import * as tf from '@tensorflow/tfjs/dist/tf.es2017.js'; import { fullyConnectedLayer } from '../common/fullyConnectedLayer'; import { seperateWeightMaps } from '../faceProcessor/util'; import { TinyXception } from '../xception/TinyXception'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; import { Gender } from './types'; import { NeuralNetwork } from '../NeuralNetwork'; import { NetInput, toNetInput } from '../dom'; export class AgeGenderNet extends NeuralNetwork { constructor(faceFeatureExtractor = new TinyXception(2)) { super('AgeGenderNet'); this._faceFeatureExtractor = faceFeatureExtractor; } get faceFeatureExtractor() { return this._faceFeatureExtractor; } runNet(input) { const { params } = this; if (!params) { throw new Error(`${this._name} - load model before inference`); } return tf.tidy(() => { const bottleneckFeatures = input instanceof NetInput ? this.faceFeatureExtractor.forwardInput(input) : input; const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1); const age = fullyConnectedLayer(pooled, params.fc.age).as1D(); const gender = fullyConnectedLayer(pooled, params.fc.gender); return { age, gender }; }); } forwardInput(input) { return tf.tidy(() => { const { age, gender } = this.runNet(input); return { age, gender: tf.softmax(gender) }; }); } async forward(input) { return this.forwardInput(await toNetInput(input)); } async predictAgeAndGender(input) { const netInput = await toNetInput(input); const out = await this.forwardInput(netInput); const ages = tf.unstack(out.age); const genders = tf.unstack(out.gender); const ageAndGenderTensors = ages.map((ageTensor, i) => ({ ageTensor, genderTensor: genders[i] })); const predictionsByBatch = await Promise.all(ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => { const age = (await ageTensor.data())[0]; const probMale = (await genderTensor.data())[0]; const isMale = probMale > 0.5; const gender = isMale ? Gender.MALE : Gender.FEMALE; const genderProbability = isMale ? probMale : (1 - probMale); ageTensor.dispose(); genderTensor.dispose(); return { age, gender, genderProbability }; })); out.age.dispose(); out.gender.dispose(); return netInput.isBatchInput ? predictionsByBatch : predictionsByBatch[0]; } getDefaultModelName() { return 'age_gender_model'; } dispose(throwOnRedispose = true) { this.faceFeatureExtractor.dispose(throwOnRedispose); super.dispose(throwOnRedispose); } loadClassifierParams(weights) { const { params, paramMappings } = this.extractClassifierParams(weights); this._params = params; this._paramMappings = paramMappings; } extractClassifierParams(weights) { return extractParams(weights); } extractParamsFromWeigthMap(weightMap) { const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap); this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap); return extractParamsFromWeigthMap(classifierMap); } extractParams(weights) { const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2); const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize); const classifierWeights = weights.slice(weights.length - classifierWeightSize); this.faceFeatureExtractor.extractWeights(featureExtractorWeights); return this.extractClassifierParams(classifierWeights); } } //# sourceMappingURL=AgeGenderNet.js.map