fv(d,f)}return}l.texData.slice!=null&&c!=null&&e.gl.uniform1i(c,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,d,u)}});let o=t.outShapeLocation;if(o)switch(a.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(a.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(a.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(a.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(a.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(a.shape);switch(a.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,a.texData.texShape[0],a.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let p=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(p,d);else if(l.type==="vec2")e.gl.uniform2fv(p,d);else if(l.type==="vec3")e.gl.uniform3fv(p,d);else if(l.type==="vec4")e.gl.uniform4fv(p,d);else if(l.type==="int")e.gl.uniform1iv(p,d);else if(l.type==="ivec2")e.gl.uniform2iv(p,d);else if(l.type==="ivec3")e.gl.uniform3iv(p,d);else if(l.type==="ivec4")e.gl.uniform4iv(p,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function WZ(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let l=i.texData.texShape,{useSqueezeShape:u,uniformShape:p,keptDims:d}=K0(e.packedInputs,i.shape,l),c="",h="",m="";if(p.length===1&&e.packedInputs){let I=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];c=`${I[0]>1}_${I[1]>1}`}else if(p.length===2&&!e.packedInputs)h=`${p[0]>1}_${p[1]>1}`;else if(p.length>2&&!e.packedInputs){let I=v.computeStrides(p);m=`${I[0]===l[1]}_${I[I.length-1]===l[1]}`}let f=i.shape.length,g=p.length===2&&v.arraysEqual(i.shape,l),y=v.sizeFromShape(i.shape)===1,b=N.getBroadcastDims(i.shape,n.shape),x=!e.packedInputs&&f===n.shape.length&&v.arraysEqual(l,n.texData.texShape),w=e.packedInputs||p.length>2?"":`${l[0]>1}_${l[1]>1}`;a+=`${f}_${x}_${u?d:""}_${p.length}_${y}_${b}_${g}_${c}_${h}_${m}_${w}_${o}`}else{let l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`}});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,s}function En(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var BZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Qp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?Rf(["r","c","d"],e):To(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${t.output} = result; } `}},VZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Qp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?Rf(["r","c","d"],e):To(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${t.output} = result; } `}},UZ=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pa.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=` ${bE} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},GZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pa.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=` ${bE} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},HZ={R:0,G:1,B:2,A:3},Xk=class{constructor(e,t=!1,n="RGBA"){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let a=Cn();this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)");let s="";for(let i=0;iFE,createBufferFromOutputTexture:()=>ME,createFloat16MatrixTexture:()=>EE,createFloat16PackedMatrixTexture:()=>$E,createFloat32MatrixTexture:()=>CE,createIndexBuffer:()=>NE,createPackedMatrixTexture:()=>AE,createUnsignedBytesMatrixTexture:()=>_E,createVertexBuffer:()=>TE,createVertexShader:()=>SE,downloadByteEncodedFloatMatrixFromOutputTexture:()=>OE,downloadFloat32MatrixFromBuffer:()=>PE,downloadMatrixFromPackedOutputTexture:()=>zE,downloadPackedMatrixFromBuffer:()=>LE,getInternalFormatForFloat16MatrixTexture:()=>Y0,getInternalFormatForFloat16PackedMatrixTexture:()=>Q0,getInternalFormatForFloat32MatrixTexture:()=>X0,getInternalFormatForPackedMatrixTexture:()=>J0,getInternalFormatForUnsignedBytesMatrixTexture:()=>Z0,uploadDenseMatrixToTexture:()=>DE,uploadPixelDataToTexture:()=>RE});function SE(e){let t=Cn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return YC(e,n)}function TE(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return eE(e,t)}function NE(e){let t=new Uint16Array([0,1,2,2,1,3]);return tE(e,t)}function nd(e,t,n,a,r,s){aE(t,n);let i=nE(e),o=e.TEXTURE_2D;return ce(e,()=>e.bindTexture(o,i)),ce(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ce(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ce(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ce(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?ce(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)):ce(e,()=>e.texStorage2D(o,1,a,t,n)),ce(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function X0(e){return e.internalFormatFloat}function CE(e,t,n,a){let[r,s]=td(t,n);return nd(e,r,s,X0(a),a.textureFormatFloat,e.FLOAT)}function Y0(e){return e.internalFormatHalfFloat}function EE(e,t,n,a){let[r,s]=td(t,n);return nd(e,r,s,Y0(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Z0(e){return e.downloadTextureFormat}function _E(e,t,n,a){let[r,s]=td(t,n);return nd(e,r,s,Z0(a),e.RGBA,e.UNSIGNED_BYTE)}function J0(e){return e.internalFormatPackedFloat}function AE(e,t,n,a){let[r,s]=Lu(t,n);return nd(e,r,s,J0(a),e.RGBA,e.FLOAT)}function Q0(e){return e.internalFormatPackedHalfFloat}function $E(e,t,n,a){let[r,s]=Lu(t,n);return nd(e,r,s,Q0(a),e.RGBA,a.textureTypeHalfFloat)}function FE(e,t,n){return ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),px(e,t,"clipSpacePos",n,3,20,0)&&px(e,t,"uv",n,2,20,12)}function DE(e,t,n,a,r,s){ce(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),H().getNumber("WEBGL_VERSION")===2?ce(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,a,e.RGBA,o,i)):ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function RE(e,t,n){ce(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?ce(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?ce(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):ce(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ce(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ME(e,t,n,a){let r=e.createBuffer();ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return ce(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ce(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function PE(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function OE(e,t,n,a){let[r,s]=td(t,n),i=4,o=new Uint8Array(VY(t*n,i));return ce(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function LE(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(UY(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function zE(e,t,n){let a=new Float32Array(t*n*4);return ce(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var ch=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");if(e!=null?(this.gl=e,qC(t,e)):this.gl=Ka(t),e=this.gl,H().getNumber("WEBGL_VERSION")===2){let r=e;this.createVertexArray=()=>ce(r,()=>r.createVertexArray()),this.bindVertexArray=s=>ce(r,()=>r.bindVertexArray(s)),this.deleteVertexArray=s=>ce(r,()=>r.deleteVertexArray(s)),this.getVertexArray=()=>ce(r,()=>r.getParameter(r.VERTEX_ARRAY_BINDING))}else if(e!=null){let r=e.getExtension("OES_vertex_array_object");if(r==null)throw new Error("All WebGL1 implementations are expected to offer OES_vertex_array_object.");this.createVertexArray=()=>ce(e,()=>r.createVertexArrayOES()),this.bindVertexArray=s=>ce(e,()=>r.bindVertexArrayOES(s)),this.deleteVertexArray=s=>ce(e,()=>r.deleteVertexArrayOES(s)),this.getVertexArray=()=>ce(e,()=>e.getParameter(r.VERTEX_ARRAY_BINDING_OES))}let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Rp(this.gl,r),ca(this.gl,s))this.textureHalfFloatExtension=Rp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ca(this.gl,a))this.colorBufferHalfFloatExtension=Rp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ca(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ca(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=TE(this.gl),this.indexBuffer=NE(this.gl),this.framebuffer=rE(this.gl),this.textureConfig=G0(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ce(e,()=>e.finish()),ce(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ce(e,()=>e.deleteFramebuffer(this.framebuffer)),ce(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ce(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ce(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),CE(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),EE(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),_E(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),RE(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),DE(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),$E(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),AE(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(cx(this.gl,this.framebuffer),this.outputTexture=null),ce(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>OE(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return LE(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return PE(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=ME(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>zE(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=SE(t));let n=JC(t);ce(t,()=>t.attachShader(n,this.vertexShader)),ce(t,()=>t.attachShader(n,e)),QC(t,n);let a;return a=Object.assign(n,{vao:this.createVertexArray()}),this.bindVertexArray(a.vao),ce(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,this.indexBuffer)),console.assert(FE(t,a,this.vertexBuffer),"gpgpu_util.bindVertexProgramAttributeStreams not fully successful."),this.debug&&oh(t,a),this.setProgram(a),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&(ce(this.gl,()=>this.gl.deleteProgram(e)),this.deleteVertexArray(e.vao))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&(this.bindVertexArray(this.program.vao),this.debug&&oh(this.gl,this.program)),ce(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?iE(this.gl,e,t):oE(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ce(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),lE(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Lu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&oh(this.gl,this.program),Mp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;if(this.debug){let t=this.getVertexArray();console.assert(t===this.program.vao,"VAO changed between setProgram and executeProgram!"),this.debugValidate()}ce(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ce(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Rp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=qZ(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){if(this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),this.itemsToPoll.length>1)return;let n;"setTimeoutCustom"in H().platform&&(n=H().platform.setTimeoutCustom.bind(H().platform)),v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0),()=>0,null,n)}bindTextureToFrameBuffer(e){this.throwIfDisposed(),lh(this.gl,e,this.framebuffer),this.debug&&Mp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(lh(this.gl,this.outputTexture,this.framebuffer),this.debug&&Mp(this.gl)):cx(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;lh(a,e,this.framebuffer),this.debug&&Mp(a),this.outputTexture=e,ce(a,()=>a.viewport(0,0,t,n)),ce(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),ce(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function qZ(e){let t=0;for(;t`${e}.${n}`)}function kn(e,t){return t===1?[e]:UE(e,t)}function O7(e,t){if(e===1)return"rc";let n="";for(let a=0;a ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n= ${n}; bool rEdge = rp1 >= ${a}; `}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}), cEdge ? 0. : getA(${t[1]}), rEdge ? 0. : getA(${t[2]}), rEdge || cEdge ? 0. : getA(${t[3]})`}},GE=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2===1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=` ${r} ${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${a}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${a>0?"}":""} `}this.userCode=` ${z7(t,this.enableShapeUniforms)} ${this.enableShapeUniforms?q0():j0(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]}; int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]}; ${n} setOutput(result); } `}};function z7(e,t){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${t?tZ(["r","c","d"],"inputShape"):To(["r","c","d"],e)} return ivec3(r, c, d); } `}var W7=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Zk(t,n),r=Jk(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Yk(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===ln.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===ln.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===ln.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===ln.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Zk(n,a),s=Jk(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Yk(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function B7(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function Yk(e,t,n,a,r){let s=V7(t,a),i;if(r){let[l,u]=Lu(e[0],e[1]);i=l*u}else{let[l,u]=td(e[0],e[1]);i=l*u}let o=B7(n,s);return i*o}function V7(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return J0(t);case ln.PACKED_2X2_FLOAT16:return Q0(t);case ln.UNPACKED_FLOAT32:return X0(t);case ln.UNPACKED_FLOAT16:return Y0(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return Z0(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function U7(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function Zk(e,t){if(e===pa.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===pa.RENDER||e==null)return U7(t);if(e===pa.DOWNLOAD||e===pa.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Jk(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var rr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},Ma="if (isnan(x)) return x;",G7="return x;",Qk="return abs(x);",H7="return (x >= 0.0) ? x : (exp(x) - 1.0);",j7=Ma+` return (x < 0.0) ? 0.0 : x; `,q7=Ma+` return (x < 0.0) ? 0.0 : min(6.0, x); `,Xr="return x;",K7="return 1.0 / (1.0 + exp(-1.0 * x));",X7="return x;",Y7=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,Z7=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,J7=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Q7="return 1.0 / (1.0 + exp(-1.0 * x));",es=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},eJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=En(this.outputShape.length);let t=e.length,n=kn("rc",t),a=gt(t),r=O7(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${a} rc = getOutputCoords(); vec4 packedInput = getA(${r}); setOutput(getChannel(packedInput, ${i})); } `}},tJ=hr.whereImpl,nJ=1e-7,aJ=1e-4,wb={};function rJ(e){return e in wb||(wb[e]={}),wb[e]}var sJ=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),iJ=600;function oJ(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*iJ/1024/1024}var Mf=class extends sc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ch)t=e;else{let n=Ka(H().getNumber("WEBGL_VERSION"),e);t=new ch(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Ka(H().getNumber("WEBGL_VERSION"));t=new ch(n),this.binaryCache=rJ(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new W7(this.gpgpu),this.numMBBeforeWarning=oJ(),this.texData=new qh(this,Ca())}nextDataId(){return Mf.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}writeTexture(e,t,n,a,r,s){let i=this.makeTensorInfo(t,n),o=this.texData.get(i.dataId);o.isPacked=!1,o.texture={texture:e,texShape:[a,r]},o.texShape=[a,r];let l=Pp(t),u=new Xk(l,!1,s),p=this.runWebGLProgram(u,[i],n,[[a,r]]);return p.shape=t,o.texture=null,this.disposeIntermediateTensorInfo(i),p.dataId}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:pa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:pa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let d;o?d=new es(i,Xr):d=new rr(i,Xr);let c=this.runWebGLProgram(d,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let p;if(a==="complex64"){let d=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);p=N.mergeRealAndImagArrays(d,c)}else p=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new es(a,Xr):h=new rr(a,Xr);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...th(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];p=N.mergeRealAndImagArrays(m,f)}else if(l==null)p=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(a);p=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ce(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,p),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ca().removeDataId(e,this),this.pendingDeletes--),d}readToGPU(e,t={}){let n=this.texData.get(e),{values:a,shape:r,slice:s,dtype:i,isPacked:o,texture:l}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(s!=null){let c;o?c=new es(r,Xr):c=new rr(r,Xr);let h=this.runWebGLProgram(c,[{dataId:e,shape:r,dtype:i}],i),m=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),m}if(l==null)throw a!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),p=Ca().makeTensorFromTensorInfo(u),d=this.texData.get(u.dataId);return Object.assign({tensorRef:p},d.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(a=>v.decodeString(a));return Pe(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=sJ){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)0&&v.isString(n[0])){let r=n.map(s=>v.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){return Ca().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new eJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new L7(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[mi(e.shape),...fi(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[mi(t),...fi(t)],s=new GE(r,n),i=!0,o=[n],l=this.runWebGLProgram(s,[a],e.dtype,o,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:a,shape:r,dtype:s}=n;if(t!=null){let d=v.sizeFromShape(r),c=t[0]*t[1]*4;v.assert(d<=c,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=Pp(r),o;a?o=new VZ(i):o=new BZ(i);let l=!0,u=[t!=null?t:th(i)],p=this.runWebGLProgram(o,[{shape:i,dtype:s,dataId:e}],s,u,l,t);return{dtype:s,shape:r,dataId:p.dataId}}runWebGLProgram(e,t,n,a,r=!1,s){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Qp.DENSE){let g=s!=null?s:th(e.outputShape);o.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(i.shape)===0)return o.values=v.getTypedArrayFromDType(i.dtype,0),i;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!ec(y.shape,g.shape)){let b=g,x=g.shape;g.shape=y.shape,g=this.packedReshape(g,x),l.push(g),y=this.texData.get(g.dataId),b.shape=x}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(i.dataId);let p={shape:i.shape,texData:o,isUniform:!1},d=WZ(e,u,p),c=this.getAndSaveBinary(d,()=>LZ(this.gpgpu,e,u,p)),h=this.activeTimers!=null,m;h&&(m=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||zZ(this.gpgpu,c,u,p,a),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(m=this.endTimer(m),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(m)}));let f=H().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let g=v.now();g-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=P(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(xe(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?nJ:aJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let p=t.texShape;if(p==null&&(p=cE(n,o),t.texShape=p),r!=null){let d=Pp(n),c,h=p[1],m=p[0],f=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!f)&&([h,m]=Lu(p[0],p[1])),o?c=new jZ(d,f):c=new Xk(d,f);let g=f?[m,h]:p,y=this.makeTensorInfo(g,a),b=this.texData.get(y.dataId);f?b.usage=pa.PIXELS:b.usage=pa.UPLOAD,b.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let x=[[m,h]],w=!0,I=this.runWebGLProgram(c,[y],a,x,w),T=this.texData.get(I.dataId);t.texShape=T.texShape,t.isPacked=T.isPacked,t.usage=T.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(I.dataId):(t.texture=T.texture,t.values=null,this.texData.delete(I.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let d=this.acquireTexture(p,i,a,o);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return t!=null&&(n.values=lJ(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(a=>{try{this.checkCompletion_(t),a(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await qv(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(H0(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:a,nanLoc:r,inShapesLocations:s,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}=kE(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=a,e.nanLoc=r,e.inShapesLocations=s,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}createTensorFromTexture(e,t,n){let{texture:a,height:r,width:s,channels:i}=e,o=Ca().backend;if(!o.gpgpu.gl.isTexture(a))throw new Error("The texture is invalid. Also, please make sure the texture and the TFJS WebGL backend are using the same canvas. If you want to use your own custom canvas, you have to create and use the custom TFJS WebGL backend created from the canvas through 'new tf.MathBackendWebGL(customCanvas)'.");let l=o.writeTexture(a,t,n,r,s,i);return Ca().makeTensorFromDataId(l,t,n,o)}};Mf.nextDataId=0;function lJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;anew Mf,2);var pJ={forceHalfFloat:HE},t1=` if (isnan(a)) return a; if (isnan(b)) return b; `,kl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=En(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},ad=` result.r = isNaN.r ? NAN : result.r; result.g = isNaN.g ? NAN : result.g; result.b = isNaN.b ? NAN : result.b; result.a = isNaN.a ? NAN : result.a; `,rd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=En(r);let s="";if(a)if(r===0||v.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(s=` ${gt(r)} coords = getOutputCoords(); `,r===1)this.enableShapeUniforms?s+=` result.y = (coords + 1) >= outShape ? 0. : result.y; result.z = 0.; result.w = 0.; `:s+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=kn("coords",r);this.enableShapeUniforms?s+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= outShape[${r} - 2]; bool nextColOutOfBounds = (${i[r-1]} + 1) >= outShape[${r} - 1]; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `:s+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= ${this.outputShape[r-2]}; bool nextColOutOfBounds = (${i[r-1]} + 1) >= ${this.outputShape[r-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${s} setOutput(result); } `}};function ta(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var cJ={kernelName:Oi,backendName:"webgl",kernelFunc:ta};function Cs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=ta({inputs:{x:a},backend:n}),l=ta({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var dJ={kernelName:em,backendName:"webgl",kernelFunc:Cs},jE="return (a < 0.) ? b * a : a;",qE=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function hJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rd(qE,r.shape,i.shape):new kl(jE,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),l}var mJ={kernelName:zi,backendName:"webgl",kernelFunc:hJ},KE="return (a < 0.) ? b * a : a;",XE=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function fJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rd(XE,a.shape,r.shape):new kl(KE,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],"float32")}var gJ={kernelName:Ji,backendName:"webgl",kernelFunc:fJ},Gu="if (isnan(x)) return x;";function Ye({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let d=o.texData.get(i.dataId),c=n(d.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,p;return u?p=new es(i.shape,t):p=new rr(i.shape,e),o.runWebGLProgram(p,[i],l)}}function pn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,p=o;if(a&&l.dtype==="complex64"){let m=p.texData.get(l.dataId),f=p.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,I]=x,T={dataId:w.dataId,dtype:w.dtype,shape:l.shape},C={dataId:I.dataId,dtype:I.dtype,shape:u.shape},_=new kl(e,l.shape,u.shape);return p.runWebGLProgram(_,[T,C],ma(w.dtype,I.dtype))}),b=Cs({inputs:{real:g,imag:y},backend:p});return p.disposeIntermediateTensorInfo(g),p.disposeIntermediateTensorInfo(y),b}let d=s||ma(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||p.shouldExecuteOnCPU([l,u]))&&r!=null){let m=p.texData.get(l.dataId).values,f=p.texData.get(u.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(m):m,y=l.dtype==="string"?N.fromUint8ToStringArray(f):f,[b,x]=r(l.shape,u.shape,g,y,d),w=p.makeTensorInfo(x,d),I=p.texData.get(w.dataId);return I.values=b,w}let c=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new rd(t,l.shape,u.shape,n):h=new kl(e,l.shape,u.shape),p.runWebGLProgram(h,[l,u],d)}}function tc(e,t=!1){if(e==="linear")return t?X7:G7;if(e==="relu")return t?Z7:j7;if(e==="elu")return t?Y7:H7;if(e==="relu6")return t?J7:q7;if(e==="prelu")return t?XE:KE;if(e==="leakyrelu")return t?qE:jE;if(e==="sigmoid")return t?Q7:K7;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var YE=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=En(this.outputShape.length);let u=a?e[1]:e[2],p=Math.ceil(u/2),d=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?f=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:f=`vec4 activation(vec4 x) { ${i} }`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",x="rc.x";e[0]`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let p=i.texData.get(r.dataId);return p.isPacked&&!ec(r.shape,l)&&!(p.texture!==null&&ec(p.shape,l))?bJ(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var xJ={kernelName:uu,backendName:"webgl",kernelFunc:he},aI=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let p=1/t;l=`sumValue += dot(values * ${v.isInt(p)?p.toPrecision(2):p}, ones);`}let u="";r%n>0&&(u=` if (inIdx < 0 || inIdx >= ${r}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${u} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${i}; if (${o===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${o===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${o===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},vJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,p=n%4,d=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${o}(values, minMaxValue); if (${t==="min"} || ${t==="max"}) { minMaxValue = ${o}(values, minMaxValue); bvec4 isNaN = isnan(values); if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) { minMaxValue = vec4(NAN); } } } `,c="vec4";t==="all"?(i="1.0",d=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,c="bvec4"):t==="any"&&(i="0.0",d=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,c="bvec4");let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${h} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${u}; i += 4) { int inIdx = inOffset + i; ${c} values = ${c}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${d} } int inIdx = inOffset + ${u}; if (${p===1}) { ${c} values = ${c}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${d} } else if (${p===2}) { ${c} values = ${c}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${d} } else if (${p===3}) { ${c} values = ${c}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${d} } setOutput(${l}); } `}};function wJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Co(e,t,n,a){let r=wJ(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=gt(this.rank),r=UE("rc",this.rank),s=new Array(this.rank);for(let u=0;u`Error in matMul: inner shapes (${d}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let w=n?[y,d,h]:[y,h,d],I=a?[b,m,c]:[b,c,m],T=he({inputs:{x:e},backend:r,attrs:{shape:w}}),C=he({inputs:{x:t},backend:r,attrs:{shape:I}}),_=[T,C],$=Math.max(y,b),R=n?T.shape[1]:T.shape[2],F=s!=null,S=i!=null,M=l==="leakyrelu",B=l!=null?tc(l,!0):null,U=F||S||M||B!=null,G;if((h===1||m===1)&&R>ZE&&U===!1){let K=T,Z=C;n&&(K=In({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),_.push(K)),a&&(Z=In({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),_.push(Z));let J=m!==1,ee=m===1,ae=K;J&&(ae=he({inputs:{x:K},backend:r,attrs:{shape:[$,R,1]}}),_.push(ae));let te=m===1?2:1,ie=Z;ee&&(ie=he({inputs:{x:Z},backend:r,attrs:{shape:[$,1,R]}}),_.push(ie));let oe=n1({inputs:{a:ae,b:ie},backend:r});G=Of({inputs:{x:oe},backend:r,attrs:{axis:te,keepDims:!0}}),_.push(oe)}else{let K=ma(e.dtype,t.dtype),Z=new YE(w,I,[$,h,m],n,a,F,B,S,M),J=[T,C];if(s!=null&&J.push(s),S&&J.push(i),M){let ee=r.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));J.push(ee),_.push(ee)}G=r.runWebGLProgram(Z,J,K)}let q=he({inputs:{x:G},backend:r,attrs:{shape:x}});_.push(G);for(let K of _)r.disposeIntermediateTensorInfo(K);return q}function EJ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a;return Vh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:d,activation:p})}var _J={kernelName:ti,backendName:"webgl",kernelFunc:EJ},rI="return abs(x);";function AJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=BE(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new es(a.shape,rI):r=new rr(a.shape,rI),n.runWebGLProgram(r,[a],a.dtype)}var $J={kernelName:Sl,backendName:"webgl",kernelFunc:AJ},FJ=Ma+` if (abs(x) > 1.) { return NAN; } return acos(x); `,DJ=Ye({opSnippet:FJ}),RJ={kernelName:Tl,backendName:"webgl",kernelFunc:DJ},MJ=Ma+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,PJ=Ye({opSnippet:MJ}),OJ={kernelName:Nl,backendName:"webgl",kernelFunc:PJ},sI="return a + b;",LJ=pn({opSnippet:sI,packedOpSnippet:sI,supportsComplex:!0,cpuKernelImpl:KZ}),zJ={kernelName:fs,backendName:"webgl",kernelFunc:LJ},WJ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${a}; setOutput(result); } `}},BJ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${a}; setOutput(result); } `}};function dh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return ta({inputs:{x:a[0]},backend:n});if(a.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=dh({inputs:a.slice(0,o),backend:n}),u=dh({inputs:a.slice(o),backend:n});return dh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ma(o,l)),s=a.map(o=>o.shape),i=H().getBool("WEBGL_PACK")?new BJ(a[0].shape,s):new WJ(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var VJ={kernelName:bi,backendName:"webgl",kernelFunc:dh};function UJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("all",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Co(f,f.dtype,"all",n),y;if(i){let b=N.expandShapeToKeepDim(c,l);y=he({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var GJ={kernelName:Cl,backendName:"webgl",kernelFunc:UJ};function HJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),u=N.getInnerMostAxes(u.length,o)),N.assertAxesAreInnerMostDims("any",u,o);let[c,h]=N.computeOutAndReduceShapes(d.shape,u),m=v.sizeFromShape(h),f=he({inputs:{x:d},backend:n,attrs:{shape:[-1,m]}}),g=Co(f,f.dtype,"any",n),y;if(i){let b=N.expandShapeToKeepDim(c,l);y=he({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=he({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),p!=null&&n.disposeIntermediateTensorInfo(d),y}var jJ={kernelName:El,backendName:"webgl",kernelFunc:HJ},qJ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${a}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${a}; i++) { int inIdx = ${o}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},KJ=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=gt(o),u=kn("coords",o),p,d;if(s===1){d=o+1;let C=gt(d);p=` ${C} sourceLocR = ${C}(${u.join()}, 0); ++${u[o-1]}; ${C} sourceLocG = ${C}(${u.join()}, 0); ++${u[o-2]}; ${C} sourceLocA = ${C}(${u.join()}, 0); --${u[o-1]}; ${C} sourceLocB = ${C}(${u.join()}, 0); --${u[o-2]};`}else d=o,p=` ${l} sourceLocR = coords; ++${u[o-1]}; ${l} sourceLocG = coords; ++${u[o-2]}; ${l} sourceLocA = coords; --${u[o-1]}; ${l} sourceLocB = coords; --${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,d),h="."+c[d-1],m=c.map(C=>"int "+C),f=kn("sourceLocR",d-1).concat("inIdx.r"),g=kn("sourceLocG",d-1).concat("inIdx.g"),y=kn("sourceLocB",d-1).concat("inIdx.b"),b=kn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":` inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()}), getBestIndicesAChannel(${b.join()})));`,I=`vec4( getAChannel(${f.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":` float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${c.join()}), vec2(${c.slice(-2).join()})); }`;this.userCode=` float getAChannel(${m.join()}) { return getChannel(getA(${c.join()}), vec2(${c.slice(-2).join()})); } ${T} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${u[o-1]} < ${i[o-1]-1}; bool hasNextRow = ${u[o-2]} < ${i[o-2]-1}; ${p} ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h}, sourceLocB${h}, sourceLocA${h}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${I}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${w} vec4 candidate = ${I}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function JE(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=N.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new qJ(o,n,a==null),u=[t];a!=null&&u.push(a);let p=e.runWebGLProgram(l,u,"int32");if(p.shape[1]===1)return p;let d=JE(e,t,n,p);return e.disposeIntermediateTensorInfo(p),d}function QE(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=N.computeOptimalWindowSize(s),o=new KJ(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let p=QE(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}return u}function e_(e,t,n,a){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,l=t;o&&(l=e.unpackTensor(t),s.push(l));let[u,p]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(p),c=he({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});s.push(c);let h=JE(e,c,a);s.push(h);let m=he({inputs:{x:h},backend:e,attrs:{shape:u}});return s.forEach(f=>e.disposeIntermediateTensorInfo(f)),m}return QE(e,t,a)}function XJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let p=e_(n,l,i[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var YJ={kernelName:xi,backendName:"webgl",kernelFunc:XJ};function ZJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=v.parseAxisParam(s,r.shape),o=N.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=In({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=N.getInnerMostAxes(i.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let p=e_(n,l,i[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),p}var JJ={kernelName:ic,backendName:"webgl",kernelFunc:ZJ},QJ=Ma+` if (abs(x) > 1.) { return NAN; } return asin(x); `,e9=Ye({opSnippet:QJ}),t9={kernelName:_l,backendName:"webgl",kernelFunc:e9},n9=Ma+"return log(x + sqrt(x * x + 1.0));",a9=Ye({opSnippet:n9}),r9={kernelName:Al,backendName:"webgl",kernelFunc:a9},s9=Ma+` return atan(x); `,i9=Ye({opSnippet:s9}),o9={kernelName:$l,backendName:"webgl",kernelFunc:i9},l9=t1+` return atan(a, b); `,u9=` vec4 result = atan(a, b); bvec4 isNaNA = isnan(a); bvec4 isNaNB = isnan(b); bvec4 isNaN = bvec4(isNaNA.x || isNaNB.x, isNaNA.y || isNaNB.y, isNaNA.z || isNaNB.z, isNaNA.w || isNaNB.w); `+ad+` return result; `,p9=pn({opSnippet:l9,packedOpSnippet:u9}),c9={kernelName:Dl,backendName:"webgl",kernelFunc:p9},d9=Ma+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,h9=Ye({opSnippet:d9}),m9={kernelName:Fl,backendName:"webgl",kernelFunc:h9},nc=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${c}, ${h}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${p}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC += ${u}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${C} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${a?r?f:g:`wR * ${d} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let b="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,I=s%4,T=` if (${m}) { avgValue += dot(values, ones); } else { minMaxValue = ${b}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${c}, ${h}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${p}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${w}; wC += 4) { int xC = xCCorner + wC * ${u}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), getValue(batch, xR, xC + 2 * ${u}, d), getValue(batch, xR, xC + 3 * ${u}, d) ); ${T} } int xC = xCCorner + ${w}; if (${I===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${T} } else if (${I===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), initializationValue, initializationValue ); ${T} } else if (${I===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${u}, d), getValue(batch, xR, xC + 2 * ${u}, d), initializationValue ); ${T} } } setOutput(${x}); } `}},a1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,p=e.dilationHeight,d=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",x="0.0";if(b||(x="-1.0 / 1e-20"),n){let $=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${g}, ${y}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${c}; wD += ${u}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${p}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${m}; wC += ${d}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${$} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} + wR * ${m} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let w="max",I=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(I="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,_=` if (${b}) { avgValue += dot(values, ones); } else { minMaxValue = ${w}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${g}, ${y}); const float initializationValue = ${x}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${x}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${c}; wD += ${u}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${p}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${T}; wC += 4) { int xC = xCCorner + wC * ${d}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), getValue(batch, xD, xR, xC + 3 * ${d}, ch) ); ${_} } int xC = xCCorner + ${T}; if (${C===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${_} } else if (${C===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), initializationValue, initializationValue ); ${_} } else if (${C===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), initializationValue ); ${_} } } setOutput(${I}); } } `}};function f9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;zu(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;v.assert(N.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new nc(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var g9={kernelName:vi,backendName:"webgl",kernelFunc:f9};function y9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,l,u),c=new a1(d,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var b9={kernelName:oc,backendName:"webgl",kernelFunc:y9},x9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,p=l-1-e.padInfo.left,d=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${u}, ${p}); const float avgMultiplier = float(${d}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${o}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},v9=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=p-1-e.padInfo.front,m=d-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=` const ivec3 pads = ivec3(${h}, ${m}, ${f}); const float avgMultiplier = float(${g}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${p}; wD += ${o}) { float dyD = float(dyDCorner + wD) / ${r}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${d}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${u}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function w9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new v9(c);return n.runWebGLProgram(h,[r],i.dtype)}var k9={kernelName:Zh,backendName:"webgl",kernelFunc:w9};function I9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;zu([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,p=N.computePool2DInfo(i.shape,o,l,1,u),d=new x9(p);return n.runWebGLProgram(d,[r],i.dtype)}var S9={kernelName:Yh,backendName:"webgl",kernelFunc:I9};function T9(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Vh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var N9={kernelName:wi,backendName:"webgl",kernelFunc:T9},C9=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${o}; float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},E9=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(N.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${s})); setOutput((x - mean) * inv + offset); } `}},_9=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;v.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],p=null;i!=null&&(p=i.shape,u.push(i));let d=null;o!=null&&(d=o.shape,u.push(o));let c=H().getBool("WEBGL_PACK_NORMALIZATION")?new E9(a.shape,r.shape,s.shape,p,d,l):new C9(a.shape,r.shape,s.shape,p,d,l);return t.runWebGLProgram(c,u,u[0].dtype)},A9={kernelName:Mi,backendName:"webgl",kernelFunc:_9},$9=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=F9(this.rank),a,r=e.map((s,i)=>`sourceLoc.${mx[i]} = start[${i}] + coords.${mx[i]};`);a=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${r.join(` `)} `,this.userCode=` void main() { ${a} setOutput(getSource(${n})); } `}},mx=["x","y","z","w","u","v"];function F9(e){if(e===1)return"sourceLoc";if(e<=6)return mx.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var D9=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=kn("coords",this.rank),a=kn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${a[this.rank-1]}; result.y = ${s}; --${a[this.rank-1]}; } `,o=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${a[this.rank-2]}; result.z = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${a[this.rank-1]}; result.w = ${s}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((u,p)=>`start[${p}]`).join()});`:e.map((u,p)=>`${a[p]} = ${n[p]} + start[${p}];`).join(` `);this.userCode=` void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${i} ${o} setOutput(result); } `}};function R9(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=Kt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Hu(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=Kt.parseSliceParams(r,s,i);if(Kt.assertParamsValid(r,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),c=T7(d.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),p=Kt.isSliceContinous(r.shape,o,l);if(u||!p){let d=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new D9(l):new $9(l),c=[o];return n.runWebGLProgram(d,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),R9(r,o,l,n)}var M9={kernelName:hu,backendName:"webgl",kernelFunc:Hu},P9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,x)=>b*x),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=[],m=he({inputs:{x:r},backend:n,attrs:{shape:l}}),f=In({inputs:{x:m},backend:n,attrs:{perm:u}}),g=he({inputs:{x:f},backend:n,attrs:{shape:p}}),y=Hu({inputs:{x:g},backend:n,attrs:{begin:d,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},O9={kernelName:Rl,backendName:"webgl",kernelFunc:P9};function L9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=WE(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var z9={kernelName:Jh,backendName:"webgl",kernelFunc:L9};function W9(e){let{inputs:t,backend:n}=e,{s0:a,s1:r}=t,s=n.readSync(a.dataId),i=n.readSync(r.dataId),o=N.assertAndGetBroadcastShape(Array.from(s),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var B9={kernelName:Qh,backendName:"webgl",kernelFunc:W9},V9="return float(a != b);",t_=pn({opSnippet:V9,cpuKernelImpl:g7,dtype:"bool"}),U9={kernelName:au,backendName:"webgl",kernelFunc:t_};function sd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.real},backend:n})}var G9={kernelName:km,backendName:"webgl",kernelFunc:sd},H9="return float(int(x));";function j9(e,t){let n=new rr(e.shape,H9),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function fx(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return ta({inputs:{x:r},backend:n});let i=It(r.shape),o=fx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Cs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=sd({inputs:{input:r},backend:n}),o=fx({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(r.dtype,s)){let i=ta({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(n.shouldExecuteOnCPU([r])){let i=n.texData.get(r.dataId).values,[o,l,u]=YZ(i,r.shape,r.dtype,s);return n.makeTensorInfo(o,l,u)}if(s==="int32")return j9(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=t_({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var q9={kernelName:ki,backendName:"webgl",kernelFunc:fx},iI="return ceil(x);",K9=Ye({opSnippet:iI,packedOpSnippet:iI,cpuKernelImpl:ZZ}),X9={kernelName:Ii,backendName:"webgl",kernelFunc:K9},Y9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}},Z9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}};function J9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;H().getBool("WEBGL_PACK_CLIP")?o=new Z9(r.shape):o=new Y9(r.shape);let l=[[s],[i]];return n.runWebGLProgram(o,[r],r.dtype,l)}var Q9={kernelName:gs,backendName:"webgl",kernelFunc:J9},eQ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function oI(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function tQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new eQ(a.shape),i=[oI(a,r.complexTensorInfos.real),oI(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var nQ={kernelName:lc,backendName:"webgl",kernelFunc:tQ},aQ=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[m-1]}) { return getChannel( getT${m}(${ah(i,l,f)}), vec2(${ah(u,l,f)})); }`}let c=o.length,h=o[o.length-1];d+=` return getChannel( getT${c}(${ah(i,l,h)}), vec2(${ah(u,l,h)}));`,this.userCode=` float getValue(${i.map(m=>"int "+m)}) { ${d} } void main() { ${r} coords = getOutputCoords(); vec4 result = vec4(getValue(${s}), 0., 0., 0.); ${s[a-1]} = ${s[a-1]} + 1; if (${s[a-1]} < ${n[a-1]}) { result.g = getValue(${s}); } ${s[a-2]} = ${s[a-2]} + 1; if (${s[a-2]} < ${n[a-2]}) { result.a = getValue(${s}); } ${s[a-1]} = ${s[a-1]} - 1; if (${s[a-2]} < ${n[a-2]} && ${s[a-1]} < ${n[a-1]}) { result.b = getValue(${s}); } setOutput(result); } `}};function ah(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Lf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return ta({inputs:{x:r.complexTensorInfos.imag},backend:n})}var sQ={kernelName:dm,backendName:"webgl",kernelFunc:Lf};function Op(e,t,n){let a=e[0].dtype;if(a==="complex64"){let h=e.map(b=>sd({inputs:{input:b},backend:n})),m=e.map(b=>Lf({inputs:{input:b},backend:n})),f=Op(h,t,n),g=Op(m,t,n),y=Cs({inputs:{real:f,imag:g},backend:n});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),m.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),y}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let h=e.map(w=>{let I=[-1,v.sizeFromShape(w.shape.slice(t))];return he({inputs:{x:w},backend:n,attrs:{shape:I}})}),m=h.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),f=N.computeOutShape(h.map(w=>w.shape),1),g=h[0].shape[0]===1,y=JZ(m,f,a,g),b=N.computeOutShape(e.map(w=>w.shape),t),x=n.makeTensorInfo(b,a,y);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}let s=e.filter(h=>v.sizeFromShape(h.shape)>0),i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&s[0].shape.length>1;if(s.length===1){let h=i?new rr(e[0].shape,Xr):new es(e[0].shape,Xr);return n.runWebGLProgram(h,e,a)}let o=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(s.length>o){let h=[];for(let f=0;fm.shape),t);return n.runWebGLProgram(h,s,a)}let{tensors2D:l,outShape:u}=iQ(s,t,n),p=new aQ(l.map(h=>h.shape)),d=n.runWebGLProgram(p,l,a);l.forEach(h=>n.disposeIntermediateTensorInfo(h));let c=he({inputs:{x:d},attrs:{shape:u},backend:n});return n.disposeIntermediateTensorInfo(d),c}function iQ(e,t,n){let a=N.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>he({inputs:{x:r},attrs:{shape:[-1,v.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function n_(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=v.parseAxisParam(r,t[0].shape)[0],i=t.map(u=>u.shape);N.assertParamsConsistent(i,s);let o=N.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let l=t.filter(u=>v.sizeFromShape(u.shape)>0);return l.length===1?ta({inputs:{x:l[0]},backend:n}):Op(l,s,n)}var oQ={kernelName:Ml,backendName:"webgl",kernelFunc:n_},a_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,x="",w="";n&&(a?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?x=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:x=` float activation(float x) { ${n} } `,w="result = activation(result);");let I=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${o}, ${l}); const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${b}]; ivec2 xRCCorner = ivec2(coords[${g}], coords[${y}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${u}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${c}; wC++) { int xC = xCCorner + wC * ${p}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${f}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${m===1}) { if (${f}) { dotProd += getX(batch, xR, xC, ${h}) * getW(wR, wC, ${h}, d2); } else { dotProd += getX(batch, ${h}, xR, xC) * getW(wR, wC, ${h}, d2); } } else if (${m===2}) { vec2 wValues = vec2( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2) ); if (${f}) { vec2 xValues = vec2( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${m===3}) { vec3 wValues = vec3( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2), getW(wR, wC, ${h} + 2, d2) ); if (${f}) { vec3 xValues = vec3( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1), getX(batch, xR, xC, ${h} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC), getX(batch, ${h} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${I} ${w} setOutput(result); } `}},lQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,p=e.filterDepth,d=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${r}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${a}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${p}; wF++) { int xF = xFCorner + wF * ${o}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${c}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${m===1}) { dotProd += getX(batch, xF, xR, xC, ${h}) * getW(wF, wR, wC, ${h}, d2); } else if (${m===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${m===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1), getX(batch, xF, xR, xC, ${h} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2), getW(wF, wR, wC, ${h} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},r_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.padInfo.left,i=e.strideWidth,o=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,p=u,d=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let f=0;f=0 && xR < inDims[0]) { `;for(let f=0;f<(p+1)/2;f++){let g=f*2;if(d+=` xC = xCCorner + ${g*o}; `,i===1){if(g= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) { xTexelC${g} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${g}.zw = vec2(0.0); } xTexelC${g}Ready = 1; } `,o===1&&g>0?d+=` xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy); `:d+=` xCOffset = xC + 1 - 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { previous.zw = vec2(0.0); } xC${g} = vec4(previous.zw, xTexelC${g}.xy); } else { xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy); } `):d+=` if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) { xTexelC${g} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${g}.zw = vec2(0.0); } xTexelC${g}Ready = 1; } xC${g} = xTexelC${g}; `,g+1= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) { xTexelC${g+1} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${g+1}.zw = vec2(0.0); } xTexelC${g+1}Ready = 1; } `,o>1?d+=` xCOffset -= 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy); } else { xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy); } `:d+=` xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy); `):y===1?d+=` xC${g+1} = xTexelC${g}; `:d+=` xCOffset = xC + ${y}; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) { xTexelC${g+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${g+1}.zw = vec2(0.0); } xTexelC${g+1}Ready = 1; } xC${g+1} = xTexelC${g+1}; `}}else g= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) { xTexelC${g} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${g}.zw = vec2(0.0); } xTexelC${g}Ready = 1; } if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) { xTexelC${g+1} = getX(batch, xR, xC + 1, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xC + 2 >= inDims[1]) { xTexelC${g+1}.zw = vec2(0.0); } xTexelC${g+1}Ready = 1; } xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw); `,g+1= 0 && xCOffset < inDims[1]) { final = getX(batch, xR, xCOffset, d1); } xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy); `)):(d+=` if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) { xTexelC${g} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${g}.zw = vec2(0.0); } xTexelC${g}Ready = 1; } xCOffset = xC + strides[1]; if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) { xTexelC${g+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${g+1}.zw = vec2(0.); } xTexelC${g+1}Ready = 1; } xC${g} = vec4( xTexelC${g}.xy, xTexelC${g+1}.xy); `,g+1= 0) { // Use custom imod instead mod. On Intel GPU, mod may generate // unexpected value. // https://github.com/tensorflow/tfjs/issues/5447 offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1]; d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) / inChannels); if(d1 < inputShape[${i}] && d1 >= 0) { ch = imod(pos, inChannels); if (${r}) { innerDims = vec2(d1, ch); result[${u*2+p}] = getChannel( getA(rc.x, d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${u*2+p}] = getChannel( getA(rc.x, ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${l} ${a.output} = result; } `}};function Uh(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function s_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),p=n.inChannels,d=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[];if(s!=null){let b=Uh(s.shape,h);b!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:b}}),y.push(s))}if(r!=null){let b=Uh(r.shape,h);b!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:b}}),y.push(r))}if(!((d===1||c===1)&&p>ZE)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),x={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(ec(u.shape,x.shape),()=>`packed reshape ${u.shape} to ${x.shape} isn't free`);let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(I);let T=Vh({a:x,b:I,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),C=a.texData.get(T.dataId);v.assert(C.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,C.shape=n.outShape,g=ta({inputs:{x:T},backend:a}),g.shape=n.outShape,y.push(T)}else{let b=n.outHeight*n.outWidth,x=he({inputs:{x:e},backend:a,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),w=he({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),I=Vh({a:h?x:w,b:h?w:x,transposeA:!h,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=he({inputs:{x:I},backend:a,attrs:{shape:n.outShape}}),y.push(x),y.push(w),y.push(I)}for(let b of y)a.disposeIntermediateTensorInfo(b);return g}function i_({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:p,outWidth:d,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*p,g=c*d,y=[n.batchSize,f,g],b=!0,x=!1,w=[];if(s!=null){let K=Uh(s.shape,m);K!=null&&(s=he({inputs:{x:s},backend:a,attrs:{shape:K}}),w.push(s))}if(r!=null){let K=Uh(r.shape,m);K!=null&&(r=he({inputs:{x:r},backend:a,attrs:{shape:K}}),w.push(r))}let I=he({inputs:{x:t},backend:a,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});w.push(I);let T=new uQ(y,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],_=a.runWebGLProgram(T,[e],"float32",C),$=he({inputs:{x:_},backend:a,attrs:{shape:y}});w.push(_),w.push($);let R=r!=null,F=s!=null,S=o==="leakyrelu",M=o?tc(o,!0):null,B=new YE(m?$.shape:I.shape,m?I.shape:$.shape,m?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],b,x,R,M,F,S),U=m?[$,I]:[I,$];if(r&&U.push(r),F&&U.push(s),S){let K=a.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));U.push(K),w.push(K)}let G=a.runWebGLProgram(B,U,"float32"),q=he({inputs:{x:G},backend:a,attrs:{shape:n.outShape}});w.push(G);for(let K of w)a.disposeIntermediateTensorInfo(K);return q}function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,s.shape,i,u,o,p,!1,d),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=s_({x:r,filter:s,convInfo:c,backend:n});else if(c.strideWidth<=2&&d==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let f=new r_(c),g=[[c.padInfo.top,c.padInfo.left],[c.strideHeight,c.strideWidth],[c.dilationHeight,c.dilationWidth],[c.inHeight,c.inWidth]];h=n.runWebGLProgram(f,[r,s],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=i_({x:r,filter:s,convInfo:c,backend:n});else{let f=new a_(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=he({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var cQ={kernelName:Si,backendName:"webgl",kernelFunc:pQ},dQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${s}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},hQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,p=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${p}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${s}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},mQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${r}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${a} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},fQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${u}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${r}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${a}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${a} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function gQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:p}=a,d=N.convertConv2DDataFormat(l),c=N.computeConv2DInfo(r.shape,p,i,1,o,u,!1,d),h=new dQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var yQ={kernelName:tm,backendName:"webgl",kernelFunc:gQ};function bQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:p}=a,d=N.convertConv2DDataFormat(u),c=N.computeConv2DInfo(i,s.shape,o,1,l,p,!1,d),h=new hQ(c);return n.runWebGLProgram(h,[r,s],"float32")}var xQ={kernelName:Ti,backendName:"webgl",kernelFunc:bQ};function vQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeConv3DInfo(r.shape,s.shape,i,l,o),p=new lQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var wQ={kernelName:uc,backendName:"webgl",kernelFunc:vQ};function kQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=N.computeConv3DInfo(r.shape,l,i,1,o),p=new mQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var IQ={kernelName:nm,backendName:"webgl",kernelFunc:kQ};function SQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=N.computeConv3DInfo(l,s.shape,o,1,i),p=new fQ(u);return n.runWebGLProgram(p,[r,s],"float32")}var TQ={kernelName:am,backendName:"webgl",kernelFunc:SQ},NQ=Gu+` return cos(x); `,CQ=Ye({opSnippet:NQ}),EQ={kernelName:Ni,backendName:"webgl",kernelFunc:CQ},_Q=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,AQ=Ye({opSnippet:_Q}),$Q={kernelName:Ci,backendName:"webgl",kernelFunc:AQ},FQ=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[p,d]=n;this.outputShape=[u,p,d,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,x,w]=d>1?[`${(o-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` const float height_ratio = float(${f}); const float width_ratio = float(${b}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${s}) { return; } float height_scale = ${g}; float width_scale = ${x}; float in_y = ${y}; if( in_y < 0.0 || in_y > ${h} ) { setOutput(float(${r})); return; } float in_x = ${w}; if( in_x < 0.0 || in_x > ${m} ) { setOutput(float(${r})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${c} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},DQ=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,p=new FQ(r.shape,s.shape,o,l,u);return n.runWebGLProgram(p,[r,s,i],"float32")},RQ={kernelName:Ol,backendName:"webgl",kernelFunc:DQ},ac;(function(e){e.Prod="*",e.Sum="+"})(ac||(ac={}));var lI=class{constructor(e,t,n,a){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,s=this.op===ac.Prod?"1.0":"0.0",i=n?s:`getX(${uI(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=a?`end != ${o-1}`:"end != 0",u=a?"end + 1":"end - 1"):(l=a?`end + pow2 < ${o}`:"end >= pow2",u=a?"end + pow2":"end - pow2"),this.userCode=` void main() { ${gt(r)} coords = getOutputCoords(); int end = ${pI(r,"coords",this.op)}; float val = ${i}; int pow2 = int(pow(2.0, index)); if (${l}) { int idx = ${u}; ${pI(r,"coords",this.op)} = idx; val ${this.op}= getX(${uI(r,"coords",this.op)}); } setOutput(val); } `}};function uI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function pI(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function o_(e,t,n,a,r,s){let i=t.shape.length,o=N.getAxesPermutation([a],i),l=t;o!=null&&(l=In({inputs:{x:t},backend:n,attrs:{perm:o}}));let u=N.getInnerMostAxes(1,i)[0];if(u!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${a}`);let p=l.shape[u],d=ta({inputs:{x:l},backend:n});for(let c=0;c<=Math.ceil(Math.log2(p))-1;c++){let h=new lI(e,l.shape,!1,s),m=[[c]],f=d;d=n.runWebGLProgram(h,[d],d.dtype,m),n.disposeIntermediateTensorInfo(f)}if(r){let c=new lI(e,l.shape,r,s),h=d;d=n.runWebGLProgram(c,[d],d.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let c=N.getUndoAxesPermutation(o),h=In({inputs:{x:d},backend:n,attrs:{perm:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(l),h}return d}function MQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return o_(ac.Prod,r,n,s,i,o)}var PQ={kernelName:Pl,backendName:"webgl",kernelFunc:MQ};function OQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;return o_(ac.Sum,r,n,s,i,o)}var LQ={kernelName:Ei,backendName:"webgl",kernelFunc:OQ};function zQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=WE(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,p)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),p=XZ(l,u,i,o);return n.makeTensorInfo(p.shape,s.dtype,p.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var WQ={kernelName:rm,backendName:"webgl",kernelFunc:zQ},BQ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function VQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=new BQ(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var UQ={kernelName:Ll,backendName:"webgl",kernelFunc:VQ},l_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,l="",u="";n&&(a?l=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?l=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:l=` float activation(float x) { ${n} } `,u="result = activation(result);");let p=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${l} void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${o}; int q = d2 - d1 * ${o}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${s}; wR++) { int xR = xRCorner + wR * dilations[0]; if (xR < 0 || xR >= inDims[0]) { continue; } for (int wC = 0; wC < ${i}; wC++) { int xC = xCCorner + wC * dilations[1]; if (xC < 0 || xC >= inDims[1]) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${p} ${u} setOutput(result); } `}},u_=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=En(this.outputShape.length);let s=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,p=e.filterWidth,d=p,c=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g=0 && xR < inDims[0]) { `;for(let g=0;g<(d+1)/2;g++){let y=g*2;if(c+=` xC = xCCorner + ${y*l}; `,o===1){if(y= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) { xTexelC${y} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${y}.zw = vec2(0.0); } xTexelC${y}Ready = 1; } `,l===1&&y>0?c+=` xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy); `:c+=` xCOffset = xC + 1 - 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { previous.zw = vec2(0.0); } xC${y} = vec4(previous.zw, xTexelC${y}.xy); } else { xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy); } `):c+=` if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) { xTexelC${y} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${y}.zw = vec2(0.0); } xTexelC${y}Ready = 1; } xC${y} = xTexelC${y}; `,y+1= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) { xTexelC${y+1} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${y+1}.zw = vec2(0.0); } xTexelC${y+1}Ready = 1; } `,l>1?c+=` xCOffset -= 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); xC${y+1} = vec4(previous.zw, xTexelC${y+1}.xy); } else { xC${y+1} = vec4(0.0, 0.0, xTexelC${y+1}.xy); } `:c+=` xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy); `):b===1?c+=` xC${y+1} = xTexelC${y}; `:c+=` xCOffset = xC + ${b}; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) { xTexelC${y+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${y+1}.zw = vec2(0.0); } xTexelC${y+1}Ready = 1; } xC${y+1} = xTexelC${y+1}; `}}else y= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) { xTexelC${y} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${y}.zw = vec2(0.0); } xTexelC${y}Ready = 1; } if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) { xTexelC${y+1} = getX(batch, xR, xC + 1, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xC + 2 >= inDims[1]) { xTexelC${y+1}.zw = vec2(0.0); } xTexelC${y+1}Ready = 1; } xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw); `,y+1= 0 && xCOffset < inDims[1]) { final = getX(batch, xR, xCOffset, d1); } xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy); `)):(c+=` if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) { xTexelC${y} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${y}.zw = vec2(0.0); } xTexelC${y}Ready = 1; } xCOffset = xC + strides[1]; if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) { xTexelC${y+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${y+1}.zw = vec2(0.); } xTexelC${y+1}Ready = 1; } xC${y} = vec4( xTexelC${y}.xy, xTexelC${y+1}.xy); `,y+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=N.computeConv2DInfo(r.shape,s.shape,i,p,o,u,!0),c;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels===1?c=new u_(d):c=new l_(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(c,[r,s],"float32",h)}var HQ={kernelName:_i,backendName:"webgl",kernelFunc:GQ},jQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${s} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},qQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${o}; dm++) { int d2 = d1 * ${o} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function KQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:p}=a,d=N.computeConv2DInfo(r.shape,p,i,o,l,u,!0),c=new jQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var XQ={kernelName:sm,backendName:"webgl",kernelFunc:KQ};function YQ(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:p}=a,d=N.computeConv2DInfo(p,s.shape,i,o,l,u,!0),c=new qQ(d);return n.runWebGLProgram(c,[r,s],"float32")}var ZQ={kernelName:im,backendName:"webgl",kernelFunc:YQ},JQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function QQ(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=v.sizeFromShape(a.shape),i=he({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new JQ(s),l=n.runWebGLProgram(o,[i],i.dtype),u=he({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var eee={kernelName:om,backendName:"webgl",kernelFunc:QQ},tee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:p,left:d}=a;this.userCode=` const ivec2 strides = ivec2(${r}, ${s}); const ivec2 pads = ivec2(${p}, ${d}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${o}; w++) { int wIn = wBeg + w * ${u}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function nee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=N.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),p,d=new tee(u);p=n.runWebGLProgram(d,[r,s],"float32");let c=he({inputs:{x:p},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(p),c}var aee={kernelName:pc,backendName:"webgl",kernelFunc:nee};function ree(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=N.decodeEinsumEquation(r,s.length);N.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:p}=N.getEinsumComputePath(o,l),d=p.length,c=null,h=i.length,m=[];for(let f=0;f=0&&(c=Of({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var see={kernelName:lm,backendName:"webgl",kernelFunc:ree},iee="return (x >= 0.0) ? x : (exp(x) - 1.0);",oee=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,lee=Ye({opSnippet:iee,packedOpSnippet:oee}),uee={kernelName:$i,backendName:"webgl",kernelFunc:lee},pee="return (b >= 1.0) ? a : a * (b + 1.0);",cee=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,dee=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new rd(cee,a.shape,r.shape):new kl(pee,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},hee={kernelName:um,backendName:"webgl",kernelFunc:dee},mee=` return vec4(equal(a, b)); `,fee="return float(a == b);",gee=pn({opSnippet:fee,packedOpSnippet:mee,dtype:"bool",cpuKernelImpl:QZ}),yee={kernelName:Wl,backendName:"webgl",kernelFunc:gee},bee=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${N.ERF_P}; float a1 = ${N.ERF_A1}; float a2 = ${N.ERF_A2}; float a3 = ${N.ERF_A3}; float a4 = ${N.ERF_A4}; float a5 = ${N.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,xee=Ye({opSnippet:bee}),vee={kernelName:zl,backendName:"webgl",kernelFunc:xee},wee=Gu+` return exp(x); `,kee=` vec4 result = exp(x); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,p_=Ye({opSnippet:wee,packedOpSnippet:kee,cpuKernelImpl:e7,dtype:"float32"}),Iee={kernelName:Fi,backendName:"webgl",kernelFunc:p_};function gx(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(v.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),he({inputs:{x:s},backend:a,attrs:{shape:o}})}var See={kernelName:Bl,backendName:"webgl",kernelFunc:gx},cI="return exp(x) - 1.0;",Tee=Ye({opSnippet:cI,packedOpSnippet:cI,cpuKernelImpl:t7}),Nee={kernelName:Vl,backendName:"webgl",kernelFunc:Tee},dI=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${r}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${a}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${a}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${s}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function c_(e,t,n){let a=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=he({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new dI("real",l,t),p=new dI("imag",l,t),d=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(p,d,"float32"),m=Cs({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=he({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function Cee(e){let{inputs:t,backend:n}=e,{input:a}=t;return c_(a,!1,n)}var Eee={kernelName:pm,backendName:"webgl",kernelFunc:Cee},_ee=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } `}};function id(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||v.inferDtype(r),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new _ee(a,r),o=[[r]];return t.runWebGLProgram(i,[],s,o)}}var Aee={kernelName:cc,backendName:"webgl",kernelFunc:id},$ee=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x - 1; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},Fee={kernelName:Ul,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new $ee(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},hI="return floor(x);",Dee=Ye({opSnippet:hI,packedOpSnippet:hI,cpuKernelImpl:n7}),Ree={kernelName:Di,backendName:"webgl",kernelFunc:Dee},Mee=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,Pee=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,Oee=pn({opSnippet:Mee,packedOpSnippet:Pee,dtype:"int32"}),Lee={kernelName:Ri,backendName:"webgl",kernelFunc:Oee},zee=class{constructor(e){this.variableNames=["A"];let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},Wee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Cn(),[n,a]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},Bee={kernelName:bh,backendName:"webgl",kernelFunc:Vee},Zo,kb=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Vee(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,l],d=[u,l,s];if(o||i){let f=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Zo==null||f!==kb)&&(kb=f,Zo=document.createElement("canvas").getContext("2d",{willReadFrequently:kb})),Zo.canvas.width=l,Zo.canvas.height=u,Zo.drawImage(r,0,0,l,u),r=Zo.canvas}let c=n.makeTensorInfo(p,"int32");n.texData.get(c.dataId).usage=pa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=H().getBool("WEBGL_PACK")?new Wee(d):new zee(d),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function Uee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:p,dilations:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=N.convertConv2DDataFormat(p),g=N.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!1,f),y,b=[],x=i!=null,w=o!=null,I=h==="leakyrelu",T=()=>{let _=[r,s],$=(R,F)=>{if(F==="NCHW"&&R.shape.length===1&&R.shape[0]!==1){let S=he({inputs:{x:R},backend:n,attrs:{shape:[R.shape[0],1,1]}});return b.push(S),S}return R};if(x&&_.push($(i,p)),w&&_.push($(o,p)),I){let R=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));_.push(R),b.push(R)}return _};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=s_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(g.strideWidth<=2&&f==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let _=h?tc(h,!0):null,$=new r_(g,x,_,w,I),R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=T();y=n.runWebGLProgram($,F,"float32",R)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=i_({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let _=h?tc(h,!1):null,$=new a_(g,x,_,w,I),R=T();y=n.runWebGLProgram($,R,"float32")}let C=he({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(_=>n.disposeIntermediateTensorInfo(_)),C}var Gee={kernelName:ni,backendName:"webgl",kernelFunc:Uee};function Hee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dimRoundingMode:d,activation:c,leakyreluAlpha:h}=a,m=[],f=p;f==null&&(f=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=N.computeConv2DInfo(r.shape,s.shape,l,f,u,d,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,b=c?tc(c,y):null,x=[r,s],w=i!=null,I=o!=null,T=c==="leakyrelu";if(w&&x.push(i),I&&x.push(o),T){let R=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(R),m.push(R)}let C;y?C=new u_(g,w,b,I,T):C=new l_(g,w,b,I,T);let _=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],$=n.runWebGLProgram(C,x,"float32",_);return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),$}var jee={kernelName:ai,backendName:"webgl",kernelFunc:Hee},qee=class{constructor(e,t,n,a){this.sliceDim=e,this.strides=t,this.paramsShape=a,this.variableNames=["x","indices"],this.outputShape=n;let r=gt(n.length),s=` int index;`;for(let i=0;i= ${this.paramsShape[i]}; flattenIndex += index * ${this.strides[i]};`;this.userCode=` void main() { ${r} coords = getOutputCoords(); int flattenIndex = 0; bool out_of_bounds = false; ${s} setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1])); } `}};function Kee(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=v.sizeFromShape(a.shape),[l,u,p,d]=N.prepareAndValidate(a,r),c=he({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=he({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape)/p,p]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),b=n.bufferSync(a),x=a7(y,b,a.dtype,u,i,p,d,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new qee(i,d,[u,p],a.shape),f=n.runWebGLProgram(m,[h,c],h.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var Xee={kernelName:Hl,backendName:"webgl",kernelFunc:Kee},Yee=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),a=Zee(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); int index = int(getIndices(resRC.x, resRC.z)); float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0; setOutput(inBounds * getA(${a})); } `}};function Zee(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r=0,()=>`GatherV2: the index value ${I} is not in [0, ${x-1}]`)}}let u=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),p=v.sizeFromShape(s.shape),d=[],c=he({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=he({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,p/u.batchSize]}});d.push(c),d.push(h);let m=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.bufferSync(h),x=n.bufferSync(c),w=r7(x,b,m);return d.forEach(I=>n.disposeIntermediateTensorInfo(I)),n.makeTensorInfo(u.outputShape,w.dtype,w.values)}let f=new Yee(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);d.push(g);let y=he({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var Jee={kernelName:Gl,backendName:"webgl",kernelFunc:d_},Qee="return float(a > b);",ete=` return vec4(greaterThan(a, b)); `,tte=pn({opSnippet:Qee,packedOpSnippet:ete,cpuKernelImpl:s7,dtype:"bool"}),nte={kernelName:jl,backendName:"webgl",kernelFunc:tte},ate="return float(a >= b);",rte=` return vec4(greaterThanEqual(a, b)); `,ste=pn({opSnippet:ate,packedOpSnippet:rte,dtype:"bool",cpuKernelImpl:i7}),ite={kernelName:Pi,backendName:"webgl",kernelFunc:ste};function ote(e){let{inputs:t,backend:n}=e,{input:a}=t;return c_(a,!0,n)}var lte={kernelName:cm,backendName:"webgl",kernelFunc:ote},ute="return float(!isnan(x) && !isinf(x));",pte=Ye({opSnippet:ute,dtype:"bool"}),cte={kernelName:ql,backendName:"webgl",kernelFunc:pte},dte="return float(isinf(x));",hte=Ye({opSnippet:dte,dtype:"bool"}),mte={kernelName:Kl,backendName:"webgl",kernelFunc:hte},fte="return float(isnan(x));",gte=Ye({opSnippet:fte,dtype:"bool"}),yte={kernelName:Li,backendName:"webgl",kernelFunc:gte},bte="return float(a < b);",xte=` return vec4(lessThan(a, b)); `,vte=pn({opSnippet:bte,packedOpSnippet:xte,cpuKernelImpl:o7,dtype:"bool"}),wte={kernelName:Xl,backendName:"webgl",kernelFunc:vte},kte="return float(a <= b);",Ite=` return vec4(lessThanEqual(a, b)); `,Ste=pn({opSnippet:kte,packedOpSnippet:Ite,cpuKernelImpl:l7,dtype:"bool"}),Tte={kernelName:Yl,backendName:"webgl",kernelFunc:Ste};function Nte(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=u7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Cte={kernelName:hm,backendName:"webgl",kernelFunc:Nte},Ete=Gu+` return x < 0.0 ? 0./0. : log(x); `,_te=` vec4 result = log(x); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r); result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g); result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b); result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a); return result; `,Ate=Ye({opSnippet:Ete,packedOpSnippet:_te,cpuKernelImpl:p7}),$te={kernelName:Wi,backendName:"webgl",kernelFunc:Ate},Fte=Gu+` return log(1.0 + x); `,Dte=Ye({opSnippet:Fte}),Rte={kernelName:Zl,backendName:"webgl",kernelFunc:Dte},Mte="return float(a >= 1.0 && b >= 1.0);",Pte=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,Ote=pn({opSnippet:Mte,packedOpSnippet:Pte,dtype:"bool"}),Lte={kernelName:Jl,backendName:"webgl",kernelFunc:Ote},zte="return float(!(x >= 1.0));",Wte=Ye({opSnippet:zte}),Bte={kernelName:Ql,backendName:"webgl",kernelFunc:Wte},Vte="return float(a >= 1.0 || b >= 1.0);",Ute=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,Gte=pn({opSnippet:Vte,packedOpSnippet:Ute,dtype:"bool"}),Hte={kernelName:eu,backendName:"webgl",kernelFunc:Gte},jte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${s}; j <= ${s}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${o}; setOutput(val); } `}},qte=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${s}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${s}; j <= ${s}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${o}; setOutput(result); } `}},Kte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new qte(r.shape,s,i,o,l):new jte(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},Xte={kernelName:dc,backendName:"webgl",kernelFunc:Kte},Yte=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${a}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${a}) * float(${r}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${r}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},Zte=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:p}=a,d=new Yte(r.shape,o,l,u,p);return n.runWebGLProgram(d,[r,s,i],r.dtype)},Jte={kernelName:mm,backendName:"webgl",kernelFunc:Zte};function Qte(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Co(i,e.dtype,"max",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function h_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(d){if(c){let b=n.texData.get(h.dataId).values,x=new Array(o);for(let T=0;T`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=N.computePool2DInfo(r.shape,s,i,u,o,l);if(p.filterWidth===1&&p.filterHeight===1&&v.arraysEqual(p.inShape,p.outShape))return ta({inputs:{x:r},backend:n});let d=new nc(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var ine={kernelName:Ui,backendName:"webgl",kernelFunc:sne};function one(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,p=[1,1,1],d=N.computePool3DInfo(r.shape,s,i,p,o,u,l),c=new a1(d,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var lne={kernelName:hc,backendName:"webgl",kernelFunc:one},une=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${r}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${s} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},pne=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,p=o-1-e.padInfo.front,d=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=` const ivec3 pads = ivec3(${p}, ${d}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${o}; wD += ${r}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${u}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${h} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${u} + wR * ${u} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function cne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:p}=a,d=[1,1,1],c=N.computePool3DInfo(i.shape,o,l,d,u,p),h=new a1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new pne(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var dne={kernelName:gm,backendName:"webgl",kernelFunc:cne};function hne(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;zu([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:p,dimRoundingMode:d}=a,c=N.computePool2DInfo(o.shape,l,u,1,p,d),h=!0,m=new nc(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new une(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var mne={kernelName:fm,backendName:"webgl",kernelFunc:hne};function fne(e,t,n,a){let r=new nc(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new nc(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var gne={kernelName:ym,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let p=N.computePool2DInfo(a.shape,r,s,u,i),[d,c]=fne(a,o,p,l);return[d,c]}};function yne(e,t,n,a){let r=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/r,i=he({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Co(i,"float32","mean",a),l=he({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var bne={kernelName:Gi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,p=N.getAxesPermutation(u,o),d=p!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(d){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let C=0;Cu[0]+e[p]+u[1]);let a=e.length,r=gt(a),s=t.map(u=>u[0]).join(","),i=t.map((u,p)=>u[0]+e[p]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${r} start = ${r}(${s}); ${r} end = ${r}(${i}); void main() { ${r} outC = getOutputCoords(); for (int i = 0; i < ${a}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${r} coords = outC - start; setOutput(getX(${o})); } `}},Nne=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=gt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,c="";if(a===1){let h=` ${r} source = rc; if (source < start) { source = start * 2 - source - ${d}; } else if (source >= end) { source = (end - 1) * 2 - source + ${d}; } source -= start; `;c=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${p}); ${o[a-1]} += 1; if(${u}) { ${h} result[1] = getChannel(getX(${l.join()}), ${p}); } `}else{let h=` ${r} source = rc; ${r} lt = ${r}(lessThan(source, start)); ${r} gte = ${r}(greaterThanEqual(source, end)); ${r} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${d}) + gte * ((end - 1) * 2 - source + ${d}); source -= start; `;c=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${p}); ${o[a-1]} += 1; if(${u}) { ${h} result[1] = getChannel(getX(${l.join()}), ${p}); } rc = outputLoc; ${o[a-2]} += 1; if(${o[a-2]} < ${this.outputShape[a-2]}) { ${h} result[2] = getChannel(getX(${l.join()}), ${p}); ${o[a-1]} += 1; if(${u}) { ${h} result[3] = getChannel(getX(${l.join()}), ${p}); } } `}this.userCode=` const ${r} start = ${r}(${s}); const ${r} end = ${r}(${i}); void main() { ${r} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${c} setOutput(result); } `}},Cne=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Nne(a.shape,r,s):new Tne(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Ene={kernelName:qi,backendName:"webgl",kernelFunc:Cne},_ne=`if (b == 0.0) return NAN; return mod(a, b);`,Ane=` vec4 result = mod(a, b); bvec4 isNaN = equal(b, vec4(0.0)); `+ad+` return result; `,$ne=pn({opSnippet:_ne,packedOpSnippet:Ane}),Fne={kernelName:tu,backendName:"webgl",kernelFunc:$ne},Dne=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}},Rne=` if (a == b) { return 1.0; }; return a / b;`,Mne=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,m_=pn({opSnippet:Rne,packedOpSnippet:Mne,checkOutOfBounds:!0}),Pne={kernelName:Ai,backendName:"webgl",kernelFunc:m_},mI="return a - b;",f_=pn({opSnippet:mI,packedOpSnippet:mI,supportsComplex:!0,cpuKernelImpl:D7}),One={kernelName:fo,backendName:"webgl",kernelFunc:f_};function g_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=v.parseAxisParam([s],r.shape),o=h_({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=N.expandShapeToKeepDim(o.shape,i),u=he({inputs:{x:o},backend:n,attrs:{shape:l}}),p=f_({inputs:{a:r,b:u},backend:n}),d=p_({inputs:{x:p},backend:n}),c=Of({inputs:{x:d},backend:n,attrs:{axis:i,keepDims:!1}}),h=he({inputs:{x:c},backend:n,attrs:{shape:l}}),m=m_({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var Lne={kernelName:ho,backendName:"webgl",kernelFunc:g_};function zne(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:g_({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],p=l.shape[1],d=new Dne(u,p,s),c=[[i]],h=n.runWebGLProgram(d,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var Wne={kernelName:bm,backendName:"webgl",kernelFunc:zne},Bne=Ma+` return -x; `,Vne=` vec4 result = -x; bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `;function Une(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=f7(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new es(a.shape,Vne):r=new rr(a.shape,Bne),n.runWebGLProgram(r,[a],a.dtype)}var Gne={kernelName:nu,backendName:"webgl",kernelFunc:Une},Hne=hr.nonMaxSuppressionV3Impl;function jne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d}=Hne(u,p,i,o,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var qne={kernelName:ru,backendName:"webgl",kernelFunc:jne},Kne=hr.nonMaxSuppressionV4Impl;function Xne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=Kne(p,d,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Yne={kernelName:su,backendName:"webgl",kernelFunc:Xne},Zne=hr.nonMaxSuppressionV5Impl;function Jne(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,p=n.readSync(r.dataId),d=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=Zne(p,d,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var Qne={kernelName:iu,backendName:"webgl",kernelFunc:Jne},eae=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${a}), float(${n}), float(index == coords.y))); } `}},tae=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=v.sizeFromShape(r.shape),p=new eae(u,i,o,l),d=he({inputs:{x:r},backend:n,attrs:{shape:[u]}}),c=n.runWebGLProgram(p,[d],s);n.disposeIntermediateTensorInfo(d);let h=[...r.shape,i],m=he({inputs:{x:c},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(c),m},nae={kernelName:Xi,backendName:"webgl",kernelFunc:tae};function Gh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=sd({inputs:{input:a},backend:n}),s=Gh({inputs:{x:r},backend:n}),i=Lf({inputs:{input:a},backend:n}),o=Gh({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return id({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var aae={kernelName:Su,backendName:"webgl",kernelFunc:Gh};function y_(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=sd({inputs:{input:a},backend:n}),s=y_({inputs:{x:r},backend:n}),i=Lf({inputs:{input:a},backend:n}),o=Gh({inputs:{x:i},backend:n}),l=Cs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return id({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var rae={kernelName:ou,backendName:"webgl",kernelFunc:y_};function sae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return gx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=gx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=n_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var iae={kernelName:lu,backendName:"webgl",kernelFunc:sae},oae=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=gt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(value); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${r} start = ${r}(${s}); ${r} end = ${r}(${i}); void main() { ${r} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(value); } else { ${r} coords = outC - start; setOutput(getX(${o})); } } `}},lae=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=gt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=kn("rc",a),l=kn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,p=a===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${o[a-1]} += 1; if(${u}) { `,a===1?"":`} rc = outputLoc; ${o[a-2]} += 1; if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1; if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;if(v.sizeFromShape(r.shape)===0){let u=s.map((p,d)=>p[0]+r.shape[d]+p[1]);return id({backend:n,attrs:{shape:u,value:i,dtype:r.dtype}})}let o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new lae(r.shape,s,i):new oae(r.shape,s,i),l=[[i]];return n.runWebGLProgram(o,[r],r.dtype,l)},uae={kernelName:Yi,backendName:"webgl",kernelFunc:b_},pae=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,cae=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; bvec4 isNaN1 = lessThan(a, vec4(0.0)); bvec4 isNaN2 = lessThan(floor(b), b); bvec4 isNaN = bvec4(isNaN1.x && isNaN2.x, isNaN1.y && isNaN2.y, isNaN1.z && isNaN2.z, isNaN1.w && isNaN2.w); `+ad+` return result; `,dae=pn({opSnippet:pae,packedOpSnippet:cae}),hae={kernelName:Zi,backendName:"webgl",kernelFunc:dae};function mae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=v.parseAxisParam(s,r.shape),p=u,d=N.getAxesPermutation(p,o),c=r;d!=null&&(c=In({inputs:{x:r},backend:n,attrs:{perm:d}}),p=N.getInnerMostAxes(p.length,o),l.push(c)),N.assertAxesAreInnerMostDims("prod",p,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=y7(c.shape,c.dtype,m,p);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=N.computeOutAndReduceShapes(c.shape,p),g=v.sizeFromShape(f),y=he({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),b=_m(r.dtype),x=Co(y,b,"prod",n);h=he({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=N.expandShapeToKeepDim(h.shape,u);h=he({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var fae={kernelName:Qi,backendName:"webgl",kernelFunc:mae};function gae(e){let{inputs:t,backend:n,attrs:a}=e,{paramsNestedSplits:r,paramsDenseValues:s,indices:i}=t,{outputRaggedRank:o}=a,l=r.map(y=>n.readSync(y.dataId)),u=r.map(y=>y.shape),p=n.readSync(s.dataId),d=n.readSync(i.dataId),[c,h,m]=b7(l,u,p,s.shape,s.dtype,d,i.shape,o),f=c.map(y=>n.makeTensorInfo([y.length],"int32",y)),g=n.makeTensorInfo(m,s.dtype,h);return f.concat([g])}var yae={kernelName:xm,backendName:"webgl",kernelFunc:gae};function bae(e){let{inputs:t,backend:n}=e,{starts:a,limits:r,deltas:s}=t,i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=x7(i,a.shape,a.dtype,o,r.shape,l,s.shape),d=n.makeTensorInfo([u.length],"int32",u),c=n.makeTensorInfo([p.length],a.dtype,p);return[d,c]}var xae={kernelName:vm,backendName:"webgl",kernelFunc:bae};function vae(e){let{inputs:t,backend:n,attrs:a}=e,{shape:r,values:s,defaultValue:i,rowPartitionTensors:o}=t,{rowPartitionTypes:l}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=n.readSync(i.dataId),c=o.map(g=>n.readSync(g.dataId)),h=o.map(g=>g.shape),[m,f]=v7(u,r.shape,p,s.shape,s.dtype,d,i.shape,c,h,l);return n.makeTensorInfo(m,s.dtype,f)}var wae={kernelName:wm,backendName:"webgl",kernelFunc:vae},x_=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=w7(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},kae={kernelName:mc,backendName:"webgl",kernelFunc:x_},Iae="return 1.0 / x;",Sae=Ye({opSnippet:Iae}),Tae={kernelName:eo,backendName:"webgl",kernelFunc:Sae},Nae=Ma+` return (x < 0.0) ? 0.0 : x; `,Cae=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Eae=Ye({opSnippet:Nae,packedOpSnippet:Cae}),_ae={kernelName:to,backendName:"webgl",kernelFunc:Eae},Aae=Ma+` return (x < 0.0) ? 0.0 : min(6.0, x); `,$ae=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Fae=Ye({opSnippet:Aae,packedOpSnippet:$ae}),Dae={kernelName:ro,backendName:"webgl",kernelFunc:Fae},Rae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/p[0]}, ${u[1]/p[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},Mae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/p[0]}, ${u[1]/p[1]}, ${u[1]/p[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function Pae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Mae(r.shape,l,u,s,i):new Rae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],"float32")}var Oae={kernelName:ao,backendName:"webgl",kernelFunc:Pae},Lae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${u}); const float widthScale = float(${p}); const float invHeightScale = float(${d}); const float invWidthScale = float(${c}); const int winHeight = int(${h}); const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function zae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Lae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Wae={kernelName:Sm,backendName:"webgl",kernelFunc:zae},Bae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${u[0]/p[0]}, ${u[1]/p[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${c}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}},Vae=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],p=[a&&t>1?t-1:t,a&&n>1?n-1:n],d=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${u[0]/p[0]}, ${u[1]/p[1]}, ${u[1]/p[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${c}; // Compute the coordinators of nearest neighbor point. ivec3 sourceNearestRC = ivec3( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; vec4 newValue = vec4( getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d), hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0); setOutput(newValue); } `}};function Uae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,p=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Vae(r.shape,l,u,s,i):new Bae(r.shape,l,u,s,i);return n.runWebGLProgram(p,[r],r.dtype)}var Gae={kernelName:no,backendName:"webgl",kernelFunc:Uae},Hae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],p=o[1]/l[1],d=1/u,c=1/p,h=Math.ceil(d)*2+2,m=Math.ceil(c)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${u}); const float widthScale = float(${p}); const float invHeightScale = float(${d}); const float invWidthScale = float(${c}); const int winHeight = int(${h}); const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${o[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${o[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${a}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function jae(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Hae(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var qae={kernelName:Im,backendName:"webgl",kernelFunc:jae},Kae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=gt(n);this.userCode=` void main() { ${s} coords = getOutputCoords(); setOutput(getX(${r})); } `}},Xae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=kn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=gt(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${r}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${o(a.slice())}; if(${r}){ result.g = ${l(a.slice())}; } if(${s}) { result.b = ${u(a.slice())}; if(${r}) { result.a = ${p(a.slice())}; } } setOutput(result); } `;function o(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function p(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let m=e.map((y,b)=>c(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Yae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=v.parseAxisParam(s,r.shape);if(i===0)return ta({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Xae(r.shape,o):new Kae(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Zae={kernelName:so,backendName:"webgl",kernelFunc:Yae},Jae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - params[0]) * params[3] - (float(y) - params[1]) * params[2]; float coordYFloat = (float(x) - params[0]) * params[2] + (float(y) - params[1]) * params[3]; int coordX = int(round(coordXFloat + params[0])); int coordY = int(round(coordYFloat + params[1])); ${r} if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},Qae={kernelName:Tu,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Jae(a.shape,s),[u,p]=N.getImageCenter(i,a.shape[1],a.shape[2]),d=[[u,p,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(l,[a],a.dtype,d)}},ere=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,tre=Ye({opSnippet:ere}),nre={kernelName:io,backendName:"webgl",kernelFunc:tre},are="return inversesqrt(x);",rre=Ye({opSnippet:are,cpuKernelImpl:k7}),sre={kernelName:oo,backendName:"webgl",kernelFunc:rre},v_=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=gt(r.length),l=gt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let p=`getIndices(${u})`,d="";a===1?d="i":a===2&&(d="i, coords[1]");let c=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${r}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${p}); flattenedIndex += index * ${h}; } if (flattenedIndex == coords[0]) { sum += ${c}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function ire(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:p,outputSize:d}=N.calculateShapes(s,r,i),c=[d/u,u];if(d===0)return n.makeTensorInfo(i,r.dtype);let h=he({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=he({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new v_(l,o,h.shape.length,m.shape.length,p,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=he({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var ore={kernelName:pu,backendName:"webgl",kernelFunc:ire},lre=class{constructor(e,t,n,a){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",s=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=H().getNumber("WEBGL_VERSION")===2?r:s,o=a==="left"?"<":"<=";this.userCode=` int findBound(int batch, float value) { int left = 0; int right = numInputs; int mid; ${i} mid = (left + right) / 2; if (getSortedSequence(batch, mid) ${o} value) { left = mid + 1; } else { right = mid; } } return right; } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int valueIndex = coords[1]; float value = getValues(batch, valueIndex); setOutput(float(findBound(batch, value))); } `}};function ure(e){let{inputs:t,backend:n,attrs:a}=e,{sortedSequence:r,values:s}=t,{side:i}=a,o=new lre(r.shape[0],r.shape[1],s.shape[1],i),l=[[r.shape[1]]];return n.runWebGLProgram(o,[r,s],"int32",l)}var pre={kernelName:Tm,backendName:"webgl",kernelFunc:ure},cre=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u= 1.0) { setOutput(getA(${r})); } else { setOutput(getB(${r})); } } `}};function dre(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new cre(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ma(r.dtype,s.dtype))}var hre={kernelName:cu,backendName:"webgl",kernelFunc:dre},mre=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${N.SELU_SCALEALPHA}; float scale = ${N.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,fre=Ye({opSnippet:mre}),gre={kernelName:du,backendName:"webgl",kernelFunc:fre},yre=Gu+` return 1.0 / (1.0 + exp(-1.0 * x)); `,bre=` vec4 result = 1.0 / (1.0 + exp(-1.0 * x)); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,xre=Ye({opSnippet:yre,packedOpSnippet:bre,cpuKernelImpl:S7}),vre={kernelName:uo,backendName:"webgl",kernelFunc:xre},wre=` if (isnan(x)) { return 0.0; } return sign(x); `,kre=Ye({opSnippet:wre}),Ire={kernelName:fu,backendName:"webgl",kernelFunc:kre},Sre=Gu+` return sin(x); `,Tre=Ye({opSnippet:Sre}),Nre={kernelName:lo,backendName:"webgl",kernelFunc:Tre},Cre=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,Ere=Ye({opSnippet:Cre}),_re={kernelName:mu,backendName:"webgl",kernelFunc:Ere},Are=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,$re=Ye({opSnippet:Are}),Fre={kernelName:gu,backendName:"webgl",kernelFunc:$re},Dre=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),g},Rre={kernelName:yu,backendName:"webgl",kernelFunc:Dre};function Mre(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw: ${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw: ${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),p=n.readSync(i.dataId)[0],[d,c,h,m,f]=N7(o,a.shape,a.dtype,l,r.dtype,u,p);return[n.makeTensorInfo(c,a.dtype,d),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var Pre={kernelName:fc,backendName:"webgl",kernelFunc:Mre};function Ore(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,p,d]=C7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(p,a.dtype,u),n.makeTensorInfo([d.length],s.dtype,new Int32Array(d))]}var Lre={kernelName:xu,backendName:"webgl",kernelFunc:Ore};function zre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=VE(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(p,a.dtype,u)}var Wre={kernelName:gc,backendName:"webgl",kernelFunc:zre};function Bre(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,p]=VE(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(p,a.dtype,u)}var Vre={kernelName:yc,backendName:"webgl",kernelFunc:Bre};function Ure(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=N.calculateShapes(s,r,o),h=!1;if(s.dtype==="string"){let y=n.bufferSync(r),b=n.bufferSync(s),x=v.decodeString(n.readSync(i.dataId)[0]),w=I7(y,b,o,c,p,u,l,d,x,h);return n.makeTensorInfo(o,w.dtype,w.values)}let m=new v_(u,l,r.shape.length,s.shape.length,d,[c,1],h),f=n.runWebGLProgram(m,[s,r,i],s.dtype),g=he({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),g}var Gre={kernelName:Nm,backendName:"webgl",kernelFunc:Ure};function Hre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=r.shape.length,p=new Array(u).fill(0),d=r.shape.slice();return l.map(c=>{let h=[...d];h[o]=c;let m=Hu({inputs:{x:r},backend:n,attrs:{begin:p,size:h}});return p[o]+=c,m})}var jre={kernelName:bu,backendName:"webgl",kernelFunc:Hre},fI="return sqrt(x);",qre=Ye({opSnippet:fI,packedOpSnippet:fI,cpuKernelImpl:E7}),Kre={kernelName:po,backendName:"webgl",kernelFunc:qre},Xre="return x * x;",Yre=Ye({opSnippet:Xre}),Zre={kernelName:bc,backendName:"webgl",kernelFunc:Yre},gI="return (a - b) * (a - b);",Jre=pn({opSnippet:gI,packedOpSnippet:gI}),Qre={kernelName:mo,backendName:"webgl",kernelFunc:Jre};function ese({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ma+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,s=new rr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var tse={kernelName:bs,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=gt(n.length),s=gt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=` ${r} begin = ${r}(${e}); ${r} strides = ${r}(${t}); void main() { ${s} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function ase(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=he({inputs:{x:r},backend:n,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Kt.computeOutShape(b,x,w),_=Hu({inputs:{x:r},backend:n,attrs:{begin:b,size:C}});I=he({inputs:{x:_},backend:n,attrs:{shape:m}}),n.disposeIntermediateTensorInfo(_)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),_=Pe(r.shape,r.dtype,C),$=_7(h,_,w,b);I=n.makeTensorInfo(m,r.dtype,$.values)}else{let C=new nse(b,w,h);I=n.runWebGLProgram(C,[r],r.dtype)}let T=he({inputs:{x:I},backend:n,attrs:{shape:m}});return n.disposeIntermediateTensorInfo(I),T}var rse={kernelName:vu,backendName:"webgl",kernelFunc:ase};function sse(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:p,dataSplits:d}=t,c=n.readSync(p.dataId),h=n.readSync(d.dataId),[m,f]=A7(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(d.shape,"int32",f)]}var ise={kernelName:xc,backendName:"webgl",kernelFunc:sse};function ose(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,p,d]=$7(o,l,r),c=p.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",p),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var lse={kernelName:vc,backendName:"webgl",kernelFunc:ose};function use(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=F7(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var pse={kernelName:wc,backendName:"webgl",kernelFunc:use},cse="return tan(x);",dse=Ye({opSnippet:cse}),hse={kernelName:go,backendName:"webgl",kernelFunc:dse},mse=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,fse=Ye({opSnippet:mse}),gse={kernelName:yo,backendName:"webgl",kernelFunc:fse},yse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(d=>v.decodeString(d)):o,u=Pe(r.shape,r.dtype,l),p=R7(u,s);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new yse(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var xse={kernelName:ys,backendName:"webgl",kernelFunc:w_},vse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // We compare elements pair-wise within a group of size 2 * inc. // The comparing rule for each group alternates between ascending // and descending. Within each group, we compare each pair at // positions i and i+inc. To decide whether an element at position i // is x0 or x1, we mod it by 2 * inc, if the result is smaller than // inc, it is in the first half of the group, we denote it as x0, // otherwise we denote it as x1. // For example, as shown in the Bitonic top K paper referenced above, // Figure5(a) shows that element[1] is in the // second half of the group when group size is 2, but it is in the // first half of the group when group size is 4. bool isFirstInPair = imod(elemIdx, 2 * inc) < inc; int i = isFirstInPair ? elemIdx : elemIdx - inc; int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc)); float x0 = i0 < n ? getX(batch, i0) : negativeInf; float x1 = i1 < n ? getX(batch, i1) : negativeInf; // Denotes which direction indices are in (ascending or descending). bool reverse = imod(elemIdx, 2 * dir) >= dir; bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0); if (reverse == isGreater) { // Elements in opposite order of direction int iTemp = i0; i0 = i1; i1 = iTemp; } if (isFirstInPair) { setOutput(float(i0)); } else { setOutput(float(i1)); } } `}},wse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` void main() { // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // The output size is half of the previous size. // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4), // we only need to output the indices at positions |, the indices at // positions _ can be thrown away, see Figure5(b) After Phase 2 // (Merge phase) in the Bitonic Top K paper referenced above. // For example, the paper shows we only need to output the orange bars. // The output sequence should look like this | | | | | | | |. // Because the sequence is halved, to map the output index back // to the previous sequence to find the corresponding value, // we need to double the index. When we double the index, // we basically interpolate a position, so 2i looks like // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position // of each 2k positions by - elemIdx % k. E.g. for output at // index 4,5,6,7, we want to get the corresponding element at // original index 8,9,10,11, for output at index 8,9,10,11, // we want to get the corresponding element at original index // 16,17,18,19, so on and so forth. int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k)); int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k)); float x0 = getX(batch, i0); float x1 = i1 < n ? getX(batch, i1) : x0; setOutput(x0 >= x1 ? float(i0) : float(i1)); } `}};function Bs(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function yI(e){let t=1;for(;tl){let $=n.readSync(r.dataId),[R,F]=M7($,u,r.dtype,s,i);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(F.shape,F.dtype,F.values)]}if(s===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(p===1)return[r,id({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),c=d!==null&&d.isPacked,h=c?n.unpackTensor(r):r,m=v.sizeFromShape(u)/p,f=he({inputs:{x:h},attrs:{shape:[m,p]},backend:n});c&&Bs(n,h);let g=yI(s),y=yI(p),b=null,x=()=>b===null?[f,f]:[f,b],w=($,R,F)=>{let S=x(),M=new vse(F),B=[[p],[b===null?1:0],[Number.NEGATIVE_INFINITY],[$],[R]],U=b;b=n.runWebGLProgram(M,S,"int32",B),Bs(n,U)};for(let $=1;$=1;F/=2)w(R,F,[m,y])}for(let $=y;$>g;$/=2){let R=x(),F=new wse([m,$/2]),S=[[p],[b===null?1:0],[g]],M=b;b=n.runWebGLProgram(F,R,"int32",S),Bs(n,M);let B=g/2,U=B*2;for(let G=B;G>=1;G/=2)w(U,G,b.shape)}let I=b;b=Hu({inputs:{x:b},backend:n,attrs:{begin:0,size:[m,s]}}),Bs(n,I);let T=d_({inputs:{x:f,indices:b},backend:n,attrs:{axis:1,batchDims:1}});Bs(n,f);let C=u.slice(0,-1);C.push(s),I=b,b=he({inputs:{x:b},attrs:{shape:C},backend:n}),Bs(n,I);let _=T;return T=he({inputs:{x:T},attrs:{shape:C},backend:n}),Bs(n,_),[T,b]}var Ise={kernelName:wu,backendName:"webgl",kernelFunc:kse},Sse=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${o} == 2) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; if (inCoord < sz2) { inCoord = sz2 * float(int(float(-inCoord / sz2))) + inCoord; } inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0; } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; inCoord -= sz2 * float(int(float(inCoord / sz2))); if (inCoord >= len) { inCoord = sz2 - inCoord - 1.0; } } } return clamp(inCoord, 0.0, len - 1.0); } else if (${o} == 3) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord += len * (float(int(float(-inCoord / sz))) + 1.0); } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord -= len * float(int(float(inCoord / sz))); } } return clamp(inCoord, 0.0, len - 1.0); } else if (${o} == 4) { return clamp(outCoord, 0.0, len - 1.0); } else { return outCoord; } } float readWithFillValue(int batch, int coordY, int coordX, int channel) { float outputValue; if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) { outputValue = getImage(batch, coordY, coordX, channel); } else { outputValue = float(${r}); } return outputValue; } void main() { ivec4 coords = getOutputCoords(); float outputValue; int batch = coords[0]; int x = coords[2]; int y = coords[1]; int channel = coords[3]; float xf = float(x); float yf = float(y); float a1 = getTransforms(batch, 0); float a2 = getTransforms(batch, 1); float a3 = getTransforms(batch, 2); float b1 = getTransforms(batch, 3); float b2 = getTransforms(batch, 4); float b3 = getTransforms(batch, 5); float c1 = getTransforms(batch, 6); float c2 = getTransforms(batch, 7); float projection = c1 * xf + c2 * yf + 1.0; if (projection == 0.0) { outputValue = float(${r}); } else { float inX = (a1 * xf + a2 * yf + a3) / projection; float inY = (b1 * xf + b2 * yf + b3) / projection; float mapX = mapCoord(inX, float(${t})); float mapY = mapCoord(inY, float(${e})); if (${i} == 1) { int coordY = int(round(mapY)); int coordX = int(round(mapX)); outputValue = readWithFillValue(batch, coordY, coordX, channel); } else { float yFloor = floor(mapY); float xFloor = floor(mapX); float yCeil = yFloor + 1.0; float xCeil = xFloor + 1.0; float valueYFloor = (xCeil - mapX) * readWithFillValue(batch, int(yFloor), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yFloor), int(xCeil), channel); float valueYCeil = (xCeil - mapX) * readWithFillValue(batch, int(yCeil), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yCeil), int(xCeil), channel); outputValue = (yCeil - mapY) * valueYFloor + (mapY - yFloor) * valueYCeil; } } setOutput(outputValue); } `}};function Tse(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Sse(d,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var Nse={kernelName:ku,backendName:"webgl",kernelFunc:Tse};function Cse(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;zu(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=P7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var Ese={kernelName:Cm,backendName:"webgl",kernelFunc:Cse};function _se(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),p=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var Ase={kernelName:Iu,backendName:"webgl",kernelFunc:_se},$se=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,p=n%4,d=` sumValue += dot(values, segFilter); `,c="";r%n>0&&(c=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `);let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return -1.0; } `),this.userCode=` const float initializationValue = ${o}; float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${h} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${s})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${s}))); float sumValue = 0.0; for (int i = 0; i < ${u}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${d} } int inIdx = inOffset + ${u}; if (${p===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${d} } else if (${p===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${d} } else if (${p===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${d} } setOutput(${l}); } `}};function Fse(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,p=N.getAxesPermutation([u],o),d=r;p!=null&&(d=In({inputs:{x:r},backend:n,attrs:{perm:p}}),l.push(d),u=N.getInnerMostAxes(1,o)[0]);let c=N.segment_util.computeOutShape(d.shape,u,i),h=v.sizeFromShape([d.shape[u]]),m=he({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=_m(r.dtype),g=(w,I,T,C,_)=>{let $=w.shape[0],R=w.shape[1],F=N.segment_util.segOpComputeOptimalWindowSize(R,_),S={windowSize:F,inSize:R,batchSize:$,numSegments:_},M=new $se(S,I),B=n.compileAndRun(M,[w,T],C);if(l.push(B),B.shape[1]===_)return B;let U=x_({backend:n,attrs:{start:0,stop:_,step:1,dtype:"float32"}}),G=w_({inputs:{x:U},backend:n,attrs:{reps:[R/F]}});return l.push(U),l.push(G),g(B,I,G,C,_)},y=g(m,"unsortedSegmentSum",s,f,i),b=he({inputs:{x:y},backend:n,attrs:{shape:c}}),x=b;if(p!=null){l.push(b);let w=N.getUndoAxesPermutation(p);x=In({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var Dse={kernelName:kc,backendName:"webgl",kernelFunc:Fse},Rse=[_J,$J,RJ,OJ,zJ,VJ,GJ,jJ,YJ,JJ,t9,r9,o9,c9,m9,g9,b9,k9,S9,N9,A9,O9,z9,B9,q9,X9,Q9,dJ,nQ,oQ,cQ,yQ,xQ,wQ,IQ,TQ,EQ,$Q,RQ,PQ,LQ,WQ,UQ,HQ,XQ,ZQ,eee,aee,see,uee,hee,yee,vee,Iee,See,Nee,Eee,Aee,Fee,Ree,Lee,Bee,Gee,jee,Xee,Jee,nte,ite,cJ,lte,sQ,cte,mte,yte,mJ,wte,Tte,Cte,$te,Rte,Lte,Bte,Hte,Xte,Jte,ene,rne,ine,lne,dne,mne,gne,bne,vne,Sne,Ene,Fne,Wne,yJ,Gne,qne,Yne,Qne,U9,nae,rae,iae,uae,hae,gJ,fae,yae,xae,wae,kae,G9,Pne,Tae,_ae,Dae,xJ,Oae,Wae,Gae,qae,Zae,Qae,nre,sre,ore,pre,hre,gre,vre,Ire,Nre,_re,M9,Lne,Fre,Rre,Pre,Lre,Wre,Vre,Gre,jre,Kre,Zre,Qre,tse,rse,ise,lse,pse,One,NJ,hse,gse,xse,Ise,Nse,CJ,Ese,Ase,Dse,aae];for(let e of Rse)Ic(e);var _t;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(_t||(_t={}));var rc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(rc||(rc={}));var k_;function Mse(e){k_=e.wasm.cwrap(ti,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Pse(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:p,leakyreluAlpha:d}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let _=n.dataIdMap.get(i.dataId);if(_.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${_.shape.length}.`);m=_.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=rc[p];if(g==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=u?s.shape[1]:s.shape[2],x=Nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)),w=n.makeOutput([...x,y,b],r.dtype),I=n.dataIdMap.get(w.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return k_(c,T,r.shape.length,h,C,s.shape.length,l,u,g,m,f,d||0,I),w}var Ose={kernelName:ti,backendName:"wasm",setupFunc:Mse,kernelFunc:Pse};function Ut(e,t){let n;function a(s){n=s.wasm.cwrap(e,null,["number","number","number"])}function r(s){let{backend:i,inputs:{x:o}}=s,l=i.dataIdMap.get(o.dataId).id,u=i.makeOutput(o.shape,t||o.dtype),p=i.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,_t[o.dtype],p),u}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:r}}var Lse=Ut(Sl);function cn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:p}=l,d=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(p.dataId).id,h=n!=null?n:u.dtype,m=N.assertAndGetBroadcastShape(u.shape,p.shape),f=o.makeOutput(m,h);if(v.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(p.shape).buffer),b=o.dataIdMap.get(f.dataId).id;return a(d,g,u.shape.length,c,y,p.shape.length,_t[u.dtype],b),f}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var zse=!0,Wse=cn(fs,zse),I_;function Bse(e){I_=e.wasm.cwrap(bi,null,["array","number","number","number"])}function Vse(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return I_(s,r.length,_t[a.dtype],i),a}var Use={kernelName:bi,backendName:"wasm",setupFunc:Bse,kernelFunc:Vse};function zf(e){let{inputs:{x:t},backend:n}=e;if(t.dtype==="string")return mn(n.readSync(t.dataId),t.shape,t.dtype);let a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Gse={kernelName:Oi,backendName:"wasm",kernelFunc:zf},S_;function Hse(e){S_=e.wasm.cwrap(Cr,null,["number","array","number","number","number","array","number"])}function ds(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=qse(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Kse={kernelName:Cr,backendName:"wasm",kernelFunc:ds,setupFunc:Hse};function Es(e,t,n){let a=e.shape,r=e.shape.length,s=v.parseAxisParam(t,a),i=s,o=N.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let p=new Array(r);for(let c=0;c`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var oie={kernelName:uu,backendName:"wasm",kernelFunc:Wn},__;function lie(e){__=e.wasm.cwrap(wi,null,["number","array","number","number","array","number","number","number","number"])}function uie(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,p=i?r.shape[l-2]:r.shape[l-1],d=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(f),b=Nu.assertAndGetBroadcastShape(r.shape.slice(0,-2),s.shape.slice(0,-2)).concat([c,h]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,p,c]:[g,c,p],w=o?[y,h,d]:[y,d,h],I=Wn({inputs:{x:r},backend:n,attrs:{shape:x}}),T=Wn({inputs:{x:s},backend:n,attrs:{shape:w}}),C=n.dataIdMap.get(I.dataId).id,_=n.dataIdMap.get(T.dataId).id,$=i?I.shape[2]:I.shape[1],R=o?T.shape[1]:T.shape[2],F=Math.max(g,y),S=n.makeOutput([F,$,R],I.dtype),M=n.dataIdMap.get(S.dataId).id,B=new Uint8Array(new Int32Array(I.shape).buffer),U=new Uint8Array(new Int32Array(T.shape).buffer);return __(C,B,I.shape.length,_,U,T.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData(T.dataId),S.shape=b,S}var pie={kernelName:wi,backendName:"wasm",setupFunc:lie,kernelFunc:uie};function gi(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=Kt.parseSliceParams(t,n,a),o=Kt.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),p=v.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(o){let m=Kt.computeFlatOffset(s,p);return t.dtype==="string"?d.stringBytes=l.slice(m,m+v.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Lh(l,s,i,t.shape,t.dtype);return d.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)cie(l,p[0],c,s,i);else if(h===3)die(l,p[0],p[1],c,s,i);else if(h===4)hie(l,p[0],p[1],p[2],c,s,i);else{let m=Lh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function cie(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;uy*b),l=N.getReshaped(r.shape,s,o),u=N.getPermuted(l.length,s.length),p=N.getReshapedPermuted(r.shape,s,o),d=N.getSliceBeginCoords(i,s.length),c=N.getSliceSize(p,i,s.length),h=Wn({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ds({inputs:{x:h},backend:n,attrs:{perm:u}}),f=Wn({inputs:{x:m},backend:n,attrs:{shape:p}}),g=gi({inputs:{x:f},backend:n,attrs:{begin:d,size:c}});return n.disposeData(h.dataId),n.disposeData(m.dataId),n.disposeData(h.dataId),g}var gie={kernelName:Rl,backendName:"wasm",kernelFunc:fie};function ju(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var yie={kernelName:ki,backendName:"wasm",kernelFunc:ju},bie=Ut(Ii),A_;function xie(e){A_=e.wasm.cwrap(gs,null,["number","number","number","number"])}function vie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return A_(o,s,i,u),l}var wie={kernelName:gs,backendName:"wasm",setupFunc:xie,kernelFunc:vie};function $_(e){let{inputs:t,backend:n}=e,a=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=t.map(h=>h.shape);N.assertParamsConsistent(r,a);let s=N.computeOutShape(t.map(h=>h.shape),a),i=t.filter(h=>v.sizeFromShape(h.shape)>0);if(i.length===1)return zf({inputs:{x:i[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(v.sizeFromShape(s)===0)return o;if(i[0].dtype==="string"){let h=i.map(x=>{let w=[-1,v.sizeFromShape(x.shape.slice(a))];return Wn({inputs:{x},backend:n,attrs:{shape:w}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));s=N.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=F0(m,s,t[0].dtype,f),y=N.computeOutShape(i.map(x=>x.shape),a);o.shape=y;let b=n.dataIdMap.get(o.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(i[0].shape.slice(0,a)),u=0,p=i.map(h=>{let m=v.sizeFromShape(h.shape.slice(a));return u+=m,m}),d=i.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(o);for(let h=0;h`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=ds({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumprod",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;M_(m,i?1:0,o?1:0,h,f,_t[r.dtype]);let g=c;if(u!==null){let y=N.getUndoAxesPermutation(u);g=ds({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var Pie={kernelName:Pl,backendName:"wasm",setupFunc:Rie,kernelFunc:Mie},P_;function Oie(e){P_=e.wasm.cwrap(Ei,null,["number","number","number","number","number","number"])}function Lie(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),p=r;u!==null&&(p=ds({inputs:{x:r},attrs:{perm:u},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let c=n.makeOutput(p.shape,p.dtype),h=p.shape[d],m=n.dataIdMap.get(p.dataId).id,f=n.dataIdMap.get(c.dataId).id;P_(m,i?1:0,o?1:0,h,f,_t[r.dtype]);let g=c;if(u!==null){let y=N.getUndoAxesPermutation(u);g=ds({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(p.dataId),n.disposeData(c.dataId)}return g}var zie={kernelName:Ei,backendName:"wasm",setupFunc:Oie,kernelFunc:Lie},O_;function Wie(e){O_=e.wasm.cwrap(Ll,null,["number","number","number","array","number","array","array","number","number"])}function Bie(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a,o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],p=i==="NHWC"?r.shape[3]:r.shape[1],d=l*s,c=u*s,h=p/(s*s),m=i==="NHWC"?[o,d,c,h]:[o,h,d,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return O_(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,x,m.length,w),f}var Vie={kernelName:Ll,backendName:"wasm",setupFunc:Wie,kernelFunc:Bie},L_;function Uie(e){L_=e.wasm.cwrap(_i,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gie(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:p,dimRoundingMode:d}=n,c=u==null?[1,1]:u,h=N.computeConv2DInfo(r.shape,s.shape,l,c,p,d,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,I=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,_=h.inChannels,$=h.outChannels,R=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let F=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get(F.dataId).id;return L_(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,x,R,w,I,T,C,_,$,S),F}var Hie={kernelName:_i,backendName:"wasm",setupFunc:Uie,kernelFunc:Gie},jie=Ut($i),qie=!1,Kie=cn(Wl,qie,"bool"),Xie=Ut(Fi,"float32");function bx(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Wn({inputs:{x:r},backend:a,attrs:{shape:o}})}var Yie={kernelName:Bl,backendName:"wasm",kernelFunc:bx};function z_(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var Zie={kernelName:cc,backendName:"wasm",kernelFunc:z_},W_;function Jie(e){W_=e.wasm.cwrap(Ul,null,["number","number","number","number","number","number"])}function Qie(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,p]=a.shape;return W_(s,o,l,u,p,i),r}var eoe={kernelName:Ul,backendName:"wasm",kernelFunc:Qie,setupFunc:Jie},toe=Ut(Di),noe=!1,aoe=cn(Ri,noe),B_;function roe(e){B_=e.wasm.cwrap(Mi,null,["number","number","number","number","number","number","number"])}function soe(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return B_(p,d,c,h,m,r,g),f}var ioe={kernelName:Mi,backendName:"wasm",setupFunc:roe,kernelFunc:soe},V_;function ooe(e){V_=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function loe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c),g=rc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return V_(y,q,K,Z,b,I,T,w,C,_,$,R,G,F,S,M,B,U,x,g,ae,m||0,ee),J}var uoe={kernelName:ni,backendName:"wasm",setupFunc:ooe,kernelFunc:loe},U_;function poe(e){U_=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function coe(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:p,dataFormat:d,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=N.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!0),g=rc[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let te=a.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${x})`);w=te.id}let I=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,_=f.padInfo.right,$=f.padInfo.bottom,R=f.padInfo.left,F=f.dilationHeight,S=f.dilationWidth,M=f.strideHeight,B=f.strideWidth,U=f.inChannels,G=f.padInfo.type==="SAME"?1:0,q=f.batchSize,K=f.inHeight,Z=f.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let J=a.makeOutput(f.outShape,"float32"),ee=a.dataIdMap.get(J.dataId).id,ae=o==null?0:a.dataIdMap.get(o.dataId).id;return U_(y,q,K,Z,b,I,T,w,C,_,$,R,G,F,S,M,B,U,x,g,ae,m||0,ee),J}var doe={kernelName:ai,backendName:"wasm",setupFunc:poe,kernelFunc:coe},G_;function hoe(e){G_=e.wasm.cwrap(Hl,null,["number","number","number","number","number","number","array","number"])}function moe(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Lx.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let p=r.shape,d=p[p.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return G_(c,_t[a.dtype],h,i,d,o,m,f),u}var foe={kernelName:Hl,backendName:"wasm",setupFunc:hoe,kernelFunc:moe},H_;function goe(e){H_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function yoe(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=v.parseAxisParam(i,r.shape)[0],u=t.readSync(s.dataId),p=r.shape[l];for(let C=0;C=0,()=>`GatherV2: the index value ${_} is not in [0, ${p-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,s,l,o),c=Wn({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),m=Wn({inputs:{x:s},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),f=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(f,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=c.shape.length-1,b=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(m.dataId).id,w=t.dataIdMap.get(g.dataId).id,I=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer);return H_(b,_t[r.dtype],I,y,x,d.batchSize,T,w),t.disposeData(c.dataId),t.disposeData(m.dataId),g.shape=d.outputShape,g}var boe={kernelName:Gl,backendName:"wasm",setupFunc:goe,kernelFunc:yoe},xoe=!1,voe=cn(jl,xoe,"bool"),woe=!1,koe=cn(Pi,woe,"bool"),Ioe=Ut(Li,"bool"),j_;function Soe(e){j_=e.wasm.cwrap(zi,null,["number","number","number","number"])}function Toe(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;j_(r,_t[t.dtype],n,i)}return s}var Noe={kernelName:zi,backendName:"wasm",setupFunc:Soe,kernelFunc:Toe},Coe=!1,Eoe=cn(Xl,Coe,"bool"),_oe=!1,Aoe=cn(Yl,_oe,"bool"),$oe=Ut(Wi),Foe=!1,Doe=cn(Jl,Foe,"bool"),Roe=Ut(Ql),Moe=!1,Poe=cn(eu,Moe,"bool"),Ooe=!1,Loe=cn(LI,Ooe,"bool"),q_;function zoe(e){q_=e.wasm.cwrap(Bi,null,["number","number","number","number"])}function Woe(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:c}=Es(i,r,t);if(c){let b=t.dataIdMap.get(u.dataId).id;l=u,o=b}let h=l.shape.length;N.assertAxesAreInnerMostDims("max",p,h);let[m,f]=N.computeOutAndReduceShapes(l.shape,p),g=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;q_(o,_t[i.dtype],g,b)}if(c&&t.disposeData(u.dataId),s){let b=N.expandShapeToKeepDim(y.shape,d);y.shape=b}return y}var Boe={kernelName:Bi,backendName:"wasm",setupFunc:zoe,kernelFunc:Woe},Voe=!1,Uoe=cn(Vi,Voe),K_;function Goe(e){K_=e.wasm.cwrap(Ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hoe(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,p=N.computePool2DInfo(r.shape,i,o,1,l,u),d=p.filterHeight,c=p.filterWidth,h=p.padInfo.top,m=p.padInfo.right,f=p.padInfo.bottom,g=p.padInfo.left,y=p.dilationHeight,b=p.dilationWidth,x=p.strideHeight,w=p.strideWidth,I=p.inChannels,T=p.outChannels;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(p.outShape,"float32"),_=a.dataIdMap.get(C.dataId).id;return K_(s,r.shape[0],r.shape[1],r.shape[2],d,c,h,m,f,g,y,b,x,w,I,T,_),C}var joe={kernelName:Ui,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe},X_;function qoe(e){X_=e.wasm.cwrap(Gi,null,["number, number, number"])}function Koe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let w=t.dataIdMap.get(p.dataId).id;w!==o&&(u=p,l=w,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=ju({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let x=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;X_(l,y,w)}if(h&&t.disposeData(p.dataId),s){let w=N.expandShapeToKeepDim(x.shape,c);x.shape=w}return u.dtype!=="float32"&&t.disposeData(b.dataId),x}var Xoe={kernelName:Gi,backendName:"wasm",setupFunc:qoe,kernelFunc:Koe},Y_;function Yoe(e){Y_=e.wasm.cwrap(Hi,null,["number","number","number","number"])}function Zoe(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t);if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x)}let m=u.shape.length;N.assertAxesAreInnerMostDims("min",d,m);let[f,g]=N.computeOutAndReduceShapes(u.shape,d),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;Y_(l,_t[i.dtype],y,x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Joe={kernelName:Hi,backendName:"wasm",setupFunc:Yoe,kernelFunc:Zoe},Qoe=!1,ele=cn(ji,Qoe),xx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(xx||(xx={}));var Z_;function tle(e){Z_=e.wasm.cwrap(qi,null,["number","array","number","number","array","array","number","number"])}function nle(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return Z_(i,u,t.shape.length,_t[t.dtype],c,h,xx[r],l),o}var ale={kernelName:qi,backendName:"wasm",kernelFunc:nle,setupFunc:tle},rle=!0,sle=cn(Ki,rle),ile=Ut(nu);function r1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var J_;function ole(e){J_=e.wasm.cwrap(ru,"number",["number","number","number","number","number"])}function lle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=J_(u,p,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=r1(t,d);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var ule={kernelName:ru,backendName:"wasm",setupFunc:ole,kernelFunc:lle},Q_;function ple(e){Q_=e.wasm.cwrap(su,"number",["number","number","number","number","number","bool"])}function cle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=Q_(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=r1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var dle={kernelName:su,backendName:"wasm",setupFunc:ple,kernelFunc:cle},eA;function hle(e){eA=e.wasm.cwrap(iu,"number",["number","number","number","number","number","number"])}function mle(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,p=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,c=eA(p,d,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=r1(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var fle={kernelName:iu,backendName:"wasm",setupFunc:hle,kernelFunc:mle},gle=!1,yle=cn(au,gle,"bool"),tA;function ble(e){tA=e.wasm.cwrap(Xi,null,["number","number","number","number","number"])}function xle(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{dtype:s,depth:i,onValue:o,offValue:l}=a,u=n.makeOutput([...r.shape,i],s),p=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return tA(d,i,o,l,p),u}var vle={kernelName:Xi,backendName:"wasm",setupFunc:ble,kernelFunc:xle};function wle(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var kle={kernelName:ou,backendName:"wasm",kernelFunc:wle};function Ile(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return bx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(p=>{v.assertShapesMatch(s,p.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===p.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(p=>{let d=bx({inputs:{input:p},backend:n,attrs:{dim:r}});return o.push(d),d}),u=$_({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(p=>n.disposeData(p.dataId)),u}var Sle={kernelName:lu,backendName:"wasm",kernelFunc:Ile},nA;function Tle(e){nA=e.wasm.cwrap(Yi,null,["number","array","number","number","array","array","number","number"])}function Nle(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]);if(v.sizeFromShape(t.shape)===0)return z_({backend:n,attrs:{shape:s,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),p=a.map(m=>m[0]),d=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(p).buffer),h=new Uint8Array(new Int32Array(d).buffer);return nA(i,u,t.shape.length,_t[t.dtype],c,h,r,l),o}var aA={kernelName:Yi,backendName:"wasm",kernelFunc:Nle,setupFunc:Tle},Cle=!1,Ele=cn(Zi,Cle),rA;function _le(e){rA=e.wasm.cwrap(Ji,null,["number","number","number"])}function Ale(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=s,l=a,u=l;l.dtype!=="float32"&&(u=ju({backend:n,inputs:{x:a},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(u.dataId).id);let p=n.makeOutput(a.shape,"float32"),d=n.dataIdMap.get(p.dataId).id;return rA(o,i,d),l.dtype!=="float32"&&n.disposeData(u.dataId),p}var $le={kernelName:Ji,backendName:"wasm",setupFunc:_le,kernelFunc:Ale},sA;function Fle(e){sA=e.wasm.cwrap(Qi,null,["number","number","number","number"])}function Dle(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;sA(l,y,_t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Rle={kernelName:Qi,backendName:"wasm",setupFunc:Fle,kernelFunc:Dle},Mle=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=M0(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Ple={kernelName:mc,backendName:"wasm",kernelFunc:Mle},Ole=!0,Lle=cn(Ai,Ole),zle=Ut(eo),Wle=Ut(to),Ble=Ut(ro),iA;function Vle(e){iA=e.wasm.cwrap(ao,null,["number","number","number","number","number","number","number","number","number","number"])}function Ule(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ju({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return b;let x=t.dataIdMap.get(b.dataId).id;return iA(y,p,d,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),b}var Gle={kernelName:ao,backendName:"wasm",setupFunc:Vle,kernelFunc:Ule},oA;function Hle(e){oA=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number"])}function jle(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[p,d,c,h]=r.shape,m=[p,l,u,h],f=t.makeOutput(m,"float32");if(v.sizeFromShape(r.shape)===0)return f;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=ju({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let b=g.id,x=t.dataIdMap.get(f.dataId).id;return oA(b,p,d,c,h,l,u,s?1:0,i?1:0,x),y!=null&&t.disposeData(y.dataId),f}var qle={kernelName:no,backendName:"wasm",setupFunc:Hle,kernelFunc:jle},lA;function Kle(e){lA=e.wasm.cwrap(so,null,["number","array","number","array","number","number"])}function Xle(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=v.parseAxisParam(s,r.shape);if(r.shape.length===0)return zf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,p=new Uint8Array(new Int32Array(i).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);lA(l,p,i.length,d,r.shape.length,u);let c=Wn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var Yle={kernelName:so,backendName:"wasm",kernelFunc:Xle,setupFunc:Kle},uA;function Zle(e){uA=e.wasm.cwrap(Tu,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Jle(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,p=n.dataIdMap.get(l.dataId).id,[d,c,h,m]=r.shape,[f,g]=N.getImageCenter(o,c,h),y=i===0,b=255,x=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],w=new Uint8Array(new Int32Array(x).buffer);return uA(u,d,c,h,m,s,f,g,w,x.length,p),l}var Qle={kernelName:Tu,backendName:"wasm",kernelFunc:Jle,setupFunc:Zle},eue=Ut(io),tue=Ut(oo),pA;function nue(e){pA=e.wasm.cwrap(pu,null,["number","number","number","number","number","number","array","number","number"])}function aue(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:p,strides:d,outputSize:c}=zx.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(d).buffer),g=t.dataIdMap.get(o.dataId).id;return pA(h,m,_t[s.dtype],l,u,p,f,c,g),o}var rue={kernelName:pu,backendName:"wasm",setupFunc:nue,kernelFunc:aue},cA;function sue(e){cA=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function iue(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),p=n.dataIdMap.get(u.dataId).id,d=a.shape.length,c=r.shape.length,h=d===0||d>1||c===1?1:v.sizeFromShape(r.shape.slice(1));return cA(i,o,l,h,p),u}var oue={kernelName:cu,backendName:"wasm",kernelFunc:iue,setupFunc:sue},dA;function lue(e){dA=e.wasm.cwrap(uo,null,["number","number"])}function uue(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||dA(a,s),r}var pue={kernelName:"Sigmoid",backendName:"wasm",setupFunc:lue,kernelFunc:uue},cue=Ut(lo),hA;function due(e){hA=e.wasm.cwrap(ho,null,["number","number","number","number"])}function hue(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||hA(r,i,o,l),s}var mue={kernelName:ho,backendName:"wasm",setupFunc:due,kernelFunc:hue};function fue(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a,o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g0?l+1:0;if(u<0)throw new Error(N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=u;let d=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),f=n.dataIdMap.get(m.dataId).id,g=n.makeOutput([4],"int32"),y=n.dataIdMap.get(g.dataId).id;gA(d,_t[r.dtype],r.shape[0],c,h,f,y,t,0);let b=n.readSync(g.dataId),x;switch(b[0]){case 0:{x=N.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=N.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=N.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(b[1],b[2]);break;case 3:x=N.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b[1],b[2],b[3]);break;default:x=""}if(n.disposeData(g.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function Iue(e){return bA(e,!0)}var Sue={kernelName:gc,backendName:"wasm",setupFunc:yA,kernelFunc:Iue};function Tue(e){return bA(e,!1)}var Nue={kernelName:yc,backendName:"wasm",setupFunc:yA,kernelFunc:Tue};function Cue(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,r.shape)[0],l=N.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),p=r.shape.slice();return l.map(d=>{let c=[...p];c[o]=d;let h=gi({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=d,h})}var Eue={kernelName:bu,backendName:"wasm",kernelFunc:Cue},_ue=Ut(po),Aue=Ut(bc),$ue=!0,Fue=cn(mo,$ue),xA;function Due(e){xA=e.wasm.cwrap(bs,null,["number","number","number","number"])}function Rue(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return xA(i,r,_t[s.dtype],l),o}var Mue={kernelName:bs,backendName:"wasm",setupFunc:Due,kernelFunc:Rue},vA;function Pue(e){vA=e.wasm.cwrap(vu,null,["number","array","number","array","array","array","array","array","number","number"])}function Oue(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:p,newAxisMask:d,shrinkAxisMask:c}=a,{finalShapeSparse:h,finalShape:m,isIdentity:f,sliceDim0:g,isSimpleSlice:y,begin:b,end:x,strides:w}=Kt.sliceInfo(r.shape,s,i,o,l,u,p,d,c),I;if(f)I=Wn({inputs:{x:r},backend:t,attrs:{shape:m}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let T=Kt.computeOutShape(b,x,w),C=gi({inputs:{x:r},backend:t,attrs:{begin:b,size:T}});I=Wn({inputs:{x:C},backend:t,attrs:{shape:m}}),t.disposeData(C.dataId)}else{let T=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,_=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),$=new Uint8Array(new Int32Array(b).buffer),R=new Uint8Array(new Int32Array(x).buffer),F=new Uint8Array(new Int32Array(w).buffer),S=new Uint8Array(new Int32Array(h).buffer),M=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),B=t.dataIdMap.get(T.dataId).id;vA(C,_,r.shape.length,$,R,F,S,M,h.length,B),I=Wn({inputs:{x:T},backend:t,attrs:{shape:m}}),t.disposeData(T.dataId)}return I}var Lue={kernelName:vu,backendName:"wasm",setupFunc:Pue,kernelFunc:Oue};function zue(e){let{backend:t,inputs:n,attrs:a}=e,{data:r,dataSplits:s}=n,{separator:i,nGramWidths:o,leftPad:l,rightPad:u,padWidth:p,preserveShortSequences:d}=a,c=t.readSync(r.dataId),h=t.readSync(s.dataId),[m,f]=O0(c,h,i,o,l,u,p,d),g=t.makeOutput([m.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=m;let b=t.makeOutput(s.shape,"int32");return t.typedArrayFromHeap(b).set(f),[g,b]}var Wue={kernelName:xc,backendName:"wasm",kernelFunc:zue};function Bue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r,delimiter:s}=n,{skipEmpty:i}=a,o=t.readSync(r.dataId),l=t.readSync(s.dataId),[u,p,d]=L0(o,l[0],i),c=p.length,h=t.makeOutput([c,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([c],"string"),f=t.dataIdMap.get(m.dataId);f.stringBytes=p;let g=t.makeOutput([2],"int32");return t.typedArrayFromHeap(g).set(d),[h,m,g]}var Vue={kernelName:vc,backendName:"wasm",kernelFunc:Bue};function Uue(e){let{backend:t,inputs:n,attrs:a}=e,{input:r}=n,{numBuckets:s}=a,i=t.readSync(r.dataId),o=z0(i,s),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(o),l}var Gue={kernelName:wc,backendName:"wasm",kernelFunc:Uue},Hue=!0,jue=cn(fo,Hue),wA;function que(e){wA=e.wasm.cwrap(co,null,["number","number","number","number"])}function Kue(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:p,axes:d,originalAxes:c,inputWasTransposed:h}=Es(i,r,t),m=d;if(h){let x=t.dataIdMap.get(p.dataId).id;x!==o&&(u=p,l=x,m=N.getInnerMostAxes(m.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=N.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(g),b=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(b.dataId).id;wA(l,y,_t[b.dtype],x)}if(h&&t.disposeData(p.dataId),s){let x=N.expandShapeToKeepDim(b.shape,c);b.shape=x}return b}var Xue={kernelName:co,backendName:"wasm",setupFunc:que,kernelFunc:Kue},Yue=Ut(go),Zue=Ut(yo),kA;function Jue(e){kA=e.wasm.cwrap(ys,null,["number","array","number","array","number","number"])}function Que(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),p=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),c=t.dataIdMap.get(d.dataId).id;return IA(i,o,a.shape.length,_t[a.dtype],r,s,p,c),[u,d]},ape={kernelName:wu,backendName:"wasm",setupFunc:tpe,kernelFunc:npe},SA;function rpe(e){SA=e.wasm.cwrap(ku,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function spe(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[p,d,c,h]=r.shape,[m,f]=u!=null?u:[d,c],g=[p,m,f,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),x=t.makeOutput(g,r.dtype),w=t.dataIdMap.get(x.dataId).id,I=t.dataIdMap.get(r.dataId).id,T=t.dataIdMap.get(s.dataId).id,C=i==="nearest"?1:2,_;switch(o){case"constant":_=1;break;case"reflect":_=2;break;case"wrap":_=3;break;case"nearest":_=4;break;default:_=1;break}return SA(I,T,s.shape[0]>1,p,m,f,h,c,d,y,r.shape.length-1,b,g.length-1,C,_,l,w),x}var ipe={kernelName:ku,backendName:"wasm",setupFunc:rpe,kernelFunc:spe};function ope(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var lpe={kernelName:Iu,backendName:"wasm",kernelFunc:ope};function upe(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var ppe={kernelName:Su,backendName:"wasm",kernelFunc:upe},cpe=[Ose,Lse,Wse,Use,Zse,eie,aie,iie,pie,gie,yie,bie,wie,kie,Tie,Eie,_ie,Aie,Die,Pie,zie,Vie,Hie,jie,Kie,Xie,Yie,Zie,eoe,toe,aoe,ioe,uoe,doe,foe,boe,voe,koe,Gse,Ioe,Noe,Eoe,Aoe,$oe,Doe,Roe,Poe,Loe,Boe,Uoe,joe,Xoe,Joe,ele,ale,sle,ile,ule,dle,fle,yle,vle,kle,Sle,aA,Ele,$le,Rle,Ple,Lle,zle,Wle,Ble,oie,Gle,qle,Yle,Qle,eue,tue,rue,oue,pue,cue,mie,mue,gue,xue,kue,Sue,Nue,Eue,_ue,Aue,Fue,Mue,Lue,Wue,Vue,Gue,jue,Xue,Yue,Zue,epe,ape,ipe,Kse,lpe,ppe];for(let e of cpe)Ic(e);var vx=H();vx.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>{try{return WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11]))}catch(e){return!1}});vx.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(vx.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var bI=hs(CF()),dpe=hs(EF()),xI=hs(_F()),vI=bI.default||bI,hpe=xI.default||xI,TA=class extends sc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(NA),wx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new qh(this,Ca())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:a,dtype:r,shape:s,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||v.sizeFromShape(s);let o=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(a+t*o,a+n*o);return gpe(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function mpe(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function wI(e,t,n){if(Hh!=null)return Hh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Bp!=null&&Bp[a]!=null?Bp[a]:n+a}async function fpe(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=dpe.wasmWorkerContents.replace(/\n/g,"\\n"),p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return o.endsWith(".wasm")?wI(e,t,Lp!=null?Lp:l):l+o},s1&&(r.instantiateWasm=mpe(wI(e,t,Lp!=null?Lp:"")));let s=!1;r.onAbort=()=>{s||Vp||(Vp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Hh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+vI.toString()],{type:"text/javascript"}),i=vI(r)):i=hpe(r),i.then(o=>{s=!0,Vp=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})}).catch(a)})}function gpe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var ype=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Hh=null,Lp=null,Bp={},Vp=!1,s1=!1;function bpe(e,t=!1){if(Ox("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Hh=e,s1=t}function xpe(e,t=!1){if(Vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Lp=e;else{Bp=e;let n=ype.filter(a=>Bp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}s1=t}var NA=-1,wx=-1;function vpe(e){NA=e}function wpe(){if(wx===-1)throw new Error("WASM backend not initialized.");return wx}var kpe="4.1.0",Ipe=2;Am("wasm",async()=>{let{wasm:e}=await fpe();return new TA(e)},Ipe);var kI="4.1.0",Spe="4.1.0",Tpe="4.1.0",Npe="4.1.0",Cpe="4.1.0",Epe={tfjs:kI,"tfjs-core":kI,"tfjs-converter":Spe,"tfjs-backend-cpu":Tpe,"tfjs-backend-webgl":Npe,"tfjs-backend-wasm":Cpe};var qA={};ib(qA,{AnchorPosition:()=>m1,DrawBox:()=>pd,DrawBoxOptions:()=>Gf,DrawFaceLandmarks:()=>ng,DrawFaceLandmarksOptions:()=>tg,DrawTextField:()=>zr,DrawTextFieldOptions:()=>Qu,drawContour:()=>Mr,drawDetections:()=>Mpe,drawFaceExpressions:()=>Ppe,drawFaceLandmarks:()=>Lpe});function Mr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var CA={};ib(CA,{computeReshapedDimensions:()=>l1,getCenterPoint:()=>Ao,isDimensions:()=>Bf,isEven:()=>Wf,isFloat:()=>o1,isTensor:()=>Eo,isTensor1D:()=>_pe,isTensor2D:()=>i1,isTensor3D:()=>Pr,isTensor4D:()=>va,isValidNumber:()=>Za,isValidProbablitiy:()=>qu,range:()=>fr,round:()=>_o});var _n=class{constructor(t,n){if(!Za(t)||!Za(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new _n(1/this.width,1/this.height)}};function Eo(e,t){return e instanceof Te&&e.shape.length===t}function _pe(e){return Eo(e,1)}function i1(e){return Eo(e,2)}function Pr(e){return Eo(e,3)}function va(e){return Eo(e,4)}function o1(e){return e%1!==0}function Wf(e){return e%2===0}function _o(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Bf(e){return e&&e.width&&e.height}function l1({width:e,height:t},n){let a=n/Math.max(t,e);return new _n(Math.round(e*a),Math.round(t*a))}function Ao(e){return e.reduce((t,n)=>t.add(n),new Me(0,0)).div(new Me(e.length,e.length))}function fr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Za(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function qu(e){return Za(e)&&e>=0&&e<=1}var Me=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Me(this.x+t.x,this.y+t.y)}sub(t){return new Me(this.x-t.x,this.y-t.y)}mul(t){return new Me(this.x*t.x,this.y*t.y)}div(t){return new Me(this.x/t.x,this.y/t.y)}abs(){return new Me(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Me(Math.floor(this.x),Math.floor(this.y))}};var pt=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Za)}static assertIsValidBox(t,n,a=!1){if(!pt.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Za),s=[a.x,a.y,a.width,a.height].every(Za);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,u]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];pt.assertIsValidBox({x:i,y:o,width:l,height:u},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=u}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Me(this.left,this.top)}get topRight(){return new Me(this.right,this.top)}get bottomLeft(){return new Me(this.left,this.bottom)}get bottomRight(){return new Me(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new pt({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new pt({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-d+n+a,d=n),c>t&&(l=-c+t+r,c=t),u<1&&(l=2-u,u=1),p<1&&(l=2-p,p=1),{dy:i,edy:l,dx:s,edx:o,y:p,ey:c,x:u,ex:d,w:a,h:r}}calibrate(t){return new pt({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Ku=class extends pt{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var _s=class{constructor(t,n,a,r,s){this._imageDims=new _n(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new pt(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new pt(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new _s(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var xt=class extends _s{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new xt(a,r,s)}};function EA(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function _A(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let u=0;ul[p]<=n)}return s}function gr(e,t){return P(()=>{let[n,a,r]=t,s=yn([...e.shape.slice(0,3),1],n,"float32"),i=yn([...e.shape.slice(0,3),1],a,"float32"),o=yn([...e.shape.slice(0,3),1],r,"float32"),l=Ze([s,i,o],3);return pe(e,l)})}function $A(e,t=!1){return P(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=c=>{let h=e.shape.slice();return h[i]=c,yn(h,0,"float32")},l=o(s),u=r-l.shape[i],d=[t&&u?o(u):null,e,l].filter(c=>!!c).map(c=>le(c,"float32"));return Ze(d,i)})}function $ye(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Vf(e){return 1/(1+Math.exp(-e))}function Dye(e){return Math.log(e/(1-e))}var Xu=class extends pt{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Ape=.5,$pe=.43,Fpe=.45,wa=class{constructor(t,n,a=new Me(0,0)){let{width:r,height:s}=n;this._imgDims=new _n(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new Me(r,s)).add(a))}get shift(){return new Me(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Me(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Me(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof xt?t.box.floor():new pt(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=d=>r.sub(d).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Fpe),l=Ao(t),u=Math.floor(Math.max(0,l.x-Ape*o)),p=Math.floor(Math.max(0,l.y-$pe*o));return new Xu(u,p,Math.min(o,this.imageWidth+u),Math.min(o,this.imageHeight+p))}alignMinBbox(t){let n=_A(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var FA=class extends wa{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ao([t[3],t[4]])]}};var Yu=class extends wa{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ao)}};var od=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${_o(this.distance)})`:""}`}};var ld=class extends pt{constructor(n,a){super(n);this._label=a}static assertIsValidLabeledBox(n,a){if(pt.assertIsValidBox(n,a),!Za(n.label))throw new Error(`${a} - expected property label (${n.label}) to be a number`)}get label(){return this._label}};var Or=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Or(t.label,n)}};var DA=class extends ld{constructor(n,a,r,s){super(n,a);this._score=r,this._classScore=s}static assertIsValidPredictedBox(n,a){if(ld.assertIsValidLabeledBox(n,a),!qu(n.score)||!qu(n.classScore))throw new Error(`${a} - expected properties score (${n.score}) and (${n.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function Lr(e){return e.detection instanceof xt}function Zu(e,t){return{...e,...{detection:t}}}function u1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function ud(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Uf(e){let t="";if(!e&&ud())try{e=jr("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function p1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,a=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},s=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},i=global.fetch,o=Uf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:a,createImageElement:r,createVideoElement:s,fetch:i,...o}}function c1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function Dpe(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function d1(e){sn=e}function h1(){return c1()?d1(u1()):ud()?d1(p1()):null}function Rpe(e){if(sn||h1(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var et={getEnv:Dpe,setEnv:d1,initialize:h1,createBrowserEnv:u1,createFileSystem:Uf,createNodejsEnv:p1,monkeyPatch:Rpe,isBrowser:c1,isNodejs:ud};h1();function Ju(e){return!et.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function aa(e){let{Canvas:t,CanvasRenderingContext2D:n}=et.getEnv();if(e instanceof n)return e;let a=Ju(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var m1=(r=>(r.TOP_LEFT="TOP_LEFT",r.TOP_RIGHT="TOP_RIGHT",r.BOTTOM_LEFT="BOTTOM_LEFT",r.BOTTOM_RIGHT="BOTTOM_RIGHT",r))(m1||{}),Qu=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||"TOP_LEFT",this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},zr=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof zr?t.text:t,this.anchor=n,this.options=new Qu(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+d.x,f=l+d.y+(h+1)*i;a.fillText(c,m,f)})}};var Gf=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new Qu({...i,...s})}},pd=class{constructor(t,n={}){this.box=new pt(t),this.options=new Gf(n)}draw(t){let n=aa(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:u}=this.options;u&&new zr([u],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Mpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof xt?a.score:Lr(a)?a.detection.score:void 0,s=a instanceof xt?a.box:Lr(a)?a.detection.box:new pt(a),i=r?`${_o(r)}`:void 0;new pd(s,{label:i}).draw(e)})}function Hf(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function RA(e){return new Promise((t,n)=>{(e instanceof et.getEnv().Canvas||Hf(e))&&t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function MA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=et.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function ep(e){let{Image:t,Video:n}=et.getEnv();return e instanceof t?new _n(e.naturalWidth,e.naturalHeight):e instanceof n?new _n(e.videoWidth,e.videoHeight):new _n(e.width,e.height)}function tp({width:e,height:t}){let{createCanvasElement:n}=et.getEnv(),a=n();return a.width=e,a.height=t,a}function jf(e,t){let{ImageData:n}=et.getEnv();if(!(e instanceof n)&&!Hf(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||ep(e),s=tp({width:a,height:r});return e instanceof n?aa(s).putImageData(e,0,0):aa(s).drawImage(e,0,0,a,r),s}async function PA(e,t){let n=t||et.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(va(e)?1:0),i=P(()=>e.as3D(a,r,s).toInt());return await bo.toPixels(i,n),i.dispose(),n}function f1(e){let{Image:t,Canvas:n,Video:a}=et.getEnv();return e instanceof t||e instanceof n||e instanceof a}function OA(e,t,n=!1){let{Image:a,Canvas:r}=et.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return tp({width:1,height:1});let s=ep(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,u=tp({width:t,height:t}),p=e instanceof r?e:jf(e),d=Math.abs(o-l)/2,c=n&&o0&&p.height>0&&aa(u).drawImage(p,c,h,o,l),u}var Wr=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((a,r)=>{if(Pr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(va(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof et.getEnv().Canvas?a:jf(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return fr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return l1({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,P(()=>{let a=fr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Te){let o=va(i)?i:Qt(i);return o=$A(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=_a.resizeBilinear(o,[t,t],!1,!1)),o.as3D(t,t,3)}if(i instanceof et.getEnv().Canvas)return bo.fromPixels(OA(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>le(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function vt(e){if(e instanceof Wr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Ju);return a.forEach((r,s)=>{if(!f1(r)&&!Pr(r)&&!va(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(va(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>f1(r)&&RA(r))),new Wr(a,Array.isArray(e))}async function cd(e,t){let{Canvas:n}=et.getEnv(),a=e;if(!(e instanceof n)){let i=await vt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await PA(o)}let r=aa(a);return t.map(i=>i instanceof xt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:u})=>{let p=tp({width:l,height:u});return l>0&&u>0&&aa(p).putImageData(r.getImageData(i,o,l,u),0,0),p})}async function dd(e,t){if(!Pr(e)&&!va(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(va(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return P(()=>{let[n,a,r]=e.shape.slice(va(e)?1:0);return t.map(o=>o instanceof xt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).filter(o=>o.width>0&&o.height>0).map(({x:o,y:l,width:u,height:p})=>vo(e.as3D(n,a,r),[l,o,0],[p,u,r]))})}async function As(e,t){let{fetch:n}=et.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function bve(e){let t=await As(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return MA(n)}async function LA(e){return(await As(e)).json()}async function Ive(e){return new Float32Array(await(await As(e)).arrayBuffer())}function zA(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let a=et.getEnv().createVideoElement();a.oncanplay=()=>t(a),a.onerror=n,a.playsInline=!0,a.muted=!0,a.src=URL.createObjectURL(e),a.play()})}async function _ve(e){let t=await As(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return zA(n)}function qf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function WA(e,t){let{manifestUri:n,modelBaseUri:a}=qf(e,t),r=await LA(n);return Gt.loadWeights(r,a)}function Pve(e,t,n=!1){let{width:a,height:r}=n?ep(t):t;return e.width=a,e.height=r,{width:a,height:r}}var dn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof ss)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof ss))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=mn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await WA(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=et.getEnv(),{manifestUri:a,modelBaseUri:r}=qf(t,this.getDefaultModelName()),s=u=>Promise.all(u.map(p=>n(p).then(d=>d.buffer))),i=Gt.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Te))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Gn(e,t,n){return P(()=>{let a=Ss(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Y(a,t.bias),a})}function Kf(e,t,n=!1){return P(()=>{let a=Xe(n?Y(Ft(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Gn(e,t.conv0,[2,2])),r=Gn(a,t.conv1,[1,1]),s=Xe(Y(a,r)),i=Gn(s,t.conv2,[1,1]);return Xe(Y(a,Y(r,i)))})}function hd(e,t,n=!1,a=!0){return P(()=>{let r=Xe(n?Y(Ft(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Gn(e,t.conv0,a?[2,2]:[1,1])),s=Gn(r,t.conv1,[1,1]),i=Xe(Y(r,s)),o=Gn(i,t.conv2,[1,1]),l=Xe(Y(r,Y(s,o))),u=Gn(l,t.conv3,[1,1]);return Xe(Y(r,Y(s,Y(o,u))))})}function $o(e,t,n="same",a=!1){return P(()=>{let r=Y(Ft(e,t.filters,[1,1],n),t.bias);return a?Xe(r):r})}function An(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function np(e,t){return(n,a,r,s)=>{let i=Da(e(n*a*r*r),[r,r,n,a]),o=Ke(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Xf(e,t){return(n,a,r)=>{let s=Aa(e(n*a),[n,a]),i=Ke(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var md=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function ap(e,t){return(n,a,r)=>{let s=Da(e(9*n),[3,3,n,1]),i=Da(e(n*a),[1,1,n,a]),o=Ke(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new md(s,i,o)}}function rp(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new md(n,a,r)}}function ra(e,t){return(n,a,r)=>{let s=e[n];if(!Eo(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function $n(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Yf(e,t){let n=np(e,t),a=ap(e,t);function r(i,o,l,u=!1){let p=u?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),d=a(o,o,`${l}/conv1`),c=a(o,o,`${l}/conv2`);return{conv0:p,conv1:d,conv2:c}}function s(i,o,l,u=!1){let{conv0:p,conv1:d,conv2:c}=r(i,o,l,u),h=a(o,o,`${l}/conv3`);return{conv0:p,conv1:d,conv2:c,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function BA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock4Params:r}=Yf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Zf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function Jf(e,t){let n=ra(e,t),a=Zf(n),r=rp(n);function s(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`);return{conv0:u,conv1:p,conv2:d}}function i(o,l=!1){let u=l?a(`${o}/conv0`):r(`${o}/conv0`),p=r(`${o}/conv1`),d=r(`${o}/conv2`),c=r(`${o}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:c}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function VA(e){let t=[],{extractDenseBlock4Params:n}=Jf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return An(e,t),{params:a,paramMappings:t}}var sp=class extends dn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return P(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=gr(a,[122.782,117.001,104.298]).div(255),i=hd(s,n.dense0,!0);return i=hd(i,n.dense1),i=hd(i,n.dense2),i=hd(i,n.dense3),i=ya(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return VA(t)}extractParams(t){return BA(t)}};function fd(e,t){return P(()=>Y(Fe(e,t.weights),t.bias))}function UA(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=$n(e),o=Xf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function GA(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return An(e,t),{params:r,paramMappings:t}}function Qf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var ip=class extends dn{constructor(n,a){super(n);this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Wr?this.faceFeatureExtractor.forwardInput(n):n;return fd(r.as2D(r.shape[0],-1),a.fc)})}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return UA(n,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Qf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),GA(r)}extractParams(n){let a=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*a+r,i=n.slice(0,n.length-s),o=n.slice(n.length-s);return this.faceFeatureExtractor.extractWeights(i),this.extractClassifierParams(o)}};var HA=["neutral","happy","sad","angry","fearful","disgusted","surprised"],$s=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);HA.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return HA.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var eg=class extends ip{constructor(t=new sp){super("FaceExpressionNet",t)}forwardInput(t){return P(()=>Xa(this.runNet(t)))}async forward(t){return this.forwardInput(await vt(t))}async predictExpressions(t){let n=await vt(t),a=await this.forwardInput(n),r=await Promise.all(ut(a).map(async i=>{let o=i.dataSync();return i.dispose(),o}));a.dispose();let s=r.map(i=>new $s(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function jA(e){return e.expressions instanceof $s}function g1(e,t){return{...e,...{expressions:t}}}function Ppe(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof $s?s:jA(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(d=>d.probability>n),u=Lr(s)?s.detection.box.bottomLeft:a||new Me(0,0);new zr(l.map(d=>`${d.expression} (${_o(d.probability)})`),u).draw(e)})}function op(e){return Lr(e)&&e.landmarks instanceof wa&&e.unshiftedLandmarks instanceof wa&&e.alignedRect instanceof xt}function Ope(e){let t=l=>l*180/Math.PI,n=(l,u)=>Math.sqrt((l._x-u._x)**2+(l._y-u._y)**2),a={roll:void 0,pitch:void 0,yaw:void 0},r=(l,u,p)=>{let d=Math.floor(l._x-u._x),c=Math.floor(u._x-p._x);return d-c},s=(l,u)=>{let p=Math.hypot(u._x-l._x,u._y-l._y),d=u._y-l._y,c=Math.asin(d/p),h=t(c),m=Math.floor(90-h),f=u._x-l._x<0?-1:1;return m*f},i=(l,u,p)=>{let d=n(l,p),c={_x:(l._x+p._x)/2,_y:(l._y+p._y)/2},h=n(u,c),m=Math.atan(h/d),f=Math.floor(t(m)),g=c._y-u._y<0?-1:1;return f*g};if(!e||!e._positions||e._positions.length!==68)return a;let o=e._positions;return a.roll=s(o[27],o[66]),a.pitch=i(o[14],o[30],o[2]),a.yaw=r(o[14],o[33],o[2]),a}function gd(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new xt(e.detection.score,r.rescale(s.reverse()),s),o=Ope(t);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i,angle:o}}}var tg=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},ng=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new tg(n)}draw(t){let n=aa(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof Yu&&(n.strokeStyle=i,n.lineWidth=s,Mr(n,this.faceLandmarks.getJawOutline()),Mr(n,this.faceLandmarks.getLeftEyeBrow()),Mr(n,this.faceLandmarks.getRightEyeBrow()),Mr(n,this.faceLandmarks.getNose()),Mr(n,this.faceLandmarks.getLeftEye(),!0),Mr(n,this.faceLandmarks.getRightEye(),!0),Mr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let u=p=>{n.beginPath(),n.arc(p.x,p.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(u)}}};function Lpe(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof wa?a:op(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new ng(r).draw(e)})}var KA="1.7.7";function Bpe(e,t){let n=np(e,t),a=ap(e,t);function r(i,o,l){let u=a(i,o,`${l}/separable_conv0`),p=a(o,o,`${l}/separable_conv1`),d=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:u,separable_conv1:p,expansion_conv:d}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),u=a(i,i,`${o}/separable_conv1`),p=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function XA(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=$n(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Bpe(a,n),u=s(3,32,3,"entry_flow/conv_in"),p=o(32,64,"entry_flow/reduction_block_0"),d=o(64,128,"entry_flow/reduction_block_1"),c={conv_in:u,reduction_block_0:p,reduction_block_1:d},h={};fr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:c,middle_flow:h,exit_flow:g}}}function Vpe(e,t){let n=ra(e,t),a=Zf(n),r=rp(n);function s(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:p}}function i(o){let l=r(`${o}/separable_conv0`),u=r(`${o}/separable_conv1`),p=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:u,separable_conv2:p}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function YA(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=Vpe(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),u=s("entry_flow/reduction_block_1"),p={conv_in:o,reduction_block_0:l,reduction_block_1:u},d={};fr(t,0,1).forEach(f=>{d[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let c=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:c,separable_conv:h};return An(e,n),{params:{entry_flow:p,middle_flow:d,exit_flow:m},paramMappings:n}}function ZA(e,t,n){return Y(Ft(e,t.filters,n,"same"),t.bias)}function y1(e,t,n=!0){let a=n?Xe(e):e;return a=Gn(a,t.separable_conv0,[1,1]),a=Gn(Xe(a),t.separable_conv1,[1,1]),a=Dt(a,[3,3],[2,2],"same"),a=Y(a,ZA(e,t.expansion_conv,[2,2])),a}function Upe(e,t){let n=Gn(Xe(e),t.separable_conv0,[1,1]);return n=Gn(Xe(n),t.separable_conv1,[1,1]),n=Gn(Xe(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var ag=class extends dn{constructor(n){super("TinyXception");this._numMainBlocks=n}forwardInput(n){let{params:a}=this;if(!a)throw new Error("TinyXception - load model before inference");return P(()=>{let r=le(n.toBatchTensor(112,!0),"float32"),i=gr(r,[122.782,117.001,104.298]).div(255),o=Xe(ZA(i,a.entry_flow.conv_in,[2,2]));return o=y1(o,a.entry_flow.reduction_block_0,!1),o=y1(o,a.entry_flow.reduction_block_1),fr(this._numMainBlocks,0,1).forEach(l=>{o=Upe(o,a.middle_flow[`main_block_${l}`])}),o=y1(o,a.exit_flow.reduction_block),o=Xe(Gn(o,a.exit_flow.separable_conv,[1,1])),o})}async forward(n){return this.forwardInput(await vt(n))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(n){return YA(n,this._numMainBlocks)}extractParams(n){return XA(n,this._numMainBlocks)}};function JA(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),r=Xf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function QA(e){let t=[],n=ra(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return An(e,t),{params:r,paramMappings:t}}var b1=(n=>(n.FEMALE="female",n.MALE="male",n))(b1||{});var rg=class extends dn{constructor(n=new ag(2)){super("AgeGenderNet");this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(n){let{params:a}=this;if(!a)throw new Error(`${this._name} - load model before inference`);return P(()=>{let r=n instanceof Wr?this.faceFeatureExtractor.forwardInput(n):n,s=ya(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),i=fd(s,a.fc.age).as1D(),o=fd(s,a.fc.gender);return{age:i,gender:o}})}forwardInput(n){return P(()=>{let{age:a,gender:r}=this.runNet(n);return{age:a,gender:Xa(r)}})}async forward(n){return this.forwardInput(await vt(n))}async predictAgeAndGender(n){let a=await vt(n),r=await this.forwardInput(a),s=ut(r.age),i=ut(r.gender),o=s.map((u,p)=>({ageTensor:u,genderTensor:i[p]})),l=await Promise.all(o.map(async({ageTensor:u,genderTensor:p})=>{let d=u.dataSync()[0],c=p.dataSync()[0],h=c>.5,m=h?"male":"female",f=h?c:1-c;return u.dispose(),p.dispose(),{age:d,gender:m,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),a.isBatchInput?l:l[0]}getDefaultModelName(){return"age_gender_model"}dispose(n=!0){this.faceFeatureExtractor.dispose(n),super.dispose(n)}loadClassifierParams(n){let{params:a,paramMappings:r}=this.extractClassifierParams(n);this._params=a,this._paramMappings=r}extractClassifierParams(n){return JA(n)}extractParamsFromWeightMap(n){let{featureExtractorMap:a,classifierMap:r}=Qf(n);return this.faceFeatureExtractor.loadFromWeightMap(a),QA(r)}extractParams(n){let r=n.slice(0,n.length-1539),s=n.slice(n.length-1539);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var lp=class extends ip{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return P(()=>{let i=(d,c)=>$t([yn([68],d,"float32"),yn([68],c,"float32")],1).as2D(1,136).as1D(),o=(d,c)=>{let{width:h,height:m}=r[d];return c(h,m)?Math.abs(h-m)/2:0},l=d=>o(d,(c,h)=>co(d,(c,h)=>hi(l(c),u(c))))).div($t(Array.from(Array(s),(d,c)=>i(r[c].width,r[c].height))))})}forwardInput(t){return P(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await vt(t))}async detectLandmarks(t){let n=await vt(t),a=P(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(s.dataSync()),l=o.filter((p,d)=>Wf(d)),u=o.filter((p,d)=>!Wf(d));return new Yu(Array(68).fill(0).map((p,d)=>new Me(l[d],u[d])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var up=class extends lp{constructor(t=new sp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function e$(e){let t=[],{extractDenseBlock3Params:n}=Jf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return An(e,t),{params:a,paramMappings:t}}function t$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractDenseBlock3Params:r}=Yf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var sg=class extends dn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return P(()=>{let a=le(t.toBatchTensor(112,!0),"float32"),s=gr(a,[122.782,117.001,104.298]).div(255),i=Kf(s,n.dense0,!0);return i=Kf(i,n.dense1),i=Kf(i,n.dense2),i=ya(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await vt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return e$(t)}extractParams(t){return t$(t)}};var ig=class extends lp{constructor(t=new sg){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var n$=class extends up{};function a$(e,t){return Y(z(e,t.weights),t.biases)}function x1(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=Ft(e,s,n,r);return o=Y(o,i),o=a$(o,t.scale),a?Xe(o):o}function r$(e,t){return x1(e,t,[1,1],!0)}function v1(e,t){return x1(e,t,[1,1],!1)}function og(e,t){return x1(e,t,[2,2],!0,"valid")}function Gpe(e,t){function n(o,l,u){let p=e(o),d=p.length/(l*u*u);if(o1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${l}, filterSize: ${u}`);return P(()=>_e(Da(p,[l,d,u,u]),[2,3,1,0]))}function a(o,l,u,p){let d=n(o,l,u),c=Ke(e(l));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:c}}function r(o,l){let u=Ke(e(o)),p=Ke(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:u,biases:p}}function s(o,l,u,p){let d=a(o,l,u,`${p}/conv`),c=r(l,`${p}/scale`);return{conv:d,scale:c}}function i(o,l,u,p,d=!1){let c=s((d?.5:1)*o,l,u,`${p}/conv1`),h=s(o,l,u,`${p}/conv2`);return{conv1:c,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function s$(e){let{extractWeights:t,getRemainingWeights:n}=$n(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Gpe(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),u=s(9216,32,3,"conv32_3"),p=s(36864,64,3,"conv64_down",!0),d=s(36864,64,3,"conv64_1"),c=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),x=s(589824,256,3,"conv256_2"),w=s(589824,256,3,"conv256_down_out"),I=P(()=>_e(Aa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:u,conv64_down:p,conv64_1:d,conv64_2:c,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:x,conv256_down_out:w,fc:I},paramMappings:a}}function Hpe(e,t){let n=ra(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),u=a(i);return{conv:{filters:o,bias:l},scale:u}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function i$(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Hpe(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),u=a("conv64_1"),p=a("conv64_2"),d=a("conv64_3"),c=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:x}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!i1(x))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${x}`);let w={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:u,conv64_2:p,conv64_3:d,conv128_down:c,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:x};return An(e,t),{params:w,paramMappings:t}}function Ja(e,t){let n=r$(e,t.conv1);return n=v1(n,t.conv2),n=Y(n,e),n=Xe(n),n}function yd(e,t){let n=og(e,t.conv1);n=v1(n,t.conv2);let a=ya(e,2,2,"valid"),r=It(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=It(o);n=Ze([n,l],1);let u=[...n.shape];u[2]=1;let p=It(u);n=Ze([n,p],2)}return a=s?Ze([a,r],3):a,n=Y(a,n),n=Xe(n),n}var pp=class extends dn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return P(()=>{let a=le(t.toBatchTensor(150,!0),"float32"),s=gr(a,[122.782,117.001,104.298]).div(255),i=og(s,n.conv32_down);i=Dt(i,3,2,"valid"),i=Ja(i,n.conv32_1),i=Ja(i,n.conv32_2),i=Ja(i,n.conv32_3),i=yd(i,n.conv64_down),i=Ja(i,n.conv64_1),i=Ja(i,n.conv64_2),i=Ja(i,n.conv64_3),i=yd(i,n.conv128_down),i=Ja(i,n.conv128_1),i=Ja(i,n.conv128_2),i=yd(i,n.conv256_down),i=Ja(i,n.conv256_1),i=Ja(i,n.conv256_2),i=yd(i,n.conv256_down_out);let o=i.mean([1,2]);return Fe(o,n.fc)})}async forward(t){return this.forwardInput(await vt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)!=null&&s.some(i=>i<=0))return new Float32Array(128);let n=await vt(t),a=P(()=>ut(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return i$(t)}extractParams(t){return s$(t)}};function lIe(e){let t=new pp;return t.extractWeights(e),t}function w1(e,t){return{...e,...{descriptor:t}}}function dIe(e){return typeof e.age=="number"}function k1(e,t){return{...e,...{age:t}}}function gIe(e){return(e.gender==="male"||e.gender==="female")&&qu(e.genderProbability)}function I1(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function jpe(e,t){function n(l,u){let p=Da(e(9*l),[3,3,l,1]),d=Ke(e(l)),c=Ke(e(l)),h=Ke(e(l)),m=Ke(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/batch_norm_scale`},{paramPath:`${u}/batch_norm_offset`},{paramPath:`${u}/batch_norm_mean`},{paramPath:`${u}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:c,batch_norm_mean:h,batch_norm_variance:m}}function a(l,u,p,d,c){let h=Da(e(l*u*p*p),[p,p,l,u]),m=Ke(e(u));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${c?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,u,p,d){let{filters:c,bias:h}=a(l,u,p,d,!0);return{filters:c,batch_norm_offset:h}}function s(l,u,p){let d=n(l,`${p}/depthwise_conv`),c=r(l,u,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:c}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),u=s(32,64,"mobilenetv1/conv_1"),p=s(64,128,"mobilenetv1/conv_2"),d=s(128,128,"mobilenetv1/conv_3"),c=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),x=s(512,512,"mobilenetv1/conv_11"),w=s(512,1024,"mobilenetv1/conv_12"),I=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:x,conv_12:w,conv_13:I}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),u=r(256,512,3,"prediction_layer/conv_1"),p=r(512,128,1,"prediction_layer/conv_2"),d=r(128,256,3,"prediction_layer/conv_3"),c=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),x=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),w=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),I=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),$=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),R=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),F=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:u,conv_2:p,conv_3:d,conv_4:c,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:x},box_predictor_2:{box_encoding_predictor:w,class_predictor:I},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:_,class_predictor:$},box_predictor_5:{box_encoding_predictor:R,class_predictor:F}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function o$(e){let t=[],{extractWeights:n,getRemainingWeights:a}=$n(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=jpe(n,t),i=r(),o=s(),u={extra_dim:_c(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:u},paramMappings:t}}function qpe(e,t){let n=ra(e,t);function a(u,p,d){let c=n(`${u}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),h=n(`${u}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:c,batch_norm_offset:h}}function r(u){let p=`mobilenetv1/conv_${u}`,d=`MobilenetV1/Conv2d_${u}_depthwise`,c=`${p}/depthwise_conv`,h=`${p}/pointwise_conv`,m=n(`${d}/depthwise_weights`,4,`${c}/filters`),f=n(`${d}/BatchNorm/gamma`,1,`${c}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${c}/batch_norm_offset`),y=n(`${d}/BatchNorm/moving_mean`,1,`${c}/batch_norm_mean`),b=n(`${d}/BatchNorm/moving_variance`,1,`${c}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",u,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(u,p){let d=n(`${u}/weights`,4,`${p}/filters`),c=n(`${u}/biases`,1,`${p}/bias`);return{filters:d,bias:c}}function o(u){let p=i(`Prediction/BoxPredictor_${u}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${u}/box_encoding_predictor`),d=i(`Prediction/BoxPredictor_${u}/ClassPredictor`,`prediction_layer/box_predictor_${u}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function l$(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qpe(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Pr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return An(e,t),{params:s,paramMappings:t}}function Pa(e,t,n){return P(()=>{let a=Ft(e,t.filters,n,"same");return a=Y(a,t.batch_norm_offset),tn(a,0,6)})}var Kpe=.0010000000474974513;function Xpe(e,t,n){return P(()=>{let a=ks(e,t.filters,n,"same");return a=ws(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kpe),tn(a,0,6)})}function Ype(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function u$(e,t){return P(()=>{let n,a=Pa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Ype(o);a=Xpe(a,s.depthwise_conv,l),a=Pa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function Zpe(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),u=Math.min(a[n][1],a[n][3]),p=Math.max(a[n][0],a[n][2]),d=Math.max(a[n][1],a[n][3]),c=(i-r)*(o-s),h=(p-l)*(d-u);if(c<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,u),g=Math.min(i,p),y=Math.min(o,d),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(c+h-b)}function p$(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>r).sort((p,d)=>d.score-p.score),l=p=>p<=a?1:0,u=[];return o.forEach(p=>{if(u.length>=i)return;let d=p.score;for(let c=u.length-1;c>=0;--c){let h=Zpe(e,p.boxIndex,u[c]);if(h!==0&&(p.score*=l(h),p.score<=r))break}d===p.score&&u.push(p.boxIndex)}),u}function Jpe(e){let t=ut(_e(e,[1,0])),n=[pe(t[2],t[0]),pe(t[3],t[1])],a=[Y(t[0],me(n[0],2)),Y(t[1],me(n[1],2))];return{sizes:n,centers:a}}function Qpe(e,t){let{sizes:n,centers:a}=Jpe(e),r=ut(_e(t,[1,0])),s=me(z(gn(me(r[2],5)),n[0]),2),i=Y(z(me(r[0],10),n[0]),a[0]),o=me(z(gn(me(r[3],5)),n[1]),2),l=Y(z(me(r[1],10),n[1]),a[1]);return _e($t([pe(i,s),pe(l,o),Y(i,s),Y(l,o)]),[1,0])}function c$(e,t,n){return P(()=>{let a=e.shape[0],r=Qpe(W(Ln(n.extra_dim,[a,1,1]),[-1,4]),W(e,[-1,4]));r=W(r,[a,r.shape[0]/a,4]);let s=da(Be(t,[0,0,1],[-1,-1,-1])),i=Be(s,[0,0,0],[-1,-1,1]);i=W(i,[a,i.shape[1]]);let o=ut(r),l=ut(i);return{boxes:o,scores:l}})}function Fo(e,t){return P(()=>{let n=e.shape[0],a=W($o(e,t.box_encoding_predictor),[n,-1,1,4]),r=W($o(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function d$(e,t,n){return P(()=>{let a=Pa(e,n.conv_0,[1,1]),r=Pa(a,n.conv_1,[2,2]),s=Pa(r,n.conv_2,[1,1]),i=Pa(s,n.conv_3,[2,2]),o=Pa(i,n.conv_4,[1,1]),l=Pa(o,n.conv_5,[2,2]),u=Pa(l,n.conv_6,[1,1]),p=Pa(u,n.conv_7,[2,2]),d=Fo(t,n.box_predictor_0),c=Fo(e,n.box_predictor_1),h=Fo(r,n.box_predictor_2),m=Fo(i,n.box_predictor_3),f=Fo(l,n.box_predictor_4),g=Fo(p,n.box_predictor_5),y=Ze([d.boxPredictionEncoding,c.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Ze([d.classPrediction,c.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var Oa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Do=class extends dn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return P(()=>{let a=le(t.toBatchTensor(512,!1),"float32"),r=pe(me(a,127.5),1),s=u$(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=d$(s.out,s.conv11,n.prediction_layer);return c$(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await vt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new Oa(n),s=await vt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],u=o[0];for(let x=1;x{let[w,I]=[Math.max(0,y[x][0]),Math.min(1,y[x][2])].map(_=>_*g),[T,C]=[Math.max(0,y[x][1]),Math.min(1,y[x][3])].map(_=>_*f);return new xt(p[x],new Xu(T,w,C-T,I-w),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),u.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return l$(t)}extractParams(t){return o$(t)}};function ece(e){let t=new Do;return t.extractWeights(e),t}function lSe(e){return ece(e)}var h$=class extends Do{};var m$=.4,f$=[new Me(.738768,.874946),new Me(2.42204,2.65704),new Me(4.30971,7.04493),new Me(10.246,4.59428),new Me(12.6868,11.8741)],g$=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],y$=[117.001,114.697,97.404],b$="tiny_yolov2_model",x$="tiny_yolov2_separable_conv_model";var lg=e=>typeof e=="number";function v$(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!lg(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>lg(t.x)&&lg(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(lg)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function cp(e){return P(()=>{let t=z(e,xe(.10000000149011612));return Y(Xe(pe(e,t)),t)})}function Br(e,t){return P(()=>{let n=ba(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ft(n,t.conv.filters,[1,1],"valid"),n=pe(n,t.bn.sub),n=z(n,t.bn.truediv),n=Y(n,t.conv.bias),cp(n)})}function Vr(e,t){return P(()=>{let n=ba(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ss(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),cp(n)})}function tce(e,t){let n=np(e,t);function a(i,o){let l=Ke(e(i)),u=Ke(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:u}}function r(i,o,l){let u=n(i,o,3,`${l}/conv`),p=a(o,`${l}/bn`);return{conv:u,bn:p}}let s=ap(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function w$(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=$n(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:u}=tce(r,i),p;if(t.withSeparableConvs){let[d,c,h,m,f,g,y,b,x]=a,w=t.isFirstLayerConv2d?o(d,c,3,"conv0"):u(d,c,"conv0"),I=u(c,h,"conv1"),T=u(h,m,"conv2"),C=u(m,f,"conv3"),_=u(f,g,"conv4"),$=u(g,y,"conv5"),R=b?u(y,b,"conv6"):void 0,F=x?u(b,x,"conv7"):void 0,S=o(x||b||y,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:_,conv5:$,conv6:R,conv7:F,conv8:S}}else{let[d,c,h,m,f,g,y,b,x]=a,w=l(d,c,"conv0"),I=l(c,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),_=l(f,g,"conv4"),$=l(g,y,"conv5"),R=l(y,b,"conv6"),F=l(b,x,"conv7"),S=o(x,5*n,1,"conv8");p={conv0:w,conv1:I,conv2:T,conv3:C,conv4:_,conv5:$,conv6:R,conv7:F,conv8:S}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:p,paramMappings:i}}function nce(e,t){let n=ra(e,t);function a(o){let l=n(`${o}/sub`,1),u=n(`${o}/truediv`,1);return{sub:l,truediv:u}}function r(o){let l=n(`${o}/filters`,4),u=n(`${o}/bias`,1);return{filters:l,bias:u}}function s(o){let l=r(`${o}/conv`),u=a(`${o}/bn`);return{conv:l,bn:u}}let i=rp(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function k$(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=nce(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return An(e,n),{params:i,paramMappings:n}}var yr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var S1=class extends dn{constructor(n){super("TinyYolov2");v$(n),this._config=n}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(n,a){let r=Br(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Br(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Br(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Br(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Br(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Br(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=Br(r,a.conv6),r=Br(r,a.conv7),$o(r,a.conv8,"valid",!1)}runMobilenet(n,a){let r=this.config.isFirstLayerConv2d?cp($o(n,a.conv0,"valid",!1)):Vr(n,a.conv0);return r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv1),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv2),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv3),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv4),r=Dt(r,[2,2],[2,2],"same"),r=Vr(r,a.conv5),r=Dt(r,[2,2],[1,1],"same"),r=a.conv6?Vr(r,a.conv6):r,r=a.conv7?Vr(r,a.conv7):r,$o(r,a.conv8,"valid",!1)}forwardInput(n,a){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return P(()=>{let s=le(n.toBatchTensor(a,!1),"float32");return s=this.config.meanRgb?gr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(n,a){return this.forwardInput(await vt(n),a)}async detect(n,a={}){let{inputSize:r,scoreThreshold:s}=new yr(a),i=await vt(n),o=await this.forwardInput(i,r),l=P(()=>ut(o)[0].expandDims()),u={width:i.getInputWidth(0),height:i.getInputHeight(0)},p=await this.extractBoxes(l,i.getReshapedInputDimensions(0),s);o.dispose(),l.dispose();let d=p.map(y=>y.box),c=p.map(y=>y.score),h=p.map(y=>y.classScore),m=p.map(y=>this.config.classes[y.label]);return AA(d.map(y=>y.rescale(r)),c,this.config.iouThreshold,!0).map(y=>new _s(c[y],h[y],m[y],d[y],u))}getDefaultModelName(){return""}extractParamsFromWeightMap(n){return k$(n,this.config)}extractParams(n){let a=this.config.filterSizes||S1.DEFAULT_FILTER_SIZES,r=a?a.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return w$(n,this.config,this.boxEncodingSize,a)}async extractBoxes(n,a,r){let{width:s,height:i}=a,o=Math.max(s,i),l=o/s,u=o/i,p=n.shape[1],d=this.config.anchors.length,[c,h,m]=P(()=>{let b=n.reshape([p,p,d,this.boxEncodingSize]),x=b.slice([0,0,0,0],[p,p,d,4]),w=b.slice([0,0,0,4],[p,p,d,1]),I=this.withClassScores?Xa(b.slice([0,0,0,5],[p,p,d,this.config.classes.length]),3):xe(0);return[x,w,I]}),f=[],g=await h.array(),y=await c.array();for(let b=0;br){let T=(x+Vf(y[b][x][w][0]))/p*l,C=(b+Vf(y[b][x][w][1]))/p*u,_=Math.exp(y[b][x][w][2])*this.config.anchors[w].x/p*l,$=Math.exp(y[b][x][w][3])*this.config.anchors[w].y/p*u,R=T-_/2,F=C-$/2,S={row:b,col:x,anchor:w},{classScore:M,label:B}=this.withClassScores?await this.extractPredictedClass(m,S):{classScore:1,label:0};f.push({box:new Ku(R,F,R+_,F+$),score:I,classScore:I*M,label:B,...S})}}return c.dispose(),h.dispose(),m.dispose(),f}async extractPredictedClass(n,a){let{row:r,col:s,anchor:i}=a,o=await n.array();return Array(this.config.classes.length).fill(0).map((l,u)=>o[r][s][i][u]).map((l,u)=>({classScore:l,label:u})).reduce((l,u)=>l.classScore>u.classScore?l:u)}},Ro=S1;Ro.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var dp=class extends Ro{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:m$,classes:["face"],...t?{anchors:g$,meanRgb:y$}:{anchors:f$,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?x$:b$}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function QSe(e,t=!0){let n=new dp(t);return n.extractWeights(e),n}var ug=class extends yr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var La=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Mo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>op(l)?r(l):l.detection),i=a||(t instanceof Te?await dd(t,s):await cd(t,s)),o=await n(i);return i.forEach(l=>l instanceof Te&&l.dispose()),o}async function hp(e,t,n,a,r){return Mo([e],t,async s=>n(s[0]),a,r)}var I$=.4,S$=[new Me(1.603231,2.094468),new Me(6.041143,7.080126),new Me(2.882459,3.518061),new Me(4.266906,5.178857),new Me(9.041765,10.66308)],T$=[117.001,114.697,97.404];var mp=class extends Ro{constructor(){let t={withSeparableConvs:!0,iouThreshold:I$,classes:["face"],anchors:S$,meanRgb:T$,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new xt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var tt={ssdMobilenetv1:new Do,tinyFaceDetector:new mp,tinyYolov2:new dp,faceLandmark68Net:new up,faceLandmark68TinyNet:new ig,faceRecognitionNet:new pp,faceExpressionNet:new eg,ageGenderNet:new rg},ace=(e,t)=>tt.ssdMobilenetv1.locateFaces(e,t),_Te=(e,t)=>tt.tinyFaceDetector.locateFaces(e,t),ATe=(e,t)=>tt.tinyYolov2.locateFaces(e,t),rce=e=>tt.faceLandmark68Net.detectLandmarks(e),$Te=e=>tt.faceLandmark68TinyNet.detectLandmarks(e),FTe=e=>tt.faceRecognitionNet.computeFaceDescriptor(e),DTe=e=>tt.faceExpressionNet.predictExpressions(e),RTe=e=>tt.ageGenderNet.predictAgeAndGender(e),sce=e=>tt.ssdMobilenetv1.load(e),MTe=e=>tt.tinyFaceDetector.load(e),PTe=e=>tt.tinyYolov2.load(e),OTe=e=>tt.faceLandmark68Net.load(e),LTe=e=>tt.faceLandmark68TinyNet.load(e),zTe=e=>tt.faceRecognitionNet.load(e),WTe=e=>tt.faceExpressionNet.load(e),BTe=e=>tt.ageGenderNet.load(e),VTe=sce,UTe=ace,GTe=rce;var pg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Po=class extends pg{async run(){let t=await this.parentTask,n=await Mo(t,this.input,async a=>Promise.all(a.map(r=>tt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>g1(a,n[r]))}withAgeAndGender(){return new Lo(this,this.input)}},Oo=class extends pg{async run(){let t=await this.parentTask;if(!t)return;let n=await hp(t,this.input,a=>tt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return g1(t,n)}withAgeAndGender(){return new zo(this,this.input)}},Fs=class extends Po{withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},Ds=class extends Oo{withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var cg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.extractedFaces=r}},Lo=class extends cg{async run(){let t=await this.parentTask,n=await Mo(t,this.input,async a=>Promise.all(a.map(r=>tt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return k1(I1(a,i,o),s)})}withFaceExpressions(){return new Po(this,this.input)}},zo=class extends cg{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await hp(t,this.input,s=>tt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return k1(I1(t,a,r),n)}withFaceExpressions(){return new Oo(this,this.input)}},Rs=class extends Lo{withFaceExpressions(){return new Fs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},Ms=class extends zo{withFaceExpressions(){return new Ds(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var dg=class extends La{constructor(n,a){super();this.parentTask=n;this.input=a}},Ps=class extends dg{async run(){let t=await this.parentTask;return(await Mo(t,this.input,a=>Promise.all(a.map(r=>tt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>w1(t[r],a))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}},Os=class extends dg{async run(){let t=await this.parentTask;if(!t)return;let n=await hp(t,this.input,a=>tt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return w1(t,n)}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}};var hg=class extends La{constructor(n,a,r){super();this.parentTask=n;this.input=a;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?tt.faceLandmark68TinyNet:tt.faceLandmark68Net}},mg=class extends hg{async run(){let t=await this.parentTask,n=t.map(i=>i.detection),a=this.input instanceof Te?await dd(this.input,n):await cd(this.input,n),r=await Promise.all(a.map(i=>this.landmarkNet.detectLandmarks(i)));return a.forEach(i=>i instanceof Te&&i.dispose()),t.filter((i,o)=>r[o]).map((i,o)=>gd(i,r[o]))}withFaceExpressions(){return new Fs(this,this.input)}withAgeAndGender(){return new Rs(this,this.input)}withFaceDescriptors(){return new Ps(this,this.input)}},fg=class extends hg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Te?await dd(this.input,[n]):await cd(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Te&&s.dispose()),gd(t,r)}withFaceExpressions(){return new Ds(this,this.input)}withAgeAndGender(){return new Ms(this,this.input)}withFaceDescriptor(){return new Os(this,this.input)}};var gg=class extends La{constructor(n,a=new Oa){super();this.input=n;this.options=a}},bd=class extends gg{async run(){let{input:t,options:n}=this,a;if(n instanceof ug)a=tt.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Oa)a=tt.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof yr)a=tt.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return a}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(a=>t(a.map(r=>Zu({},r)))).catch(a=>n(a))})}withFaceLandmarks(t=!1){return new mg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Po(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Lo(this.runAndExtendWithFaceDetections(),this.input)}},yg=class extends gg{async run(){let t=await new bd(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Zu({},n):void 0)})}withFaceLandmarks(t=!1){return new fg(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Oo(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new zo(this.runAndExtendWithFaceDetection(),this.input)}};function BNe(e,t=new Oa){return new yg(e,t)}function T1(e,t=new Oa){return new bd(e,t)}async function ice(e,t){return T1(e,new Oa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function qNe(e,t={}){return T1(e,new yr(t)).withFaceLandmarks().withFaceDescriptors()}var KNe=ice;function N$(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s*s,0))}var bg=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Or)return i;if(i instanceof Float32Array)return new Or(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Or(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>N$(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new od(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Or.fromJSON(a));return new bg(n,t.distanceThreshold)}};function d2e(e){let t=new mp;return t.extractWeights(e),t}function oce(e,t){let{width:n,height:a}=new _n(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>oce(r,{width:n,height:a}));if(op(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return gd(Zu(e,r),s)}return Lr(e)?Zu(e,e.detection.forSize(n,a)):e instanceof wa||e instanceof xt?e.forSize(n,a):e}var I2e=KA;export{rg as AgeGenderNet,Ku as BoundingBox,pt as Box,La as ComposableTask,Ps as ComputeAllFaceDescriptorsTask,dg as ComputeFaceDescriptorsTaskBase,Os as ComputeSingleFaceDescriptorTask,mg as DetectAllFaceLandmarksTask,bd as DetectAllFacesTask,hg as DetectFaceLandmarksTaskBase,gg as DetectFacesTaskBase,fg as DetectSingleFaceLandmarksTask,yg as DetectSingleFaceTask,_n as Dimensions,HA as FACE_EXPRESSION_LABELS,xt as FaceDetection,h$ as FaceDetectionNet,eg as FaceExpressionNet,$s as FaceExpressions,up as FaceLandmark68Net,ig as FaceLandmark68TinyNet,n$ as FaceLandmarkNet,wa as FaceLandmarks,FA as FaceLandmarks5,Yu as FaceLandmarks68,od as FaceMatch,bg as FaceMatcher,pp as FaceRecognitionNet,b1 as Gender,ld as LabeledBox,Or as LabeledFaceDescriptors,Wr as NetInput,dn as NeuralNetwork,_s as ObjectDetection,Me as Point,DA as PredictedBox,Xu as Rect,Do as SsdMobilenetv1,Oa as SsdMobilenetv1Options,mp as TinyFaceDetector,ug as TinyFaceDetectorOptions,dp as TinyYolov2,yr as TinyYolov2Options,KNe as allFaces,ice as allFacesSsdMobilenetv1,qNe as allFacesTinyYolov2,RA as awaitMediaLoaded,MA as bufferToImage,FTe as computeFaceDescriptor,tp as createCanvas,jf as createCanvasFromMedia,lSe as createFaceDetectionNet,lIe as createFaceRecognitionNet,ece as createSsdMobilenetv1,d2e as createTinyFaceDetector,QSe as createTinyYolov2,T1 as detectAllFaces,rce as detectFaceLandmarks,$Te as detectFaceLandmarksTiny,GTe as detectLandmarks,BNe as detectSingleFace,qA as draw,et as env,N$ as euclideanDistance,k1 as extendWithAge,w1 as extendWithFaceDescriptor,Zu as extendWithFaceDetection,g1 as extendWithFaceExpressions,gd as extendWithFaceLandmarks,I1 as extendWithGender,dd as extractFaceTensors,cd as extractFaces,bve as fetchImage,LA as fetchJson,Ive as fetchNetWeights,As as fetchOrThrow,_ve as fetchVideo,aa as getContext2dOrThrow,ep as getMediaDimensions,PA as imageTensorToCanvas,OA as imageToSquare,Dye as inverseSigmoid,EA as iou,f1 as isMediaElement,Hf as isMediaLoaded,dIe as isWithAge,Lr as isWithFaceDetection,jA as isWithFaceExpressions,op as isWithFaceLandmarks,gIe as isWithGender,BTe as loadAgeGenderModel,VTe as loadFaceDetectionModel,WTe as loadFaceExpressionModel,OTe as loadFaceLandmarkModel,LTe as loadFaceLandmarkTinyModel,zTe as loadFaceRecognitionModel,sce as loadSsdMobilenetv1Model,MTe as loadTinyFaceDetectorModel,PTe as loadTinyYolov2Model,WA as loadWeightMap,UTe as locateFaces,Pve as matchDimensions,_A as minBbox,tt as nets,AA as nonMaxSuppression,gr as normalize,$A as padToSquare,RTe as predictAgeAndGender,DTe as recognizeFaceExpressions,oce as resizeResults,Ju as resolveInput,$ye as shuffleArray,Vf as sigmoid,ace as ssdMobilenetv1,Oe as tf,_Te as tinyFaceDetector,ATe as tinyYolov2,vt as toNetInput,CA as utils,v$ as validateConfig,I2e as version}; //# sourceMappingURL=face-api.esm.js.map