/* Face-API homepage: author: ' */ var faceapi=(()=>{var kE=Object.create,Cd=Object.defineProperty,IE=Object.getPrototypeOf,NE=Object.prototype.hasOwnProperty,TE=Object.getOwnPropertyNames,SE=Object.getOwnPropertyDescriptor;var Jw=e=>Cd(e,"__esModule",{value:!0});var CE=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),cc=(e,t)=>{Jw(e);for(var n in t)Cd(e,n,{get:t[n],enumerable:!0})},_E=(e,t,n)=>{if(Jw(e),t&&typeof t=="object"||typeof t=="function")for(let a of TE(t))!NE.call(e,a)&&a!=="default"&&Cd(e,a,{get:()=>t[a],enumerable:!(n=SE(t,a))||n.enumerable});return e},EE=e=>e&&e.__esModule?e:_E(Cd(e!=null?kE(IE(e)):{},"default",{value:e,enumerable:!0}),e);var Q2=CE((Lre,J2)=>{cc(Lre,{isNodejs:()=>zre});function zre(){return typeof global=="object"&&!0&&typeof J2!="undefined"&&typeof process!="undefined"&&!!process.version}});var ise={};cc(ise,{AgeGenderNet:()=>Gp,BoundingBox:()=>no,Box:()=>ot,ComposableTask:()=>aa,ComputeAllFaceDescriptorsTask:()=>Rr,ComputeFaceDescriptorsTaskBase:()=>Jp,ComputeSingleFaceDescriptorTask:()=>Mr,DetectAllFaceLandmarksTask:()=>ed,DetectAllFacesTask:()=>Gu,DetectFaceLandmarksTaskBase:()=>Qp,DetectFacesTaskBase:()=>nd,DetectSingleFaceLandmarksTask:()=>td,DetectSingleFaceTask:()=>ad,Dimensions:()=>ln,FACE_EXPRESSION_LABELS:()=>Wf,FaceDetection:()=>yt,FaceDetectionNet:()=>Dw,FaceExpressionNet:()=>Vp,FaceExpressions:()=>Fr,FaceLandmark68Net:()=>co,FaceLandmark68TinyNet:()=>jp,FaceLandmarkNet:()=>Ew,FaceLandmarks:()=>Un,FaceLandmarks5:()=>fw,FaceLandmarks68:()=>ro,FaceMatch:()=>Au,FaceMatcher:()=>sd,FaceRecognitionNet:()=>po,Gender:()=>pr,LabeledBox:()=>Fu,LabeledFaceDescriptors:()=>lr,NetInput:()=>cr,NeuralNetwork:()=>Qt,ObjectDetection:()=>Ar,Point:()=>De,PredictedBox:()=>gw,Rect:()=>ao,SsdMobilenetv1:()=>ks,SsdMobilenetv1Options:()=>na,TinyFaceDetector:()=>go,TinyFaceDetectorOptions:()=>Zp,TinyYolov2:()=>mo,TinyYolov2Options:()=>Ba,allFaces:()=>s_,allFacesSsdMobilenetv1:()=>Bw,allFacesTinyYolov2:()=>r_,awaitMediaLoaded:()=>Cf,bufferToImage:()=>_f,computeFaceDescriptor:()=>GC,createCanvas:()=>so,createCanvasFromMedia:()=>Du,createFaceDetectionNet:()=>_C,createFaceRecognitionNet:()=>xC,createSsdMobilenetv1:()=>$w,createTinyFaceDetector:()=>i_,createTinyYolov2:()=>OC,detectAllFaces:()=>rd,detectFaceLandmarks:()=>Pw,detectFaceLandmarksTiny:()=>UC,detectLandmarks:()=>n_,detectSingleFace:()=>a_,draw:()=>Uf,env:()=>rt,euclideanDistance:()=>qf,extendWithAge:()=>Xp,extendWithFaceDescriptor:()=>Kp,extendWithFaceDetection:()=>gs,extendWithFaceExpressions:()=>Up,extendWithFaceLandmarks:()=>uo,extendWithGender:()=>Yp,extractFaceTensors:()=>oo,extractFaces:()=>io,fetchImage:()=>eC,fetchJson:()=>Ff,fetchNetWeights:()=>tC,fetchOrThrow:()=>vs,getContext2dOrThrow:()=>yn,getMediaDimensions:()=>xs,imageTensorToCanvas:()=>Ef,imageToSquare:()=>Af,inverseSigmoid:()=>Z2,iou:()=>wf,isMediaElement:()=>Op,isMediaLoaded:()=>$u,isWithAge:()=>vC,isWithFaceDetection:()=>La,isWithFaceExpressions:()=>Vf,isWithFaceLandmarks:()=>ws,isWithGender:()=>wC,loadAgeGenderModel:()=>QC,loadFaceDetectionModel:()=>e_,loadFaceExpressionModel:()=>JC,loadFaceLandmarkModel:()=>XC,loadFaceLandmarkTinyModel:()=>YC,loadFaceRecognitionModel:()=>ZC,loadSsdMobilenetv1Model:()=>Ow,loadTinyFaceDetectorModel:()=>qC,loadTinyYolov2Model:()=>KC,loadWeightMap:()=>Df,locateFaces:()=>t_,matchDimensions:()=>nC,minBbox:()=>kf,nets:()=>et,nonMaxSuppression:()=>If,normalize:()=>va,padToSquare:()=>Nf,predictAgeAndGender:()=>jC,recognizeFaceExpressions:()=>HC,resizeResults:()=>Ww,resolveInput:()=>ys,shuffleArray:()=>Y2,sigmoid:()=>Eu,ssdMobilenetv1:()=>Mw,tf:()=>_d,tinyFaceDetector:()=>WC,tinyYolov2:()=>VC,toNetInput:()=>gt,utils:()=>bf,validateConfig:()=>jf,version:()=>o_});var _d={};cc(_d,{Abs:()=>Oo,Acos:()=>Lo,Acosh:()=>zo,AdadeltaOptimizer:()=>nm,AdagradOptimizer:()=>am,AdamOptimizer:()=>rm,AdamaxOptimizer:()=>sm,Add:()=>Vr,AddN:()=>$s,All:()=>Md,Any:()=>Pd,ArgMax:()=>Ds,ArgMin:()=>fc,Asin:()=>Bo,Asinh:()=>Wo,Atan:()=>Vo,Atan2:()=>Go,Atanh:()=>Uo,AvgPool:()=>Rs,AvgPool3D:()=>gc,AvgPool3DGrad:()=>Ld,AvgPoolGrad:()=>Od,BackendWasm:()=>K2,BatchMatMul:()=>Ms,BatchToSpaceND:()=>yc,Bincount:()=>zd,BroadcastTo:()=>m0,Callback:()=>KI,CallbackList:()=>jk,Cast:()=>Ps,Ceil:()=>Ho,ClipByValue:()=>Ur,Complex:()=>Bd,ComplexAbs:()=>bc,Concat:()=>jo,Conv2D:()=>Os,Conv2DBackpropFilter:()=>Wd,Conv2DBackpropInput:()=>Ls,Conv3D:()=>xc,Conv3DBackpropFilterV2:()=>Vd,Conv3DBackpropInputV2:()=>Ud,Cos:()=>zs,Cosh:()=>qo,CropAndResize:()=>Ko,Cumsum:()=>Bs,CustomCallback:()=>Kk,DataStorage:()=>Fd,DenseBincount:()=>Gd,DepthToSpace:()=>Xo,DepthwiseConv2dNative:()=>Ws,DepthwiseConv2dNativeBackpropFilter:()=>Hd,DepthwiseConv2dNativeBackpropInput:()=>jd,Diag:()=>qd,Dilation2D:()=>vc,Dilation2DBackpropFilter:()=>Xd,Dilation2DBackpropInput:()=>Kd,ENV:()=>iy,EarlyStopping:()=>YI,Elu:()=>Yo,EluGrad:()=>Yd,Environment:()=>d0,Equal:()=>Jo,Erf:()=>Zo,Exp:()=>Us,ExpandDims:()=>Qo,Expm1:()=>el,FFT:()=>Zd,Fill:()=>wc,FlipLeftRight:()=>tl,Floor:()=>Gs,FloorDiv:()=>Hs,FromPixels:()=>ph,FusedBatchNorm:()=>js,FusedConv2D:()=>Ii,FusedDepthwiseConv2D:()=>Ni,GatherNd:()=>al,GatherV2:()=>nl,GraphModel:()=>TN,Greater:()=>rl,GreaterEqual:()=>qs,History:()=>qk,IFFT:()=>Jd,Identity:()=>sl,Imag:()=>Qd,InputSpec:()=>Xt,IsFinite:()=>il,IsInf:()=>ol,IsNan:()=>ll,KernelBackend:()=>dc,LRN:()=>Nc,LRNGrad:()=>th,LayerVariable:()=>Wk,LayersModel:()=>Nr,LeakyRelu:()=>Ks,Less:()=>ul,LessEqual:()=>cl,LinSpace:()=>eh,Log:()=>Xs,Log1p:()=>pl,LogSoftmax:()=>f0,LogicalAnd:()=>dl,LogicalNot:()=>kc,LogicalOr:()=>Ic,Max:()=>Ys,MaxPool:()=>Js,MaxPool3D:()=>Tc,MaxPool3DGrad:()=>ah,MaxPoolGrad:()=>nh,MaxPoolWithArgmax:()=>rh,Maximum:()=>Zs,Mean:()=>Qs,Min:()=>ei,Minimum:()=>ti,MirrorPad:()=>Sc,Mod:()=>hl,MomentumOptimizer:()=>im,Multinomial:()=>sh,Multiply:()=>ni,Neg:()=>ml,NonMaxSuppressionV3:()=>gl,NonMaxSuppressionV4:()=>yl,NonMaxSuppressionV5:()=>bl,NotEqual:()=>fl,OP_SCOPE_SUFFIX:()=>S0,OneHot:()=>ai,OnesLike:()=>xl,Optimizer:()=>wr,Pack:()=>vl,PadV2:()=>ri,Pool:()=>bA,Pow:()=>si,Prelu:()=>ii,Prod:()=>wl,RMSPropOptimizer:()=>om,RNN:()=>ar,Range:()=>Cc,Rank:()=>my,Real:()=>ih,RealDiv:()=>Vs,Reciprocal:()=>kl,Reduction:()=>hn,Relu:()=>oi,Relu6:()=>ui,Reshape:()=>Il,ResizeBilinear:()=>li,ResizeBilinearGrad:()=>lh,ResizeNearestNeighbor:()=>_c,ResizeNearestNeighborGrad:()=>oh,Reverse:()=>ci,RotateWithOffset:()=>Ol,Round:()=>pi,Rsqrt:()=>di,SGDOptimizer:()=>tp,ScatterNd:()=>Nl,Select:()=>Tl,Selu:()=>Sl,Sequential:()=>lu,Sigmoid:()=>mi,Sign:()=>El,Sin:()=>hi,Sinh:()=>_l,Slice:()=>Cl,Softmax:()=>yi,Softplus:()=>Al,SpaceToBatchND:()=>Ec,SparseToDense:()=>uh,SplitV:()=>Fl,Sqrt:()=>fi,Square:()=>Ac,SquaredDifference:()=>bi,Step:()=>Hr,StridedSlice:()=>$l,Sub:()=>xi,Sum:()=>gi,SymbolicTensor:()=>Fa,Tan:()=>Dl,Tanh:()=>vi,Tensor:()=>Ae,TensorBuffer:()=>Ot,Tile:()=>Gr,TopK:()=>Rl,Transpose:()=>wi,Unique:()=>ch,Unpack:()=>Ml,UnsortedSegmentSum:()=>Fc,Variable:()=>jr,ZerosLike:()=>Pl,_FusedMatMul:()=>ki,abs:()=>Lt,acos:()=>zy,acosh:()=>By,add:()=>Z,addN:()=>l1,all:()=>Sh,any:()=>Wc,argMax:()=>Vc,argMin:()=>Wy,asin:()=>Vy,asinh:()=>Uy,atan:()=>Gy,atan2:()=>Hy,atanh:()=>jy,avgPool:()=>Yn,avgPool3d:()=>Xy,backend:()=>o1,backend_util:()=>_,basicLSTMCell:()=>q$,batchNorm:()=>br,batchNorm2d:()=>d1,batchNorm3d:()=>h1,batchNorm4d:()=>m1,batchToSpaceND:()=>Gc,bincount:()=>f1,booleanMaskAsync:()=>ZM,broadcastTo:()=>Hc,browser:()=>_i,buffer:()=>Le,callbacks:()=>z4,cast:()=>ce,ceil:()=>Yy,clipByValue:()=>qt,clone:()=>Yr,complex:()=>qr,concat:()=>Qe,concat1d:()=>g1,concat2d:()=>y1,concat3d:()=>b1,concat4d:()=>x1,constraints:()=>mk,conv1d:()=>_h,conv2d:()=>At,conv2dTranspose:()=>Eh,conv3d:()=>Jy,conv3dTranspose:()=>fD,copyRegisteredKernels:()=>wA,cos:()=>jc,cosh:()=>Ah,cosineWindow:()=>Nb,cumsum:()=>Fh,customGrad:()=>Xa,data:()=>CN,denseBincount:()=>w1,deprecationWarn:()=>Ly,depthToSpace:()=>Qy,depthwiseConv2d:()=>es,deregisterOp:()=>W4,device_util:()=>bh,diag:()=>ID,dilation2d:()=>eb,disableDeprecationWarnings:()=>s$,dispose:()=>Fe,disposeVariables:()=>i$,div:()=>ve,divNoNan:()=>tb,dot:()=>k1,dropout:()=>U1,elu:()=>ql,enableDebugMode:()=>r$,enableProdMode:()=>a$,enclosingPowerOfTwo:()=>G1,engine:()=>Jr,env:()=>ee,equal:()=>ts,erf:()=>nb,exp:()=>dn,expandDims:()=>Fn,expm1:()=>ab,eye:()=>rb,fft:()=>Qc,fill:()=>kn,findBackend:()=>h$,findBackendFactory:()=>m$,floor:()=>Kl,floorDiv:()=>Th,fused:()=>rs,gather:()=>Fi,gatherND:()=>V1,gather_util:()=>Fy,getBackend:()=>p$,getGradient:()=>cy,getKernel:()=>dh,getKernelsForBackend:()=>hh,grad:()=>JD,grads:()=>QD,greater:()=>da,greaterEqual:()=>ns,ifft:()=>eu,imag:()=>$h,image:()=>Ja,inTopKAsync:()=>lP,initializers:()=>wk,input:()=>Rk,io:()=>Ht,irfft:()=>qh,isFinite:()=>I1,isInf:()=>N1,isNaN:()=>T1,keep:()=>jt,kernel_impls:()=>Qa,layers:()=>Dk,leakyRelu:()=>qc,less:()=>Dh,lessEqual:()=>$i,linalg:()=>nk,linspace:()=>S1,loadGraphModel:()=>WV,loadLayersModel:()=>s4,localResponseNormalization:()=>sb,log:()=>$n,log1p:()=>Rh,logSigmoid:()=>_1,logSoftmax:()=>Ph,logSumExp:()=>lb,logicalAnd:()=>ha,logicalNot:()=>Kc,logicalOr:()=>Oh,logicalXor:()=>$1,losses:()=>IO,matMul:()=>ze,math:()=>V0,max:()=>Zn,maxPool:()=>Ft,maxPool3d:()=>ub,maxPoolWithArgmax:()=>D1,maximum:()=>Ya,mean:()=>St,memory:()=>Ih,metrics:()=>HI,min:()=>Yl,minimum:()=>Zl,mirrorPad:()=>cb,mod:()=>pb,model:()=>a4,models:()=>jI,moments:()=>Lh,movingAverage:()=>eP,mul:()=>L,multiRNNCell:()=>_R,multinomial:()=>R1,neg:()=>Tt,nextFrame:()=>lm,norm:()=>Zh,notEqual:()=>Ri,oneHot:()=>Ul,ones:()=>Za,onesLike:()=>Dn,op:()=>P,outerProduct:()=>DR,pad:()=>Jn,pad1d:()=>PR,pad2d:()=>LR,pad3d:()=>BR,pad4d:()=>VR,pool:()=>M1,pow:()=>xr,prelu:()=>Yc,print:()=>P0,prod:()=>zh,profile:()=>o$,rand:()=>ZR,randomGamma:()=>tM,randomNormal:()=>P1,randomUniform:()=>Jl,range:()=>Bh,ready:()=>c$,real:()=>Zc,reciprocal:()=>mb,registerBackend:()=>Nh,registerCallbackConstructor:()=>i4,registerGradient:()=>g0,registerKernel:()=>Dc,registerOp:()=>B4,regularizers:()=>qI,relu:()=>Ye,relu6:()=>Wh,removeBackend:()=>d$,reshape:()=>j,reverse:()=>Rn,reverse1d:()=>cM,reverse2d:()=>dM,reverse3d:()=>mM,reverse4d:()=>gM,rfft:()=>ep,round:()=>fb,rsqrt:()=>Vh,scalar:()=>de,scatterND:()=>W1,scatter_util:()=>$y,selu:()=>Uh,separableConv2d:()=>Mi,sequential:()=>r4,serialization:()=>re,setBackend:()=>u$,setPlatform:()=>f$,setWasmPath:()=>Are,setWasmPaths:()=>Fre,setdiff1dAsync:()=>O1,sigmoid:()=>pa,sign:()=>gb,signal:()=>kO,sin:()=>Gh,sinh:()=>Hh,slice:()=>We,slice1d:()=>jh,slice2d:()=>yb,slice3d:()=>Ql,slice4d:()=>Jc,slice_util:()=>pn,softmax:()=>Ta,softplus:()=>Xl,spaceToBatchND:()=>Xc,sparseToDense:()=>Ib,spectral:()=>wO,split:()=>Mn,sqrt:()=>tn,square:()=>ut,squaredDifference:()=>Kh,squeeze:()=>as,stack:()=>$t,step:()=>tu,stridedSlice:()=>bb,sub:()=>fe,sum:()=>Te,sumOutType:()=>yh,tan:()=>xb,tanh:()=>jl,tensor:()=>Kn,tensor1d:()=>nt,tensor2d:()=>Sa,tensor3d:()=>wh,tensor4d:()=>Ca,tensor5d:()=>VM,tensor6d:()=>UM,tensor_util:()=>Na,test_util:()=>a1,tidy:()=>D,tile:()=>Ka,time:()=>l$,topk:()=>vb,train:()=>Oi,transpose:()=>Ue,truncatedNormal:()=>Xh,unique:()=>Yh,unregisterGradient:()=>vA,unregisterKernel:()=>xA,unsortedSegmentSum:()=>wb,unstack:()=>dt,upcastType:()=>ca,util:()=>k,valueAndGrad:()=>eR,valueAndGrads:()=>tR,variable:()=>L1,variableGrads:()=>C1,version:()=>zee,version_converter:()=>SN,version_core:()=>i1,version_layers:()=>$m,version_wasm:()=>$re,where:()=>wn,whereAsync:()=>kb,zeros:()=>vt,zerosLike:()=>Ge});var AE=Object.create,Ed=Object.defineProperty,FE=Object.getPrototypeOf,$E=Object.prototype.hasOwnProperty,DE=Object.getOwnPropertyNames,RE=Object.getOwnPropertyDescriptor,Qw=e=>Ed(e,"__esModule",{value:!0}),cn=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Oe=(e,t)=>{Qw(e);for(var n in t)Ed(e,n,{get:t[n],enumerable:!0})},ME=(e,t,n)=>{if(Qw(e),t&&typeof t=="object"||typeof t=="function")for(let a of DE(t))!$E.call(e,a)&&a!=="default"&&Ed(e,a,{get:()=>t[a],enumerable:!(n=RE(t,a))||n.enumerable});return e},Ro=e=>e&&e.__esModule?e:ME(Ed(e!=null?AE(FE(e)):{},"default",{value:e,enumerable:!0}),e),PE=cn(()=>{}),OE=cn((e,t)=>{(function(n,a,r){function s(c){var u=this,p=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(c),u.s0<0&&(u.s0+=1),u.s1-=p(c),u.s1<0&&(u.s1+=1),u.s2-=p(c),u.s2<0&&(u.s2+=1),p=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var p=new s(c),d=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function l(){var c=4022871197,u=function(p){p=p.toString();for(var d=0;d>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var p=0;p>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.x,d=c.i,h,m,f;return h=p[d],h^=h>>>7,m=h^h<<24,h=p[d+1&7],m^=h^h>>>10,h=p[d+3&7],m^=h^h>>>3,h=p[d+4&7],m^=h^h<<7,h=p[d+7&7],h=h^h<<13,m^=h^h<<9,p[d]=m,c.i=d+1&7,m};function u(p,d){var h,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,h=0;h0;--h)p.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.x&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this;c.next=function(){var p=c.w,d=c.X,h=c.i,m,f;return c.w=p=p+1640531527|0,f=d[h+34&127],m=d[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[h]=f^m,c.i=h,f+(p^p>>>16)|0};function u(p,d){var h,m,f,g,y,b=[],v=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,v=Math.max(v,d.length)),f=0,g=-32;g>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(d&&d.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;p.w=y,p.X=b,p.i=f}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),p=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(p.X&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VE=cn((e,t)=>{(function(n,a,r){function s(l){var c=this,u="";c.next=function(){var d=c.b,h=c.c,m=c.d,f=c.a;return d=d<<25^d>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-d|0,c.b=d=d<<20^d>>>12^h,c.c=h=h-m|0,c.d=m<<16^h>>>16^f,c.a=f-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var p=0;p>>0)/4294967296};return d.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},d.int32=u.next,d.quick=d,p&&(typeof p=="object"&&i(p,u),d.state=function(){return i(u,{})}),d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),UE=cn(()=>{}),GE=cn((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),p=u*2,d=s-1,h;function m(N,T,C){var $=[];T=T==!0?{entropy:!0}:T||{};var F=b(y(T.entropy?[N,x(n)]:N==null?v():N,3),$),O=new f($),B=function(){for(var W=O.g(i),G=c,q=0;W=p;)W/=2,G/=2,q>>>=1;return(W+q)/G};return B.int32=function(){return O.g(4)|0},B.quick=function(){return O.g(4)/4294967296},B.double=B,b(x(O.S),n),(T.pass||C||function(W,G,q,H){return H&&(H.S&&g(H,O),W.state=function(){return g(O,{})}),q?(a[l]=W,G):W})(B,F,"global"in T?T.global:this==a,T.state)}a["seed"+l]=m;function f(N){var T,C=N.length,$=this,F=0,O=$.i=$.j=0,B=$.S=[];for(C||(N=[C++]);F{var n=OE(),a=LE(),r=zE(),s=BE(),i=WE(),o=VE(),l=GE();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),HE=cn(()=>{}),pc=cn(()=>{}),jE=cn(()=>{}),qE=cn(()=>{}),KE=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Je&&An(Q.buffer),_n}function i(){return Q.buffer!=Je&&An(Q.buffer),en}function o(){return Q.buffer!=Je&&An(Q.buffer),vn}function l(){return Q.buffer!=Je&&An(Q.buffer),un}function c(){return Q.buffer!=Je&&An(Q.buffer),Wa}var u=typeof r!="undefined"?r:{},p={},d;for(d in u)u.hasOwnProperty(d)&&(p[d]=u[d]);var h=[],m="./this.program",f=function(w,S){throw S},g=!1,y=!1,b=!1,v=!1;g=typeof window=="object",y=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!g&&!b&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(Je=u.buffer,ia=u.DYNAMIC_BASE,Ia=u.DYNAMICTOP_PTR);var N="";function T(w){return u.locateFile?u.locateFile(w,N):N+w}var C,$,F,O,B,W;if(b){y?N=pc().dirname(N)+"/":N=__dirname+"/",C=function(w,S){return B||(B=require("fs")),W||(W=pc()),w=W.normalize(w),B.readFileSync(w,S?null:"utf8")},F=function(w){var S=C(w,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S},process.argv.length>1&&(m=process.argv[1].replace(/\\/g,"/")),h=process.argv.slice(2),process.on("uncaughtException",function(w){if(!(w instanceof Yw))throw w}),process.on("unhandledRejection",hr),f=function(w){process.exit(w)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=jE()}catch(w){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),w}Worker=G.Worker}else v?(typeof read!="undefined"&&(C=function(w){return read(w)}),F=function(w){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(w)):(S=read(w,"binary"),ke(typeof S=="object"),S)},typeof scriptArgs!="undefined"?h=scriptArgs:typeof arguments!="undefined"&&(h=arguments),typeof quit=="function"&&(f=function(w){quit(w)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||y)&&(y?N=self.location.href:document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(C=function(w,S){return B||(B=require("fs")),W||(W=pc()),w=W.normalize(w),B.readFileSync(w,S?null:"utf8")},F=function(w){var S=C(w,!0);return S.buffer||(S=new Uint8Array(S)),ke(S.buffer),S}):(C=function(w){var S=new XMLHttpRequest;return S.open("GET",w,!1),S.send(null),S.responseText},y&&(F=function(w){var S=new XMLHttpRequest;return S.open("GET",w,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),$=function(w,S,R){var U=new XMLHttpRequest;U.open("GET",w,!0),U.responseType="arraybuffer",U.onload=function(){if(U.status==200||U.status==0&&U.response){S(U.response);return}R()},U.onerror=R,U.send(null)}),O=function(w){document.title=w});b&&typeof performance=="undefined"&&(performance=qE().performance);var q=u.print||console.log.bind(console),H=u.printErr||console.warn.bind(console);for(d in p)p.hasOwnProperty(d)&&(u[d]=p[d]);p=null,u.arguments&&(h=u.arguments),u.thisProgram&&(m=u.thisProgram),u.quit&&(f=u.quit);var K=Atomics.load,X=Atomics.store,ne=Atomics.compareExchange,J;u.wasmBinary&&(J=u.wasmBinary);var se;u.noExitRuntime&&(se=u.noExitRuntime),typeof WebAssembly!="object"&&H("no native wasm support detected");var Q,oe=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ae,pe=0,ue=0,ge=!1,ye=0;function ke(w,S){w||hr("Assertion failed: "+S)}function Se(w){var S=u["_"+w];return ke(S,"Cannot call unknown function "+w+", make sure it is exported"),S}function Ce(w,S,R,U,he){var le={string:function(qn){var zr=0;if(qn!=null&&qn!==0){var uc=(qn.length<<2)+1;zr=Ao(uc),lt(qn,zr,uc)}return zr},array:function(qn){var zr=Ao(qn.length);return ct(qn,zr),zr}};function ie(qn){return S==="string"?Ve(qn):S==="boolean"?Boolean(qn):qn}var xe=Se(w),tt=[],Mt=0;if(U)for(var rn=0;rn=U);){var le=w[S++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ie=w[S++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ie);continue}var xe=w[S++]&63;if((le&240)==224?le=(le&15)<<12|ie<<6|xe:le=(le&7)<<18|ie<<12|xe<<6|w[S++]&63,le<65536)he+=String.fromCharCode(le);else{var tt=le-65536;he+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return he}function Ve(w,S){return w?Ke(i(),w,S):""}function st(w,S,R,U){if(!(U>0))return 0;for(var he=R,le=R+U-1,ie=0;ie=55296&&xe<=57343){var tt=w.charCodeAt(++ie);xe=65536+((xe&1023)<<10)|tt&1023}if(xe<=127){if(R>=le)break;S[R++]=xe}else if(xe<=2047){if(R+1>=le)break;S[R++]=192|xe>>6,S[R++]=128|xe&63}else if(xe<=65535){if(R+2>=le)break;S[R++]=224|xe>>12,S[R++]=128|xe>>6&63,S[R++]=128|xe&63}else{if(R+3>=le)break;S[R++]=240|xe>>18,S[R++]=128|xe>>12&63,S[R++]=128|xe>>6&63,S[R++]=128|xe&63}}return S[R]=0,R-he}function lt(w,S,R){return st(w,i(),S,R)}function He(w){for(var S=0,R=0;R=55296&&U<=57343&&(U=65536+((U&1023)<<10)|w.charCodeAt(++R)&1023),U<=127?++S:U<=2047?S+=2:U<=65535?S+=3:S+=4}return S}function ct(w,S){s().set(w,S)}var pt=65536;function Hn(w,S){return w%S>0&&(w+=S-w%S),w}var Je,_n,en,En,ra,vn,un,sa,Wa;function An(w){Je=w,u.HEAP8=_n=new Int8Array(w),u.HEAP16=En=new Int16Array(w),u.HEAP32=vn=new Int32Array(w),u.HEAPU8=en=new Uint8Array(w),u.HEAPU16=ra=new Uint16Array(w),u.HEAPU32=un=new Uint32Array(w),u.HEAPF32=sa=new Float32Array(w),u.HEAPF64=Wa=new Float64Array(w)}var wo=5256480,Hu=wo,ka=13600,ia=5256480,Ia=12672,ko=u.INITIAL_MEMORY||16777216;if(x)Q=u.wasmMemory,Je=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:ko/pt,maximum:2147483648/pt,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Je=Q.buffer),ko=Je.byteLength,An(Je),x||(o()[Ia>>2]=ia);function Io(w){for(;w.length>0;){var S=w.shift();if(typeof S=="function"){S(u);continue}var R=S.func;typeof R=="number"?S.arg===void 0?u.dynCall_v(R):u.dynCall_vi(R,S.arg):R(S.arg===void 0?null:S.arg)}}var Is=[],ju=[],Kf=[],qu=[],id=[],Ku=!1;x&&(Ku=!0);function oa(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)Zf(u.preRun.shift());Io(Is)}}function od(){Ku=!0,Io(ju)}function Xf(){x||Io(Kf)}function Yf(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ns(u.postRun.shift());Io(id)}}function Zf(w){Is.unshift(w)}function Ns(w){id.unshift(w)}var No=Math.ceil,Jf=Math.floor,dr=0,Xu=null,Ts=null;function Qf(w){ke(!x,"addRunDependency cannot be used in a pthread worker"),dr++,u.monitorRunDependencies&&u.monitorRunDependencies(dr)}function eg(w){if(dr--,u.monitorRunDependencies&&u.monitorRunDependencies(dr),dr==0&&(Xu!==null&&(clearInterval(Xu),Xu=null),Ts)){var S=Ts;Ts=null,S()}}u.preloadedImages={},u.preloadedAudios={};function hr(w){throw u.onAbort&&u.onAbort(w),x&&console.error("Pthread aborting at "+new Error().stack),w+="",q(w),H(w),ge=!0,ye=1,w="abort("+w+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(w)}function Yu(w,S){return String.prototype.startsWith?w.startsWith(S):w.indexOf(S)===0}var tg="data:application/octet-stream;base64,";function ld(w){return Yu(w,tg)}var ng="file://";function ud(w){return Yu(w,ng)}var la="tfjs-backend-wasm-threaded-simd.wasm";ld(la)||(la=T(la));function cd(){try{if(J)return new Uint8Array(J);if(F)return F(la);throw"both async and sync fetching of the wasm failed"}catch(w){hr(w)}}function ag(){return!J&&(g||y)&&typeof fetch=="function"&&!ud(la)?fetch(la,{credentials:"same-origin"}).then(function(w){if(!w.ok)throw"failed to load wasm binary file at '"+la+"'";return w.arrayBuffer()}).catch(function(){return cd()}):new Promise(function(w,S){w(cd())})}function rg(){var w={a:Xg};function S(ie,xe){var tt=ie.exports;if(u.asm=tt,ae=xe,!x){var Mt=me.unusedWorkers.length;me.unusedWorkers.forEach(function(rn){me.loadWasmModuleToWorker(rn,function(){--Mt||eg("wasm-instantiate")})})}}x||Qf("wasm-instantiate");function R(ie){S(ie.instance,ie.module)}function U(ie){return ag().then(function(xe){return WebAssembly.instantiate(xe,w)}).then(ie,function(xe){H("failed to asynchronously prepare wasm: "+xe),hr(xe)})}function he(){if(!J&&typeof WebAssembly.instantiateStreaming=="function"&&!ld(la)&&!ud(la)&&typeof fetch=="function")fetch(la,{credentials:"same-origin"}).then(function(ie){var xe=WebAssembly.instantiateStreaming(ie,w);return xe.then(R,function(tt){H("wasm streaming compile failed: "+tt),H("falling back to ArrayBuffer instantiation"),U(R)})});else return U(R)}if(u.instantiateWasm)try{var le=u.instantiateWasm(w,S);return le}catch(ie){return H("Module.instantiateWasm callback failed with error: "+ie),!1}return he(),{}}var sg={};function ig(){me.initRuntime()}x||ju.push({func:function(){Qu()}});var pd=0,dd=0,hd=0;function To(w,S,R){w=w|0,S=S|0,R=R|0,pd=w,hd=S,dd=R}u.__register_pthread_ptr=To;var Zu={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},So=13584;function Co(w,S){if(w<=0||w>s().length||w&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var R=Atomics.load(o(),So>>2),U=0;if(R==w){var he=Atomics.compareExchange(o(),So>>2,R,0);if(he==R&&(--S,U=1,S<=0))return 1}var le=Atomics.notify(o(),w>>2,S);if(le>=0)return le+U;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=Co;function og(w){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[w+12>>2]=0;var S=me.pthreads[w];S.worker.terminate(),me.freeThreadData(S),me.runningWorkers.splice(me.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function lg(w){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=me.pthreads[w];S.worker.postMessage({cmd:"cancel"})}function ug(w){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!w)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[w+12>>2]=0;var S=me.pthreads[w];if(S){var R=S.worker;me.returnWorkerToPool(R)}}var me={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){To(me.mainThreadBlock,!y,1),jw(me.mainThreadBlock)},initMainThreadBlock:function(){for(var w=8,S=0;S>2]=me.mainThreadBlock;var R=me.mainThreadBlock+156;o()[R>>2]=R;for(var U=13072,S=0;S<128;++S)l()[U/4+S]=0;Atomics.store(l(),me.mainThreadBlock+104>>2,U),Atomics.store(l(),me.mainThreadBlock+40>>2,me.mainThreadBlock),Atomics.store(l(),me.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(me.exitHandlers!==null){for(;me.exitHandlers.length>0;)me.exitHandlers.pop()();me.exitHandlers=null}x&&pe&&Hw()},threadExit:function(w){var S=Va();S&&(Atomics.store(l(),S+4>>2,w),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),me.runExitHandlers(),Co(S+0,2147483647),To(0,0,0),pe=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){me.runExitHandlers(),Atomics.store(l(),pe+4>>2,-1),Atomics.store(l(),pe+0>>2,1),Co(pe+0,2147483647),pe=ue=0,To(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var w in me.pthreads){var S=me.pthreads[w];S&&S.worker&&me.returnWorkerToPool(S.worker)}me.pthreads={};for(var R=0;R>2];o()[w.threadInfoStruct+104>>2]=0,sc(S),sc(w.threadInfoStruct)}w.threadInfoStruct=0,w.allocatedOwnStack&&w.stackBase&&sc(w.stackBase),w.stackBase=0,w.worker&&(w.worker.pthread=null)}},returnWorkerToPool:function(w){delete me.pthreads[w.pthread.thread],me.unusedWorkers.push(w),me.runningWorkers.splice(me.runningWorkers.indexOf(w),1),me.freeThreadData(w.pthread),w.pthread=void 0},receiveObjectTransfer:function(w){},loadWasmModuleToWorker:function(w,S){w.onmessage=function(R){var U=R.data,he=U.cmd;if(w.pthread&&(me.currentProxiedOperationCallerThread=w.pthread.threadInfoStruct),U.targetThread&&U.targetThread!=Va()){var le=me.pthreads[U.targetThread];le?le.worker.postMessage(R.data,U.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+U.targetThread+", but that thread no longer exists!"),me.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")Jg();else if(he==="spawnThread")xd(R.data);else if(he==="cleanupThread")ug(U.thread);else if(he==="killThread")og(U.thread);else if(he==="cancelThread")lg(U.thread);else if(he==="loaded")w.loaded=!0,S&&S(w),w.runPthread&&(w.runPthread(),delete w.runPthread);else if(he==="print")q("Thread "+U.threadId+": "+U.text);else if(he==="printErr")H("Thread "+U.threadId+": "+U.text);else if(he==="alert")alert("Thread "+U.threadId+": "+U.text);else if(he==="exit"){var ie=w.pthread&&Atomics.load(l(),w.pthread.thread+68>>2);ie&&me.returnWorkerToPool(w)}else he==="cancelDone"?me.returnWorkerToPool(w):he==="objectTransfer"?me.receiveObjectTransfer(R.data):R.data.target==="setimmediate"?w.postMessage(R.data):H("worker sent an unknown command "+he);me.currentProxiedOperationCallerThread=void 0},w.onerror=function(R){H("pthread sent an error! "+R.filename+":"+R.lineno+": "+R.message)},b&&(w.on("message",function(R){w.onmessage({data:R})}),w.on("error",function(R){w.onerror(R)}),w.on("exit",function(R){console.log("worker exited - TODO: update the worker queue?")})),w.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:ae,DYNAMIC_BASE:ia,DYNAMICTOP_PTR:Ia})},allocateUnusedWorker:function(){var w=T("tfjs-backend-wasm-threaded-simd.worker.js");me.unusedWorkers.push(new Worker(w))},getNewWorker:function(){return me.unusedWorkers.length==0&&(me.allocateUnusedWorker(),me.loadWasmModuleToWorker(me.unusedWorkers[0])),me.unusedWorkers.length>0?me.unusedWorkers.pop():null},busySpinWait:function(w){for(var S=performance.now()+w;performance.now()>2]=w,w}function fg(w,S){if(x)return Pr(1,1,w,S);qu.unshift({func:w,arg:S})}function gg(w,S){if(w==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:w,cmd:"processThreadQueue"});else{var R=me.pthreads[w],U=R&&R.worker;if(!U)return;U.postMessage({cmd:"processThreadQueue"})}return 1}function yg(){hr()}function bg(w,S){w=w|0,S=S|0}function xg(w,S,R){if(w<=0||w>s().length||w&!0)return-28;if(y){var U=Atomics.wait(o(),w>>2,S,R);if(U==="timed-out")return-73;if(U==="not-equal")return-6;if(U==="ok")return 0;throw"Atomics.wait returned an unexpected value "+U}else{var he=Atomics.load(o(),w>>2);if(S!=he)return-6;var le=performance.now(),ie=le+R;Atomics.store(o(),So>>2,w);for(var xe=w;w==xe;){if(le=performance.now(),le>ie)return-73;Jg(),w=Atomics.load(o(),So>>2)}return 0}}function vg(){return hd|0}function wg(){return dd|0}function kg(w,S,R){i().copyWithin(w,S,S+R)}function Ig(){return navigator.hardwareConcurrency}function Pr(w,S){for(var R=arguments.length-2,U=ic(),he=Ao(R*8),le=he>>3,ie=0;ie>3]),S+=8):(S=S+3&~3,R.push(o()[S>>2]),S+=4);return R}function Ng(w,S,R){Cs.length=S;for(var U=R>>3,he=0;he>>16),An(Q.buffer),1}catch(S){}}function Cg(w){w=w>>>0;var S=Tg();if(w<=S)return!1;var R=65536,U=2147483648;if(w>U)return!1;for(var he=16777216,le=1;le<=4;le*=2){var ie=S*(1+.2/le);ie=Math.min(ie,w+100663296);var xe=Math.min(U,Hn(Math.max(he,w,ie),R)),tt=Sg(xe);if(tt)return!0}return!1}var Pe={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var w=Pe.eventHandlers.length-1;w>=0;--w)Pe._removeHandler(w);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(qu.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(w,S,R){function U(ie,xe){if(ie.length!=xe.length)return!1;for(var tt in ie)if(ie[tt]!=xe[tt])return!1;return!0}for(var he in Pe.deferredCalls){var le=Pe.deferredCalls[he];if(le.targetFunction==w&&U(le.argsList,R))return}Pe.deferredCalls.push({targetFunction:w,precedence:S,argsList:R}),Pe.deferredCalls.sort(function(ie,xe){return ie.precedence>2]=R,o()[ie+4>>2]=U,o()[ie+8>>2]=he,Qg(w,637534208,S,U,ie),Fo(le)},getTargetThreadForEventCallback:function(w){switch(w){case 1:return 0;case 2:return me.currentProxiedOperationCallerThread;default:return w}},getNodeNameForTarget:function(w){return w?w==window?"#window":w==screen?"#screen":w&&w.nodeName?w.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function _g(w){var S=He(w)+1,R=rc(S);return lt(w,R,S),R}function Eg(w,S,R,U){var he=ic(),le=Ao(12),ie=0;S&&(ie=_g(S)),o()[le>>2]=ie,o()[le+4>>2]=R,o()[le+8>>2]=U,Qg(w,657457152,0,ie,le),Fo(he)}function Ag(w,S,R,U){S=S?Ve(S):"",Eg(w,S,R,U)}function Fg(w){return w>2?Ve(w):w}var $g=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Dg(w){w=Fg(w);var S=$g[w]||(typeof document!="undefined"?document.querySelector(w):void 0);return S}function Ju(w){return Dg(w)}function md(w,S,R){var U=Ju(w);if(!U)return-4;if(U.canvasSharedPtr&&(o()[U.canvasSharedPtr>>2]=S,o()[U.canvasSharedPtr+4>>2]=R),U.offscreenCanvas||!U.controlTransferredOffscreen){U.offscreenCanvas&&(U=U.offscreenCanvas);var he=!1;if(U.GLctxObject&&U.GLctxObject.GLctx){var le=U.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===U.width&&le[3]===U.height}U.width=S,U.height=R,he&&U.GLctxObject.GLctx.viewport(0,0,S,R)}else if(U.canvasSharedPtr){var ie=o()[U.canvasSharedPtr+8>>2];return Ag(ie,w,S,R),1}else return-4;return 0}function fd(w,S,R){return x?Pr(2,1,w,S,R):md(w,S,R)}function Rg(w,S,R){var U=Ju(w);return U?md(w,S,R):fd(w,S,R)}function Mg(w){w=w|0}function Pg(w,S){w=w|0,S=S|0}function Og(w){var S=w.getExtension("ANGLE_instanced_arrays");if(S)return w.vertexAttribDivisor=function(R,U){S.vertexAttribDivisorANGLE(R,U)},w.drawArraysInstanced=function(R,U,he,le){S.drawArraysInstancedANGLE(R,U,he,le)},w.drawElementsInstanced=function(R,U,he,le,ie){S.drawElementsInstancedANGLE(R,U,he,le,ie)},1}function Lg(w){var S=w.getExtension("OES_vertex_array_object");if(S)return w.createVertexArray=function(){return S.createVertexArrayOES()},w.deleteVertexArray=function(R){S.deleteVertexArrayOES(R)},w.bindVertexArray=function(R){S.bindVertexArrayOES(R)},w.isVertexArray=function(R){return S.isVertexArrayOES(R)},1}function zg(w){var S=w.getExtension("WEBGL_draw_buffers");if(S)return w.drawBuffers=function(R,U){S.drawBuffersWEBGL(R,U)},1}var Be={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var w=new Float32Array(Be.MINI_TEMP_BUFFER_SIZE),S=0;S>2]:-1;he+=Ve(o()[R+le*4>>2],ie<0?void 0:ie)}return he},createContext:function(w,S){var R=w.getContext("webgl",S);if(!R)return 0;var U=Be.registerContext(R,S);return U},registerContext:function(w,S){var R=rc(8);o()[R+4>>2]=Va();var U={handle:R,attributes:S,version:S.majorVersion,GLctx:w};return w.canvas&&(w.canvas.GLctxObject=U),Be.contexts[R]=U,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Be.initExtensions(U),R},makeContextCurrent:function(w){return Be.currentContext=Be.contexts[w],u.ctx=Or=Be.currentContext&&Be.currentContext.GLctx,!(w&&!Or)},getContext:function(w){return Be.contexts[w]},deleteContext:function(w){Be.currentContext===Be.contexts[w]&&(Be.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Be.contexts[w].GLctx.canvas),Be.contexts[w]&&Be.contexts[w].GLctx.canvas&&(Be.contexts[w].GLctx.canvas.GLctxObject=void 0),sc(Be.contexts[w].handle),Be.contexts[w]=null},initExtensions:function(w){if(w||(w=Be.currentContext),!w.initExtensionsDone){w.initExtensionsDone=!0;var S=w.GLctx;Og(S),Lg(S),zg(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var R=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],U=S.getSupportedExtensions()||[];U.forEach(function(he){R.indexOf(he)!=-1&&S.getExtension(he)})}},populateUniformTable:function(w){for(var S=Be.programs[w],R=Be.programInfos[w]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},U=R.uniforms,he=Or.getProgramParameter(S,35718),le=0;le>2;R.alpha=!!o()[U+(0>>2)],R.depth=!!o()[U+(4>>2)],R.stencil=!!o()[U+(8>>2)],R.antialias=!!o()[U+(12>>2)],R.premultipliedAlpha=!!o()[U+(16>>2)],R.preserveDrawingBuffer=!!o()[U+(20>>2)];var he=o()[U+(24>>2)];R.powerPreference=Bg[he],R.failIfMajorPerformanceCaveat=!!o()[U+(28>>2)],R.majorVersion=o()[U+(32>>2)],R.minorVersion=o()[U+(36>>2)],R.enableExtensionsByDefault=o()[U+(40>>2)],R.explicitSwapControl=o()[U+(44>>2)],R.proxyContextToMainThread=o()[U+(48>>2)],R.renderViaOffscreenBackBuffer=o()[U+(52>>2)];var le=Ju(w);if(!le)return-4;if(R.explicitSwapControl)return-1;var ie=Be.createContext(le,R);return ie}function Vg(w,S){return Wg(w,S)}var _s={splitPath:function(w){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(w).slice(1)},normalizeArray:function(w,S){for(var R=0,U=w.length-1;U>=0;U--){var he=w[U];he==="."?w.splice(U,1):he===".."?(w.splice(U,1),R++):R&&(w.splice(U,1),R--)}if(S)for(;R;R--)w.unshift("..");return w},normalize:function(w){var S=w.charAt(0)==="/",R=w.substr(-1)==="/";return w=_s.normalizeArray(w.split("/").filter(function(U){return!!U}),!S).join("/"),!w&&!S&&(w="."),w&&R&&(w+="/"),(S?"/":"")+w},dirname:function(w){var S=_s.splitPath(w),R=S[0],U=S[1];return!R&&!U?".":(U&&(U=U.substr(0,U.length-1)),R+U)},basename:function(w){if(w==="/")return"/";var S=w.lastIndexOf("/");return S===-1?w:w.substr(S+1)},extname:function(w){return _s.splitPath(w)[3]},join:function(){var w=Array.prototype.slice.call(arguments,0);return _s.normalize(w.join("/"))},join2:function(w,S){return _s.normalize(w+"/"+S)}},Eo={mappings:{},buffers:[null,[],[]],printChar:function(w,S){var R=Eo.buffers[w];S===0||S===10?((w===1?q:H)(Ke(R,0)),R.length=0):R.push(S)},varargs:void 0,get:function(){Eo.varargs+=4;var w=o()[Eo.varargs-4>>2];return w},getStr:function(w){var S=Ve(w);return S},get64:function(w,S){return w}};function gd(w){return x?Pr(3,1,w):0}function yd(w,S,R,U,he){if(x)return Pr(4,1,w,S,R,U,he)}function bd(w,S,R,U){if(x)return Pr(5,1,w,S,R,U);for(var he=0,le=0;le>2],xe=o()[S+(le*8+4)>>2],tt=0;tt>2]=he,0}function Ug(w){var S=me.exitHandlers.pop();w&&S()}function Gg(w,S){me.exitHandlers===null&&(me.exitHandlers=[]),me.exitHandlers.push(function(){Xw(w,S)})}function xd(w){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=me.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!w.pthread_ptr)throw"Internal error, no pthread ptr!";me.runningWorkers.push(S);for(var R=rc(128*4),U=0;U<128;++U)o()[R+U*4>>2]=0;var he=w.stackBase+w.stackSize,le=me.pthreads[w.pthread_ptr]={worker:S,stackBase:w.stackBase,stackSize:w.stackSize,allocatedOwnStack:w.allocatedOwnStack,thread:w.pthread_ptr,threadInfoStruct:w.pthread_ptr},ie=le.threadInfoStruct>>2;Atomics.store(l(),ie+(0>>2),0),Atomics.store(l(),ie+(4>>2),0),Atomics.store(l(),ie+(8>>2),0),Atomics.store(l(),ie+(68>>2),w.detached),Atomics.store(l(),ie+(104>>2),R),Atomics.store(l(),ie+(48>>2),0),Atomics.store(l(),ie+(40>>2),le.threadInfoStruct),Atomics.store(l(),ie+(44>>2),42),Atomics.store(l(),ie+(108>>2),w.stackSize),Atomics.store(l(),ie+(84>>2),w.stackSize),Atomics.store(l(),ie+(80>>2),he),Atomics.store(l(),ie+(108+8>>2),he),Atomics.store(l(),ie+(108+12>>2),w.detached),Atomics.store(l(),ie+(108+20>>2),w.schedPolicy),Atomics.store(l(),ie+(108+24>>2),w.schedPrio);var xe=Uw(),tt=xe+40;Atomics.store(l(),ie+(176>>2),tt),S.pthread=le;var Mt={cmd:"run",start_routine:w.startRoutine,arg:w.arg,threadInfoStruct:w.pthread_ptr,selfThreadId:w.pthread_ptr,parentThreadId:w.parent_pthread_ptr,stackBase:w.stackBase,stackSize:w.stackSize};S.runPthread=function(){Mt.time=performance.now(),S.postMessage(Mt,w.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function Hg(w,S,R){if(!S&&!R)return Zu.EINVAL;if(!w)return H("pthread_getschedparam called with a null thread pointer!"),Zu.ESRCH;var U=o()[w+12>>2];if(U!==w)return H("pthread_getschedparam attempted on thread "+w+", which does not point to a valid thread, or does not exist anymore!"),Zu.ESRCH;var he=Atomics.load(l(),w+108+20>>2),le=Atomics.load(l(),w+108+24>>2);return S&&(o()[S>>2]=he),R&&(o()[R>>2]=le),0}function Va(){return pd|0}u._pthread_self=Va;function jg(w,S,R,U){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!w)return H("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(x&&(he.length===0||le))return qw(687865856,w,S,R,U);if(le)return le;var ie=0,xe=0,tt=0,Mt=0,rn=0;if(S){ie=o()[S>>2],ie+=81920,xe=o()[S+8>>2],tt=o()[S+12>>2]!==0;var $o=o()[S+16>>2]===0;if($o){var lc=o()[S+20>>2],qn=o()[S+24>>2],zr=me.currentProxiedOperationCallerThread?me.currentProxiedOperationCallerThread:Va();Hg(zr,S+20,S+24),Mt=o()[S+20>>2],rn=o()[S+24>>2],o()[S+20>>2]=lc,o()[S+24>>2]=qn}else Mt=o()[S+20>>2],rn=o()[S+24>>2]}else ie=2097152;var uc=xe==0;uc?xe=Gw(16,ie):(xe-=ie,ke(xe>0));for(var Do=rc(232),ty=0;ty<232>>2;++ty)l()[(Do>>2)+ty]=0;o()[w>>2]=Do,o()[Do+12>>2]=Do;var Zw=Do+156;o()[Zw>>2]=Zw;var ny={stackBase:xe,stackSize:ie,allocatedOwnStack:uc,schedPolicy:Mt,schedPrio:rn,detached:tt,startRoutine:R,pthread_ptr:Do,parent_pthread_ptr:Va(),arg:U,transferList:he};return x?(ny.cmd="spawnThread",postMessage(ny,he)):xd(ny),0}function qg(w){return w=+w,w>=0?+Jf(w+.5):+No(w-.5)}function vd(w){if(x)return Pr(6,1,w);switch(w){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return mg(28),-1}x?me.initWorker():me.initMainThreadBlock();var Or;Be.init();var Kg=[null,fg,fd,gd,yd,bd,vd],Xg={e:dg,r:hg,w:gg,a:yg,l:bg,d:xg,c:Co,h:Ss,g:vg,x:wg,q:kg,B:Ig,t:Ng,A:Cg,u:Rg,k:Mg,s:Pg,v:Vg,m:gd,o:yd,i:bd,p:ig,memory:Q||u.wasmMemory,y:Ug,z:Gg,j:jg,b:Va,f:qg,n:vd,table:oe},wd=rg();u.asm=wd;var Qu=u.___wasm_call_ctors=function(){return(Qu=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},ec=u._init=function(){return(ec=u._init=u.asm.D).apply(null,arguments)},kd=u._register_tensor=function(){return(kd=u._register_tensor=u.asm.E).apply(null,arguments)},Es=u._dispose_data=function(){return(Es=u._dispose_data=u.asm.F).apply(null,arguments)},tc=u._dispose=function(){return(tc=u._dispose=u.asm.G).apply(null,arguments)},Yg=u._Abs=function(){return(Yg=u._Abs=u.asm.H).apply(null,arguments)},Zg=u._Add=function(){return(Zg=u._Add=u.asm.I).apply(null,arguments)},nc=u._AddN=function(){return(nc=u._AddN=u.asm.J).apply(null,arguments)},Id=u._ArgMax=function(){return(Id=u._ArgMax=u.asm.K).apply(null,arguments)},Nd=u._AvgPool=function(){return(Nd=u._AvgPool=u.asm.L).apply(null,arguments)},V=u._BatchMatMul=function(){return(V=u._BatchMatMul=u.asm.M).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.N).apply(null,arguments)},Ie=u._Conv2D=function(){return(Ie=u._Conv2D=u.asm.O).apply(null,arguments)},_e=u._Conv2DBackpropInput=function(){return(_e=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},at=u._Cos=function(){return(at=u._Cos=u.asm.Q).apply(null,arguments)},_t=u._CropAndResize=function(){return(_t=u._CropAndResize=u.asm.R).apply(null,arguments)},Xe=u._Cumsum=function(){return(Xe=u._Cumsum=u.asm.S).apply(null,arguments)},je=u._DepthToSpace=function(){return(je=u._DepthToSpace=u.asm.T).apply(null,arguments)},Ut=u._DepthwiseConv2dNative=function(){return(Ut=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},mr=u._Equal=function(){return(mr=u._Equal=u.asm.V).apply(null,arguments)},fr=u._Exp=function(){return(fr=u._Exp=u.asm.W).apply(null,arguments)},Td=u._FlipLeftRight=function(){return(Td=u._FlipLeftRight=u.asm.X).apply(null,arguments)},ac=u._Floor=function(){return(ac=u._Floor=u.asm.Y).apply(null,arguments)},jn=u._FloorDiv=function(){return(jn=u._FloorDiv=u.asm.Z).apply(null,arguments)},Lr=u._FusedBatchNorm=function(){return(Lr=u._FusedBatchNorm=u.asm._).apply(null,arguments)},Sd=u._FusedConv2D=function(){return(Sd=u._FusedConv2D=u.asm.$).apply(null,arguments)},l_=u._FusedDepthwiseConv2D=function(){return(l_=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},u_=u._Gather=function(){return(u_=u._Gather=u.asm.ba).apply(null,arguments)},c_=u._GatherNd=function(){return(c_=u._GatherNd=u.asm.ca).apply(null,arguments)},p_=u._Greater=function(){return(p_=u._Greater=u.asm.da).apply(null,arguments)},d_=u._GreaterEqual=function(){return(d_=u._GreaterEqual=u.asm.ea).apply(null,arguments)},h_=u._LeakyRelu=function(){return(h_=u._LeakyRelu=u.asm.fa).apply(null,arguments)},m_=u._Less=function(){return(m_=u._Less=u.asm.ga).apply(null,arguments)},f_=u._LessEqual=function(){return(f_=u._LessEqual=u.asm.ha).apply(null,arguments)},g_=u._Log=function(){return(g_=u._Log=u.asm.ia).apply(null,arguments)},y_=u._LogicalAnd=function(){return(y_=u._LogicalAnd=u.asm.ja).apply(null,arguments)},b_=u._Max=function(){return(b_=u._Max=u.asm.ka).apply(null,arguments)},x_=u._MaxPool=function(){return(x_=u._MaxPool=u.asm.la).apply(null,arguments)},v_=u._Maximum=function(){return(v_=u._Maximum=u.asm.ma).apply(null,arguments)},w_=u._Mean=function(){return(w_=u._Mean=u.asm.na).apply(null,arguments)},k_=u._Min=function(){return(k_=u._Min=u.asm.oa).apply(null,arguments)},I_=u._Minimum=function(){return(I_=u._Minimum=u.asm.pa).apply(null,arguments)},N_=u._Multiply=function(){return(N_=u._Multiply=u.asm.qa).apply(null,arguments)},T_=u._Neg=function(){return(T_=u._Neg=u.asm.ra).apply(null,arguments)},S_=u._NonMaxSuppressionV3=function(){return(S_=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},C_=u._NonMaxSuppressionV4=function(){return(C_=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},__=u._NonMaxSuppressionV5=function(){return(__=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},E_=u._NotEqual=function(){return(E_=u._NotEqual=u.asm.va).apply(null,arguments)},A_=u._OneHot=function(){return(A_=u._OneHot=u.asm.wa).apply(null,arguments)},F_=u._PadV2=function(){return(F_=u._PadV2=u.asm.xa).apply(null,arguments)},$_=u._Pow=function(){return($_=u._Pow=u.asm.ya).apply(null,arguments)},D_=u._Prelu=function(){return(D_=u._Prelu=u.asm.za).apply(null,arguments)},R_=u._Prod=function(){return(R_=u._Prod=u.asm.Aa).apply(null,arguments)},M_=u._RealDiv=function(){return(M_=u._RealDiv=u.asm.Ba).apply(null,arguments)},P_=u._Relu=function(){return(P_=u._Relu=u.asm.Ca).apply(null,arguments)},O_=u._Relu6=function(){return(O_=u._Relu6=u.asm.Da).apply(null,arguments)},L_=u._ResizeBilinear=function(){return(L_=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},z_=u._Reverse=function(){return(z_=u._Reverse=u.asm.Fa).apply(null,arguments)},B_=u._RotateWithOffset=function(){return(B_=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},W_=u._Round=function(){return(W_=u._Round=u.asm.Ha).apply(null,arguments)},V_=u._Rsqrt=function(){return(V_=u._Rsqrt=u.asm.Ia).apply(null,arguments)},U_=u._ScatterNd=function(){return(U_=u._ScatterNd=u.asm.Ja).apply(null,arguments)},G_=u._SelectV2=function(){return(G_=u._SelectV2=u.asm.Ka).apply(null,arguments)},H_=u._Sigmoid=function(){return(H_=u._Sigmoid=u.asm.La).apply(null,arguments)},j_=u._Sin=function(){return(j_=u._Sin=u.asm.Ma).apply(null,arguments)},q_=u._Softmax=function(){return(q_=u._Softmax=u.asm.Na).apply(null,arguments)},K_=u._Sqrt=function(){return(K_=u._Sqrt=u.asm.Oa).apply(null,arguments)},X_=u._Square=function(){return(X_=u._Square=u.asm.Pa).apply(null,arguments)},Y_=u._SquaredDifference=function(){return(Y_=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},Z_=u._Step=function(){return(Z_=u._Step=u.asm.Ra).apply(null,arguments)},J_=u._StridedSlice=function(){return(J_=u._StridedSlice=u.asm.Sa).apply(null,arguments)},Q_=u._Sub=function(){return(Q_=u._Sub=u.asm.Ta).apply(null,arguments)},eE=u._Sum=function(){return(eE=u._Sum=u.asm.Ua).apply(null,arguments)},tE=u._Tanh=function(){return(tE=u._Tanh=u.asm.Va).apply(null,arguments)},nE=u._Tile=function(){return(nE=u._Tile=u.asm.Wa).apply(null,arguments)},aE=u._TopK=function(){return(aE=u._TopK=u.asm.Xa).apply(null,arguments)},rE=u._Transpose=function(){return(rE=u._Transpose=u.asm.Ya).apply(null,arguments)},sE=u.__FusedMatMul=function(){return(sE=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},rc=u._malloc=function(){return(rc=u._malloc=u.asm._a).apply(null,arguments)},sc=u._free=function(){return(sc=u._free=u.asm.$a).apply(null,arguments)},iE=u.___em_js__initPthreadsJS=function(){return(iE=u.___em_js__initPthreadsJS=u.asm.ab).apply(null,arguments)},Vw=u.___errno_location=function(){return(Vw=u.___errno_location=u.asm.bb).apply(null,arguments)},Uw=u._emscripten_get_global_libc=function(){return(Uw=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},Gw=u._memalign=function(){return(Gw=u._memalign=u.asm.db).apply(null,arguments)},Hw=u.___pthread_tsd_run_dtors=function(){return(Hw=u.___pthread_tsd_run_dtors=u.asm.eb).apply(null,arguments)},Jg=u._emscripten_main_thread_process_queued_calls=function(){return(Jg=u._emscripten_main_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},oE=u._emscripten_current_thread_process_queued_calls=function(){return(oE=u._emscripten_current_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},jw=u._emscripten_register_main_browser_thread_id=function(){return(jw=u._emscripten_register_main_browser_thread_id=u.asm.hb).apply(null,arguments)},lE=u._emscripten_main_browser_thread_id=function(){return(lE=u._emscripten_main_browser_thread_id=u.asm.ib).apply(null,arguments)},uE=u._emscripten_async_run_in_main_thread=function(){return(uE=u._emscripten_async_run_in_main_thread=u.asm.jb).apply(null,arguments)},cE=u._emscripten_sync_run_in_main_thread=function(){return(cE=u._emscripten_sync_run_in_main_thread=u.asm.kb).apply(null,arguments)},pE=u._emscripten_sync_run_in_main_thread_0=function(){return(pE=u._emscripten_sync_run_in_main_thread_0=u.asm.lb).apply(null,arguments)},dE=u._emscripten_sync_run_in_main_thread_1=function(){return(dE=u._emscripten_sync_run_in_main_thread_1=u.asm.mb).apply(null,arguments)},hE=u._emscripten_sync_run_in_main_thread_2=function(){return(hE=u._emscripten_sync_run_in_main_thread_2=u.asm.nb).apply(null,arguments)},mE=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(mE=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.ob).apply(null,arguments)},fE=u._emscripten_sync_run_in_main_thread_3=function(){return(fE=u._emscripten_sync_run_in_main_thread_3=u.asm.pb).apply(null,arguments)},qw=u._emscripten_sync_run_in_main_thread_4=function(){return(qw=u._emscripten_sync_run_in_main_thread_4=u.asm.qb).apply(null,arguments)},gE=u._emscripten_sync_run_in_main_thread_5=function(){return(gE=u._emscripten_sync_run_in_main_thread_5=u.asm.rb).apply(null,arguments)},yE=u._emscripten_sync_run_in_main_thread_6=function(){return(yE=u._emscripten_sync_run_in_main_thread_6=u.asm.sb).apply(null,arguments)},bE=u._emscripten_sync_run_in_main_thread_7=function(){return(bE=u._emscripten_sync_run_in_main_thread_7=u.asm.tb).apply(null,arguments)},Kw=u._emscripten_run_in_main_runtime_thread_js=function(){return(Kw=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Qg=u._emscripten_async_queue_on_thread_=function(){return(Qg=u._emscripten_async_queue_on_thread_=u.asm.vb).apply(null,arguments)},xE=u._emscripten_tls_init=function(){return(xE=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},ic=u.stackSave=function(){return(ic=u.stackSave=u.asm.xb).apply(null,arguments)},Ao=u.stackAlloc=function(){return(Ao=u.stackAlloc=u.asm.yb).apply(null,arguments)},Fo=u.stackRestore=function(){return(Fo=u.stackRestore=u.asm.zb).apply(null,arguments)},Xw=u.dynCall_vi=function(){return(Xw=u.dynCall_vi=u.asm.Ab).apply(null,arguments)},vE=u.dynCall_v=function(){return(vE=u.dynCall_v=u.asm.Bb).apply(null,arguments)},wE=u.dynCall_ii=function(){return(wE=u.dynCall_ii=u.asm.Cb).apply(null,arguments)};u.asm=wd,u.cwrap=Re,u.PThread=me,u.PThread=me,u._pthread_self=Va,u.wasmMemory=Q,u.ExitStatus=Yw;var oc;u.then=function(w){if(oc)w(u);else{var S=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){S&&S(),w(u)}}return u};function Yw(w){this.name="ExitStatus",this.message="Program terminated with exit("+w+")",this.status=w}Ts=function w(){oc||ey(),oc||(Ts=w)};function ey(w){if(w=w||h,dr>0||(oa(),dr>0))return;function S(){oc||(oc=!0,u.calledRun=!0,!ge&&(od(),Xf(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Yf()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),S()},1)):S()}if(u.run=ey,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(se=!0),x||ey(),r}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),XE=cn((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(V,te){throw te},p=!1,d=!1,h=!1,m=!1;p=typeof window=="object",d=typeof importScripts=="function",h=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",m=!p&&!h&&!d;var f="";function g(V){return s.locateFile?s.locateFile(V,f):f+V}var y,b,v,x,N,T;h?(d?f=pc().dirname(f)+"/":f=__dirname+"/",y=function(V,te){return N||(N=require("fs")),T||(T=pc()),V=T.normalize(V),N.readFileSync(V,te?null:"utf8")},v=function(V){var te=y(V,!0);return te.buffer||(te=new Uint8Array(te)),H(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(V){if(!(V instanceof tc))throw V}),process.on("unhandledRejection",Is),u=function(V){process.exit(V)},s.inspect=function(){return"[Emscripten Module object]"}):m?(typeof read!="undefined"&&(y=function(V){return read(V)}),v=function(V){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(V)):(te=read(V,"binary"),H(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(V){quit(V)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||d)&&(d?f=self.location.href:document.currentScript&&(f=document.currentScript.src),a&&(f=a),f.indexOf("blob:")!==0?f=f.substr(0,f.lastIndexOf("/")+1):f="",y=function(V){var te=new XMLHttpRequest;return te.open("GET",V,!1),te.send(null),te.responseText},d&&(v=function(V){var te=new XMLHttpRequest;return te.open("GET",V,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),b=function(V,te,Ie){var _e=new XMLHttpRequest;_e.open("GET",V,!0),_e.responseType="arraybuffer",_e.onload=function(){if(_e.status==200||_e.status==0&&_e.response){te(_e.response);return}Ie()},_e.onerror=Ie,_e.send(null)},x=function(V){document.title=V});var C=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var F;s.wasmBinary&&(F=s.wasmBinary);var O;s.noExitRuntime&&(O=s.noExitRuntime),typeof WebAssembly!="object"&&$("no native wasm support detected");var B,W=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),G=!1,q=0;function H(V,te){V||Is("Assertion failed: "+te)}function K(V){var te=s["_"+V];return H(te,"Cannot call unknown function "+V+", make sure it is exported"),te}function X(V,te,Ie,_e,at){var _t={string:function(jn){var Lr=0;if(jn!=null&&jn!==0){var Sd=(jn.length<<2)+1;Lr=ec(Sd),ae(jn,Lr,Sd)}return Lr},array:function(jn){var Lr=ec(jn.length);return pe(jn,Lr),Lr}};function Xe(jn){return te==="string"?Q(jn):te==="boolean"?Boolean(jn):jn}var je=K(V),Ut=[],mr=0;if(_e)for(var fr=0;fr<_e.length;fr++){var Td=_t[Ie[fr]];Td?(mr===0&&(mr=Qu()),Ut[fr]=Td(_e[fr])):Ut[fr]=_e[fr]}var ac=je.apply(null,Ut);return ac=Xe(ac),mr!==0&&kd(mr),ac}function ne(V,te,Ie,_e){Ie=Ie||[];var at=Ie.every(function(Xe){return Xe==="number"}),_t=te!=="string";return _t&&at&&!_e?K(V):function(){return X(V,te,Ie,arguments,_e)}}var J=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(V,te,Ie){for(var _e=te+Ie,at=te;V[at]&&!(at>=_e);)++at;if(at-te>16&&V.subarray&&J)return J.decode(V.subarray(te,at));for(var _t="";te>10,56320|mr&1023)}}return _t}function Q(V,te){return V?se(ye,V,te):""}function oe(V,te,Ie,_e){if(!(_e>0))return 0;for(var at=Ie,_t=Ie+_e-1,Xe=0;Xe=55296&&je<=57343){var Ut=V.charCodeAt(++Xe);je=65536+((je&1023)<<10)|Ut&1023}if(je<=127){if(Ie>=_t)break;te[Ie++]=je}else if(je<=2047){if(Ie+1>=_t)break;te[Ie++]=192|je>>6,te[Ie++]=128|je&63}else if(je<=65535){if(Ie+2>=_t)break;te[Ie++]=224|je>>12,te[Ie++]=128|je>>6&63,te[Ie++]=128|je&63}else{if(Ie+3>=_t)break;te[Ie++]=240|je>>18,te[Ie++]=128|je>>12&63,te[Ie++]=128|je>>6&63,te[Ie++]=128|je&63}}return te[Ie]=0,Ie-at}function ae(V,te,Ie){return oe(V,ye,te,Ie)}function pe(V,te){ge.set(V,te)}var ue,ge,ye,ke,Se,Ce,Re,Ke,Ve;function st(V){ue=V,s.HEAP8=ge=new Int8Array(V),s.HEAP16=ke=new Int16Array(V),s.HEAP32=Ce=new Int32Array(V),s.HEAPU8=ye=new Uint8Array(V),s.HEAPU16=Se=new Uint16Array(V),s.HEAPU32=Re=new Uint32Array(V),s.HEAPF32=Ke=new Float32Array(V),s.HEAPF64=Ve=new Float64Array(V)}var lt=s.INITIAL_MEMORY||16777216;function He(V){for(;V.length>0;){var te=V.shift();if(typeof te=="function"){te(s);continue}var Ie=te.func;typeof Ie=="number"?te.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,te.arg):Ie(te.arg===void 0?null:te.arg)}}var ct=[],pt=[],Hn=[],Je=[],_n=!1,en=!1;function En(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Wa(s.preRun.shift());He(ct)}function ra(){_n=!0,He(pt)}function vn(){He(Hn)}function un(){en=!0}function sa(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)An(s.postRun.shift());He(Je)}function Wa(V){ct.unshift(V)}function An(V){Je.unshift(V)}var wo=Math.ceil,Hu=Math.floor,ka=0,ia=null,Ia=null;function ko(V){ka++,s.monitorRunDependencies&&s.monitorRunDependencies(ka)}function Io(V){if(ka--,s.monitorRunDependencies&&s.monitorRunDependencies(ka),ka==0&&(ia!==null&&(clearInterval(ia),ia=null),Ia)){var te=Ia;Ia=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Is(V){throw s.onAbort&&s.onAbort(V),V+="",C(V),$(V),G=!0,q=1,V="abort("+V+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(V)}function ju(V,te){return String.prototype.startsWith?V.startsWith(te):V.indexOf(te)===0}var Kf="data:application/octet-stream;base64,";function qu(V){return ju(V,Kf)}var id="file://";function Ku(V){return ju(V,id)}var oa="tfjs-backend-wasm.wasm";qu(oa)||(oa=g(oa));function od(){try{if(F)return new Uint8Array(F);if(v)return v(oa);throw"both async and sync fetching of the wasm failed"}catch(V){Is(V)}}function Xf(){return!F&&(p||d)&&typeof fetch=="function"&&!Ku(oa)?fetch(oa,{credentials:"same-origin"}).then(function(V){if(!V.ok)throw"failed to load wasm binary file at '"+oa+"'";return V.arrayBuffer()}).catch(function(){return od()}):new Promise(function(V,te){V(od())})}function Yf(){var V={env:hr,wasi_snapshot_preview1:hr};function te(Xe,je){var Ut=Xe.exports;s.asm=Ut,B=Ut.memory,st(B.buffer),Io("wasm-instantiate")}ko("wasm-instantiate");function Ie(Xe){te(Xe.instance)}function _e(Xe){return Xf().then(function(je){return WebAssembly.instantiate(je,V)}).then(Xe,function(je){$("failed to asynchronously prepare wasm: "+je),Is(je)})}function at(){if(!F&&typeof WebAssembly.instantiateStreaming=="function"&&!qu(oa)&&!Ku(oa)&&typeof fetch=="function")fetch(oa,{credentials:"same-origin"}).then(function(Xe){var je=WebAssembly.instantiateStreaming(Xe,V);return je.then(Ie,function(Ut){$("wasm streaming compile failed: "+Ut),$("falling back to ArrayBuffer instantiation"),_e(Ie)})});else return _e(Ie)}if(s.instantiateWasm)try{var _t=s.instantiateWasm(V,te);return _t}catch(Xe){return $("Module.instantiateWasm callback failed with error: "+Xe),!1}return at(),{}}pt.push();function Zf(V){st(B.buffer)}var Ns={splitPath:function(V){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(V).slice(1)},normalizeArray:function(V,te){for(var Ie=0,_e=V.length-1;_e>=0;_e--){var at=V[_e];at==="."?V.splice(_e,1):at===".."?(V.splice(_e,1),Ie++):Ie&&(V.splice(_e,1),Ie--)}if(te)for(;Ie;Ie--)V.unshift("..");return V},normalize:function(V){var te=V.charAt(0)==="/",Ie=V.substr(-1)==="/";return V=Ns.normalizeArray(V.split("/").filter(function(_e){return!!_e}),!te).join("/"),!V&&!te&&(V="."),V&&Ie&&(V+="/"),(te?"/":"")+V},dirname:function(V){var te=Ns.splitPath(V),Ie=te[0],_e=te[1];return!Ie&&!_e?".":(_e&&(_e=_e.substr(0,_e.length-1)),Ie+_e)},basename:function(V){if(V==="/")return"/";var te=V.lastIndexOf("/");return te===-1?V:V.substr(te+1)},extname:function(V){return Ns.splitPath(V)[3]},join:function(){var V=Array.prototype.slice.call(arguments,0);return Ns.normalize(V.join("/"))},join2:function(V,te){return Ns.normalize(V+"/"+te)}},No={mappings:{},buffers:[null,[],[]],printChar:function(V,te){var Ie=No.buffers[V];te===0||te===10?((V===1?C:$)(se(Ie,0)),Ie.length=0):Ie.push(te)},varargs:void 0,get:function(){No.varargs+=4;var V=Ce[No.varargs-4>>2];return V},getStr:function(V){var te=Q(V);return te},get64:function(V,te){return V}};function Jf(V){return 0}function dr(V,te,Ie,_e,at){}function Xu(V,te,Ie,_e){for(var at=0,_t=0;_t>2],je=Ce[te+(_t*8+4)>>2],Ut=0;Ut>2]=at,0}function Ts(V){Id(V)}function Qf(V){Ts(V)}function eg(V){return V=+V,V>=0?+Hu(V+.5):+wo(V-.5)}var hr={emscripten_notify_memory_growth:Zf,fd_close:Jf,fd_seek:dr,fd_write:Xu,proc_exit:Qf,roundf:eg},Yu=Yf();s.asm=Yu;var tg=s._init=function(){return(tg=s._init=s.asm.init).apply(null,arguments)},ld=s._register_tensor=function(){return(ld=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},ng=s._dispose_data=function(){return(ng=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},ud=s._dispose=function(){return(ud=s._dispose=s.asm.dispose).apply(null,arguments)},la=s._Abs=function(){return(la=s._Abs=s.asm.Abs).apply(null,arguments)},cd=s._Add=function(){return(cd=s._Add=s.asm.Add).apply(null,arguments)},ag=s._AddN=function(){return(ag=s._AddN=s.asm.AddN).apply(null,arguments)},rg=s._ArgMax=function(){return(rg=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},sg=s._AvgPool=function(){return(sg=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},ig=s._BatchMatMul=function(){return(ig=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},pd=s._ClipByValue=function(){return(pd=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},dd=s._Conv2D=function(){return(dd=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},hd=s._Conv2DBackpropInput=function(){return(hd=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},To=s._Cos=function(){return(To=s._Cos=s.asm.Cos).apply(null,arguments)},Zu=s._CropAndResize=function(){return(Zu=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},So=s._Cumsum=function(){return(So=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Co=s._DepthToSpace=function(){return(Co=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},og=s._DepthwiseConv2dNative=function(){return(og=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},lg=s._Equal=function(){return(lg=s._Equal=s.asm.Equal).apply(null,arguments)},ug=s._Exp=function(){return(ug=s._Exp=s.asm.Exp).apply(null,arguments)},me=s._FlipLeftRight=function(){return(me=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},cg=s._Floor=function(){return(cg=s._Floor=s.asm.Floor).apply(null,arguments)},pg=s._FloorDiv=function(){return(pg=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},dg=s._FusedBatchNorm=function(){return(dg=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},hg=s._FusedConv2D=function(){return(hg=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Ss=s._FusedDepthwiseConv2D=function(){return(Ss=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},mg=s._Gather=function(){return(mg=s._Gather=s.asm.Gather).apply(null,arguments)},fg=s._GatherNd=function(){return(fg=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},gg=s._Greater=function(){return(gg=s._Greater=s.asm.Greater).apply(null,arguments)},yg=s._GreaterEqual=function(){return(yg=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},bg=s._LeakyRelu=function(){return(bg=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},xg=s._Less=function(){return(xg=s._Less=s.asm.Less).apply(null,arguments)},vg=s._LessEqual=function(){return(vg=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},wg=s._Log=function(){return(wg=s._Log=s.asm.Log).apply(null,arguments)},kg=s._LogicalAnd=function(){return(kg=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},Ig=s._Max=function(){return(Ig=s._Max=s.asm.Max).apply(null,arguments)},Pr=s._MaxPool=function(){return(Pr=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Cs=s._Maximum=function(){return(Cs=s._Maximum=s.asm.Maximum).apply(null,arguments)},_o=s._Mean=function(){return(_o=s._Mean=s.asm.Mean).apply(null,arguments)},Ng=s._Min=function(){return(Ng=s._Min=s.asm.Min).apply(null,arguments)},Tg=s._Minimum=function(){return(Tg=s._Minimum=s.asm.Minimum).apply(null,arguments)},Sg=s._Multiply=function(){return(Sg=s._Multiply=s.asm.Multiply).apply(null,arguments)},Cg=s._Neg=function(){return(Cg=s._Neg=s.asm.Neg).apply(null,arguments)},Pe=s._NonMaxSuppressionV3=function(){return(Pe=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},_g=s._NonMaxSuppressionV4=function(){return(_g=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},Eg=s._NonMaxSuppressionV5=function(){return(Eg=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},Ag=s._NotEqual=function(){return(Ag=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Fg=s._OneHot=function(){return(Fg=s._OneHot=s.asm.OneHot).apply(null,arguments)},$g=s._PadV2=function(){return($g=s._PadV2=s.asm.PadV2).apply(null,arguments)},Dg=s._Pow=function(){return(Dg=s._Pow=s.asm.Pow).apply(null,arguments)},Ju=s._Prelu=function(){return(Ju=s._Prelu=s.asm.Prelu).apply(null,arguments)},md=s._Prod=function(){return(md=s._Prod=s.asm.Prod).apply(null,arguments)},fd=s._RealDiv=function(){return(fd=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Rg=s._Relu=function(){return(Rg=s._Relu=s.asm.Relu).apply(null,arguments)},Mg=s._Relu6=function(){return(Mg=s._Relu6=s.asm.Relu6).apply(null,arguments)},Pg=s._ResizeBilinear=function(){return(Pg=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},Og=s._Reverse=function(){return(Og=s._Reverse=s.asm.Reverse).apply(null,arguments)},Lg=s._RotateWithOffset=function(){return(Lg=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},zg=s._Round=function(){return(zg=s._Round=s.asm.Round).apply(null,arguments)},Be=s._Rsqrt=function(){return(Be=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Bg=s._ScatterNd=function(){return(Bg=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Wg=s._SelectV2=function(){return(Wg=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Vg=s._Sigmoid=function(){return(Vg=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},_s=s._Sin=function(){return(_s=s._Sin=s.asm.Sin).apply(null,arguments)},Eo=s._Softmax=function(){return(Eo=s._Softmax=s.asm.Softmax).apply(null,arguments)},gd=s._Sqrt=function(){return(gd=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},yd=s._Square=function(){return(yd=s._Square=s.asm.Square).apply(null,arguments)},bd=s._SquaredDifference=function(){return(bd=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Ug=s._Step=function(){return(Ug=s._Step=s.asm.Step).apply(null,arguments)},Gg=s._StridedSlice=function(){return(Gg=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},xd=s._Sub=function(){return(xd=s._Sub=s.asm.Sub).apply(null,arguments)},Hg=s._Sum=function(){return(Hg=s._Sum=s.asm.Sum).apply(null,arguments)},Va=s._Tanh=function(){return(Va=s._Tanh=s.asm.Tanh).apply(null,arguments)},jg=s._Tile=function(){return(jg=s._Tile=s.asm.Tile).apply(null,arguments)},qg=s._TopK=function(){return(qg=s._TopK=s.asm.TopK).apply(null,arguments)},vd=s._Transpose=function(){return(vd=s._Transpose=s.asm.Transpose).apply(null,arguments)},Or=s.__FusedMatMul=function(){return(Or=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},Kg=s._malloc=function(){return(Kg=s._malloc=s.asm.malloc).apply(null,arguments)},Xg=s._free=function(){return(Xg=s._free=s.asm.free).apply(null,arguments)},wd=s.__start=function(){return(wd=s.__start=s.asm._start).apply(null,arguments)},Qu=s.stackSave=function(){return(Qu=s.stackSave=s.asm.stackSave).apply(null,arguments)},ec=s.stackAlloc=function(){return(ec=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},kd=s.stackRestore=function(){return(kd=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Yu,s.cwrap=ne;var Es;s.then=function(V){if(Es)V(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),V(s)}}return s};function tc(V){this.name="ExitStatus",this.message="Program terminated with exit("+V+")",this.status=V}var Yg=!1;Ia=function V(){Es||nc(),Es||(Ia=V)};function Zg(V){var te=s.__start;try{te();var Ie=0;Id(Ie,!0)}catch(at){if(at instanceof tc)return;if(at=="unwind"){O=!0;return}else{var _e=at;at&&typeof at=="object"&&at.stack&&(_e=[at,at.stack]),$("exception thrown: "+_e),u(1,at)}}finally{Yg=!0}}function nc(V){if(V=V||l,ka>0||(En(),ka>0))return;function te(){Es||(Es=!0,s.calledRun=!0,!G&&(ra(),vn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Nd&&Zg(V),sa()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=nc;function Id(V,te){te&&O&&V===0||(O||(G=!0,q=V,un(),s.onExit&&s.onExit(V)),u(V,new tc(V)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var Nd=!0;return s.noInitialRun&&(Nd=!1),O=!0,nc(),r}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),YE=1e-7,ZE=1e-4,Fd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},dc=class{decComplexRef(e){}time(e){return Ua("time")}read(e){return Ua("read")}readSync(e){return Ua("readSync")}numDataIds(){return Ua("numDataIds")}disposeData(e){return Ua("disposeData")}write(e,t,n){return Ua("write")}move(e,t,n,a){return Ua("move")}memory(){return Ua("memory")}floatPrecision(){return Ua("floatPrecision")}epsilon(){return this.floatPrecision()===32?YE:ZE}dispose(){return Ua("dispose")}};function Ua(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function e0(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function JE(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function hc(e,t,n){return Math.max(e,Math.min(t,n))}function QE(e){return e%2==0?e:e+1}function eA(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function As(e){A(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Fs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||on(e)&&!n)for(let a=0;a0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function lA(e,t){let n=1,a=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ua(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),A(e.every(a=>a>=-n&&a`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),A(e.every(a=>Gt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function t0(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ua(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function n0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function a0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function r0(e,t){for(let n=0;nt+=n.length),t}function Br(e){return typeof e=="string"||e instanceof String}function l0(e){return typeof e=="boolean"}function u0(e){return typeof e=="number"}function $d(e){return Array.isArray(e)?$d(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":u0(e)?"float32":Br(e)?"string":l0(e)?"bool":"float32"}function Wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Dd(e,t){for(let n=t;n=0;--a)n[a]=n[a+1]*e[a+1];return n}function c0(e,t,n){let a=new Array;if(t.length===1){let r=t[0];for(let s=0;so*l);for(let o=0;oa*r);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return c0(0,e,t)}function ay(e,t){let n=Rd(e,t);for(let a=0;aa*r,1);if(t==null||t==="float32")return Po(e,new Float32Array(n));if(t==="int32")return Po(e,new Int32Array(n));if(t==="bool")return Po(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function ry(e){e.forEach(t=>{A(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function pA(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r{let[n,a]=t.split(":");this.urlFlags[n]=mA(n,a)})}};function hA(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(fA(t,a[0],a[1]),a.join("="))),t}function fA(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function mA(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function ee(){return iy}var iy=null;function gA(e){iy=e}var oy;function h0(){if(oy==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");oy=e}return oy}function yA(){let e=h0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ly(e,t){let n=yA();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Oo="Abs",Lo="Acos",zo="Acosh",Vr="Add",$s="AddN",Md="All",Pd="Any",Ds="ArgMax",fc="ArgMin",Bo="Asin",Wo="Asinh",Vo="Atan",Uo="Atanh",Go="Atan2",Rs="AvgPool",Od="AvgPoolGrad",gc="AvgPool3D",Ld="AvgPool3DGrad",Ms="BatchMatMul",yc="BatchToSpaceND",zd="Bincount",m0="BroadcastTo",Ps="Cast",Ho="Ceil",Ur="ClipByValue",Bd="Complex",bc="ComplexAbs",jo="Concat",Os="Conv2D",Wd="Conv2DBackpropFilter",Ls="Conv2DBackpropInput",xc="Conv3D",Vd="Conv3DBackpropFilterV2",Ud="Conv3DBackpropInputV2",zs="Cos",qo="Cosh",Bs="Cumsum",Ko="CropAndResize",Gd="DenseBincount",Xo="DepthToSpace",Ws="DepthwiseConv2dNative",Hd="DepthwiseConv2dNativeBackpropFilter",jd="DepthwiseConv2dNativeBackpropInput",qd="Diag",vc="Dilation2D",Kd="Dilation2DBackpropInput",Xd="Dilation2DBackpropFilter",Vs="RealDiv",Yo="Elu",Yd="EluGrad",Zo="Erf",Jo="Equal",Us="Exp",Qo="ExpandDims",el="Expm1",Zd="FFT",wc="Fill",tl="FlipLeftRight",Gs="Floor",Hs="FloorDiv",js="FusedBatchNorm",nl="GatherV2",al="GatherNd",rl="Greater",qs="GreaterEqual",sl="Identity",Jd="IFFT",Qd="Imag",il="IsFinite",ol="IsInf",ll="IsNan",Ks="LeakyRelu",ul="Less",cl="LessEqual",eh="LinSpace",Xs="Log",pl="Log1p",dl="LogicalAnd",kc="LogicalNot",Ic="LogicalOr",f0="LogSoftmax",Nc="LRN",th="LRNGrad",Ys="Max",Zs="Maximum",Js="MaxPool",nh="MaxPoolGrad",Tc="MaxPool3D",ah="MaxPool3DGrad",rh="MaxPoolWithArgmax",Qs="Mean",ei="Min",ti="Minimum",Sc="MirrorPad",hl="Mod",sh="Multinomial",ni="Multiply",ml="Neg",fl="NotEqual",gl="NonMaxSuppressionV3",yl="NonMaxSuppressionV4",bl="NonMaxSuppressionV5",xl="OnesLike",ai="OneHot",vl="Pack",ri="PadV2",bA="Pool",si="Pow",ii="Prelu",wl="Prod",Cc="Range",ih="Real",kl="Reciprocal",oi="Relu",Il="Reshape",_c="ResizeNearestNeighbor",oh="ResizeNearestNeighborGrad",li="ResizeBilinear",lh="ResizeBilinearGrad",ui="Relu6",ci="Reverse",pi="Round",di="Rsqrt",Nl="ScatterNd",Tl="Select",Sl="Selu",Cl="Slice",hi="Sin",_l="Sinh",El="Sign",mi="Sigmoid",Al="Softplus",fi="Sqrt",gi="Sum",Ec="SpaceToBatchND",Fl="SplitV",yi="Softmax",bi="SquaredDifference",Ac="Square",xi="Sub",uh="SparseToDense",$l="StridedSlice",Dl="Tan",vi="Tanh",Gr="Tile",Rl="TopK",wi="Transpose",ch="Unique",Ml="Unpack",Fc="UnsortedSegmentSum",Pl="ZerosLike",Hr="Step",ph="FromPixels",Ol="RotateWithOffset",ki="_FusedMatMul",Ii="FusedConv2D",Ni="FusedDepthwiseConv2D",Ll=ly("kernelRegistry",()=>new Map),$c=ly("gradRegistry",()=>new Map);function dh(e,t){let n=uy(e,t);return Ll.get(n)}function cy(e){return $c.get(e)}function hh(e){let t=Ll.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function Dc(e){let{kernelName:t,backendName:n}=e,a=uy(t,n);Ll.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Ll.set(a,e)}function g0(e){let{kernelName:t}=e;$c.has(t)&&ee().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),$c.set(t,e)}function xA(e,t){let n=uy(e,t);if(!Ll.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ll.delete(n)}function vA(e){if(!$c.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);$c.delete(e)}function wA(e,t){hh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});Dc(a)})}function uy(e,t){return`${t}_${e}`}var k={};Oe(k,{arraysEqual:()=>gr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>ry,assertNonNull:()=>As,assertShapesMatch:()=>sn,bytesFromStringArray:()=>o0,bytesPerElement:()=>i0,checkConversionForErrors:()=>r0,clamp:()=>hc,computeStrides:()=>Mo,createScalarValue:()=>kA,createShuffledIndices:()=>iA,decodeString:()=>fh,distSquared:()=>nA,encodeString:()=>Rc,fetch:()=>IA,flatten:()=>Fs,getArrayFromDType:()=>a0,getTypedArrayFromDType:()=>n0,hasEncodingLoss:()=>uA,indexToLoc:()=>dA,inferDtype:()=>$d,inferFromImplicitShape:()=>lA,isBoolean:()=>l0,isFunction:()=>Wr,isInt:()=>Gt,isNumber:()=>u0,isPromise:()=>sy,isScalarShape:()=>aA,isString:()=>Br,isTypedArray:()=>on,isValidDtype:()=>s0,locToIndex:()=>pA,makeOnesTypedArray:()=>ay,makeZerosNestedTypedArray:()=>cA,makeZerosTypedArray:()=>Rd,nearestDivisor:()=>Dd,nearestLargerEven:()=>QE,now:()=>py,parseAxisParam:()=>ua,randUniform:()=>tA,repeatedTry:()=>oA,rightPad:()=>mc,shuffle:()=>e0,shuffleCombo:()=>JE,sizeFromShape:()=>Pt,sizeToSquarishShape:()=>sA,squeezeShape:()=>t0,sum:()=>eA,tanh:()=>rA,toNestedArray:()=>Po,toTypedArray:()=>mh});function kA(e,t){return t==="string"?Rc(e):mh([e],t)}function NA(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function mh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Fs(e)),ee().getBool("DEBUG")&&r0(e,t),NA(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a{a=n()},s=this.backendTimer.time(r);if(ee().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i{TA(l,o.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function TA(e,t,n){if(t!=="float32")return!1;for(let a=0;a0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function _A(e,t,n){let a={},r={};for(let l=0;la[f.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let p=0;p=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!gr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let p=e[u.id];e[u.id]=a(p,c),p.dispose()}}}}var y0=20,Mc=3,dy=7;function FA(e,t,n,a){let r=Mo(t),s=AA(e,t,n,r),i=t.length,o=gh(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(` `)),l.join(` `)}function AA(e,t,n,a){let r=Pt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Oc(e):e;if(o>1)for(let c=0;cy0){let g=Mc*i,y=Array.from(e.slice(0,g)),b=Array.from(e.slice((o-Mc)*i,o*i));return n==="complex64"&&(y=Oc(y),b=Oc(b)),["["+y.map((v,x)=>Pc(v,r[x],n)).join(", ")+", ..., "+b.map((v,x)=>Pc(v,r[o-Mc+x],n)).join(", ")+"]"]}let f=n==="complex64"?Oc(e):Array.from(e);return["["+f.map((g,y)=>Pc(g,r[y],n)).join(", ")+"]"]}let c=t.slice(1),u=a.slice(1),p=a[0]*i,d=[];if(o>y0){for(let f=0;f`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||a0(t,this.size),this.strides=Mo(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;afh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Ga().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>fh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Ga().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Ga().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return zl.print(this,e)}clone(){return this.throwIfDisposed(),zl.clone(this)}toString(e=!1){let t=this.dataSync();return FA(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),zl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Ga().makeVariable(this,e,t,n)}};Object.defineProperty(Ae,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return ly("Tensor",()=>Ae)}Y();var jr=class extends Ae{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Ga().disposeTensor(this),this.dataId=e.dataId,Ga().incRef(this,null)}dispose(){Ga().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(jr,Symbol.hasInstance,{value:e=>e instanceof Ae&&e.assign!=null&&e.assign instanceof Function});var Na={};Oe(Na,{assertTypesMatch:()=>x0,getTensorsInContainer:()=>hy,isTensorInList:()=>PA,makeTypesMatch:()=>Nt});var my;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(my||(my={}));var fy;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(fy||(fy={}));var gy;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(gy||(gy={}));var yy;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(yy||(yy={}));var by;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(by||(by={}));var OA={float32:yy,int32:fy,bool:gy,complex64:by};function ca(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return OA[e][t]}function yh(e){return ca(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ca(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function x0(e,t){A(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function PA(e,t){return t.some(n=>n.id===e.id)}function hy(e){let t=[],n=new Set;return v0(e,t,n),t}function v0(e,t,n){if(e==null)return;if(e instanceof Ae){t.push(e);return}if(!LA(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),v0(s,t,n))}}function LA(e){return Array.isArray(e)||typeof e=="object"}function xy(e){return e.kernelName!=null}var w0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Lc=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new w0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){hh(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof dc)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a(athis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Lc.nextTensorId++}nextVariableId(){return Lc.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return M.runKernel(Ps,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(dh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=xy(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(xy(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=dh(h,this.backendName);A(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let b=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,b);let v=b.map(x=>{if(x.rank!=null)return x;let{dataId:N,shape:T,dtype:C}=x;return this.makeTensorFromDataId(N,T,C)});if(a){let x=this.getTensorsForGradient(h,m,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:c,attrs:u}=e,p=xy(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),a&&this.addTapeNode(l,c,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=cy(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Br(e[0])&&(r=e.map(o=>Rc(o)));let s=a.write(r,t,n),i=new Ae(t,n,s,this.nextTensorId());if(this.incRef(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=o0(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Ae(t,n,e,this.nextTensorId());return this.incRef(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new jr(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let a=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(a=e.size*i0(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:a,refCount:0}),this.state.numBytes+=a}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof jr||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=cy(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let p=n[u],d=Rd(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return c}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=hy(e),n=new Set(t.map(r=>r.id));for(let r=0;r{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(r instanceof Ae,()=>"The result y returned by f() must be a tensor.");let s=_A(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?zA(r.shape):n,EA(i,s,l=>this.tidy(l),BA);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return A(Wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ae),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),A(n.value instanceof Ae,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(Wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(p=>p instanceof Ae),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((p,d)=>{u[d]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=py(),n=await this.backend.time(e);return n.wallMs=py()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new w0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Lc.nextTensorId=0;Lc.nextVariableId=0;function zA(e){let t=ay(Pt(e),"float32");return M.makeTensor(t,e,"float32")}function k0(){let e=h0();if(e._tfengine==null){let t=new d0(e);e._tfengine=new Lc(t)}return gA(e._tfengine.ENV),DA(()=>e._tfengine),e._tfengine}var M=k0();function BA(e,t){let n={a:e,b:t};return M.runKernel(Vr,n)}var bh={};Oe(bh,{isBrowser:()=>I0,isMobile:()=>WA});function VA(){return typeof navigator!="undefined"&&navigator!=null}function WA(){if(VA()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function I0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ha=ee();Ha.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ha.registerFlag("IS_BROWSER",()=>I0());Ha.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ha.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ha.registerFlag("PROD",()=>!1);Ha.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ha.getBool("DEBUG"));Ha.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ha.registerFlag("IS_TEST",()=>!1);Ha.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function ja(e,t){let n=e;if(on(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||on(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&ee().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&N0(e,a,[]),a}function N0(e,t,n){if(n=n||[],!Array.isArray(e)&&!on(e)){A(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}A(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),A(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r=0&&(r=a),T0(a,r,t,n),e==null||!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=ja(e,r);!on(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?mh(e,r):Fs(e,[],!0);return M.makeTensor(i,s,r)}function zc(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>E(r,`${t}[${s}]`,n,a))}var S0="__op";function P(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+S0;let r=(...s)=>{M.startScope(n);try{let i=a(...s);return sy(i)&&console.error("Cannot return a Promise inside of tidy."),M.endScope(i),i}catch(i){throw M.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function UA(e,t){let n=E(e,"real","complex"),a=E(t,"imag","complex");sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return M.runKernel(Bd,r)}var qr=P({complex_:UA});function Kr(e,t,n,a){if(a==null&&(a=$d(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ry(t);let r=Pt(t),s=Pt(n);A(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!on(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?mh(e,a):Fs(e,[],!0),M.makeTensor(e,t,a)}function Kn(e,t,n){let a=ja(e,n);return Kr(e,t,a,n)}var vy={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},xh=4;async function HA(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+xh*d.length,m=new Uint8Array(h),f=0;for(let g=0;g{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var wy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function _0(e){return wy?Buffer.byteLength(e):new Blob([e]).size}function qA(e){if(wy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function E0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Bc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:_0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:_0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XA(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function YA(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ZA(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function jA(){let e=XA(),t=YA(),n=ZA();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},JA=e=>Et.registerSaveRouter(e),QA=e=>Et.registerLoadRouter(e),eF=e=>Et.getSaveHandlers(e),tF=(e,t)=>Et.getLoadHandlers(e,t),Iy="tensorflowjs",Ny=1,Ti="models_store",Xr="model_info_store";function A0(){if(!ee().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ty(e){let t=e.result;t.createObjectStore(Ti,{keyPath:"modelPath"}),t.createObjectStore(Xr,{keyPath:"modelPath"})}var Si=class{constructor(e){if(this.indexedDB=A0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Iy,Ny);r.onupgradeneeded=()=>Ty(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(Ti,"readonly"),o=i.objectStore(Ti).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Bc(t),o=s.transaction(Xr,"readwrite"),l=o.objectStore(Xr),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Ti,"readwrite");let p=u.objectStore(Ti).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=d=>{l=o.objectStore(Xr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},c.onerror=p=>(s.close(),a(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};Si.URL_SCHEME="indexeddb://";var F0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Si.URL_SCHEME)?nF(e.slice(Si.URL_SCHEME.length)):null;Et.registerSaveRouter(F0);Et.registerLoadRouter(F0);function nF(e){return new Si(e)}function aF(e){return e.startsWith(Si.URL_SCHEME)?e.slice(Si.URL_SCHEME.length):e}var rF=class{constructor(){this.indexedDB=A0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Iy,Ny);n.onupgradeneeded=()=>Ty(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Xr,"readonly"),s=r.objectStore(Xr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=aF(e),new Promise((t,n)=>{let a=this.indexedDB.open(Iy,Ny);a.onupgradeneeded=()=>Ty(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Xr,"readwrite"),i=s.objectStore(Xr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=r.transaction(Ti,"readwrite");let p=l.objectStore(Ti).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=c=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},yr="/",Bl="tensorflowjs_models",$0="info",sF="model_topology",iF="weight_specs",oF="weight_data",lF="model_metadata";function D0(e){return{info:[Bl,e,$0].join(yr),topology:[Bl,e,sF].join(yr),weightSpecs:[Bl,e,iF].join(yr),weightData:[Bl,e,oF].join(yr),modelMetadata:[Bl,e,lF].join(yr)}}function uF(e){let t=e.split(yr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(yr)}function cF(e){return e.startsWith(Ci.URL_SCHEME)?e.slice(Ci.URL_SCHEME.length):e}var Ci=class{constructor(e){if(!ee().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=D0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Bc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,qA(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=KA(s),t}};Ci.URL_SCHEME="localstorage://";var R0=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ci.URL_SCHEME)?pF(e.slice(Ci.URL_SCHEME.length)):null;Et.registerSaveRouter(R0);Et.registerLoadRouter(R0);function pF(e){return new Ci(e)}var dF=class{constructor(){A(ee().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Bl+yr,n=yr+$0;for(let a=0;a"scheme must not be undefined or null."),e.endsWith(Wl)&&(e=e.slice(0,e.indexOf(Wl))),A(e.length>0,()=>"scheme must not be an empty string.");let n=Xn.getInstance();A(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function vh(e){if(e.indexOf(Wl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Xn.getSchemes().join(",")}`);return{scheme:e.split(Wl)[0],path:e.split(Wl)[1]}}async function M0(e,t,n=!1){A(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);A(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),A(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),A(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=vh(e).scheme,l=vh(e).path,c=o===vh(e).scheme,u=await r.load();n&&c&&await Xn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!c&&await Xn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function hF(){let e=Xn.getSchemes(),t={};for(let n of e){let a=await Xn.getManager(n).listModels();for(let r in a){let s=n+Wl+r;t[s]=a[r]}}return t}async function mF(e){let t=vh(e);return Xn.getManager(t.scheme).removeModel(t.path)}async function fF(e,t){return M0(e,t,!1)}async function gF(e,t){return M0(e,t,!0)}var yF=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(ee().get("IS_BROWSER")){ee().setPlatform("browser",new yF);try{Xn.registerManager(Ci.URL_SCHEME,new dF)}catch(e){}try{Xn.registerManager(Si.URL_SCHEME,new rF)}catch(e){}}var bF={importFetch:()=>PE()},Sy,xF=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return ee().global.fetch!=null?ee().global.fetch(e,t):(Sy==null&&(Sy=bF.importFetch()),Sy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};ee().get("IS_NODE")&&ee().setPlatform("node",new xF);function Le(e,t="float32",n){return t=t||"float32",ry(e),new Ot(e,t,n)}function vF(e,t){let n=E(e,"x","cast");if(!s0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return M.runKernel(Ps,a,r)}var ce=P({cast_:vF});function wF(e){let t={x:E(e,"x","clone","string_or_numeric")};return M.runKernel(sl,t)}var Yr=P({clone_:wF});function P0(e,t=!1){console.log(e.toString(t))}k0();var kF={buffer:Le,cast:ce,clone:Yr,print:P0};RA(kF);var Ht={};Oe(Ht,{browserFiles:()=>IF,browserHTTPRequest:()=>TF,concatenateArrayBuffers:()=>ky,copyModel:()=>fF,decodeWeights:()=>C0,encodeWeights:()=>HA,fromMemory:()=>SF,getLoadHandlers:()=>tF,getModelArtifactsInfoForJSON:()=>Bc,getSaveHandlers:()=>eF,http:()=>_y,isHTTPScheme:()=>Cy,listModels:()=>hF,loadWeights:()=>NF,moveModel:()=>gF,registerLoadRouter:()=>QA,registerSaveRouter:()=>JA,removeModel:()=>mF,weightsLoaderFactory:()=>O0,withSaveHandler:()=>CF});var _F="model",EF=".json",AF=".weights.bin";function L0(e){return new Promise(t=>setTimeout(t)).then(e)}var Vl=class{constructor(e){if(!ee().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Vl.URL_SCHEME)&&(e=e.slice(Vl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=_F),this.modelTopologyFileName=e+EF,this.weightDataFileName=e+AF}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await L0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await L0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Bc(e)}}}};Vl.URL_SCHEME="downloads://";var FF=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],d=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),d.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,b=p.indexOf(m);if(d[b]=y,d.indexOf(null)===-1){let v={modelTopology:o,weightSpecs:u,weightData:ky(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(v.signature=i.signature),i.userDefinedMetadata!=null&&(v.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(v.modelInitializer=i.modelInitializer),n(v)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(c[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>E0(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=E0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},DF=e=>ee().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Vl.URL_SCHEME)?$F(e.slice(Vl.URL_SCHEME.length)):null;Et.registerSaveRouter(DF);function $F(e="model"){return new Vl(e)}function IF(e){return new FF(e)}function z0(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(c=>{let u=n+ ++r/e.length*(a-n);return t(u),c}),l);function i(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),A(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function B0(e,t){t==null&&(t={});let n=t.fetchFunc==null?ee().platform.fetch:t.fetchFunc,a=e.map(c=>n(c,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await z0(a,t.onProgress,r,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await z0(i,t.onProgress,o,l)}async function NF(e,t="",n,a){return O0(r=>B0(r,{requestInit:a}))(e,t,n)}function O0(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,b=vy[y]*Pt(g.shape),v=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:b})};a!=null?a.forEach((x,N)=>{x===g.name&&(v(),i[N]=!0)}):v(),o.push(g.name),f+=b})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;c.push(f)})});let u=await e(c),p={},d=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let v=0;v{let x=g.slice(v.groupOffset,v.groupOffset+v.sizeBytes),N=C0(x,[v.manifestEntry]);for(let T in N)p[T]=N[T]}),d+=m}),p}}var RF="application/octet-stream",MF="application/json",Ey=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=ee().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:MF}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:RF}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Bc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;a!=null&&([c,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(p.modelInitializer=d),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=PF(t),r=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await B0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,ky(l)]}};Ey.URL_SCHEME_REGEX=/^https?:\/\//;function PF(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Cy(e){return e.match(Ey.URL_SCHEME_REGEX)!=null}var W0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Cy(a)):n=Cy(e),n)return _y(e,t)}return null};Et.registerSaveRouter(W0);Et.registerLoadRouter(W0);function _y(e,t){return new Ey(e,t)}function TF(e,t){return _y(e,t)}var Ay=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},OF=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function SF(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Ay(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ay({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Ay({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function CF(e){return new OF(e)}var V0={};Oe(V0,{confusionMatrix:()=>LF});function zF(e,t,n=!1,a=!1){let r=E(e,"a","matMul"),s=E(t,"b","matMul");[r,s]=Nt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return M.runKernel(Ms,i,o)}var ze=P({matMul_:zF});function BF(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:E(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return M.runKernel(ai,r,s)}var Ul=P({oneHot_:BF});function WF(e,t){let n=E(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{A(s>=0&&s`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return M.runKernel(wi,a,r)}var Ue=P({transpose_:WF});function VF(e,t,n){let a=E(e,"labels","confusionMatrix"),r=E(t,"predictions","confusionMatrix");A(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),A(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),A(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),A(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),A(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Ul(ce(a,"int32"),n),i=Ul(ce(r,"int32"),n),o=Ue(s),l=ze(o,i);return ce(l,"int32")}var LF=P({confusionMatrix_:VF}),_i={};Oe(_i,{fromPixels:()=>GF,toPixels:()=>UF});function wh(e,t,n){if(As(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=ja(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Kr(e,t,a,n)}var Gl;function HF(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let d=2;if(r&&e.readyState element.")}if(dh(ph,M.backendName)!=null){let d={pixels:e},h={numChannels:t};return M.runKernel(ph,d,h)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:a||n?u=e.data:(s||r||o)&&(Gl==null&&(Gl=document.createElement("canvas").getContext("2d")),Gl.canvas.width=l,Gl.canvas.height=c,Gl.drawImage(e,0,0,l,c),u=Gl.getImageData(0,0,l,c).data);let p;if(t===4)p=new Int32Array(u);else{let d=l*c;p=new Int32Array(d*t);for(let h=0;h4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let c=0;c1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[d]=h*o}let p=c*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let c=t.getContext("2d"),u=new ImageData(l,r,a);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var GF=P({fromPixels_:HF}),Fy={};Oe(Fy,{prepareAndValidate:()=>U0});function U0(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Pt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;pp/c),1].slice(0,s);return[l,i,c,u]}var $y={};Oe($y,{calculateShapes:()=>G0,validateInput:()=>Ry,validateUpdateShape:()=>Dy});function Dy(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;pjF,computeFlatOffset:()=>KF,computeOutShape:()=>H0,getNormalizedAxes:()=>q0,isSliceContinous:()=>qF,maskToAxes:()=>kh,parseSliceParams:()=>Q0,sliceInfo:()=>XF,startForAxis:()=>Z0,startIndicesWithElidedDims:()=>K0,stopForAxis:()=>J0,stopIndicesWithElidedDims:()=>X0,stridesForAxis:()=>Y0,stridesWithElidedDims:()=>j0});function jF(e,t,n){let a=e.shape.length;A(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),A(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function kh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function H0(e,t,n){let a=[];for(let r=0;r0){let h=t[0],m=n+1;u=K0(i,h,m,a,e),p=X0(o,h,m,r,e),d=j0(s,h,m,e)}else for(let h=0;h-1)s[o]=0;else{let l=e1(t,n,o),c=a[l];e&1<-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=e1(t,n,o),c=a[l];e&1<0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=hc(0,i,l-1),i}function J0(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=hc(0,i,l):i=hc(-1,i,l-1),i}function qF(e,t,n){let a=n.length;for(let r=0;r1){a=r;break}for(let r=a+1;r0||n[r]!==e[r])return!1;return!0}function KF(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a{A(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.lengthi>=0?i:(A(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function XF(e,t,n,a,r,s,i,o,l){let c=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(c.length));let d=kh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,m=kh(o),f=e.slice();m.forEach(T=>{c[T]=0,u[T]=1,f.splice(T,0,1)});let{begin:g,end:y,strides:b}=q0(f,d,h,c,u,p,r,s,i);c=g,u=y,p=b;let v=kh(l);v.forEach(T=>{u[T]=c[T]+1,p[T]=1});let x=H0(c,u,p),N=x.filter((T,C)=>v.indexOf(C)===-1);return{nonStrided:p.every(T=>T===1),$begin:c,$end:u,$strides:p,size:x,newShape:f,outShape:N}}var re={};Oe(re,{Serializable:()=>n1,SerializationMap:()=>Ei,registerClass:()=>Zr});var n1=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ei=class{constructor(){this.classNameMap={}}static getMap(){return Ei.instance==null&&(Ei.instance=new Ei),Ei.instance}static register(e){Ei.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Zr(e){A(e.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),A(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ei.register(e)}var a1={};Oe(a1,{TEST_EPSILON_FLOAT16:()=>r1,encodeStrings:()=>s1,expectArrayBuffersEqual:()=>t$,expectArraysClose:()=>YF,expectArraysEqual:()=>JF,expectNumbersClose:()=>QF,expectPromiseToFail:()=>ZF,expectValuesInRange:()=>e$,testEpsilon:()=>My});var n$=.001,r1=.1;function YF(e,t,n){return n==null&&(n=My()),Py(e,t,(a,r)=>Oy(a,r,n))}function My(){return M.backend.floatPrecision()===32?n$:r1}function Py(e,t,n){let a=!0;if((on(e)||on(t))&&(a=!1),on(e)&&on(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=ja(e),o=ja(t);if(!gr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=on(e)?e:Fs(e),s=on(t)?t:Fs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}. Actual: ${r}. Expected: ${s}.`);for(let i=0;it.fail(),()=>t())}function JF(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Br(e)||Br(e[0])||Br(t)||Br(t[0])?Py(e,n,(a,r)=>a==r):Py(e,t,(a,r)=>Oy(a,r,0))}function QF(e,t,n){if(n==null&&(n=My()),!Oy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Oy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function e$(e,t,n){for(let a=0;an)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function t$(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function s1(e){for(let t=0;tt.dispose())}function jt(e){return M.keep(e)}function l$(e){return M.time(e)}function u$(e){return M.setBackend(e)}function c$(){return M.ready()}function p$(){return M.backendName}function d$(e){M.removeBackend(e)}function h$(e){return M.findBackend(e)}function m$(e){return M.findBackendFactory(e)}function Nh(e,t,n=1){return M.registerBackend(e,t,n)}function o1(){return M.backend}function f$(e,t){ee().setPlatform(e,t)}function g$(e,t){let n=E(e,"a","add"),a=E(t,"b","add");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Vr,r)}var Z=P({add_:g$});function y$(e,t){let n=E(e,"a","floorDiv"),a=E(t,"b","floorDiv");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Hs,r)}var Th=P({floorDiv_:y$});function b$(e,t){let n=E(e,"a","div"),a=E(t,"b","div");if([n,a]=Nt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Th(n,a);let r={a:n,b:a},s={};return M.runKernel(Vs,r,s)}var ve=P({div_:b$});function x$(e,t){let n=E(e,"a","mul"),a=E(t,"b","mul");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(ni,r)}var L=P({mul_:x$});function v$(e){let t=E(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return M.runKernel(bc,n)}else{let n={x:t};return M.runKernel(Oo,n)}}var Lt=P({abs_:v$});function w$(e){let t={x:E(e,"x","acos")};return M.runKernel(Lo,t)}var zy=P({acos_:w$});function k$(e){let t={x:E(e,"x","acosh")};return M.runKernel(zo,t)}var By=P({acosh_:k$});function I$(e){A(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),A(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>E(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!gr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return M.runKernel($s,a)}var l1=P({addN_:I$});function N$(e,t=null,n=!1){let a={x:E(e,"x","all","bool")},r={axis:t,keepDims:n};return M.runKernel(Md,a,r)}var Sh=P({all_:N$});function T$(e,t=null,n=!1){let a={x:E(e,"x","any","bool")},r={axis:t,keepDims:n};return M.runKernel(Pd,a,r)}var Wc=P({any_:T$});function S$(e,t=0){let n={x:E(e,"x","argMax")},a={axis:t};return M.runKernel(Ds,n,a)}var Vc=P({argMax_:S$});function C$(e,t=0){let n={x:E(e,"x","argMin")},a={axis:t};return M.runKernel(fc,n,a)}var Wy=P({argMin_:C$});function _$(e){let t={x:E(e,"x","asin")};return M.runKernel(Bo,t)}var Vy=P({asin_:_$});function E$(e){let t={x:E(e,"x","asinh")};return M.runKernel(Wo,t)}var Uy=P({asinh_:E$});function A$(e){let t={x:E(e,"x","atan")};return M.runKernel(Vo,t)}var Gy=P({atan_:A$});function F$(e,t){let n=E(e,"a","atan2"),a=E(t,"b","atan2");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(Go,r)}var Hy=P({atan2_:F$});function $$(e){let t={x:E(e,"x","atanh")};return M.runKernel(Uo,t)}var jy=P({atanh_:$$});function D$(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=u1(r);return Uc(e,o,n,s,a,null,null,l)}function c1(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Ch(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Uc(e,c,n,a,r,s,!1,i)}function R$(e,t,n,a,r,s,i="NDHWC"){let[o,l,c]=qy(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return p1(e,u,n,a,r,!1,p,s)}function Uc(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,c,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,p]=e;else if(o==="channelsFirst")[l,p,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,m]=t,[f,g]=Ch(n),[y,b]=Ch(a),v=Hl(d,y),x=Hl(h,b),{padInfo:N,outHeight:T,outWidth:C}=M$(r,c,u,f,g,v,x,s,o),$=i?m*p:m,F;return o==="channelsFirst"?F=[l,$,T,C]:o==="channelsLast"&&(F=[l,T,C,$]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:p,outHeight:T,outWidth:C,outChannels:$,padInfo:N,strideHeight:f,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:b,inShape:e,outShape:F,filterShape:t}}function p1(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,c,u,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,p,d]=e;else if(i==="channelsFirst")[l,d,c,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,b,v]=qy(n),[x,N,T]=qy(a),C=Hl(h,x),$=Hl(m,N),F=Hl(f,T),{padInfo:O,outDepth:B,outHeight:W,outWidth:G}=P$(r,c,u,p,y,b,v,C,$,F,o),q=s?g*d:g,H;return i==="channelsFirst"?H=[l,q,B,W,G]:i==="channelsLast"&&(H=[l,B,W,G,q]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:p,inChannels:d,outDepth:B,outHeight:W,outWidth:G,outChannels:q,padInfo:O,strideDepth:y,strideHeight:b,strideWidth:v,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:C,effectiveFilterHeight:$,effectiveFilterWidth:F,dilationDepth:x,dilationHeight:N,dilationWidth:T,inShape:e,outShape:H,filterShape:t}}function O$(e,t,n,a,r){a==null&&(a=Ky(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*a)/n+1,r),l=Ai((i-t+2*a)/n+1,r);return[o,l]}function L$(e,t,n,a,r,s){r==null&&(r=Ky(e,t,a));let i=e[0],o=e[1],l=e[2],c=Ai((i-t+2*r)/a+1,s),u=Ai((o-t+2*r)/a+1,s),p=Ai((l-t+2*r)/a+1,s);return[c,u,p,n]}function Ky(e,t,n,a=1){let r=Hl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Ch(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function qy(e){return typeof e=="number"?[e,e,e]:e}function Hl(e,t){return t<=1?e:e+(e-1)*(t-1)}function M$(e,t,n,a,r,s,i,o,l){let c,u,p;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=O$([t,n],s,a,e,o);u=d[0],p=d[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let d=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(d/2),f=d-m,g=Math.floor(h/2),y=h-g;c={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:h,left:m,right:f,type:d===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=Ai((t-s+d+h)/a+1,o),p=Ai((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:p}}function P$(e,t,n,a,r,s,i,o,l,c,u){let p,d,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=L$([t,n,a,1],o,1,r,e,u);d=f[0],h=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(d-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+c-a,b=Math.floor(f/2),v=f-b,x=Math.floor(g/2),N=g-x,T=Math.floor(y/2),C=y-T;p={top:x,bottom:N,left:T,right:C,front:b,back:v,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:m}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Qr(e){let[t,n,a]=Ch(e);return t===1&&n===1&&a===1}function qa(e,t){return Qr(e)||Qr(t)}function u1(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function z$(e,t){let n={x:E(e,"x","reshape","string_or_numeric")},a={shape:t};return M.runKernel(Il,n,a)}var j=P({reshape_:z$});function B$(e,t,n,a,r){let s=E(e,"x","avgPool","float32"),i=1;A(qa(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&A(Gt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Rs,c,u);return p=ce(p,s.dtype),l?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Yn=P({avgPool_:B$});function W$(e,t,n,a,r,s="NDHWC"){let i=E(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&A(Gt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(gc,c,u);return p=ce(p,o.dtype),l?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Xy=P({avgPool3d_:W$});function V$(e,t=0){A(e.length>=1,()=>"Pass at least one tensor to concat");let n=zc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),n.length===1)return Yr(n[0]);let a=n,r={axis:t};return M.runKernel(jo,a,r)}var Qe=P({concat_:V$});function U$(e){let t={x:E(e,"x","sigmoid")};return M.runKernel(mi,t)}var pa=P({sigmoid_:U$});function G$(e,t,n){let a=E(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return M.runKernel(Cl,r,s)}var We=P({slice_:G$});function H$(e){let t={x:E(e,"x","tanh")};return M.runKernel(vi,t)}var jl=P({tanh_:H$});function j$(e,t,n,a,r,s){let i=E(e,"forgetBias","basicLSTMCell"),o=E(t,"lstmKernel","basicLSTMCell"),l=E(n,"lstmBias","basicLSTMCell"),c=E(a,"data","basicLSTMCell"),u=E(r,"c","basicLSTMCell"),p=E(s,"h","basicLSTMCell"),d=Qe([c,p],1),h=ze(d,o),m=Z(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],b=We(m,[0,0],y),v=We(m,[0,g],y),x=We(m,[0,g*2],y),N=We(m,[0,g*3],y),T=Z(L(pa(b),jl(v)),L(u,pa(Z(i,x)))),C=L(jl(T),pa(N));return[T,C]}var q$=P({basicLSTMCell_:j$});function K$(e,t,n){let a=E(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);A(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),A(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),A(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return M.runKernel(yc,s,i)}var Gc=P({batchToSpaceND_:K$});function X$(e){let t;return e.rank===0||e.rank===1?t=j(e,[1,1,1,e.size]):e.rank===2?t=j(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function Y$(e,t,n,a,r,s){s==null&&(s=.001);let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;a!=null&&(u=E(a,"offset","batchNorm")),A(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:X$(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},h=M.runKernel(js,p,d);return j(h,i.shape)}var br=P({batchNorm_:Y$});function Z$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),A(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var d1=P({batchNorm2d_:Z$});function J$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),A(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var h1=P({batchNorm3d_:J$});function Q$(e,t,n,a,r,s){let i=E(e,"x","batchNorm"),o=E(t,"mean","batchNorm"),l=E(n,"variance","batchNorm"),c;r!=null&&(c=E(r,"scale","batchNorm"));let u;return a!=null&&(u=E(a,"offset","batchNorm")),A(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),A(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),br(i,o,l,u,c,s)}var m1=P({batchNorm4d_:Q$});function eD(e,t,n){let a=E(e,"x","bincount"),r=E(t,"weights","bincount");A(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return M.runKernel(zd,s,i)}var f1=P({bincount_:eD});function tD(e,t){let n=E(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Yr(n);let i={x:n},o={reps:s};return M.runKernel(Gr,i,o)}var Hc=P({broadcastTo_:tD});function nD(e){let t={x:E(e,"x","ceil")};return M.runKernel(Ho,t)}var Yy=P({ceil_:nD});function aD(e,t,n){let a=E(e,"x","clipByValue");A(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return M.runKernel(Ur,r,s)}var qt=P({clipByValue_:aD});function rD(e){return Qe(e,0)}var g1=P({concat1d_:rD});function sD(e,t){return Qe(e,t)}var y1=P({concat2d_:sD});function iD(e,t){return Qe(e,t)}var b1=P({concat3d_:iD});function oD(e,t){return Qe(e,t)}var x1=P({concat4d_:oD});function lD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","conv2d"),l=E(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&A(Gt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?c.shape[3]:c.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(qa(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=M.runKernel(Os,d,h);return u?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var At=P({conv2d_:lD});function uD(e,t,n,a,r="NWC",s=1,i){let o=E(e,"x","conv1d"),l=E(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=j(o,[1,o.shape[0],o.shape[1]])),A(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&A(Gt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),A(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(qa(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),A(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=j(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=j(c,[c.shape[0],1,c.shape[1],c.shape[2]]),h=At(d,p,[1,n],a,"NHWC",[1,s],i);return u?j(h,[h.shape[2],h.shape[3]]):j(h,[h.shape[0],h.shape[2],h.shape[3]])}var _h=P({conv1d_:uD});function cD(e,t,n,a,r,s="NHWC",i){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),A(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),A(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&A(Gt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let d={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=M.runKernel(Ls,d,h);return c?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Zy=P({conv2DBackpropInput_:cD});function pD(e,t,n,a,r,s){let i=E(e,"x","conv2dTranspose"),o=E(t,"filter","conv2dTranspose");return Zy(n,i,o,a,r,"NHWC",s)}var Eh=P({conv2dTranspose_:pD});function dD(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=E(e,"x","conv3d"),o=E(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),A(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),A(qa(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},d=M.runKernel(xc,u,p);return c?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Jy=P({conv3d_:dD});function hD(e,t,n,a,r){A(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),A(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),A(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),A(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},d=M.runKernel(Ud,u,p);return o?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var v1=P({conv3DBackpropInput_:hD});function mD(e,t,n,a,r){let s=E(e,"x","conv3dTranspose"),i=E(t,"filter","conv3dTranspose");return v1(n,s,i,a,r)}var fD=P({conv3dTranspose_:mD});function gD(e){let t={x:E(e,"x","cos")};return M.runKernel(zs,t)}var jc=P({cos_:gD});function yD(e){let t={x:E(e,"x","cosh")};return M.runKernel(qo,t)}var Ah=P({cosh_:yD});function bD(e,t=0,n=!1,a=!1){let r={x:E(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return M.runKernel(Bs,r,s)}var Fh=P({cumsum_:bD});function xD(e,t,n,a=!1){let r=E(e,"x","denseBincount"),s=E(t,"weights","denseBincount");A(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),A(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),A(n>=0,()=>`size must be non-negative, but got ${n}.`),A(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return M.runKernel(Gd,i,o)}var w1=P({denseBincount_:xD});function vD(e,t,n="NHWC"){let a=E(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];A(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${r} and ${t} for depthToSpace with input shape ${a.shape}`),A(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${a.shape}`),A(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return M.runKernel(Xo,o,l)}var Qy=P({depthToSpace_:vD});function wD(e,t,n,a,r="NHWC",s=[1,1],i){let o=E(e,"x","depthwiseConv2d"),l=E(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),A(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&A(Gt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:c,filter:l},d={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=M.runKernel(Ws,p,d);return u?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var es=P({depthwiseConv2d_:wD});function kD(e){let t={x:E(e,"x","diag")};return M.runKernel(qd,t)}var ID=P({diag_:kD});function ND(e,t,n,a,r=[1,1],s="NHWC"){let i=E(e,"x","dilation2d"),o=E(t,"filter","dilation2d");A(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),A(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},d=M.runKernel(vc,u,p);return c?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var eb=P({dilation2d_:ND});function TD(e,t){let n=e.length,a=[];for(let r=0;r1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a1)&&n.unshift(s)}return n}function xt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&sn(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return M.runKernel(Tl,c)}var wn=P({where_:CD});function _D(e){let t={x:E(e,"x","zerosLike")};return M.runKernel(Pl,t)}var Ge=P({zerosLike_:_D});function ED(e,t){let n=E(e,"a","div"),a=E(t,"b","div");[n,a]=Nt(n,a);let r=ve(n,a),s=Ge(r),i=ts(a,s);return wn(i,s,r)}var tb=P({divNoNan_:ED});function AD(e,t){let n=E(e,"t1","dot"),a=E(t,"t2","dot");A((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(A(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=j(n,[1,-1]),o=j(a,[-1,1]),l=ze(i,o);return j(l,[])}else if(n.rank===1&&a.rank===2){let i=j(n,[1,-1]),o=j(a,[a.shape[0],a.shape[1]]),l=ze(i,o);return j(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=j(a,[-1,1]),o=ze(n,i);return j(o,[o.size])}else{let i=j(a,[a.shape[0],a.shape[1]]);return ze(n,i)}}var k1=P({dot_:AD});function FD(e){let t={x:E(e,"x","elu")};return M.runKernel(Yo,t)}var ql=P({elu_:FD});function $D(e){let t=E(e,"x","erf");A(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return M.runKernel(Zo,n)}var nb=P({erf_:$D});function DD(e){let t={x:E(e,"x","exp")};return M.runKernel(Us,t)}var dn=P({exp_:DD});function RD(e,t=0){let n=E(e,"x","expandDims","string_or_numeric");A(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return M.runKernel(Qo,a,r)}var Fn=P({expandDims_:RD});function MD(e){let t={x:E(e,"x","expm1")};return M.runKernel(el,t)}var ab=P({expm1_:MD});function PD(e,t){let n=E(e,"x","tile","string_or_numeric");A(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return M.runKernel(Gr,a,r)}var Ka=P({tile_:PD});function OD(e,t,n,a="float32"){t==null&&(t=e);let r=Le([e,t],a),s=e<=t?e:t;for(let o=0;o`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),A(Gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=j(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:a,beta:r},u=M.runKernel(Nc,l,c);return o?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var sb=P({localResponseNormalization_:XD});function YD(e){let t={x:E(e,"x","log")};return M.runKernel(Xs,t)}var $n=P({log_:YD});function ZD(e){let t={x:E(e,"x","log1p")};return M.runKernel(pl,t)}var Rh=P({log1p_:ZD});function JD(e){return A(Wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=E(t,"x","tf.grad","string_or_numeric"),r=n!=null?E(n,"dy","tf.grad"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(a),[a],r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Mh(i),i[0]})}}function QD(e){return A(Wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{A(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=zc(t,"args","tf.grads","string_or_numeric"),r=n!=null?E(n,"dy","tf.grads"):null;return M.tidy(()=>{let{value:s,grads:i}=M.gradients(()=>e(...a),a,r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Mh(i),i})}}function eR(e){return A(Wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{A(t instanceof Ae,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=M.gradients(()=>e(t),[t],n);return Mh(a),{grad:a[0],value:r}}}function tR(e){return A(Wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{A(Array.isArray(t)&&t.every(r=>r instanceof Ae),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(n==null||n instanceof Ae,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=M.gradients(()=>e(...t),t,n);return n!=null&&sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Mh(a.grads),a}}function C1(e,t){A(Wr(e),()=>"The f passed in variableGrads(f) must be a function"),A(t==null||Array.isArray(t)&&t.every(c=>c instanceof jr),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in M.registeredVariables)t.push(M.registeredVariables[c])}let a=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),A(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=M.gradients(e,t,null,s);A(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),a!=null&&a.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Xa(e){return M.customGrad(e)}function Mh(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function nR(e){let t={x:E(e,"x","neg")};return M.runKernel(ml,t)}var Tt=P({neg_:nR});function aR(e){let t={x:E(e,"x","softplus")};return M.runKernel(Al,t)}var Xl=P({softplus_:aR});function rR(e){let t=E(e,"x","logSigmoid");return Xa(n=>({value:Tt(Xl(Tt(n))),gradFunc:a=>L(a,pa(Tt(n)))}))(t)}var _1=P({logSigmoid_:rR});function sR(e,t=null,n=!1){let a={x:E(e,"x","max")},r={reductionIndices:t,keepDims:n};return M.runKernel(Ys,a,r)}var Zn=P({max_:sR});function iR(e,t){let n=E(e,"a","sub"),a=E(t,"b","sub");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(xi,r)}var fe=P({sub_:iR});function oR(e,t=null,n=!1){let a=E(e,"x","sum");a.dtype==="bool"&&(a=ce(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(gi,r,s)}var Te=P({sum_:oR});function lR(e,t=-1){let n=E(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Xa((a,r)=>{let s=!0,i=Zn(a,t,!0),o=fe(a,i),l=fe(ce(o,"float32"),$n(Te(dn(o),t,s)));return r([l]),{value:l,gradFunc:(c,u)=>{let[p]=u,d=!0,h=dn(p);return fe(c,L(Te(c,t,d),h))}}})(n)}var Ph=P({logSoftmax_:lR});function ib(e,t){for(let n=0;ne[s]);return[n,r]}function Di(e,t){let n=t.map(a=>1);return E1(e,n,t)}function uR(e,t,n){A(ib(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function F1(e,t){if(ib(e,t))return null;let n=[];for(let a=0;an.push(a)),n}function ob(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function cR(e,t){let n=[];for(let a=t-e;a`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),A(qa(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&A(Gt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=M.runKernel(Js,c,u);return l?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ft=P({maxPool_:gR});function yR(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=E(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&A(Gt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let c={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=M.runKernel(Tc,c,u);return l?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var ub=P({maxPool3d_:yR});function bR(e,t,n,a,r=!1){let s={x:E(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=M.runKernel(rh,s,i);return{result:o[0],indexes:o[1]}}var D1=P({maxPoolWithArgmax_:bR});function xR(e,t){let n=E(e,"a","maximum"),a=E(t,"b","maximum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ce(n,"int32"),a=ce(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(Zs,r)}var Ya=P({maximum_:xR});function vR(e,t=null,n=!1){let a={x:E(e,"x","mean")},r={axis:t,keepDims:n};return M.runKernel(Qs,a,r)}var St=P({mean_:vR});function wR(e,t=null,n=!1){let a={x:E(e,"x","min")},r={axis:t,keepDims:n};return M.runKernel(ei,a,r)}var Yl=P({min_:wR});function kR(e,t){let n=E(e,"a","minimum"),a=E(t,"b","minimum");[n,a]=Nt(n,a),n.dtype==="bool"&&(n=ce(n,"int32"),a=ce(a,"int32")),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(ti,r)}var Zl=P({minimum_:kR});function IR(e,t,n){A(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=E(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o"Invalid number of paddings. Must be length of 2 each."),A(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return M.runKernel(Sc,i,s)}var cb=P({mirrorPad_:IR});function NR(e,t){let n=E(e,"a","mod"),a=E(t,"b","mod");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(hl,r)}var pb=P({mod_:NR});function TR(e){let t=E(e,"x","square"),n={};return M.runKernel("Square",{x:t},n)}var ut=P({square_:TR});function SR(e,t=null,n=!1){e=E(e,"x","moments");let a=ua(t,e.shape),r=St(e,a,n),s=r.shape;n||(s=Di(r.shape,a));let i=ut(fe(ce(e,"float32"),j(r,s))),o=St(i,a,n);return{mean:r,variance:o}}var Lh=P({moments_:SR});function CR(e,t,n,a){let r=E(t,"data","multiRNNCell"),s=zc(n,"c","multiRNNCell"),i=zc(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?j(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},c=M.runKernel(sh,o,l);return i===1?j(c,[c.size]):c}var R1=P({multinomial_:ER});function AR(e,t){let n=E(e,"a","notEqual"),a=E(t,"b","notEqual");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a};return M.runKernel(fl,r)}var Ri=P({notEqual_:AR});function vt(e,t="float32"){if(t==="complex64"){let a=vt(e,"float32"),r=vt(e,"float32");return qr(a,r)}let n=Rd(Pt(e),t);return M.makeTensor(n,e,t)}function Za(e,t="float32"){if(t==="complex64"){let a=Za(e,"float32"),r=vt(e,"float32");return qr(a,r)}let n=ay(Pt(e),t);return M.makeTensor(n,e,t)}function FR(e){let t={x:E(e,"x","onesLike")};return M.runKernel(xl,t)}var Dn=P({onesLike_:FR});function $R(e,t){let n=E(e,"v1","outerProduct"),a=E(t,"v2","outerProduct");A(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=j(n,[-1,1]),s=j(a,[1,-1]);return ze(r,s)}var DR=P({outerProduct_:$R});function RR(e,t,n=0){let a=E(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return M.runKernel(ri,s,r)}var Jn=P({pad_:RR});function MR(e,t,n=0){return A(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jn(e,[t],n)}var PR=P({pad1d_:MR});function OR(e,t,n=0){return A(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var LR=P({pad2d_:OR});function zR(e,t,n=0){return A(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var BR=P({pad3d_:zR});function WR(e,t,n=0){return A(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jn(e,t,n)}var VR=P({pad4d_:WR});function UR(e,t,n){let a=E(e,"x","spaceToBatchND");A(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),A(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),A(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return M.runKernel(Ec,r,s)}var Xc=P({spaceToBatchND_:UR});function jR(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=E(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(qa(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let c=c1(o.shape,t,s,r,a),u=[c.dilationHeight,c.dilationWidth],p;a==="same"?p=HR([c.filterHeight,c.filterWidth],u):p=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[h,m]=GR([c.inHeight,c.inWidth],u,p),f=d?a:"valid",g=d?o:Xc(o,u,h),y=(n==="avg"?()=>Yn(g,t,s,f):()=>Ft(g,t,s,f))(),b=d?y:Gc(y,u,m);return l?j(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function GR(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),c=t.map((u,p)=>[0,i[p]]);return[l,c]}function HR(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var M1=P({pool_:jR});function qR(e,t){let n=E(e,"base","pow"),a=E(t,"exp","pow");[n,a]=Nt(n,a);let r={a:n,b:a};return M.runKernel(si,r)}var xr=P({pow_:qR});function KR(e,t){let n=E(e,"x","prelu"),a=E(t,"alpha","prelu"),r={x:n,alpha:a};return M.runKernel(ii,r)}var Yc=P({prelu_:KR});function XR(e,t=null,n=!1){let a=E(e,"x","prod");a.dtype==="bool"&&(a=ce(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return M.runKernel(wl,r,s)}var zh=P({prod_:XR});function YR(e,t,n){let a=Pt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},JR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=db.alea(r.toString()),this.randn=new hb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),rthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=db.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function eM(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new JR(t,n,a,r),i=Le(e,a);for(let o=0;o`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Rn(t,0)}var cM=P({reverse1d_:uM});function pM(e,t){let n=E(e,"x","reverse");return A(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Rn(n,t)}var dM=P({reverse2d_:pM});function hM(e,t){let n=E(e,"x","reverse");return A(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Rn(n,t)}var mM=P({reverse3d_:hM});function fM(e,t){let n=E(e,"x","reverse");return A(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Rn(n,t)}var gM=P({reverse4d_:fM});function yM(e){let t={x:E(e,"x","round")};return M.runKernel(pi,t)}var fb=P({round_:yM});function bM(e){let t={x:E(e,"x","rsqrt")};return M.runKernel(di,t)}var Vh=P({rsqrt_:bM});function de(e,t){if((on(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&on(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Kr(e,[],[],t)}function xM(e){let t={x:E(e,"x","selu")};return M.runKernel(Sl,t)}var Uh=P({selu_:xM});function vM(e,t,n,a,r,s=[1,1],i="NHWC"){let o=E(e,"x","separableConv2d"),l=E(t,"depthwiseFilter","separableConv2d"),c=E(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),A(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],h=l.shape[3];A(c.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${c.shape[2]}.`);let m=es(u,l,a,r,i,s),f=At(m,c,1,"valid",i);return p?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Mi=P({separableConv2d_:vM});async function wM(e,t){let n=E(e,"x","setdiff1d"),a=E(t,"y","setdiff1d");A(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),A(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),A(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),We(a,[t],[n])}var jh=P({slice1d_:TM});function SM(e,t,n){let a=E(e,"x","slice2d");return A(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var yb=P({slice2d_:SM});function CM(e,t,n){let a=E(e,"x","slice3d");return A(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Ql=P({slice3d_:CM});function _M(e,t,n){let a=E(e,"x","slice4d");return A(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),We(a,t,n)}var Jc=P({slice4d_:_M});function EM(e,t=-1){let n=E(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return M.runKernel(yi,a,r)}var Ta=P({softmax_:EM});function AM(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Zd,t)}var Qc=P({fft_:AM});function FM(e){A(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return M.runKernel(Jd,t)}var eu=P({ifft_:FM});function $M(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=j(e,[n,t]);a=eu(r)}else{let r=[n,2*(t-1)],s=j(Zc(e),[n,t]),i=j($h(e),[n,t]),o=Rn(We(s,[0,1],[n,t-2]),1),l=L(Rn(We(i,[0,1],[n,t-2]),1),de(-1)),c=Qe([s,o],1),u=Qe([i,l],1),p=j(qr(c,u),[r[0],r[1]]);a=eu(p)}if(a=Zc(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=j(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var qh=P({irfft_:$M});function DM(e,t,n=0){let a={x:E(e,"x","split")},r={numOrSizeSplits:t,axis:n};return M.runKernel(Fl,a,r)}var Mn=P({split_:DM});function RM(e,t){A(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=We(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=Qe([e,vt(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=j(qr(r,s),[a,n]),o=Qc(i),l=Math.floor(n/2)+1,c=Zc(o),u=$h(o),p=Mn(c,[l,n-l],c.shape.length-1),d=Mn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,j(qr(p[0],d[0]),h)}var ep=P({rfft_:RM});function MM(e){let t={x:E(e,"x","sqrt")};return M.runKernel(fi,t)}var tn=P({sqrt_:MM});function PM(e,t){let n=E(e,"a","squaredDifference"),a=E(t,"b","squaredDifference");[n,a]=Nt(n,a),xt(n.shape,a.shape);let r={a:n,b:a},s={};return M.runKernel(bi,r,s)}var Kh=P({squaredDifference_:PM});function OM(e,t){let n=E(e,"x","squeeze");return j(n,t0(n.shape,t).newShape)}var as=P({squeeze_:OM});function LM(e,t=0){let n=zc(e,"tensors","stack","string_or_numeric");A(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&A(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return M.runKernel(vl,a,r)}var $t=P({stack_:LM});function zM(e,t=0){let n={x:E(e,"x","step")},a={alpha:t};return M.runKernel(Hr,n,a)}var tu=P({step_:zM});function BM(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let c={x:E(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return M.runKernel($l,c,u)}var bb=P({stridedSlice_:BM});function WM(e){let t={x:E(e,"x","tan")};return M.runKernel(Dl,t)}var xb=P({tan_:WM});function nt(e,t){As(e);let n=ja(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Kr(e,null,n,t)}function Sa(e,t,n){if(As(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=ja(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Kr(e,t,a,n)}function Ca(e,t,n){if(As(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=ja(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Kr(e,t,a,n)}function VM(e,t,n){if(As(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=ja(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Kr(e,t,a,n)}function UM(e,t,n){if(As(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=ja(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Kr(e,t,a,n)}function GM(e,t=1,n=!0){let a=E(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=M.runKernel(Rl,s,i);return{values:o,indices:l}}var vb=P({topk_:GM});function HM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new hb(t,n,a,!0,r),i=Le(e,a);for(let o=0;o0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=M.runKernel(ch,a,r);return{values:s,indices:i}}var Yh=P({unique_:jM});function qM(e,t,n){let a=E(e,"x","unsortedSegmentSum"),r=E(t,"segmentIds","unsortedSegmentSum","int32");A(Gt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return M.runKernel(Fc,s,i)}var wb=P({unsortedSegmentSum_:qM});function KM(e,t=0){let n=E(e,"x","unstack","string_or_numeric");A(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return M.runKernel(Ml,a,r)}var dt=P({unstack_:KM});function L1(e,t=!0,n,a){return M.makeVariable(e,t,n,a)}function z1(e,t){let n=[];for(let s=0;s0,()=>"mask cannot be scalar"),sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f"Shape mismatch in v and x");let l=de(1),c=fe(l,o),u=L(fe(i,s),c);if(r){A(a!=null,()=>"When using zeroDebias: true, step is required.");let p=E(a,"step","movingAverage");u=ve(u,fe(l,xr(o,p)))}return Z(s,u)}var eP=P({movingAverage_:QM});function tP(e,t,n){let a=E(e,"indices","scatterND","int32"),r=E(t,"updates","scatterND");Ry(r,a,n);let s={indices:a,updates:r},i={shape:n};return M.runKernel(Nl,s,i)}var W1=P({scatterND_:tP});function nP(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function aP(e,t,n,a=0){let r=E(e,"sparseIndices","sparseToDense","int32"),s=E(t,"sparseValues","sparseToDense"),i=E(a,"defaultValue","sparseToDense",s.dtype);nP(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return M.runKernel(uh,o,l)}var Ib=P({sparseToDense_:aP});function rP(e,t){let n=E(t,"indices","gatherND","int32"),a={params:E(e,"x","gatherND"),indices:n};return M.runKernel(al,a)}var V1=P({gatherND_:rP});function sP(e,t){if(t==null)return e.shape.slice();if(gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),A(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ae?r.clone():r;let s=sP(r,n),i=1-t,o=ve(Kl(Z(Jl(s,0,1,"float32",a),i)),i);return L(r,o)}var U1=P({dropout_:iP});function G1(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Nb(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),A(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];A(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,c]=[i.length/s,s],u=n0("bool",l);for(let p=0;pg.value-f.value),u[p]=0;for(let f=0;fuP,depthwiseConv2d:()=>cP,matMul:()=>pP});function dP(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]])),A(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];A(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),A(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&A(Gt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},d={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return M.runKernel(Wd,p,d)}var Tb=P({conv2DBackpropFilter_:dP});function Jh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,tu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Qh(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=Te(n,a)),j(n,e.shape)}function em(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ye(e);if(t==="elu")return ql(e);if(t==="relu6")return Wh(e);if(t==="prelu")return Yc(e,n);if(t==="leakyrelu")return qc(e,a);throw new Error(`Unknown fused activation ${t}.`)}var tm=(e,t)=>!(e>0)||t==="linear";function hP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",tm(M.state.gradientDepth,l)===!1){let N=At(e,t,n,a,r,s,i);return o!=null&&(N=Z(N,o)),em(N,l,c,u)}let p=E(e,"x","conv2d"),d=E(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=j(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&A(Gt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),A(h.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${d.shape[2]}.`),A(qa(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),A(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Uc(h.shape,d.shape,n,s,a,i),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),xt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused conv2d"));let b=(N,T)=>{let[C,$,F,O]=T,B=Jh(N,F,l);A(Qr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=Zy($.shape,B,C,n,a),G=Tb($,B,C.shape,n,a),q=[W,G];if(O!=null){let H=Qh(O,B);q.push(H)}return q},v={x:h,filter:d,bias:g,preluActivationWeights:y},x={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Xa((N,T,C)=>{let $=M.runKernel(Ii,v,x);return C([T,N,$]),m&&($=j($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d):Xa((N,T,C,$)=>{let F=M.runKernel(Ii,v,x);return $([T,N,F,C]),m&&(F=j(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d,g)}var uP=P({fusedConv2d_:hP});function mP(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return M.runKernel(Hd,c,u)}var H1=P({depthwiseConv2dNativeBackpropFilter_:mP});function fP(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=M.runKernel(jd,c,u);return l?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var j1=P({depthwiseConv2dNativeBackpropInput_:fP});function gP({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(tm(M.state.gradientDepth,l)===!1){let N=es(e,t,n,a,r,s,i);return o!=null&&(N=Z(N,o)),em(N,l,c,u)}let p=E(e,"x","depthwiseConv2d"),d=E(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=j(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),A(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),A(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),A(qa(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&A(Gt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Uc(h.shape,d.shape,n,s,a,i,!0),g;o!=null&&(g=E(o,"bias","fused conv2d"),[g]=Nt(g,p),xt(f.outShape,g.shape));let y;c!=null&&(y=E(c,"prelu weights","fused depthwiseConv2d"));let b=(N,T)=>{A(Qr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[C,$,F,O]=T,B=Jh(N,F,l),W=j1($.shape,B,C,n,a,s,i),G=H1($,B,C.shape,n,a,s,i);if(O!=null){let q=Qh(g,B);return[W,G,q]}return[W,G]},v={x:h,filter:d,bias:g,preluActivationWeights:y},x={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Xa((N,T,C)=>{let $=M.runKernel(Ni,v,x);return C([T,N,$]),m&&($=j($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:b}})(h,d):Xa((N,T,C,$)=>{let F=M.runKernel(Ni,v,x);return $([T,N,F,C]),m&&(F=j(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:b}})(h,d,g)}var cP=P({fusedDepthwiseConv2d_:gP});function yP({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(tm(M.state.gradientDepth,s)===!1){let O=ze(e,t,n,a);return r!=null&&(O=Z(O,r)),em(O,s,i,o)}let l=E(e,"a","fused matMul"),c=E(t,"b","fused matMul");[l,c]=Nt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?c.shape[c.rank-2]:c.shape[c.rank-1],m=l.shape.slice(0,-2),f=c.shape.slice(0,-2),g=Pt(m),y=Pt(f);A(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),A(gr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),A(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=l.shape.slice(0,-2).concat([d,h]),v=n?j(l,[g,u,d]):j(l,[g,d,u]),x=a?j(c,[y,h,p]):j(c,[y,p,h]),N;r!=null&&(N=E(r,"bias","fused matMul"),[N]=Nt(N,l),xt(b,N.shape));let T;i!=null&&(T=E(i,"prelu weights","fused matMul"));let C=(O,B)=>{let[W,G,q,H]=B,K=Jh(j(O,q.shape),q,s),X,ne;if(!n&&!a?(X=ze(K,G,!1,!0),ne=ze(W,K,!0,!1)):!n&&a?(X=ze(K,G,!1,!1),ne=ze(K,W,!0,!1)):n&&!a?(X=ze(G,K,!1,!0),ne=ze(W,K,!1,!1)):(X=ze(G,K,!0,!0),ne=ze(K,W,!0,!0)),r!=null){let J=Qh(H,K);return[X,ne,J]}else return[X,ne]},$={a:v,b:x,bias:N,preluActivationWeights:T},F={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?Xa((O,B,W)=>{let G=M.runKernel(ki,$,F);return W([O,B,G]),{value:j(G,b),gradFunc:C}})(v,x):Xa((O,B,W,G)=>{let q=M.runKernel(ki,$,F);return G([O,B,q,W]),{value:j(q,b),gradFunc:C}})(v,x,N)}var pP=P({fusedMatMul_:yP});function bP(e){return Nb(e,.54,.46)}var xP=P({hammingWindow_:bP});function vP(e){return Nb(e,.5,.5)}var q1=P({hannWindow_:vP});function wP(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(We(e,s,t)),s+=n;if(a)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),A(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),A(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),A(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),A(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),A(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return M.runKernel(Ko,u,p)}var TP=P({cropAndResize_:NP});function SP(e){let t=E(e,"image","flipLeftRight","float32");A(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return M.runKernel(tl,n,{})}var CP=P({flipLeftRight_:SP});function _P(e,t,n=0,a=.5){let r=E(e,"image","rotateWithOffset","float32");A(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return M.runKernel(Ol,s,i)}var EP=P({rotateWithOffset_:_P});function nu(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),A(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),A(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),A(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),A(t.rank===1,()=>"scores must be a 1D tensor"),A(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function AP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppression"),i=E(t,"scores","nonMaxSuppression"),o=nu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return M.runKernel(gl,{boxes:s,scores:i},l)}var FP=P({nonMaxSuppression_:AP});function DP(e,t,n){let a=$P(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function $P(e,t,n){return MP(e,t,n||RP)}function RP(e,t){return e>t?1:e>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function X1(e,t,n,a,r){return Sb(e,t,n,a,r,0)}function Y1(e,t,n,a,r,s){return Sb(e,t,n,a,r,0,!1,s,!0)}function Z1(e,t,n,a,r,s){return Sb(e,t,n,a,r,s,!0)}function Sb(e,t,n,a,r,s,i=!1,o=!1,l=!1){let c=[];for(let g=0;gr&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(J1);let u=s>0?-.5/s:0,p=[],d=[];for(;p.length0;){let g=c.pop(),{score:y,boxIndex:b,suppressBeginIndex:v}=g;if(y=v;--N){let T=PP(e,b,p[N]);if(T>=a){x=!0;break}if(g.score=g.score*OP(a,u,T),g.score<=r)break}g.suppressBeginIndex=p.length,x||(g.score===y?(p.push(b),d.push(g.score)):g.score>r&&DP(c,g,J1))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=d),l&&(f.validOutputs=h),f}function PP(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-c)*(d-u);if(h<=0||m<=0)return 0;let f=Math.max(s,c),g=Math.max(i,u),y=Math.min(o,p),b=Math.min(l,d),v=Math.max(y-f,0)*Math.max(b-g,0);return v/(h+m-v)}function OP(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function J1(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function LP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=E(e,"boxes","nonMaxSuppressionAsync"),i=E(t,"scores","nonMaxSuppressionAsync"),o=nu(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:p}=X1(c,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),nt(p,"int32")}var zP=LP;function BP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=nu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=M.runKernel(bl,c,u);return{selectedIndices:p[0],selectedScores:p[1]}}var WP=P({nonMaxSuppressionWithScore_:BP});async function VP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=nu(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],p=c[1],{selectedIndices:d,selectedScores:h}=Z1(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nt(d,"int32"),selectedScores:nt(h)}}var UP=VP;function GP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppression"),o=E(t,"scores","nonMaxSuppression"),l=nu(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=M.runKernel(yl,d,h);return{selectedIndices:m[0],validOutputs:m[1]}}var HP=P({nonMaxSuppressionPadded_:GP});async function jP(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=E(e,"boxes","nonMaxSuppressionAsync"),o=E(t,"scores","nonMaxSuppressionAsync"),l=nu(i,o,n,a,r,null),c=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=Y1(d,h,c,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:nt(m,"int32"),validOutputs:de(f,"int32")}}var qP=jP;function KP(e,t,n=!1,a=!1){let r=E(e,"images","resizeBilinear");A(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),A(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=j(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(li,o,l);return i?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Q1=P({resizeBilinear_:KP});function XP(e,t,n=!1,a=!1){let r=E(e,"images","resizeNearestNeighbor");A(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),A(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),A(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=j(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},c=M.runKernel(_c,o,l);return i?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ek=P({resizeNearestNeighbor_:XP});function YP(e,t,n){A(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),A(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=E(e,"a","bandPart");A(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=j(Bh(0,s,1,"int32"),[-1,1]),l=Bh(0,i,1,"int32"),c=fe(o,l),u=ha($i(c,de(+t,"int32")),ns(c,de(-n,"int32"))),p=vt([s,i],a.dtype);return j($t(dt(j(a,[-1,s,i])).map(d=>wn(u,d,p))),r)}var ZP=P({bandPart_:YP});function JP(e){let t;if(Array.isArray(e)){t=!1,A(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Mn(e,e.shape[0],0).map(r=>as(r,[0]));A(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r{let s=a[r];if(r>0)for(let i=0;i=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return tk(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),a=dt(j(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[c,u]=tk(l,t);r.push(c),s.push(u)});let i=j($t(r,0),e.shape),o=j($t(s,0),e.shape);return[i,o]}}function tk(e,t=!1){return M.tidy(()=>{A(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=rb(n),s=Yr(e),i=Sa([[1]],[1,1]),o=Yr(i),l=n>=a?a:n;for(let c=0;c{let h=We(s,[c,c],[n-c,1]),m=Zh(h),f=We(s,[c,c],[1,1]),g=wn(da(f,0),Sa([[-1]]),Sa([[1]])),y=fe(f,L(g,m)),b=ve(h,y);b.shape[0]===1?o=Yr(i):o=Qe([i,We(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let v=Tt(ve(ze(g,y),m)),x=We(s,[c,0],[n-c,a]),N=L(v,o),T=Ue(o);if(c===0)s=fe(x,ze(N,ze(T,x)));else{let F=fe(x,ze(N,ze(T,x)));s=Qe([We(s,[0,0],[c,a]),F],0)}let C=Ue(N),$=We(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=fe($,ze(ze($,o),C));else{let F=fe($,ze(ze($,o),C));r=Qe([We(r,[0,0],[n,c]),F],1)}return[o,s,r]}),Fe([u,p,d])}return!t&&n>a&&(r=We(r,[0,0],[n,a]),s=We(s,[0,0],[a,a])),[r,s]})}var tO=P({qr_:eO}),hn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(hn||(hn={}));function nO(e,t,n=hn.SUM_BY_NONZERO_WEIGHTS){let a=E(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=E(t,"weights","computeWeightedLoss"));let s=r==null?a:L(a,r);if(n===hn.NONE)return s;if(n===hn.SUM)return Te(s);if(n===hn.MEAN){if(r==null)return St(s);{let i=a.size/r.size,o=ve(Te(s),Te(r));return i>1?ve(o,de(i)):o}}if(n===hn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return ve(Te(s),de(a.size));{let i=L(r,Za(a.shape)),o=ce(Te(Ri(i,de(0))),"float32");return ve(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var vr=P({computeWeightedLoss_:nO});function aO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","absoluteDifference"),s=E(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=E(n,"weights","absoluteDifference")),sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(fe(r,s));return vr(o,i,a)}var rO=P({absoluteDifference_:aO});function sO(e,t,n,a,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","cosineDistance"),i=E(t,"predictions","cosineDistance"),o=null;a!=null&&(o=E(a,"weights","cosineDistance")),sn(s.shape,i.shape,"Error in cosineDistance: ");let l=de(1),c=fe(l,Te(L(s,i),n,!0));return vr(c,o,r)}var iO=P({cosineDistance_:sO});function oO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","hingeLoss"),s=E(t,"predictions","hingeLoss"),i=null;n!=null&&(i=E(n,"weights","hingeLoss")),sn(r.shape,s.shape,"Error in hingeLoss: ");let o=de(1);r=fe(L(de(2),r),o);let l=Ye(fe(o,L(r,s)));return vr(l,i,a)}var lO=P({hingeLoss_:oO});function uO(e,t,n,a=1,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","huberLoss"),i=E(t,"predictions","huberLoss"),o=null;n!=null&&(o=E(n,"weights","huberLoss")),sn(s.shape,i.shape,"Error in huberLoss: ");let l=de(a),c=Lt(fe(i,s)),u=Zl(c,l),p=fe(c,u),d=Z(L(de(.5),ut(u)),L(l,p));return vr(d,o,r)}var cO=P({huberLoss_:uO});function pO(e,t,n,a=1e-7,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"labels","logLoss"),i=E(t,"predictions","logLoss"),o=null;n!=null&&(o=E(n,"weights","logLoss")),sn(s.shape,i.shape,"Error in logLoss: ");let l=de(1),c=de(a),u=Tt(L(s,$n(Z(i,c)))),p=L(fe(l,s),$n(Z(fe(l,i),c))),d=fe(u,p);return vr(d,o,r)}var dO=P({logLoss_:pO});function hO(e,t,n,a=hn.SUM_BY_NONZERO_WEIGHTS){let r=E(e,"labels","meanSquaredError"),s=E(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=E(n,"weights","meanSquaredError")),sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=Kh(r,s);return vr(o,i,a)}var mO=P({meanSquaredError_:hO});function fO(e,t){let n=E(e,"labels","sigmoidCrossEntropyWithLogits"),a=E(t,"logits","sigmoidCrossEntropyWithLogits");sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ye(a),s=L(a,n),i=Rh(dn(Tt(Lt(a))));return Z(fe(r,s),i)}function gO(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"multiClassLabels","sigmoidCrossEntropy"),i=E(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","sigmoidCrossEntropy")),sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let c=de(a),u=de(1),p=de(.5);s=Z(L(s,fe(u,c)),L(p,c))}let l=fO(s,i);return vr(l,o,r)}var yO=P({sigmoidCrossEntropy_:gO});function bO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Xa((a,r,s)=>{let i=lb(r,[n],!0),o=fe(ce(r,"float32"),i);s([a,o]);let l=Tt(L(o,a));return{value:Te(l,[n]),gradFunc:(c,u)=>{let[p,d]=u,h=Di(c.shape,[n]);return[L(j(c,h),fe(ce(p,"float32"),dn(d))),L(j(c,h),fe(dn(d),ce(p,"float32")))]}}})(e,t)}function xO(e,t,n,a=0,r=hn.SUM_BY_NONZERO_WEIGHTS){let s=E(e,"onehotLabels","softmaxCrossEntropy"),i=E(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=E(n,"weights","softmaxCrossEntropy")),sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let c=de(a),u=de(1),p=de(s.shape[1]);s=Z(L(s,fe(u,c)),ve(c,p))}let l=bO(s,i);return vr(l,o,r)}var vO=P({softmaxCrossEntropy_:xO}),wO={fft:Qc,ifft:eu,rfft:ep,irfft:qh},kO={hammingWindow:xP,hannWindow:q1,frame:K1,stft:IP},Ja={flipLeftRight:CP,resizeNearestNeighbor:ek,resizeBilinear:Q1,rotateWithOffset:EP,cropAndResize:TP,nonMaxSuppression:FP,nonMaxSuppressionAsync:zP,nonMaxSuppressionWithScore:WP,nonMaxSuppressionWithScoreAsync:UP,nonMaxSuppressionPadded:HP,nonMaxSuppressionPaddedAsync:qP},nk={bandPart:ZP,gramSchmidt:QP,qr:tO},IO={absoluteDifference:rO,computeWeightedLoss:vr,cosineDistance:iO,hingeLoss:lO,huberLoss:cO,logLoss:dO,meanSquaredError:mO,sigmoidCrossEntropy:yO,softmaxCrossEntropy:vO},wr=class extends n1{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Fe(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return C1(e,t)}dispose(){this.iterations_!=null&&Fe(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:de(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(wr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var nm=class extends wr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;D(()=>{let l=Z(L(i,this.rho),L(ut(s),1-this.rho)),c=L(ve(tn(Z(o,this.epsilon)),tn(Z(i,this.epsilon))),s),u=Z(L(o,this.rho),L(ut(c),1-this.rho));i.assign(l),o.assign(u);let p=Z(L(c,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Fe(this.accumulatedGrads.map(e=>e.variable)),Fe(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};nm.className="Adadelta";Zr(nm);var am=class extends wr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:D(()=>kn(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;D(()=>{let i=Z(s,ut(r));s.assign(i);let o=Z(L(ve(r,tn(Z(i,M.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Fe(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};am.className="Adagrad";Zr(am);var rm=class extends wr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],D(()=>{this.accBeta1=de(t).variable(),this.accBeta2=de(n).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=fe(1,this.accBeta1),a=fe(1,this.accBeta2);t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:D(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:D(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=Z(L(c,this.beta1),L(l,1-this.beta1)),d=Z(L(u,this.beta2),L(ut(l),1-this.beta2)),h=ve(p,n),m=ve(d,a);c.assign(p),u.assign(d);let f=Z(L(ve(h,Z(tn(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Fe(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),D(()=>{this.accBeta1.assign(xr(this.beta1,this.iterations_+1)),this.accBeta2.assign(xr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};rm.className="Adam";Zr(rm);var sm=class extends wr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],D(()=>{this.iteration=de(0).variable(),this.accBeta1=de(t).variable()}),a==null&&(this.epsilon=M.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);D(()=>{let n=fe(1,this.accBeta1),a=ve(-this.learningRate,Z(L(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=M.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=Z(L(c,this.beta1),L(l,1-this.beta1)),d=L(u,this.beta2),h=Lt(l),m=Ya(d,h);c.assign(p),u.assign(m);let f=Z(L(ve(a,n),ve(p,Z(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(Z(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Fe(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Fe(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sm.className="Adamax";Zr(sm);var tp=class extends wr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=M.registeredVariables[t];D(()=>{let s=Z(L(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(de(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};tp.className="SGD";Zr(tp);var im=class extends tp{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=de(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&D(()=>{let i,o=Z(L(this.m,r),s);this.useNesterov?i=Z(L(this.c,Z(s,L(o,this.m))),a):i=Z(L(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Fe(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};im.className="Momentum";Zr(im);var om=class extends wr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=M.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=M.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:D(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:D(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;D(()=>{let l=Z(L(i,this.decay),L(ut(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=Z(L(c,this.decay),L(s,1-this.decay)),p=ve(L(s,this.learningRate),tn(fe(l,Z(ut(u),this.epsilon)))),d=Z(L(o,this.momentum),p);i.assign(l),c.assign(u),o.assign(d);let h=fe(a,d);a.assign(h)}else{let c=Z(L(i,this.decay),L(ut(s),1-this.decay)),u=Z(L(o,this.momentum),ve(L(s,this.learningRate),tn(Z(c,this.epsilon))));i.assign(c),o.assign(u);let p=fe(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Fe(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Fe(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Fe(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};om.className="RMSProp";Zr(om);var Pi=class{static sgd(e){return new tp(e)}static momentum(e,t,n=!1){return new im(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new om(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new rm(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new nm(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new sm(e,t,n,a,r)}static adagrad(e,t=.1){return new am(e,t)}},Oi={sgd:Pi.sgd,momentum:Pi.momentum,adadelta:Pi.adadelta,adagrad:Pi.adagrad,rmsprop:Pi.rmsprop,adamax:Pi.adamax,adam:Pi.adam},NO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function lm(){return new Promise(e=>NO(()=>e()))}var _={};Oe(_,{ERF_A1:()=>MO,ERF_A2:()=>PO,ERF_A3:()=>OO,ERF_A4:()=>LO,ERF_A5:()=>zO,ERF_P:()=>RO,PARALLELIZE_THRESHOLD:()=>Cb,SELU_SCALE:()=>rk,SELU_SCALEALPHA:()=>ak,applyActivation:()=>em,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>uR,assertParamsConsistent:()=>TO,assignToTypedArray:()=>qO,axesAreInnerMostDims:()=>ib,calculateShapes:()=>G0,combineLocations:()=>E1,complexWithEvenIndex:()=>GO,complexWithOddIndex:()=>HO,computeConv2DInfo:()=>Uc,computeConv3DInfo:()=>p1,computeDefaultPad:()=>Ky,computeDilation2DInfo:()=>D$,computeOptimalWindowSize:()=>CO,computeOutAndReduceShapes:()=>A1,computeOutShape:()=>SO,computePool2DInfo:()=>c1,computePool3DInfo:()=>R$,convertConv2DDataFormat:()=>u1,eitherStridesOrDilationsAreOne:()=>qa,expandShapeToKeepDim:()=>Di,exponent:()=>XO,exponents:()=>KO,fromStringArrayToUint8:()=>JO,fromUint8ToStringArray:()=>ZO,getAxesPermutation:()=>F1,getBroadcastDims:()=>TD,getComplexWithIndex:()=>jO,getFusedBiasGradient:()=>Qh,getFusedDyActivation:()=>Jh,getImageCenter:()=>_O,getInnerMostAxes:()=>cR,getPermuted:()=>AO,getReductionAxes:()=>zt,getReshaped:()=>EO,getReshapedPermuted:()=>FO,getSliceBeginCoords:()=>$O,getSliceSize:()=>DO,getUndoAxesPermutation:()=>ob,log:()=>WO,mergeRealAndImagArrays:()=>VO,prepareAndValidate:()=>U0,prepareSplitSize:()=>YO,segment_util:()=>sk,shouldFuse:()=>tm,slice_util:()=>pn,splitRealAndImagArrays:()=>UO,tupleValuesAreOne:()=>Qr,upcastType:()=>ca,validateInput:()=>Ry,validateUpdateShape:()=>Dy,warn:()=>BO});function TO(e,t){let n=e[0].length;e.forEach((r,s)=>{A(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),A(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function SO(e,t){let n=e[0].slice();for(let a=1;a=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function FO(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);A(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}A(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var sk={};Oe(sk,{collectGatherOpShapeInfo:()=>tL,computeOutShape:()=>eL,segOpComputeOptimalWindowSize:()=>QO});function QO(e,t){let n=!1,a;for(e<=Cb?(a=e,n=!0):a=Dd(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Dd(e,a+1);return a}function eL(e,t,n){let a=[],r=e.length;for(let s=0;sr))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) ( ${s}).`);if(nfh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function JO(e){return e.map(t=>Rc(t))}var Qa={};Oe(Qa,{nonMaxSuppressionV3Impl:()=>X1,nonMaxSuppressionV4Impl:()=>Y1,nonMaxSuppressionV5Impl:()=>Z1,whereImpl:()=>z1});var ik={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,tu(ce(n,"float32"),-1))}}},nL={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ut(ce(n,"float32")),r=tn(fe(de(1),a));return Tt(ve(e,r))}}}},aL={kernelName:zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=tn(fe(ut(ce(n,"float32")),1));return ve(e,a)}}}},rL={kernelName:Vr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),j(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),j(s,a.shape)}}}},sL={kernelName:$s,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},iL={kernelName:Ds,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},oL={kernelName:fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},lL={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,tn(fe(de(1),ut(ce(n,"float32")))))}}},uL={kernelName:Wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=tn(Z(de(1),ut(ce(n,"float32"))));return ve(e,a)}}}},cL={kernelName:Go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=Z(ut(n),ut(a)),i=L(e,ve(a,s)),o=zt(n.shape,r);return o.length>0&&(i=Te(i,o)),j(i,n.shape)},b:()=>{let s=Z(ut(n),ut(a)),i=Tt(L(e,ve(n,s))),o=zt(a.shape,r);return o.length>0&&(i=Te(i,o)),j(i,a.shape)}}}},pL={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Z(ut(ce(n,"float32")),1))}}},dL={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,fe(de(1),ut(ce(n,"float32"))))}}};function hL(e,t,n,a,r,s){let i=E(e,"dy","avgPool3dGrad"),o=E(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&A(Gt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:c},d={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=M.runKernel(Ld,p,d);return u?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var mL=P({avgPool3dGrad_:hL}),fL={kernelName:gc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>mL(e,a,r,s,i,o)}}};function gL(e,t,n,a,r){let s=E(e,"dy","avgPoolGrad"),i=E(t,"input","avgPoolGrad");A(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},d=M.runKernel(Od,u,p);return c?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var yL=P({avgPoolGrad_:gL}),bL={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>yL(e,a,r,s,i)}}},xL={kernelName:Ms,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>ze(e,r,!1,!0),b:()=>ze(a,e,!0,!1)}:!s&&i?{a:()=>ze(e,r,!1,!1),b:()=>ze(e,a,!0,!1)}:s&&!i?{a:()=>ze(r,e,!1,!0),b:()=>ze(a,e,!1,!1)}:{a:()=>ze(r,e,!0,!0),b:()=>ze(e,a,!0,!0)}}},vL={kernelName:yc,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Xc(e,a,r)}}},wL={kernelName:m0,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l1&&o.push(l);return{x:()=>Te(e,o,!0)}}},kL={kernelName:Ps,gradFunc:e=>({x:()=>e.clone()})},IL={kernelName:Ho,gradFunc:e=>({x:()=>Ge(e)})},NL={kernelName:Ur,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>wn(ha(ns(a,r),$i(a,s)),e,Ge(e))}}},TL={kernelName:bc,inputsToSave:["x"],gradFunc:ik.gradFunc},SL={kernelName:jo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ua(r,t[0].shape)[0],i=a.map(o=>o[s]);return Mn(e,i,s).map(o=>()=>o)}},CL={kernelName:Os,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return A(Qr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Zy(a.shape,e,r,i,o,l),filter:()=>Tb(a,e,r.shape,i,o,l)}}},_L={kernelName:Ls,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>At(e,r,s,i,o,1,l),filter:()=>Tb(e,a,r.shape,s,i,o,l)}}};function EL(e,t,n,a,r){let s=e;e.rank===4&&(s=j(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),A(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),A(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),A(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return M.runKernel(Vd,o,l)}var AL=P({conv3DBackpropFilter_:EL}),FL={kernelName:xc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;A(Qr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>v1(i.shape,e,o,r,s),filter:()=>AL(i,e,o.shape,r,s)}}},$L={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Tt(Gh(ce(n,"float32"))),e)}}},DL={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Hh(ce(n,"float32")),e)}}},RL={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=F1([r],a.rank),l=Fh(e,r,s,!i);return o!=null&&(l=Ue(l,o)),l}}}},ML={kernelName:Ws,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;A(Qr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),A(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),A(qa(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&A(Gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>j1(l.shape,e,c,r,s,a,i),filter:()=>H1(l,e,c.shape,r,s,a,i)}}},PL={kernelName:vc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>M.runKernel(Kd,s,n),filter:()=>M.runKernel(Xd,i,n)}}},OL={kernelName:Yo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>M.runKernel(Yd,a)}}},LL={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L(dn(Tt(ut(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,a)}}},zL={kernelName:Us,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},BL={kernelName:Qo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>j(e,n.shape)}}},WL={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,dn(n))}}},VL={kernelName:Gs,gradFunc:e=>({x:()=>Ge(e)})},UL={kernelName:Hs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=ve(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=j(Te(s,i),a.shape));let o=ut(a);return Tt(ve(s,ce(o,"float32")))}}}},GL={kernelName:js,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?de(1):o,c=zt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;fs.rank===1?j(L(L(e,Ka(j(h,[1,1,1,s.shape[0]]),u)),l),r.shape):j(L(L(e,h),l),r.shape),mean:()=>{let f=L(L(h,de(-1)),d);return s.rank===1&&(f=Te(f,c)),j(f,s.shape)},variance:()=>{let f=L(L(m,p),d);return s.rank===1&&(f=Te(f,c)),j(f,s.shape)},scale:()=>{let f=L(p,h),g=L(e,f);return s.rank===1&&(g=Te(g,c)),j(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,c)),j(f,s.shape)}}}},HL={kernelName:nl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ua(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,c=o.slice(0,i),u=c.length,p=o.slice(s,o.length).slice(1),d=p.length,h=ok(0,u),m=ok(u+1,u+1+d),f=lk([c,[l],p]),g=j(e,f),y=j(r,[l]),b=lk([[u],h,m]),v=Ue(g,b),x=wb(v,y,a.shape[i]),N=ob(b);return x=Ue(x,N),x},indices:()=>r}}};function ok(e,t){let n=[];for(let a=e;a{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},qL={kernelName:sl,gradFunc:e=>({x:()=>ce(e,"float32")})},KL={kernelName:il,gradFunc:e=>({x:()=>Ge(e)})},XL={kernelName:ol,gradFunc:e=>({x:()=>Ge(e)})},YL={kernelName:ll,gradFunc:e=>({x:()=>Ge(e)})},ZL={kernelName:Ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=da(a,0);return{x:()=>wn(s,e,L(e,r))}}},JL={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Z(n,1))}}},QL={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,ce(n,"float32"))}}},e3={kernelName:f0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=dn(a);return fe(e,L(Te(e,r,s),i))}}}};function t3(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return M.runKernel(th,o,l)}var n3=P({localResponseNormalizationBackprop_:t3}),a3={kernelName:Nc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>n3(a,r,e,s,i,o,l)}}};function uk(e,t,n,a){return t.rankL(e,ce(ts(n,t),e.dtype))}}var ck={kernelName:Ys,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ua(r,s.shape),l=uk(e,i,s,o);return{x:()=>l.x()}}},r3={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ce(ns(n,a),"float32")),b:()=>L(e,ce(Dh(n,a),"float32"))}}};function s3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPool3dGrad"),l=E(t,"input","maxPool3dGrad"),c=E(n,"output","maxPool3dGrad"),u=o,p=l,d=c,h=!1;l.rank===4&&(h=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=j(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=j(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),A(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&A(Gt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:d},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=M.runKernel(ah,m,f);return h?j(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var i3=P({maxPool3dGrad_:s3}),o3={kernelName:Tc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>i3(e,a,r,s,i,o,l)}}};function l3(e,t,n,a,r,s,i){let o=E(e,"dy","maxPoolGrad"),l=E(t,"input","maxPoolGrad"),c=E(n,"output","maxPoolGrad");A(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),A(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&A(Gt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return M.runKernel(nh,u,p)}var u3=P({maxPoolGrad_:l3}),c3={kernelName:Js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>u3(e,a,r,s,i,o)}}},p3={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ua(r,a.shape),i=A1(a.shape,s)[1],o=Pt(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let c=j(e,l);return ve(L(c,Za(a.shape,"float32")),o)}}}},d3={kernelName:ei,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ua(r,s.shape),l=uk(e,i,s,o);return{x:()=>l.x()}}},h3={kernelName:ti,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>L(e,ce($i(n,a),"float32")),b:()=>L(e,ce(da(n,a),"float32"))}}},m3={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},f3={kernelName:hl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?j(Te(e,s),n.shape):e},b:()=>{let s=L(e,Tt(Kl(ve(n,a)))),i=zt(a.shape,r);return i.length>0?j(Te(s,i),a.shape):s}}}},g3={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=L(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);return i.length>0?j(Te(s,i),a.shape):s}}}},y3={kernelName:ml,gradFunc:e=>({x:()=>Tt(e)})},b3={kernelName:ai,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>vt(n.shape,"float32")}}},x3={kernelName:xl,gradFunc:e=>({x:()=>Ge(e)})},v3={kernelName:vl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return dt(e,a).map(r=>()=>r)}},pk={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>We(e,s,a.shape)}}},w3={kernelName:si,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=xt(s.shape,i.shape);return{a:()=>{let l=ce(i,"float32"),c=L(e,L(l,xr(s,fe(l,de(1))))),u=zt(s.shape,o);return u.length>0&&(c=Te(c,u)),j(c,s.shape)},b:()=>{let l=da(s,0),c=wn(l,$n(s),Ge(s)),u=L(e,L(r,c)),p=zt(i.shape,o);return p.length>0&&(u=Te(u,p)),j(u,i.shape)}}}},k3={kernelName:ii,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=da(n,0);return{x:()=>wn(r,e,L(e,a)),alpha:()=>{let s=wn(r,Ge(e),L(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=Te(s,i)),j(s,a.shape)}}}},I3={kernelName:Vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=ve(e,ce(a,"float32")),i=zt(n.shape,r);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=L(e,ce(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=j(Te(s,i),a.shape));let o=ut(a);return Tt(ve(s,ce(o,"float32")))}}}},N3={kernelName:kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,Tt(ut(n)))}}},T3={kernelName:ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=L($i(n,6),tu(n));return{x:()=>L(e,ce(a,"float32"))}}},S3={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ce(tu(n),"float32"))}}},C3={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n.shape)}}},_3={kernelName:li,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(lh,r,n)}}},E3={kernelName:_c,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>M.runKernel(oh,r,n)}}},A3={kernelName:ci,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ua(a,e.shape);return{x:()=>Rn(e,r)}}},F3={kernelName:pi,gradFunc:e=>({x:()=>Ge(e)})},$3={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Tt(ve(e,L(xr(n,1.5),2)))}}},D3={kernelName:Tl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ge(n),"float32"),t:()=>L(e,ce(n,e.dtype)),e:()=>L(e,ce(Kc(n),e.dtype))}}},R3={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=da(n,de(0)),r=de(ak),s=de(rk),i=L(e,s),o=L(L(e,r),dn(ce(n,"float32")));return wn(a,i,o)}}}},M3={kernelName:mi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,fe(de(1),n)))}}},P3={kernelName:El,gradFunc:e=>({x:()=>Ge(e)})},O3={kernelName:hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(jc(ce(n,"float32")),e)}}},L3={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ah(ce(n,"float32")),e)}}},z3={kernelName:Cl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=Q0(a,r,s),c=[];for(let u=0;uJn(e,c)}}},B3={kernelName:yi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=L(e,a);return{logits:()=>fe(i,L(Te(i,[r],s),a))}}},W3={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,pa(n))}}},dk={kernelName:Ec,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Gc(e,a,r)}}},hk={kernelName:Fl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>Qe(e,a)}}},V3={kernelName:fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,L(tn(ce(n,"float32")),2))}}},U3={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ce(n,"float32"),2))}}},G3={kernelName:bi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=de(2);return{a:()=>L(e,L(r,fe(n,a))),b:()=>L(e,L(r,fe(a,n)))}}},H3={kernelName:Hr,gradFunc:e=>({x:()=>Ge(e)})},j3={kernelName:xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=xt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=Te(s,i)),j(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=Te(s,i)),j(Tt(s),a.shape)}}}},q3={kernelName:gi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ua(s,a.shape).forEach(l=>{r[l]=1});let i=j(e,r),o=L(i,Za(a.shape,"float32"));return{x:()=>o}}},K3={kernelName:Dl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ve(e,ut(jc(n)))}}},X3={kernelName:vi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(fe(de(1),ut(n)),e)}}},Y3={kernelName:Gr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i{let a=n,{perm:r}=a,s=ob(r);return{x:()=>Ue(e,s)}}},J3={kernelName:Ml,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>$t(e,r)}}},ez={kernelName:Fc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Q3(e,n)}}};function Q3(e,t){let n=Ya(t,Ge(t)),a=Fi(e,n),r=ns(t,de(0,"int32")),s=a.rank-r.rank;for(let o=0;o({x:()=>Ge(e)})},nz=[ik,nL,aL,rL,sL,iL,oL,lL,uL,cL,pL,dL,fL,bL,xL,vL,wL,kL,IL,NL,TL,SL,_L,CL,FL,$L,DL,RL,ML,PL,I3,OL,LL,zL,BL,WL,UL,VL,GL,HL,jL,qL,KL,XL,YL,ZL,JL,QL,e3,a3,ck,ck,r3,o3,c3,p3,d3,h3,m3,f3,g3,y3,b3,x3,v3,pk,pk,w3,k3,N3,T3,S3,C3,_3,E3,A3,F3,$3,D3,R3,M3,P3,O3,L3,z3,B3,W3,dk,dk,hk,hk,V3,G3,U3,H3,j3,q3,K3,X3,Y3,Z3,J3,ez,tz];for(let e of nz)g0(e);Y().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),zy(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),By(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),Z(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Sh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Wc(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Vc(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),Wy(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),j(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ce(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),j(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),j(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),j(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),j(this,[e,t,n,a])};Y().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),j(this,[e,t,n,a,r])};Y().prototype.asin=function(){return this.throwIfDisposed(),Vy(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Uy(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Gy(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Hy(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),jy(this)};Y().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),Yn(this,e,t,n,a)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Gc(this,e,t)};Y().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),br(this,e,t,n,a,r)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Hc(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ce(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Yy(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ae&&(e=[e]),Qe([this,...e],t)};Y().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),_h(this,e,t,n,a,r,s)};Y().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Eh(this,e,t,n,a,r)};Y().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),At(this,e,t,n,a,r,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),jc(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),Ah(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Fh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Qy(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),es(this,e,t,n,a,r,s)};Y().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),eb(this,e,t,n,a,r)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),tb(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),ve(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),k1(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),ql(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),ts(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),nb(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),dn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),Fn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),ab(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Qc(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),j(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Kl(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Th(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Fi(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),ns(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),da(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),eu(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),qh(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),I1(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),N1(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),T1(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),qc(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),$i(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),Dh(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),sb(this,e,t,n,a)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),_1(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Ph(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),lb(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),$n(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),Rh(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ha(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Kc(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),Oh(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),$1(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),ze(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Ft(this,e,t,n,a)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Zn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Ya(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),St(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Yl(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Zl(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),cb(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),pb(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),Tt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Zh(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Ri(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Ul(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),Dn(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),Jn(this,e,t)};Y().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),M1(this,e,t,n,a,r)};Y().prototype.pow=function(e){return this.throwIfDisposed(),xr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Yc(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),zh(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),mb(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),Ye(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),Wh(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),j(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),j(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Q1(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),ek(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Rn(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),ep(this)};Y().prototype.round=function(){return this.throwIfDisposed(),fb(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),Vh(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),Uh(this)};Y().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Mi(this,e,t,n,a,r,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),pa(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),gb(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),Gh(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),Hh(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Ta(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Xl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Xc(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),Mn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),tn(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ut(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Kh(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),as(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ae?[this,e]:[this,...e];return $t(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),tu(this,e)};Y().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),bb(this,e,t,n,a,r,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),fe(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),xb(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),jl(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),Ka(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ce(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ce(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ce(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),vb(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),Ue(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),Yh(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),wb(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),dt(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),wn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var mk={};Oe(mk,{maxNorm:()=>az,minMaxNorm:()=>iz,nonNeg:()=>sz,unitNorm:()=>rz});var _b;function Bt(){return _b==null&&(_b=o1().epsilon()),_b}function _a(){return"channelsLast"}var kr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,kr.prototype)}},Ea=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ea.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},fk=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,fk.prototype)}},oz=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,oz.prototype)}};function Li(e,t){if(Array.isArray(e)){let n=[];for(let a=0;an.toUpperCase())}var ma={};function Eb(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Ab(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Ab(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:Ab(a))}}}function np(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ma)i=ma[s];else if(i=t[s],i==null)throw new z(`Unknown ${a}: ${e}. This may be due to one of the following reasons: 1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new z(`${a}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ma?[o,l]=ma.className:i in t&&([o,l]=t[i]),o==null)throw new z(`Unknown ${a}: ${i}. This may be due to one of the following reasons: 1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(ma))c[h]=ma[h];for(let h of Object.keys(n))c[h]=n[h];let u=s.config;u.customObjects=c;let p=Object.assign({},ma);for(let h of Object.keys(n))ma[h]=n[h];Ab(s.config);let d=l(o,s.config,n,r);return ma=Object.assign({},p),d}else{let c=Object.assign({},ma);for(let p of Object.keys(n))ma[p]=n[p];let u=new o(s.config);return ma=Object.assign({},c),u}}}function lz(e,t){return et?1:0}function um(e,t){return-1*lz(e,t)}function ss(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function uz(e){if(e==null)throw new z(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Bi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new z(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Fb(e,t,n=0,a=Infinity){return er(n>=0),er(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${yk(e)}.`)}function yk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>yk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function cz(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-ntn(Te(L(e,e),t,!0)))}var ap=class extends re.Serializable{getConfig(){return{}}},Db=class extends ap{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=$b(e,this.axis),n=qt(t,0,this.maxValue);return L(e,ve(n,Z(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Db.className="MaxNorm";re.registerClass(Db);var Rb=class extends ap{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>ve(e,Z(Bt(),$b(e,this.axis))))}getConfig(){return{axis:this.axis}}};Rb.className="UnitNorm";re.registerClass(Rb);var Mb=class extends ap{apply(e){return Ye(e)}};Mb.className="NonNeg";re.registerClass(Mb);var Pb=class extends ap{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return D(()=>{let t=$b(e,this.axis),n=Z(L(this.rate,qt(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,ve(n,Z(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Pb.className="MinMaxNorm";re.registerClass(Pb);var xk={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Wt(e){return Eb(e)}function vk(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in xk?xk[e]:e,config:{}};return vk(t)}else return e instanceof ap?e:vk(e)}function az(e){return new Db(e)}function rz(e){return new Rb(e)}function sz(){return new Mb}function iz(e){return new Pb(e)}var wk={};Oe(wk,{constant:()=>hz,glorotNormal:()=>vz,glorotUniform:()=>xz,heNormal:()=>wz,heUniform:()=>kz,identity:()=>yz,leCunNormal:()=>Iz,leCunUniform:()=>Nz,ones:()=>dz,orthogonal:()=>Tz,randomNormal:()=>fz,randomUniform:()=>mz,truncatedNormal:()=>gz,varianceScaling:()=>bz,zeros:()=>pz});var Sz=["channelsFirst","channelsLast"],Cz=["nearest","bilinear"],_z=["valid","same","causal"],Ez=["max","avg"],Az=["sum","mul","concat","ave"],au=new Map;function Dt(e){Bi(Sz,"DataFormat",e)}function Fz(e){Bi(Cz,"InterpolationFormat",e)}function Qn(e){Bi(_z,"PaddingMode",e)}function kk(e){Bi(Ez,"PoolMode",e)}var rp=[],Ik="/";function Wi(e,t){rp.push(e);try{let n=t();return rp.pop(),n}catch(n){throw rp.pop(),n}}function $z(){return rp.length===0?"":rp.join(Ik)+Ik}function Tk(e){if(!Nk(e))throw new Error("Not a valid tensor name: '"+e+"'");return $z()+e}function Sk(e){if(!Nk(e))throw new Error("Not a valid tensor name: '"+e+"'");au.has(e)||au.set(e,0);let t=au.get(e);if(au.set(e,au.get(e)+1),t>0){let n=`${e}_${t}`;return au.set(n,1),n}else return e}var Dz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Nk(e){return!!e.match(Dz)}function Rz(e){return e===parseInt(e.toString(),10)}function is(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r{if(e.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=ip(e,1);return Ob(n,[1,t,1])})}function Pz(e){let t=[is(e.shape)];return e.reshape(t)}function Oz(e){if(e.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],is(e.shape,1)];return e.reshape(t)}function Vi(e,t,n){return D(()=>{switch(e.rank){case 1:return jh(e,t,n);case 2:return yb(e,[t,0],[n,e.shape[1]]);case 3:return Ql(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Jc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lb(e,t,n){return D(()=>{switch(e.rank){case 1:return jh(e,t,n);case 2:return yb(e,[0,t],[e.shape[0],n]);case 3:return Ql(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Jc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function cm(e,t,n,a){return D(()=>{switch(e.rank){case 1:return jh(e,t,n);case 2:switch(a){case 1:return Vi(e,t,n);case 2:return Lb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Vi(e,t,n);case 2:return Ql(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Lb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Vi(e,t,n);case 2:return Jc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Jc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Lb(e,t,n);default:throw new z(`The axis is not within the rank of the tensor ${a}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function zb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Qe(e,t)}function _k(e,t){switch(e.rank){case 1:return g1([e,t]);case 2:return y1([e,t],0);case 3:return b1([e,t],0);case 4:return x1([e,t],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Ob(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new z(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ka(e,t)}function pm(e,t=0,n=1,a,r){return P1(e,t,n,a,r)}function tr(e,t,n,a){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return rs.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?Bb(e.rank,a,_a()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...c],d=!1,h=!1;return rs.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:a?Bb(e.rank,a,_a()):null,activation:n}).reshape(p)}}function Ek(e,t,n){return D(()=>(Array.isArray(t)?t=nt(t,"int32"):t=t.toInt(),Fi(e,t,n)))}function op(e){return L(e,e)}function Bb(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new z(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new z(`Unsupported input rank by biasAdd: ${t.rank}`)}function nr(e,t,n){return D(()=>(n==null&&(n=_a()),Dt(n),e.add(Bb(e.rank,t,n))))}function Lz(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return ql(e)}function zz(e){return D(()=>ve(e,Lt(e).add(1)))}function Ak(e,t,n,a){return D(()=>U1(e,t,n,a))}function Bz(e){return D(()=>{let t=Z(.5,L(.2,e));return qt(t,0,1)})}function lp(e,t,n=!1){return n?e():t()}var Wz=["fanIn","fanOut","fanAvg"],Vz=["normal","uniform","truncatedNormal"];function Uz(e){Bi(Wz,"FanMode",e)}function Gz(e){Bi(Vz,"Distribution",e)}var fa=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Wb=class extends fa{apply(e,t){return vt(e,t)}};Wb.className="Zeros";re.registerClass(Wb);var dm=class extends fa{apply(e,t){return Za(e,t)}};dm.className="Ones";re.registerClass(dm);var Vb=class extends fa{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return D(()=>L(de(this.value),Za(e,t)))}getConfig(){return{value:this.value}}};Vb.className="Constant";re.registerClass(Vb);var Ub=class extends fa{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Jl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Ub.className="RandomUniform";re.registerClass(Ub);var Gb=class extends fa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return pm(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Gb.className="RandomNormal";re.registerClass(Gb);var Hb=class extends fa{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return Xh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Hb.className="TruncatedNormal";re.registerClass(Hb);var jb=class extends fa{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return D(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,rb(e[0]))})}getConfig(){return{gain:this.gain}}};jb.className="Identity";re.registerClass(jb);function Hz(e,t="channelsLast"){let n,a;if(Dt(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=is(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=is(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=is(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Nn=class extends fa{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Uz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Gz(this.distribution),this.seed=e.seed}apply(e,t){let n=Hz(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return Xh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Jl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Nn.className="VarianceScaling";re.registerClass(Nn);var hm=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};hm.className="GlorotUniform";re.registerClass(hm);var mm=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};mm.className="GlorotNormal";re.registerClass(mm);var fm=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};fm.className="HeNormal";re.registerClass(fm);var gm=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};gm.className="HeUniform";re.registerClass(gm);var ym=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};ym.className="LeCunNormal";re.registerClass(ym);var bm=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};bm.className="LeCunNormal";re.registerClass(bm);var qb=class extends fa{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return D(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=pm(n,0,1,"float32"),r=nk.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};qb.className="Orthogonal";re.registerClass(qb);var Fk={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function $k(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Ct(e){return Eb(e)}function wt(e){if(typeof e=="string"){let t=e in Fk?Fk[e]:e;if(t==="GlorotNormal")return new mm;if(t==="GlorotUniform")return new hm;if(t==="HeNormal")return new fm;if(t==="HeUniform")return new gm;if(t==="LeCunNormal")return new ym;if(t==="LeCunUniform")return new bm;{let n={};return n.className=t,n.config={},$k(n)}}else return e instanceof fa?e:$k(e)}function pz(){return new Wb}function dz(){return new dm}function hz(e){return new Vb(e)}function mz(e){return new Ub(e)}function fz(e){return new Gb(e)}function gz(e){return new Hb(e)}function yz(e){return new jb(e)}function bz(e){return new Nn(e)}function xz(e){return new hm(e)}function vz(e){return new mm(e)}function wz(e){return new fm(e)}function kz(e){return new gm(e)}function Iz(e){return new ym(e)}function Nz(e){return new bm(e)}function Tz(e){return new qb(e)}var Dk={};Oe(Dk,{Layer:()=>qe,RNN:()=>ar,RNNCell:()=>up,activation:()=>oB,add:()=>gB,alphaDropout:()=>QB,average:()=>yB,averagePooling1d:()=>Kb,averagePooling2d:()=>Xb,averagePooling3d:()=>Yb,avgPool1d:()=>SB,avgPool2d:()=>_B,avgPool3d:()=>AB,avgPooling1d:()=>CB,avgPooling2d:()=>EB,avgPooling3d:()=>FB,batchNormalization:()=>IB,bidirectional:()=>HB,concatenate:()=>bB,conv1d:()=>Qz,conv2d:()=>eB,conv2dTranspose:()=>tB,conv3d:()=>nB,convLstm2d:()=>WB,convLstm2dCell:()=>VB,cropping2D:()=>rB,dense:()=>lB,depthwiseConv2d:()=>iB,dot:()=>kB,dropout:()=>uB,elu:()=>qz,embedding:()=>fB,flatten:()=>pB,gaussianDropout:()=>JB,gaussianNoise:()=>ZB,globalAveragePooling1d:()=>$B,globalAveragePooling2d:()=>DB,globalMaxPool1d:()=>qB,globalMaxPool2d:()=>KB,globalMaxPooling1d:()=>Mk,globalMaxPooling2d:()=>Pk,gru:()=>MB,gruCell:()=>PB,input:()=>Rk,inputLayer:()=>jz,layerNormalization:()=>NB,leakyReLU:()=>Xz,lstm:()=>OB,lstmCell:()=>LB,masking:()=>eW,maxPool1d:()=>XB,maxPool2d:()=>YB,maxPooling1d:()=>Ok,maxPooling2d:()=>Lk,maxPooling3d:()=>RB,maximum:()=>xB,minimum:()=>vB,multiply:()=>wB,permute:()=>mB,prelu:()=>Yz,reLU:()=>Kz,repeatVector:()=>dB,reshape:()=>hB,rnn:()=>UB,separableConv2d:()=>aB,simpleRNN:()=>zB,simpleRNNCell:()=>BB,softmax:()=>Zz,spatialDropout1d:()=>cB,stackedRNNCells:()=>GB,thresholdedReLU:()=>Jz,timeDistributed:()=>jB,upSampling2d:()=>sB,zeroPadding2d:()=>TB});var tW=0;function zk(){return tW++}var xm={};function vm(e=""){return e in xm||(xm[e]=0),xm[e]+=1,e+xm[e].toString()}function Zb(e){return Array.isArray(e)&&Array.isArray(e[0])}function wm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Me(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new z(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ht(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new z(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function km(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var Bk="Variable",Wk=class{constructor(e,t="float32",n=Bk,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=zk(),n=n==null?Bk:n,this.originalName=Tk(n),this.name=Sk(this.originalName),this.trainable_=a,this.constraint=r,this.val=L1(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),nW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function nW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Jb(e){return e.map(t=>t.read())}function Qb(e){e.forEach(t=>{t[0].write(t[1])})}var Xt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=zk(),s!=null&&(this.originalName=Tk(s),this.name=Sk(this.originalName)),this.rank=t.length}},aW=0,Im=class{constructor(e,t){this.callArgs=t,this.id=aW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},rW=0,qe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=rW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Ir(n)+"_"+vm(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ea(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return In(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return In(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} is not connected, no input to return.`);return In(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new kr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new kr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return In(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=bt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=bt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;nr.maxNDim)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new z(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of bt(e))s.push(i.shape);this.build(In(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=bt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=In(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=sW(e),i=this.computeOutputShape(s),o,l=iW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Fa(l,c,this,bt(e),t,this.name,u)):o=new Fa(l,i,this,bt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new kr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new kr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ea(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return km(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Jb(e?this.trainableWeights:this.weights)}setWeights(e){D(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Jb(t);for(let r=0;rr.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=bt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=bt(e);t=bt(t),n=bt(n),a=bt(a),r=wm(r),s=wm(s);let l=[],c=[],u=[];for(let p of o)l.push(p.sourceLayer),c.push(p.nodeIndex),u.push(p.tensorIndex);new Im({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;pe.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function sW(e){e=bt(e);let t=[];for(let n of e)t.push(n.shape);return In(t)}function iW(e){return"float32"}function Vk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s0){let r=await Promise.all(t);for(let s=0;sZ(this.totals[a],L(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:D(()=>{let a=L(ve(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},qk=class extends iu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;inew Kk(n,t))}var ga=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ga.checkForDuplicate(t),ga.constructors[e]==null&&(ga.constructors[e]=[]),ga.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ga.constructors)ga.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){ga.constructors={}}static createCallbacks(e){let t=[];for(let n in ga.constructors){let a=+n;e>=a&&t.push(...ga.constructors[a])}return t.map(n=>new n)}};ga.constructors={};function Yk(e,t,n,a,r,s,i,o,l){let c=new qk,u=[new lW,...ga.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let p=new jk(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:c}}function $a(e,t={},n=!1){return np(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Nm(e,t){return D(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(op(e),t,!0),a=kn(n.shape,Bt()),r=tn(Ya(n,a));return ve(e,r)})}function Ui(e,t){return D(()=>St(op(fe(t,e)),-1))}function Tm(e,t){return D(()=>St(Lt(fe(t,e)),-1))}function ou(e,t){return D(()=>{let n=fe(e,t),a=qt(Lt(e),Bt(),Number.MAX_VALUE),r=Lt(ve(n,a));return L(100,St(r,-1))})}function uW(e,t){return D(()=>{let n=qt(t,Bt(),Number.MAX_VALUE),a=$n(Z(1,n)),r=qt(e,Bt(),Number.MAX_VALUE),s=$n(Z(1,r));return St(op(fe(a,s)),-1)})}function cW(e,t){return D(()=>{let n=Ya(0,fe(1,L(e,t)));return St(op(n),-1)})}function pW(e,t){return D(()=>{let n=Ya(0,fe(1,L(e,t)));return St(n,-1)})}function dW(e,t){return D(()=>{let n=Te(L(e,t),-1),a=Zn(L(fe(1,e),t),-1);return Ya(0,Z(1,fe(a,n)))})}function hW(e,t){return D(()=>{let n=Math.log(2),a=fe(t,e),r=fe(Z(a,Xl(L(-2,a))),n);return St(r,-1)})}function cp(e,t,n=!1){return D(()=>{if(n)t=Ta(t);else{let a=Te(t,t.shape.length-1,!0);t=ve(t,a)}return t=qt(t,Bt(),1-Bt()),Tt(Te(L(e.toFloat(),$n(t)),t.shape.length-1))})}function Sm(e,t,n=!1){return D(()=>{let a=Kl(Pz(e)).toInt();t=qt(t,Bt(),1-Bt());let r=t.shape,s=Ul(a,r[r.length-1]).reshape(r);return cp(s,t,n)})}function mW(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return D(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function Cm(e,t){return D(()=>{let n;return n=qt(t,Bt(),1-Bt()),n=$n(ve(n,fe(1,n))),St(mW(e,n),-1)})}function fW(e,t){return D(()=>{let n=qt(e,Bt(),1),a=qt(t,Bt(),1);return Te(L(e,$n(ve(n,a))),-1)})}function gW(e,t){return D(()=>{let n=$n(Z(Bt(),t));return St(fe(t,L(e,n)),-1)})}function ex(e,t){return D(()=>{let n=Nm(e,-1),a=Nm(t,-1),r=L(n,a);return Tt(Te(r,-1))})}var _m={meanSquaredError:Ui,meanAbsoluteError:Tm,meanAbsolutePercentageError:ou,meanSquaredLogarithmicError:uW,squaredHinge:cW,hinge:pW,categoricalHinge:dW,logcosh:hW,categoricalCrossentropy:cp,sparseCategoricalCrossentropy:Sm,binaryCrossentropy:Cm,kullbackLeiblerDivergence:fW,poisson:gW,cosineProximity:ex};function tx(e){if(typeof e=="string"){if(e in _m)return _m[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(t)}else return e}function nx(e,t){return D(()=>{let n=L(.5,Dn(t)),a=sp(da(t,n),e.dtype);return St(ts(e,a),-1)})}function ax(e,t){return D(()=>sp(ts(Vc(e,-1),Vc(t,-1)),"float32"))}function Zk(e,t){return D(()=>ha(e.equal(1),t.equal(1)).sum().cast("float32"))}function yW(e,t){return D(()=>ha(e.equal(1),t.equal(0)).sum().cast("float32"))}function bW(e,t){return D(()=>ha(e.equal(0),t.equal(1)).sum().cast("float32"))}function Jk(e,t){return D(()=>{let n=Zk(e,t),a=bW(e,t),r=n.add(a);return wn(da(r,0),n.div(r),0).cast("float32")})}function xW(e,t){return D(()=>{let n=Zk(e,t),a=yW(e,t),r=n.add(a);return wn(da(r,0),n.div(r),0).cast("float32")})}function Qk(e,t){return Cm(e,t)}function eI(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ts(e,t).asType("float32")}var vW=Ui,wW=Ui,kW=Tm,IW=Tm,NW=ou,TW=ou,rx=cp,SW=ex,tI=Sm,Em={binaryAccuracy:nx,categoricalAccuracy:ax,precision:Jk,categoricalCrossentropy:rx,sparseCategoricalCrossentropy:tI,mse:vW,MSE:wW,mae:kW,MAE:IW,mape:NW,MAPE:TW,cosine:SW};function CW(e){if(typeof e=="string"&&e in Em)return Em[e];if(typeof e!="string"&&e!=null)return e;throw new z(`Unknown metric ${e}`)}function Am(e){if(er(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(_m))if(_m[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Em))if(Em[n]===e){t=n;break}return t!==void 0?t:e.name}}function _W(e){let t={Adagrad:()=>Oi.adagrad(.01),Adadelta:()=>Oi.adadelta(1,.95,Bt()),Adam:()=>Oi.adam(.001,.9,.999,Bt()),Adamax:()=>Oi.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Oi.rmsprop(.001,.9,0,Bt()),SGD:()=>Oi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new z(`Unknown Optimizer ${e}`)}var nI=1*1024*1024;function aI(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!sx(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>nI&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${nI}.`)}}function sx(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!sx(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!sx(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function DW(e,t,n,a=console.log){let r=AW(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),Fm(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Fm(e,t,n=console.log){let a="";for(let r=0;r0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function FW(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];Fm(i,t,n)}function $W(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;pm.name),l=[],c=t.names();for(let m of o)c.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,d;if(ox[u]==null){let m=MW(i,t);p=m.sorted,d=m.recipientCounts,ox[u]=p,sI[u]=d}p=ox[u],d={},r||Object.assign(d,sI[u]);let h=new Gi(t);for(let m=0;ma.maxNumTensors&&(a.maxNumTensors=F),F0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=iI(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=iI(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(c=>a[l].add(c))}}return{sorted:n,recipientCounts:OW(a)}}function OW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function iI(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:a,recipientMap:r}}function PW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;ay.name)}`);ss(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let b=y.sourceLayer,v=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(b),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let b=y.sourceLayer,v=y.nodeIndex,x=y.tensorIndex;er(v===0,"input layer has >1 nodes"),er(x===0,"input layer has >1 tensors"),this.inputLayers.push(b),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;yy.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,b,v,x,N,T)=>{(x==null||N==null||T==null)&&(x=y.sourceLayer,N=y.nodeIndex,T=y.tensorIndex);let C=x.inboundNodes[N];if(v.indexOf(C)!==-1)throw new Ea(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(b.indexOf(C)!==-1)return;this.containerNodes.add(rr.nodeKey(x,N)),x.id in s||(s[x.id]=Object.keys(s).length),v.indexOf(C)===-1&&v.push(C);let $=C.inboundLayers.length;for(let F=0;F<$;F++){let O=C.inputTensors[F],B=C.inboundLayers[F],W=C.nodeIndices[F],G=C.tensorIndices[F];o(O,b,v,B,W,G)}for(b.push(C);v.indexOf(C)>=0;)v.splice(v.indexOf(C),1);i.push(C)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let b=t[y.id],v=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];b=Math.max(b,v),a[y.outboundLayer.id]=b,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=b;for(let x=0;xparseInt(y,10)).sort(um);this.layers=[];for(let y of h){let b=d[y];b.sort((v,x)=>{let N=s[v.id],T=s[x.id];return NT?1:0});for(let v of b)v instanceof rr&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(um);let m=this.inputs.slice(),f=[];for(let y of h)for(let b of p[y]){let v=b.outboundLayer;if(v!=null){for(let x of b.inputTensors)if(m.indexOf(x)===-1)throw new Ea(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${f}`);for(let x of b.outputTensors)m.push(x);f.push(v.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let b=g.filter(v=>v===y).length;if(b!==1)throw new Ea(`The name "${y}" is used ${b} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Im({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new z(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new z(`${s.length} of ${a} weights are not set: ${s}`)}Qb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${$m}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=ix(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return D(()=>{e=bt(e);let n=new Gi;for(let a=0;a{e=bt(e);let n;return t==null?n=Li(null,e.length):n=bt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=wm(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;iparseInt(i,10)).sort(um);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(c.id)!==-1)continue;let u=[];for(let m=0;mparseInt(o,10)).sort(um);for(let o of a){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,p=c.inputTensors,d=c.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,b;if(c.callArgs!=null&&(m=c.callArgs),h.length===1){let[v,x]=h[0];m.mask==null&&(m.mask=x),y=bt(u.call(v,m)),b=bt(u.computeMask(v,x)),f=[v],g=[x]}else f=h.map(v=>v[0]),g=h.map(v=>v[1]),m.mask==null&&(m.mask=g),y=bt(u.call(f,m)),b=bt(u.computeMask(f,g));if(u.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v{let e=[];for(let t of this.layers)for(let n=0;n0){let m=[];for(let f=0;f0&&f.apply(In(y),b)}function l(f){let g=f.name,y=$a(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(b=>{if(!(b instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${b}`);i(y,b)})}let c=t.name,u=t.layers;for(let f of u)l(f);for(;!uz(s);)for(let f of u){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let b of y)o(g,b)}}let p=[],d=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],b=f[2];er(g in r);let v=r[g].inboundNodes[y].outputTensors;p.push(v[b])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],b=f[2];er(g in r);let v=r[g].inboundNodes[y].outputTensors;d.push(v[b])}return new e({inputs:p,outputs:d,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){D(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function LW(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function oI(e,t){return LW(e,t,"classWeight")}async function lI(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=D(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Fe(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),nt(i,"float32")}else return null}function zW(e,t){return L(e,t)}var BW=32;function cI(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=uI("input",e.inputNames,n),i=uI("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function uI(e,t,n){if(n instanceof Ae)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new z(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function WW(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function UW(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(pI(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=WW(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=Xk(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=Yk(u,p,n.epochs,null,null,VW(t,n),null,r,c);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m=n.batchesPerEpoch:v.done){if(r){let x;pI(n.validationData)?x=bt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=bt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?BW:n.validationBatchSize,verbose:0}));for(let N=0;N0)throw new $e("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=GW(t)?t:await t.iterator(),o=0,l=0;for(;a?l{if(c.value){let{xs:u,ys:p}=cI(e,c.value),d=u.concat(p),h=D(()=>r(d));if(Fe(d),l===0)for(let f=0;fZ(s[f],L(m,g))),l>0&&Fe(y)}Fe(h),o+=m,++l}return s}),c.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function hp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Vi(a,t,n-t)):Vi(e,t,n-t)}function ux(e,t){return D(()=>e==null?null:Array.isArray(e)?e.map(n=>ux(n,t)):Ek(e,t.dtype==="int32"?t:t.toInt()))}function cx(e,t){let n=[],a=0,r=null;for(;a=e&&(r=e),n.push([a,r]),a=r;return n}async function jW(e,t,n,a,r,s,i,o,l,c,u,p,d,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let f=!1;if(l!=null&&c!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Aa(0,g)),i==null&&(i=1);let{callbackList:b,history:v}=Yk(o,i,s,d,g,h,r,f,p);b.setModel(e),e.history=v,await b.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x{let O=C[$][0],B=C[$][1],W=Vi(T,O,B-O);F.batch=$,F.size=B-O;let G=ux(n,W),q=t(G);for(let H=0;H0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let T=!0,C=await e.standardizeUserData(i,o,null,null,T,p);l=C[0],c=C[1],f=l.concat(c)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let T=Math.floor(r[0].shape[0]*(1-a.validationSplit)),C=r[0].shape[0];l=hp(r,T,C),r=hp(r,0,T),c=hp(s,T,C),s=hp(s,0,T),f=l.concat(c)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),v,x;m?(e.makeTestFunction(),v=e.testFunction,x=b.slice().concat(b.map(T=>"val_"+T))):(v=null,f=[],x=b.slice());let N=Xk(a.callbacks,a.yieldEvery);return await jW(e,y,g,b,p,a.epochs,a.verbose,N,v,f,a.shuffle,x,a.initialEpoch,null,null)}finally{e.isTraining=!1,Hi(r,t),Hi(s,n),Hi(l,i),Hi(c,o),u!=null&&Fe(u)}}function dI(e){let t=[];e instanceof Ae&&(e=[e]);for(let n=0;nn.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Ae)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function KW(e){return e instanceof Ae}function px(e){return Array.isArray(e)}function hI(e){return!KW(e)&&!px(e)}function mI(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(px(e)&&e.length>0)i=!0;else if(hI(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new z(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(hI(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new z(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(px(e)){if(e=e,e.length!==t.length)throw new z(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new z(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=dI(s),n!=null)for(let i=0;i=0&&c!==u)throw new z(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function XW(e,t,n){let a=ss(e.map(s=>s.shape[0]));a.sort();let r=ss(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function YW(e,t,n){let a=[Ui,Cm,cp];for(let r=0;r1)throw new z(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var JW="layers-model",Nr=class extends rr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");DW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=_W(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof wr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new z(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(tx(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>tx(s))}else{let s=tx(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s{for(let s=0;s1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=ZW(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Wi("metric",()=>{for(let s=0;s{let l="",c,u,p;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Cm?["accuracy","acc"].indexOf(d)!==-1?u=nx:["crossentropy","ce"].indexOf(d)!==-1&&(u=Qk):this.lossFunctions[s]===Sm?["accuracy","acc"].indexOf(d)!==-1?u=eI:["crossentropy","ce"].indexOf(d)!==-1&&(u=tI):["accuracy","acc"].indexOf(d)!==-1?u=ax:["crossentropy","ce"].indexOf(d)!==-1&&(u=rx);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),p=u,c=l+f}else p=CW(d),c=l+Am(d);let h;Wi(c,()=>{h=p}),r(s,c,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;lx(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return In(l)}finally{Hi(s[0],e),Hi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),HW(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new z(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Gi;if(e instanceof Ae&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;oi.name);for(let i=0;i0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return D(()=>{let a=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let r=cx(a,t),s=this.outputs.map(i=>[]);for(let i=0;i{let o=r[i][0],l=r[i][1],c=hp(e,o,l),u=[];if(Array.isArray(c))for(let d=0;ds[l].push(o));return In(s.map(i=>Qe(i,0)))})}predict(e,t={}){let n=dI(e);fI(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return lx(a),this.predictLoop(n,a)}finally{Hi(n,e)}}predictOnBatch(e){fI(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ea("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s0&&e[0].shape[0]%a!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let c=oI(a,this.outputNames);l=[];for(let u=0;u{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new $e("Verbose mode is not implemented yet.");if(r!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=cx(s,n),l=nt(Aa(0,s));for(let c=0;c1&&(r+=`_${gk(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let h=0;h1&&h{d=Z(d,h)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>D(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;lIr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=Ir(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Ir(Am(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Ir(Am(e)));{let e={};for(let t in this.metrics)e[t]=Ir(Am(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=pp(e.optimizer_config),n=$a(t),a;if(typeof e.loss=="string")a=zi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>zi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=zi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>zi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=zi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Ht.getSaveHandlers(e);if(i.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new z(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ht.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:JW,generatedBy:`TensorFlow.js tfjs-layers v${$m}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Ht.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Ht.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;aI(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){aI(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Nr.className="Model";re.registerClass(Nr);var gI=class extends Nr{};gI.className="Functional";re.registerClass(gI);async function QW(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=pp(n),r=$a(a,t);if(e.weightsManifest!=null){let s=await Ht.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Fe(s)}return r}async function t4(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ht.getLoadHandlers(e,t);if(n.length===0)n.push(Ht.browserHTTPRequest(e,t));else if(n.length>1)throw new z(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return e4(e,void 0,t)}async function e4(e,t,n){if(n==null&&(n={}),e.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=$a(pp(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=n4(a.weightData,a.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Fe(c),Fe(u.map(p=>p.tensor))}return o}function n4(e,t){let n=Ht.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var lu=class extends Nr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:vm("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof lu||e instanceof Nr,n;if(t){if(n=e,n.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=Uk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Vk(this.outputs[0])}this.inboundNodes=[],new Im({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Li(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ht(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Nr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ea("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof lu))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=$a(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};lu.className="Sequential";re.registerClass(lu);function a4(e){return new Nr(e)}function r4(e){return new lu(e)}function s4(e,t){return t==null&&(t={}),t4(e,t)}function Rk(e){return Uk(e)}function i4(e,t){ga.registerCallbackConstructor(e,t)}var Pn=class extends re.Serializable{getConfig(){return{}}},yI=class extends Pn{apply(e,t=1){return Lz(e,t)}};yI.className="elu";re.registerClass(yI);var bI=class extends Pn{apply(e){return Uh(e)}};bI.className="selu";re.registerClass(bI);var xI=class extends Pn{apply(e){return Ye(e)}};xI.className="relu";re.registerClass(xI);var vI=class extends Pn{apply(e){return D(()=>Zl(6,Ye(e)))}};vI.className="relu6";re.registerClass(vI);var wI=class extends Pn{apply(e){return e}};wI.className="linear";re.registerClass(wI);var kI=class extends Pn{apply(e){return pa(e)}};kI.className="sigmoid";re.registerClass(kI);var II=class extends Pn{apply(e){return Bz(e)}};II.className="hardSigmoid";re.registerClass(II);var NI=class extends Pn{apply(e){return Xl(e)}};NI.className="softplus";re.registerClass(NI);var TI=class extends Pn{apply(e){return zz(e)}};TI.className="softsign";re.registerClass(TI);var SI=class extends Pn{apply(e){return jl(e)}};SI.className="tanh";re.registerClass(SI);var dx=class extends Pn{apply(e,t=-1){return Ta(e,t)}};dx.className="softmax";re.registerClass(dx);var CI=class extends Pn{apply(e,t=-1){return Ph(e,t)}};CI.className="logSoftmax";re.registerClass(CI);var _I=class extends Pn{apply(e,t=1){return D(()=>pa(e.mul(t)).mul(e))}};_I.className="swish";re.registerClass(_I);function us(e){return e.getClassName()}function hx(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function cs(e){if(e==null){let t={};return t.className="linear",t.config={},hx(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},hx(t)}else return e instanceof Pn?e:hx(e)}function mx(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var EI=class extends re.Serializable{},mp=class extends EI{constructor(e){super();mx(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return D(()=>{let t=vt([1]);return this.hasL1&&(t=Z(t,Te(L(this.l1,Lt(e))))),this.hasL2&&(t=Z(t,Te(L(this.l2,op(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};mp.className="L1L2";re.registerClass(mp);function o4(e){return mx(e),new mp({l1:e!=null?e.l1:null,l2:0})}function l4(e){return mx(e),new mp({l2:e!=null?e.l2:null,l1:0})}var AI={l1l2:"L1L2"};function mt(e){return Eb(e)}function FI(e,t={}){return np(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function kt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in AI?AI[e]:e,config:{}};return FI(t)}else return e instanceof EI?e:FI(e)}var fx=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Me(e);let n=Ye(e);return this.maxValue!=null&&(n=qt(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};fx.className="ReLU";re.registerClass(fx);var gx=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Me(e);return qc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gx.className="LeakyReLU";re.registerClass(gx);var yx=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=kt(e.alphaRegularizer),this.alphaConstraint=Vt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ht(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a(Dt(t),t==="channelsFirst"?Ue(e,[0,2,3,1]):e))}function $I(e,t){return D(()=>(Dt(t),t==="channelsFirst"?Ue(e,[0,2,3,4,1]):e))}function u4(e,t,n,a=1,r="valid",s,i=1){return D(()=>{if(s==null&&(s=_a()),Dt(s),e.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ue(e,[0,2,1])),r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=_h(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=nr(o,n)),o})}function DI(e,t,n,a=[1,1],r="valid",s,i,o=null){return D(()=>{if(s==null&&(s=_a()),Dt(s),e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=wx(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=rs.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function c4(e,t,n,a=[1,1,1],r="valid",s,i){return D(()=>{if(s==null&&(s=_a()),Dt(s),e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=$I(e,s);if(r==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Jy(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=nr(o,n)),s==="channelsFirst"&&(o=Ue(o,[0,4,1,2,3])),o})}var kx=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",kx.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=uu(t.kernelSize,e,"kernelSize"),this.strides=uu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Dt(this.dataFormat),this.activation=cs(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Vt(t.biasConstraint),this.biasRegularizer=kt(t.biasRegularizer),this.activityRegularizer=kt(t.activityRegularizer),this.dilationRate=uu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(er("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Fb(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:us(this.activation),useBias:this.useBias,biasInitializer:Ct(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},fp=class extends kx{constructor(e,t){super(e,t);this.kernel=null,fp.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Vt(t.kernelConstraint),this.kernelRegularizer=kt(t.kernelRegularizer)}build(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return D(()=>{e=Me(e);let n,a=this.bias==null?null:this.bias.read(),r=bk(this.activation.getClassName());if(r!=null&&this.rank===2)n=DI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=u4(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=DI(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=c4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ht(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r 0 but got ${JSON.stringify(e.filters)}`)}},gp=class extends fp{constructor(e){super(2,e);gp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Fb(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};gp.className="Conv2D";re.registerClass(gp);var Rm=class extends fp{constructor(e){super(3,e);Rm.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Rm.className="Conv3D";re.registerClass(Rm);var Ix=class extends gp{constructor(e){super(e);if(this.inputSpec=[new Xt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ht(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Xt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return D(()=>{let n=Me(e);if(n.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],c=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Dm(o,p,c,this.padding),m=Dm(l,d,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ue(n,[0,2,3,1]));let g=Eh(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ue(g,[0,3,1,2])),this.bias!=null&&(g=nr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ht(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Dm(t[a],o,s,this.padding),t[r]=Dm(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ix.className="Conv2DTranspose";re.registerClass(Ix);var RI=class extends fp{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=kt(t.depthwiseRegularizer),this.depthwiseConstraint=Vt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=kt(t.pointwiseRegularizer),this.pointwiseConstraint=Vt(t.pointwiseConstraint)}build(e){if(e=ht(e),e.length{e=Me(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),n=Mi(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=nr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ue(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.pointwiseInitializer=Ct(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseConstraint),e.pointwiseConstraint=Wt(this.pointwiseConstraint),e}};RI.className="SeparableConv";var Nx=class extends RI{constructor(e){super(2,e)}};Nx.className="SeparableConv2D";re.registerClass(Nx);var Mm=class extends fp{constructor(e){super(1,e);Mm.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Fb(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Mm.className="Conv1D";re.registerClass(Mm);var Tx=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return D(()=>{if(e=Me(e),this.dataFormat==="channelsLast"){let n=cm(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return cm(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=cm(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return cm(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Tx.className="Cropping2D";re.registerClass(Tx);var Sx=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Fz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return D(()=>{let n=Me(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ue(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ue(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Sx.className="UpSampling2D";re.registerClass(Sx);function p4(e,t,n=[1,1],a="valid",r,s){return D(()=>{r==null&&(r=_a()),Dt(r);let i=wx(e,r);if(e.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=es(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ue(i,[0,3,1,2])),i})}var Cx=class extends kx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Vt(e.depthwiseConstraint),this.depthwiseRegularizer=kt(e.depthwiseRegularizer)}build(e){if(e=ht(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{e=Me(e);let n=p4(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=nr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Da(t,this.kernelSize[0],this.padding,this.strides[0]),s=Da(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ct(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Wt(this.depthwiseRegularizer),e}};Cx.className="DepthwiseConv2D";re.registerClass(Cx);function MI(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function PI(e,t,n,a=!1,r,s,i=!1,o=!1){return D(()=>{let l=t.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(Aa(2,l));if(t=Ue(t,c),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=Fn(r,-1)),r=Ue(r,c)),a&&(t=Rn(t,0),r!=null&&(r=Rn(r,0)));let u=[],p,d=n,h=t.shape[0],m=dt(t),f;r!=null&&(f=dt(r));for(let y=0;ye(b,d));if(r==null)p=v[0],d=v[1];else{let x=D(()=>{let N=f[y],T=Dn(N).sub(N),C=v[0].mul(N).add(d[0].mul(T)),$=d.map((F,O)=>v[1][O].mul(N).add(F.mul(T)));return{output:C,newStates:$}});p=x.output,d=x.newStates}o&&u.push(p)}let g;return o&&(g=$t(u,1)),[p,g,d]})}var ar=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Pm({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Xt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Aa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Zb(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return D(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;ni.shape[i.shape.length-1]),s))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Xt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_=[vt([n,this.cell.stateSize])];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>vt([n,a])):this.states_[0]=vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let a=0;ajt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=MI(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Xt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Fa){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Me(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new z(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=PI((d,h)=>{let m=this.cell.call([d].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?c:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return D(()=>{let t=vt(e.shape);return t=Te(t,[1,2]),t=ip(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Ob(t,[1,n]):t):this.cell.stateSize>1?[Ob(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ar.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=$a(a,n);return new e(Object.assign(t,{cell:r}))}};ar.className="RNN";re.registerClass(ar);var up=class extends qe{},Om=class extends up{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0Dn(e),rate:this.dropout,training:a})),0Dn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=tr(L(e,s),this.kernel.read()):r=tr(e,this.kernel.read()),this.bias!=null&&(r=nr(r,this.bias.read())),i!=null&&(n=L(n,i));let o=Z(r,tr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),recurrentInitializer:Ct(this.recurrentInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),recurrentConstraint:Wt(this.recurrentConstraint),biasConstraint:Wt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Om.className="SimpleRNNCell";re.registerClass(Om);var _x=class extends ar{constructor(e){e.cell=new Om(e),super(e)}call(e,t){return D(()=>{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};_x.className="SimpleRNN";re.registerClass(_x);var Lm=class extends up{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ht(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return D(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0Dn(e),rate:this.dropout,training:n,count:3})),0Dn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ex.className="GRU";re.registerClass(Ex);var yp=class extends up{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=cs(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=kt(e.kernelRegularizer),this.recurrentRegularizer=kt(e.recurrentRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.kernelConstraint=Vt(e.kernelConstraint),this.recurrentConstraint=Vt(e.recurrentConstraint),this.biasConstraint=Vt(e.biasConstraint),this.dropout=ru([1,os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=ru([1,os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ht(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends fa{apply(i,o){let l=r.apply([s]),c=new dm().apply([s]),u=r.apply([s*2]);return _k(_k(l,c),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0Dn(e),rate:this.dropout,training:n,count:4})),0Dn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0{this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Ax.className="LSTM";re.registerClass(Ax);var Pm=class extends up{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return D(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i{Wi(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push($a(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Jb(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;sAk(t(),n),i=()=>lp(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var d4=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r{if(this.cell.dropoutMask!=null&&(Fe(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Fe(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return D(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=vt(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){D(()=>{if(!this.stateful)throw new kr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_=[vt(r)];else if(e==null)Fe(this.states_),this.keptStates!=null&&(Fe(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>vt(r)):this.states_[0]=vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Fe(this.states_);for(let s=0;sjt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=Da(l,a[0],r,s[0],i[0]),p=Da(c,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};OI.className="ConvRNN2D";var zm=class extends yp{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=uu(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=uu(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",Qn(this.padding),this.dataFormat=s||"channelsLast",Dt(this.dataFormat),this.dilationRate=uu(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=ht(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends fa{apply(u,p){let d=l.apply([c]),h=Za([c]),m=l.apply([c*2]);return zb([d,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return D(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0Dn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(J,se,Q)=>!se||!se[Q]?J:L(se[Q],J),c=l(a,o,0),u=l(a,o,1),p=l(a,o,2),d=l(a,o,3);0Dn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),b=3,[v,x,N,T]=Mn(this.kernel.read(),i,b),[C,$,F,O]=this.useBias?Mn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,v,C,this.padding),u=this.inputConv(u,x,$,this.padding),p=this.inputConv(p,N,F,this.padding),d=this.inputConv(d,T,O,this.padding);let[B,W,G,q]=Mn(this.recurrentKernel.read(),i,b);m=this.recurrentConv(m,B),f=this.recurrentConv(f,W),g=this.recurrentConv(g,G),y=this.recurrentConv(y,q);let H=this.recurrentActivation.apply(Z(c,m)),K=this.recurrentActivation.apply(Z(u,f)),X=Z(L(K,s),L(H,this.activation.apply(Z(p,g)))),ne=L(this.recurrentActivation.apply(Z(d,y)),this.activation.apply(X));return[ne,ne,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=d4(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=At(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?nr(r,n,this.dataFormat):r}recurrentConv(e,t){return At(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};zm.className="ConvLSTM2DCell";re.registerClass(zm);var Fx=class extends OI{constructor(e){let t=new zm(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Fx.className="ConvLSTM2D";re.registerClass(Fx);var Bm=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a{this.invokeCallHook(e,t);let n=Me(e);if(0Ak(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Bm.className="Dropout";re.registerClass(Bm);var $x=class extends Bm{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};$x.className="SpatialDropout1D";re.registerClass($x);var Dx=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=cs(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Vt(e.kernelConstraint),this.biasConstraint=Vt(e.biasConstraint),this.kernelRegularizer=kt(e.kernelRegularizer),this.biasRegularizer=kt(e.biasRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ht(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ht(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=bk(this.activation.getClassName()),r;return a!=null?r=tr(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=tr(n,this.kernel.read()),this.bias!=null&&(r=nr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:us(this.activation),useBias:this.useBias,kernelInitializer:Ct(this.kernelInitializer),biasInitializer:Ct(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Wt(this.kernelConstraint),biasConstraint:Wt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="Dense";re.registerClass(Dx);var Rx=class extends qe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ht(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],is(e,1)]}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r{this.invokeCallHook(e,t);let n=Me(e);return this.activation.apply(n)})}getConfig(){let e={activation:us(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Mx.className="Activation";re.registerClass(Mx);var Px=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return D(()=>(e=Me(e),Mz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Px.className="RepeatVector";re.registerClass(Px);var Ox=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Me(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Ox.className="Reshape";re.registerClass(Ox);var Lx=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Aa(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Xt({ndim:this.dims.length+1})]}computeOutputShape(e){e=ht(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ue(Me(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Lx.className="Permute";re.registerClass(Lx);var zx=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Me(e),a=-1;return Wc(Ri(n,this.maskValue),a)}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e),a=-1,r=!0,s=Wc(Ri(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};zx.className="Masking";re.registerClass(zx);var Bx=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(bt(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=kt(e.embeddingsRegularizer),this.activityRegularizer=kt(e.activityRegularizer),this.embeddingsConstraint=Vt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return D(()=>this.maskZero?(e=Me(e),Ri(e,Ge(e))):null)}computeOutputShape(e){if(e=ht(e),this.inputLength==null)return[...e,this.outputDim];let t=bt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a{this.invokeCallHook(e,t);let n=Me(e);return n.dtype!=="int32"&&(n=sp(n,"int32")),Ek(this.embeddings.read(),n.as1D()).reshape(ht(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ct(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Wt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Bx.className="Embedding";re.registerClass(Bx);var ji=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;rr.length);e.indexOf(null)===-1&&ss(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return D(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=os(a);for(let s of e){let i=s.rank;for(let o=0;o1){let c=Aa(1,l).concat([0]);n.push(Ue(o,c)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=Ue(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(Aa(0,i-1));s=Ue(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:Fn(a,0));let n=t[0];for(let a=1;a{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return D(()=>zb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return D(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return D(()=>{let i;if(a>r){i=a-r;let l=[];for(let c=0;ca){i=r-a;let l=[];for(let c=0;c0){let l;a>r?l=a+r-3:l=a-1;let c=[];for(let u=l;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new z(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>bp(r,e[s].shape.length)):a=[bp(this.axes,t.shape.length),bp(this.axes,n.shape.length)],this.normalize&&(t=Nm(t,a[0]),n=Nm(n,a[1])),h4(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[bp(this.axes,e.length),bp(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};qx.className="Dot";re.registerClass(qx);var Kx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return lp(()=>pm(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Kx.className="GaussianNoise";re.registerClass(Kx);var Xx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{this.invokeCallHook(e,t);let n=Me(e);return this.rate>0&&this.rate<1?lp(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(pm(n.shape,1,a))},()=>n,t.training||!1):n})}};Xx.className="GaussianDropout";re.registerClass(Xx);var Yx=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Me(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return D(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return lp(()=>{let a=Me(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=ns(Jl(n),this.rate);o=sp(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Me(e),t.training||!1)}return e})}};Yx.className="AlphaDropout";re.registerClass(Yx);function xp(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=d1(e,t,n,a,r,s);else if(e.rank===3)i=h1(e,t,n,a,r,s);else if(e.rank===4)i=m1(e,t,n,a,r,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function m4(e,t,n,a,r=.001){return D(()=>{let s=Lh(e,a),i=s.mean,o=s.variance;return[xp(e,i,o,n,t,r),i,o]})}function f4(e,t,n,a,r=.001){return D(()=>{let s=Lh(e,a),i=s.mean,o=s.variance,l=[];for(let h of Aa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let c=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[xp(e,c,u,d,p,r),i,o]})}function g4(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Aa(0,e.rank-1))?m4(e,t,n,a,r):f4(e,t,n,a,r)}var Zx=class extends qe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Vt(e.betaConstraint),this.gammaConstraint=Vt(e.gammaConstraint),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer)}build(e){e=ht(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Xt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return D(()=>{let n=t.training==null?!1:t.training,a=Me(e),r=a.shape,s=r.length,i=Aa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Li(1,s);l[o]=r[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,Aa(0,s).slice(0,s-1)),p=()=>{if(u){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),b=this.center?this.beta.read().reshape(l):null,v=this.scale?this.gamma.read().reshape(l):null;return xp(a,g,y,b,v,this.epsilon)}else return xp(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,m]=g4(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,b)=>{D(()=>{let v=1-b,x=g.read(),N=x.sub(y).mul(v);g.write(x.sub(N))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ct(this.betaInitializer),gammaInitializer:Ct(this.gammaInitializer),movingMeanInitializer:Ct(this.movingMeanInitializer),movingVarianceInitializer:Ct(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Wt(this.betaConstraint),gammaConstraint:Wt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Zx.className="BatchNormalization";re.registerClass(Zx);var Jx=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=kt(e.betaRegularizer),this.gammaRegularizer=kt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ht(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==ss(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Me(e),a=n.shape,r=a.length;return D(()=>{let s=!0,{mean:i,variance:o}=Lh(n,this.axis,s),l=Li(1,r);for(let m of this.axis)l[m]=a[m];let c=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=c(this.gamma.read()),p=c(this.beta.read()),d=[],h=[];for(let m=0;m{if(e.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=_a()),n!=="channelsLast"&&n!=="channelsFirst")throw new z(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],Jn(e,a)})}var Qx=class extends qe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?_a():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ht(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return D(()=>y4(Me(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Qx.className="ZeroPadding2D";re.registerClass(Qx);function Wm(e,t,n,a,r,s){return D(()=>{Dt(r),kk(s),Qn(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=_a()),s==null&&(s="max"),e=wx(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Ft(e,t,n,o):i=Yn(e,t,n,o),r==="channelsFirst"&&(i=Ue(i,[0,3,1,2])),i})}function LI(e,t,n,a,r,s){return D(()=>{Dt(r),kk(s),Qn(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=_a()),s==null&&(s="max"),e=$I(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=ub(e,t,n,o):i=Xy(e,t,n,o),r==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var zI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qn(this.padding),this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){e=ht(e);let t=Da(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return D(()=>{this.invokeCallHook(e,t),e=ip(Me(e),2);let n=this.poolingFunction(Me(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return as(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ev=class extends zI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Wm(e,t,n,a,r,"max")}};ev.className="MaxPooling1D";re.registerClass(ev);var tv=class extends zI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Wm(e,t,n,a,r,"avg")}};tv.className="AveragePooling1D";re.registerClass(tv);var BI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),Qn(this.padding),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},nv=class extends BI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Wm(e,t,n,a,r,"max")}};nv.className="MaxPooling2D";re.registerClass(nv);var av=class extends BI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),Wm(e,t,n,a,r,"avg")}};av.className="AveragePooling2D";re.registerClass(av);var WI=class extends qe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),Qn(this.padding),this.inputSpec=[new Xt({ndim:5})]}computeOutputShape(e){e=ht(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Da(t,this.poolSize[0],this.padding,this.strides[0]),n=Da(n,this.poolSize[1],this.padding,this.strides[1]),a=Da(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return D(()=>(this.invokeCallHook(e,t),this.poolingFunction(Me(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},rv=class extends WI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),LI(e,t,n,a,r,"max")}};rv.className="MaxPooling3D";re.registerClass(rv);var sv=class extends WI{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Dt(r),Qn(a),LI(e,t,n,a,r,"avg")}};sv.className="AveragePooling3D";re.registerClass(sv);var VI=class extends qe{constructor(e){super(e);this.inputSpec=[new Xt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},iv=class extends VI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return St(n,1)})}};iv.className="GlobalAveragePooling1D";re.registerClass(iv);var ov=class extends VI{constructor(e){super(e||{})}call(e,t){return D(()=>{let n=Me(e);return Zn(n,1)})}};ov.className="GlobalMaxPooling1D";re.registerClass(ov);var UI=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Dt(this.dataFormat),this.inputSpec=[new Xt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},lv=class extends UI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};lv.className="GlobalAveragePooling2D";re.registerClass(lv);var uv=class extends UI{call(e,t){return D(()=>{let n=Me(e);return this.dataFormat==="channelsLast"?Zn(n,[1,2]):Zn(n,[2,3])})}};uv.className="GlobalMaxPooling2D";re.registerClass(uv);var GI=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=$a(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},cv=class extends GI{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ht(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ht(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return D(()=>(e=Me(e),PI((n,a)=>[Me(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};cv.className="TimeDistributed";re.registerClass(cv);function b4(e){Bi(Az,"BidirectionalMergeMode",e)}var x4="concat",pv=class extends GI{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=$a(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=$a(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?x4:e.mergeMode,b4(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):In(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=MI(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Xt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(a!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Fa;for(let l of s)if(l instanceof Fa!==o)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return D(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Rn(r,1));let i;return this.mergeMode==="concat"?i=zb([a,r]):this.mergeMode==="sum"?i=Z(a,r):this.mergeMode==="ave"?i=L(.5,Z(a,r)):this.mergeMode==="mul"?i=L(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Wi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Wi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=$a(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};pv.className="Bidirectional";re.registerClass(pv);function jz(e){return new su(e)}function qz(e){return new bx(e)}function Kz(e){return new fx(e)}function Xz(e){return new gx(e)}function Yz(e){return new yx(e)}function Zz(e){return new vx(e)}function Jz(e){return new xx(e)}function Qz(e){return new Mm(e)}function eB(e){return new gp(e)}function tB(e){return new Ix(e)}function nB(e){return new Rm(e)}function aB(e){return new Nx(e)}function rB(e){return new Tx(e)}function sB(e){return new Sx(e)}function iB(e){return new Cx(e)}function oB(e){return new Mx(e)}function lB(e){return new Dx(e)}function uB(e){return new Bm(e)}function cB(e){return new $x(e)}function pB(e){return new Rx(e)}function dB(e){return new Px(e)}function hB(e){return new Ox(e)}function mB(e){return new Lx(e)}function fB(e){return new Bx(e)}function gB(e){return new Wx(e)}function yB(e){return new Ux(e)}function bB(e){return new jx(e)}function xB(e){return new Gx(e)}function vB(e){return new Hx(e)}function wB(e){return new Vx(e)}function kB(e){return new qx(e)}function IB(e){return new Zx(e)}function NB(e){return new Jx(e)}function TB(e){return new Qx(e)}function Kb(e){return new tv(e)}function SB(e){return Kb(e)}function CB(e){return Kb(e)}function Xb(e){return new av(e)}function _B(e){return Xb(e)}function EB(e){return Xb(e)}function Yb(e){return new sv(e)}function AB(e){return Yb(e)}function FB(e){return Yb(e)}function $B(e){return new iv(e)}function DB(e){return new lv(e)}function Mk(e){return new ov(e)}function Pk(e){return new uv(e)}function Ok(e){return new ev(e)}function Lk(e){return new nv(e)}function RB(e){return new rv(e)}function MB(e){return new Ex(e)}function PB(e){return new Lm(e)}function OB(e){return new Ax(e)}function LB(e){return new yp(e)}function zB(e){return new _x(e)}function BB(e){return new Om(e)}function WB(e){return new Fx(e)}function VB(e){return new zm(e)}function UB(e){return new ar(e)}function GB(e){return new Pm(e)}function HB(e){return new pv(e)}function jB(e){return new cv(e)}var qB=Mk,KB=Pk,XB=Ok,YB=Lk;function ZB(e){return new Kx(e)}function JB(e){return new Xx(e)}function QB(e){return new Yx(e)}function eW(e){return new zx(e)}var HI={};Oe(HI,{MAPE:()=>A4,MSE:()=>D4,binaryAccuracy:()=>v4,binaryCrossentropy:()=>w4,categoricalAccuracy:()=>I4,categoricalCrossentropy:()=>N4,cosineProximity:()=>C4,mape:()=>F4,meanAbsoluteError:()=>_4,meanAbsolutePercentageError:()=>E4,meanSquaredError:()=>$4,mse:()=>R4,precision:()=>T4,recall:()=>S4,sparseCategoricalAccuracy:()=>k4});function v4(e,t){return nx(e,t)}function w4(e,t){return Qk(e,t)}function k4(e,t){return eI(e,t)}function I4(e,t){return ax(e,t)}function N4(e,t){return rx(e,t)}function T4(e,t){return Jk(e,t)}function S4(e,t){return xW(e,t)}function C4(e,t){return ex(e,t)}function _4(e,t){return Tm(e,t)}function E4(e,t){return ou(e,t)}function A4(e,t){return ou(e,t)}function F4(e,t){return ou(e,t)}function $4(e,t){return Ui(e,t)}function D4(e,t){return Ui(e,t)}function R4(e,t){return Ui(e,t)}var jI={};Oe(jI,{modelFromJSON:()=>QW});var qI={};Oe(qI,{l1:()=>P4,l1l2:()=>M4,l2:()=>O4});function M4(e){return new mp(e)}function P4(e){return o4(e)}function O4(e){return l4(e)}var KI=class extends iu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Nr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Vm(e,t){return et}var YI=class extends KI{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Vm:this.mode==="max"?this.monitorFunc=XI:this.monitor.indexOf("acc")!==-1?this.monitorFunc=XI:this.monitorFunc=Vm,this.monitorFunc===Vm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Vm?Infinity:-Infinity}async onEpochEnd(e,t){await ls(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function L4(e){return new YI(e)}var z4={earlyStopping:L4},Ra;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ra||(Ra={}));var ZI;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(ZI||(ZI={}));var dv={};function B4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};dv[e]=n}function JI(e){return dv[e]}function W4(e){delete dv[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return Tn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>Tn(p,n,a,r));let c=Tn(t.inputNames.slice(o)[0],n,a,r),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function Tn(e,t,n,a){let[r,s]=On(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Um(r,o)]);return i!==void 0?t[Um(r,i)][s]:void 0}function V4(e,t,n){return t[Um(e,n.currentContextId)]}function Tr(e,t){let[n,a]=On(e);return[Um(n,t&&t.currentContextId),a]}function Um(e,t){return t?`${e}-${t}`:e}function On(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Gm(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Sr(e){return e.kept?e:Yr(e)}var QI={};Oe(QI,{json:()=>U4});var U4=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],eN={};Oe(eN,{json:()=>G4});var G4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],tN={};Oe(tN,{json:()=>H4});var H4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],nN={};Oe(nN,{json:()=>j4});var j4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],aN={};Oe(aN,{json:()=>q4});var q4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],rN={};Oe(rN,{json:()=>K4});var K4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],sN={};Oe(sN,{json:()=>X4});var X4=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],iN={};Oe(iN,{json:()=>Y4});var Y4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],oN={};Oe(oN,{json:()=>Z4});var Z4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],lN={};Oe(lN,{json:()=>J4});var J4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],uN={};Oe(uN,{json:()=>Q4});var Q4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],cN={};Oe(cN,{json:()=>eV});var eV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],pN={};Oe(pN,{json:()=>tV});var tV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],dN={};Oe(dN,{json:()=>nV});var nV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],hN={};Oe(hN,{json:()=>aV});var aV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],mN={};Oe(mN,{json:()=>rV});var rV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],fN={};Oe(fN,{json:()=>sV});var sV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],yN=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[QI,eN,tN,nN,aN,rN,sN,uN,lN,iN,cN,pN,dN,hN,mN,fN,oN],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(g=>{let[y]=Tr(g);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=Tr(m),g=i[f];g!=null&&(g.signatureKey=u[m],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(m=>{let[f]=Tr(m),g=i[f];g&&(g.signatureKey=c[m],o.push(g))}):o=a;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:d};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=JI(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=hv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=hv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=wv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=wv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=fv(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=fv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=vv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=vv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=mv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=mv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Iv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Iv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=xv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=xv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=kv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=kv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=yv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=yv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=bv(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=bv(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=gN(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=gN(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&a.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=Tr(c.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:gv(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,s.push(p),r[u]=p}),Object.keys(r).forEach(c=>{let u=r[c];u.inputNames.forEach(p=>{let[d]=Tr(p);u.inputs.push(r[d]),r[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,p]=Tr(o[c.name]),d=r[u];d!=null&&(d.defaultOutput=p,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function iV(e){let t=ee().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function bN(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):iV(e);return t?n:n.toLowerCase()}function hv(e,t,n,a=!1){let r=e[t];return r!=null?bN(r.s,a):n}function mv(e,t,n){let a=e[t];return a?a.b:n}function fv(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function gv(e){switch(typeof e=="string"&&(e=Ra[e]),e){case Ra.DT_FLOAT:return"float32";case Ra.DT_INT32:case Ra.DT_INT64:case Ra.DT_INT8:case Ra.DT_UINT8:return"int32";case Ra.DT_BOOL:return"bool";case Ra.DT_DOUBLE:return"float32";case Ra.DT_STRING:return"string";default:return null}}function gN(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function yv(e,t,n){let a=e[t];return a&&a.type?gv(a.type):n}function bv(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>gv(r)):n}function xN(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function xv(e,t,n){let a=e[t];return a&&a.shape?xN(a.shape):n}function vv(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function wv(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>bN(s,a)):n}function kv(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>xN(r)):n}function Iv(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var oV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return Tn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Tn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return fv(this.node.rawAttrs,e,t);if(n.s!=null)return hv(this.node.rawAttrs,e,t);if(n.b!=null)return mv(this.node.rawAttrs,e,t);if(n.shape!=null)return xv(this.node.rawAttrs,e,t);if(n.type!=null)return yv(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return vv(this.node.rawAttrs,e,t);if(n.list.s!=null)return wv(this.node.rawAttrs,e,t);if(n.list.shape!=null)return kv(this.node.rawAttrs,e,t);if(n.list.b!=null)return Iv(this.node.rawAttrs,e,t);if(n.list.type!=null)return bv(this.node.rawAttrs,e,t)}return t}},lV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Z(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[l1(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[pb(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ve(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[tb(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Th(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Zl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Ya(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[xr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[Kh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},uV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(I("x",e,t,n))];case"Acos":return[zy(I("x",e,t,n))];case"Acosh":return[By(I("x",e,t,n))];case"Asin":return[Vy(I("x",e,t,n))];case"Asinh":return[Uy(I("x",e,t,n))];case"Atan":return[Gy(I("x",e,t,n))];case"Atan2":return[Hy(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[jy(I("x",e,t,n))];case"Ceil":return[Yy(I("x",e,t,n))];case"Complex":return[qr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[jc(I("x",e,t,n))];case"Cosh":return[Ah(I("x",e,t,n))];case"Elu":return[ql(I("x",e,t,n))];case"Erf":return[nb(I("x",e,t,n))];case"Exp":return[dn(I("x",e,t,n))];case"Expm1":return[ab(I("x",e,t,n))];case"Floor":return[Kl(I("x",e,t,n))];case"Log":return[$n(I("x",e,t,n))];case"Log1p":return[Rh(I("x",e,t,n))];case"Imag":return[$h(I("x",e,t,n))];case"Neg":return[Tt(I("x",e,t,n))];case"Reciprocal":return[mb(I("x",e,t,n))];case"Real":return[Zc(I("x",e,t,n))];case"Relu":return[Ye(I("x",e,t,n))];case"Round":return[fb(I("x",e,t,n))];case"Selu":return[Uh(I("x",e,t,n))];case"Sigmoid":return[pa(I("x",e,t,n))];case"Sin":return[Gh(I("x",e,t,n))];case"Sign":return[gb(I("x",e,t,n))];case"Sinh":return[Hh(I("x",e,t,n))];case"Softplus":return[Xl(I("x",e,t,n))];case"Sqrt":return[tn(I("x",e,t,n))];case"Square":return[ut(I("x",e,t,n))];case"Tanh":return[jl(I("x",e,t,n))];case"Tan":return[xb(I("x",e,t,n))];case"ClipByValue":return[qt(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Wh(I("x",e,t,n))];case"Rsqrt":return[Vh(Tn(e.inputNames[0],t,n))];case"Prod":return[zh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[qc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Yc(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ya(e,t,n=""){k.assert(cV(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function cV(e,t){if(e.length!==t.length)return!1;for(let n=0;n{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ya(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,dt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];D(()=>{t=j(t,[1,n,r]);for(let o=0;o{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ya(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=de(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new vp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return ya(e,this.elementShape,"TensorList shape mismatch: "),D(()=>{let a=this.tensors.map(r=>j(r,e));return $t(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return ya(n.shape,e,"TensorList shape mismatch: "),j(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ya(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return ya(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ya(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return ya(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?Kn([],[0].concat(this.elementShape)):D(()=>{let a=e.map(r=>j(this.tensors[r],n));return $t(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return ya(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?Kn([],[0].concat(this.elementShape)):D(()=>{let n=this.tensors.map(a=>j(a,t));return Qe(n,0)})}};function dV(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ya(r,t,"TensorList shape mismatch: ");let s=dt(e);return new vp(s,t,a)}function hV(e,t,n){return new vp([],e,t,n)}function mV(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new vp([],n,e.dtype,a),i=dt(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function fV(e,t,n){let a=0,r=t.map(l=>(a+=l,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${a}, and tensor's shape is: ${e.shape}`);let s=a===0?0:e.size/a,i=D(()=>{let l=[];e=j(e,[1,a,s]);for(let c=0;c{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let p=c.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let a=I("pred",e,t,n);return[Sr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Sr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>Tn(r,t,n)!==void 0);if(a){let r=Tn(a,t,n);return[Sr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Sr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Sr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Sr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new pV(c,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,de(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[de(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=mV(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=hV(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=dV(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=fV(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function vN(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=Gm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:p,dilations:d,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var yV=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[_h(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=Gm(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[At(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=vN(e,t,n);return[rs.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=vN(e,t,n);return[rs.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=Gm(e,t,n);return[Eh(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=Gm(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[es(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Jy(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Yn(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ft(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=D1(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Xy(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ub(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],c=s[2];return[eb(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bV=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[kn(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[S1(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[R1(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Ul(a,r,s,i)]}case"Ones":return[Za(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Dn(I("x",e,t,n))];case"RandomUniform":return[Jl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Bh(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Xh(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[vt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Nv(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var xV=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Nv(e,t,n),c=await Ja.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Nv(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Ja.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Nv(e,t,n);return[await Ja.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ce(I("condition",e,t,n),"bool"),r=[await kb(a)];return a.dispose(),r}case"ListDiff":return O1(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},vV=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=vb(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Yh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Yh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wV=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[Tn(e.name,t,n)||a];case"Placeholder":return[Tn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Sr(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Sr(c));case"Snapshot":let r=I("x",e,t,n);return[Sr(r)];case"Shape":return[nt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>nt(c.shape));case"Size":return[de(I("x",e,t,n).size,"int32")];case"Rank":return[de(I("x",e,t,n).rank,"int32")];case"NoOp":return[de(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;ce.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),D(()=>{let a=dt(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i{let a=[];for(let r=0;r{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new kV(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},NV=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ja.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ja.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ja.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},TV=(e,t,n)=>{switch(e.op){case"Equal":return[ts(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ri(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[da(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[ns(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Dh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[$i(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[ha(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Kc(I("a",e,t,n))];case"LogicalOr":return[Oh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[wn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},SV=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ze(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[Ue(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[rs.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CV=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[br(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[br(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[sb(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Ta(I("x",e,t,n))];case"LogSoftmax":return[Ph(I("x",e,t,n))];case"SparseToDense":return[Ib(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_V=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Zn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[St(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Yl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Te(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Sh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Wc(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Vc(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[Wy(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[zh(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Fh(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[f1(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[w1(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},EV=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[Qe(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Fi(a,ce(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Fi(s,ce(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=as(r[0]).shape,o=r.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(as(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:j(l,s)});return[$t(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return dt(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Ka(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Mn(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[W1(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[V1(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Ib(a,s,r,s.dtype===i.dtype?i:ce(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},AV=(e,t,n)=>{switch(e.op){case"FFT":return[Qc(I("x",e,t,n))];case"IFFT":return[eu(I("x",e,t,n))];case"RFFT":return[ep(I("x",e,t,n))];case"IRFFT":return[qh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FV=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[Fn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[as(I("x",e,t,n),a)]}case"Reshape":return[j(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[cb(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Jn(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Xc(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Gc(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[Qy(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Hc(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function wN(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return D(()=>lV(s,i,o));case"basic_math":return D(()=>uV(s,i,o));case"control":return gV(s,i,o);case"convolution":return D(()=>yV(s,i,o));case"creation":return D(()=>bV(s,i,o));case"dynamic":return xV(s,i,o);case"evaluation":return D(()=>vV(s,i,o));case"image":return D(()=>NV(s,i,o));case"graph":return D(()=>wV(s,i,o));case"logical":return D(()=>TV(s,i,o));case"matrices":return D(()=>SV(s,i,o));case"normalization":return D(()=>CV(s,i,o));case"reduction":return D(()=>_V(s,i,o));case"slice_join":return D(()=>EV(s,i,o));case"spectral":return D(()=>AV(s,i,o));case"transformation":return D(()=>FV(s,i,o));case"hash_table":return IV(s,i,o,a);case"custom":let l=JI(s.op);if(l&&l.customExecutor)return l.customExecutor(new oV(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var kN=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function NN(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>On(d)[0]),u=[];a!=null&&(u=a.map(d=>On(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((IN(d)||$V(d)||DV(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function RV(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>On(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&s.push(p)})}return c}var MV=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],PV=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],OV=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function IN(e){return MV.indexOf(e.op)>=0}function $V(e){return PV.indexOf(e.op)>=0}function DV(e){return OV.indexOf(e.op)>=0}var Tv=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Tv(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=NN(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return RV(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[On(u)[0]]),r=t.map(u=>On(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return D(()=>{let u=new kN(this.weightMap,l,c,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=On(m),y=[];y[g]=e[m],p[f]=y});let d=this.getFrozenTensorIds(p),h={};for(let m=0;mTn(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=V4(o.name,n,a);l!=null&&l.forEach(c=>{if(c&&!r.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new kN(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>Tn(p,i,s)),l=o.map(p=>p.id),c=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(b=>this.graph.nodes[On(b)[0]]),i=n.map(b=>On(b)[0]),o=i.map(b=>this.graph.nodes[b]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:p}=NN(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(b=>({node:b,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(b=>{let[v,x]=On(b),N=[];N[x]=e[b],h[v]=N});let m={},f=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let b=this.processStack(s,d,t,h,g,f,i,m,l);await Promise.all(b)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(b=>!IN(b)&&!Tn(b.name,h,t)).map(b=>b.name);if(y.length>0){let b="";throw u!=null&&(b=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${b}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=Tr(u.node.name,n)),a[u.node.name]==null){let d=wN(u.node,a,n,this._resourceManager);p||([p]=Tr(u.node.name,n));let h=n.currentContext;k.isPromise(d)?c.push(d.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=d,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return c}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Tr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!Tn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!Tn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=On(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=On(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=On(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},LV=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},zV="?tfjs-format=file",BV="model.json",TN=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new LV}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Ht.browserHTTPRequest(e,this.loadOptions);else{let t=Ht.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Ht.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=Ht.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Tv(yN.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=yN.Instance.transformGraph(e.modelInitializer);this.initializer=new Tv(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Ht.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ae)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function WV(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${BV}${zV}`);let n=new TN(e,t);return await n.load(),n}var SN="3.0.0",CN={};Oe(CN,{CSVDataset:()=>EN,Dataset:()=>cu,FileDataSource:()=>AN,TextLineDataset:()=>_N,URLDataSource:()=>FN,array:()=>VV,csv:()=>GV,func:()=>HV,generator:()=>jV,microphone:()=>KV,version_data:()=>$N,webcam:()=>qV,zip:()=>UV});var XV=Ro(Ad()),YV=Ro(Ad());function ZV(e,t){return Hm(e,t)}function Hm(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(pu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=Hm(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function JV(e,t=RN){return DN(e,t)}function DN(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(pu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(c=>c[i]),l=DN(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function RN(e){return e===null?null:pu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function MN(e,t){let n=new Map;Hm(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return Hm(e,t,n)}function pu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ae))}function eU(e){return e==null||QV(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ae||k.isTypedArray(e)}function QV(e){return e===null||typeof e!="object"&&typeof e!="function"}function nU(e){return ZV(e,tU)}function tU(e){return e instanceof Ae?{value:e.clone(),recurse:!1}:pu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var PN=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Sv=class extends PN{constructor(){super(Sv.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;at===!0)}rowMajorBatch(e,t=!0){return new pU(this,e,t)}columnMajorBatch(e,t=!0,n=RN){return this.rowMajorBatch(e,t).map(a=>JV(a,n))}concatenate(e,t){return new LN(ON([this,e]),t)}take(e){return e<0||e==null?this:new cU(this,e)}skip(e){return e<0||e==null?this:new uU(this,e)}prefetch(e){return new BN(this,e)}shuffle(e,t){return new gU(this,e,t)}serial(){return new lU(this)}},aU=class extends Yt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:nU(e),done:!1}}},rU=class extends Yt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},lU=class extends Yt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},uU=class extends Yt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},pU=class extends Yt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},dU=class extends Yt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Fe(e.value)}}},hU=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Na.getTensorsInContainer(e.value),n=this.transform(e.value),a=Na.getTensorsInContainer(n);for(let r of t)Na.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},mU=class extends Yt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},zN=class extends Yt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Na.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Na.getTensorsInContainer(n);for(let r of t)Na.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},_v=class extends Yt{constructor(){super();this.outputQueue=new Sv,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},fU=class extends _v{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Na.getTensorsInContainer(e.value),n=this.transform(e.value),a=Na.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Na.isTensorInList(r,a)||r.dispose();return!0}},LN=class extends Yt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ds;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ds||(ds={}));var iU=class extends Yt{constructor(e,t=ds.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Yt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await MN(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ds.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ds.SHORTEST:return{value:null,done:!0};case ds.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},BN=class extends Yt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new PN(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},gU=class extends BN{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=YV.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},cu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Ln(async()=>(await n.iterator()).columnMajorBatch(e,t,yU),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Ln(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Ln(async()=>(await t.iterator()).filter(a=>D(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Ln(async()=>(await t.iterator()).map(n=>D(()=>e(n))),this.size)}mapAsync(e){let t=this;return Ln(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Ln(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Ln(async()=>{let a=Cv(async()=>({value:await t.iterator(),done:!1}));return sU(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=XV.alea(t||k.now().toString());return Ln(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Ln(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};cu.MAX_BUFFER_SIZE=1e4;function Ln(e,t=null){return new class extends cu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function VV(e){return Ln(async()=>ON(e),e.length)}function UV(e){if(!pu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await MN(e,a=>{if(a instanceof cu)return{value:a.iterator(),recurse:!1};if(pu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return oU(n,ds.SHORTEST)},t)}function yU(e){if(e===null)return null;let t=e[0];return eU(t)?{value:bU(e),recurse:!1}:{value:null,recurse:!0}}function bU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ae?$t(e):Kn(e)}var _N=class extends cu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},jm='"',wp=Symbol("out"),WN=Symbol("field"),qm=Symbol("quote"),Ev=Symbol("quoteafterquote"),VN=Symbol("quoteinquote"),EN=class extends cu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new _N(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(ee().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new UN(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),Kn(n,t)}},GN=class extends Yt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=nt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Sa([s,r,o,i],[1,4])}else this.cropBox=Sa([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(ee().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new GN(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=_i.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return D(()=>{let t=Fn(ce(e,"float32"),0),n;n=Ja.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return j(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},HN=class{},jN=class extends Yt{split(e){return new xU(this,e)}},xU=class extends jN{constructor(e,t){super();this.upstream=e,this.impl=new vU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},vU=class extends _v{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},kU=class extends Yt{decodeUTF8(){return new wU(this)}},wU=class extends jN{constructor(e){super();this.upstream=e,this.impl=new IU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},IU=class extends _v{constructor(e){super();if(this.upstream=e,ee().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=HE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return ee().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},qN=class extends kU{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(ee().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function TU(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=NU(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new qN(s,t)}else throw new Error(r.statusText)}var NU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function KN(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var AN=class extends HN{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(KN(this.input)&&ee().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new qN(this.input,this.options)}},FN=class extends HN{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return KN(this.url)?new AN(this.url,this.fileOptions).iterator():TU(this.url,this.fileOptions)}};function GV(e,t={}){return new EN(new FN(e),t)}function HV(e){let t=Cv(e);return Ln(async()=>t)}function jV(e){return Ln(async()=>{let t=await e();return Cv(()=>t.next())})}async function qV(e,t){return GN.create(e,t)}async function KV(e){return UN.create(e)}var $N="3.0.0";function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var SU=Qa.whereImpl,CU=class extends dc{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Fd(this,Jr())}write(e,t,n){this.firstUse&&(this.firstUse=!1,ee().get("IS_NODE")&&_.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let a={};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a){this.data.set(e,{values:t,dtype:a,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return Jr().makeTensorFromDataId(a,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return SU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},XN={};Oe(XN,{addImpl:()=>ZN,bincountImpl:()=>Av,bincountReduceImpl:()=>JN,ceilImpl:()=>QN,concatImpl:()=>Fv,expImpl:()=>eT,expm1Impl:()=>tT,floorImpl:()=>nT,gatherV2Impl:()=>aT,greaterImpl:()=>rT,lessImpl:()=>sT,linSpaceImpl:()=>iT,logImpl:()=>oT,maxImpl:()=>lT,maximumImpl:()=>uT,minimumImpl:()=>cT,multiplyImpl:()=>$v,negImpl:()=>pT,notEqualImpl:()=>dT,prodImpl:()=>hT,rangeImpl:()=>Rv,rsqrtImpl:()=>mT,simpleAbsImpl:()=>YN,sliceImpl:()=>Km,squaredDifferenceImpl:()=>fT,stridedSliceImpl:()=>gT,subImpl:()=>yT,tileImpl:()=>bT,topKImpl:()=>xT,transposeImpl:()=>Dv,uniqueImpl:()=>vT});function YN(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=YN(r),n.makeOutput(a,t.shape,"float32")},EU={kernelName:Oo,backendName:"cpu",kernelFunc:_U};function Rt(e){return(t,n,a,r,s)=>{let i=_.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),p=t.length,d=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=_.getBroadcastDims(t,i),g=_.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;yv[C]=0);let x=k.locToIndex(v,p,h),N=b.slice(-d);g.forEach(C=>N[C]=0);let T=k.locToIndex(N,d,m);u[y]=e(a[x],r[T])}return[u,i]}}function zn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var AU={kernelName:Bd,backendName:"cpu",kernelFunc:zn};function Xm(e,t,n="float32"){if(n==="complex64"){let r=Xm(e,t,"float32"),s=Xm(e,t,"float32");return zn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function sr(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var FU={kernelName:sl,backendName:"cpu",kernelFunc:sr};function qi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var $U={kernelName:ih,backendName:"cpu",kernelFunc:qi};function hs(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return sr({inputs:{x:r},backend:n});let i=Xm(n,r.shape,r.dtype),o=hs({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=zn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=qi({inputs:{input:r},backend:n}),o=hs({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=sr({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,c]=Rt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var DU={kernelName:Ps,backendName:"cpu",kernelFunc:hs};function Zt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;we([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=hs({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),p=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(d.dataId).values,f=hs({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,v=l.data.get(y.dataId).values,x=l.data.get(b.dataId).values,[N,T,C]=n(i.shape,o.shape,h,m,v,x),$=l.makeTensorInfo(C,"float32",N),F=l.makeTensorInfo(C,"float32",T),O=zn({inputs:{real:$,imag:F},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo($),l.disposeIntermediateTensorInfo(F),O}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[d,h]=t(i.shape,o.shape,c,u,p);return l.makeTensorInfo(h,p,d)}}}function Mv(e){return(t,n,a,r,s,i)=>{let o=_.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,o),m=_.getBroadcastDims(n,o),f=_.mergeRealAndImagArrays(a,r),g=_.mergeRealAndImagArrays(s,i),y=t.length,b=k.computeStrides(t),v=n.length,x=k.computeStrides(n);if(h.length+m.length===0)for(let N=0;NC[W]=0);let $=k.locToIndex(C,y,b),F=T.slice(-v);m.forEach(W=>F[W]=0);let O=k.locToIndex(F,v,x),B=e(f[$*2],f[$*2+1],g[O*2],g[O*2+1]);p[N]=B.real,d[N]=B.imag}return[p,d,o]}}var ZN=Rt((e,t)=>e+t),RU=Mv((e,t,n,a)=>({real:e+n,imag:t+a})),kp=Zt(Vr,ZN,RU),MU={kernelName:Vr,backendName:"cpu",kernelFunc:kp};function Av(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function JN(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Le([r,n],t.dtype);for(let o=0;o=n||(a?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function du(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,p=k.getArrayFromDType(u,c);for(let d=0;d{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,r);return o.makeTensorInfo(i.shape,c,u)}}var QN=du(e=>Math.ceil(e)),PU=hu(Ho,QN),OU={kernelName:Ho,backendName:"cpu",kernelFunc:PU};function Fv(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?_.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;cMath.exp(e)),wT=hu(Us,eT),LU={kernelName:Us,backendName:"cpu",kernelFunc:wT},tT=du(e=>Math.expm1(e)),zU=hu(el,tT),BU={kernelName:el,backendName:"cpu",kernelFunc:zU},nT=du(e=>Math.floor(e)),WU=hu(Gs,nT),VU={kernelName:Gs,backendName:"cpu",kernelFunc:WU};function aT(e,t,n){let a=Le(n,e.dtype);for(let r=0;re>t?1:0),UU=Zt(rl,rT,null,"bool"),GU={kernelName:rl,backendName:"cpu",kernelFunc:UU},sT=Rt((e,t)=>eMath.log(e)),qU=hu(Xs,oT),KU={kernelName:Xs,backendName:"cpu",kernelFunc:qU};function lT(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;so&&(o=c)}r[s]=o}return r}var uT=Rt((e,t)=>Math.max(e,t)),XU=Zt(Zs,uT),YU={kernelName:Zs,backendName:"cpu",kernelFunc:XU},cT=Rt((e,t)=>Math.min(e,t)),ZU=Zt(ti,cT),JU={kernelName:ti,backendName:"cpu",kernelFunc:ZU},$v=Rt((e,t)=>e*t),QU=Mv((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Pv=Zt(ni,$v,QU),eG={kernelName:ni,backendName:"cpu",kernelFunc:Pv};function pT(e,t,n){let a=k.createScalarValue(-1,n);return $v([],t,a,e,n)}function tG(e){let{inputs:t,backend:n}=e,{x:a}=t;we(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=pT(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var nG={kernelName:ml,backendName:"cpu",kernelFunc:tG},dT=Rt((e,t)=>e!==t?1:0),aG=Zt(fl,dT,null,"bool"),rG={kernelName:fl,backendName:"cpu",kernelFunc:aG};function Dv(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),c=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let u=0;un.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(y,g,m)}var oG={kernelName:wl,backendName:"cpu",kernelFunc:iG};function Rv(e,t,n,a){let r=e===t,s=e1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t1/Math.sqrt(e)),lG=hu(di,mT),uG={kernelName:di,backendName:"cpu",kernelFunc:lG};function Km(e,t,n,a,r){let s=pn.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=pn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?_.fromUint8ToStringArray(e):e,c=Le(a,r,l),u=Le(n,r);for(let p=0;pm+t[f]);u.set(c.get(...h),...d)}return r==="string"?_.fromStringArrayToUint8(u.values):u.values}function Ki(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;we(r,"slice");let[o,l]=pn.parseSliceParams(r,s,i);pn.assertParamsValid(r,o,l);let c=n.data.get(r.dataId).values,u=Km(c,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var cG={kernelName:Cl,backendName:"cpu",kernelFunc:Ki},fT=Rt((e,t)=>{let n=e-t;return n*n}),pG=Zt(bi,fT),dG={kernelName:bi,backendName:"cpu",kernelFunc:pG};function gT(e,t,n,a){let r=Le(e,t.dtype);for(let s=0;se-t),hG=Mv((e,t,n,a)=>({real:e-n,imag:t-a})),Ov=Zt(xi,yT,hG),mG={kernelName:xi,backendName:"cpu",kernelFunc:Ov};function bT(e,t){let n=new Array(e.rank);for(let r=0;rv.value-b.value);let f=p*a,g=l.subarray(f,f+a),y=c.subarray(f,f+a);for(let b=0;b{for(let g=0;gnew CU,1);var kT=it(Yo,e=>e>=0?e:Math.exp(e)-1),gG={kernelName:Yo,backendName:"cpu",kernelFunc:kT};function IT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;we([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;ce<0?t*e:e);function NT(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;we([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=bG(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var xG={kernelName:ii,backendName:"cpu",kernelFunc:NT},TT=it(oi,e=>Math.max(0,e)),vG={kernelName:oi,backendName:"cpu",kernelFunc:TT},ST=it(ui,e=>Math.min(Math.max(0,e),6)),wG={kernelName:ui,backendName:"cpu",kernelFunc:ST};function Lv(e,t,n,a,r){if(n==="linear")return sr({inputs:{x:t},backend:e});if(n==="relu")return TT({inputs:{x:t},backend:e});if(n==="elu")return kT({inputs:{x:t},backend:e});if(n==="relu6")return ST({inputs:{x:t},backend:e});if(n==="prelu")return NT({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return IT({inputs:{x:t},backend:e,attrs:{alpha:r}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function It(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,p=c.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var kG={kernelName:Il,backendName:"cpu",kernelFunc:It};function CT(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;we([r,s],"matMul");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=It({inputs:{x:r},backend:n,attrs:{shape:x}}),C=It({inputs:{x:s},backend:n,attrs:{shape:N}}),$=i?T.shape[1]:T.shape[2],F=i?T.shape[2]:T.shape[1],O=o?C.shape[1]:C.shape[2],B=Math.max(g,y),W=n.data.get(T.dataId).values,G=n.data.get(C.dataId).values,q=k.computeStrides(T.shape),H=k.computeStrides(C.shape),[K,X,ne]=i?[q[0],1,q[1]]:[q[0],q[1],1],[J,se,Q]=o?[1,H[1],H[0]]:[H[1],1,H[0]],oe=F*O,ae=Le([B,F,O],T.dtype),pe=ae.values,ue=n.blockSize;for(let ge=0;geMath.acos(e)),CG={kernelName:Lo,backendName:"cpu",kernelFunc:SG},_G=it(zo,e=>Math.acosh(e)),EG={kernelName:zo,backendName:"cpu",kernelFunc:_G};function AG(e){let{inputs:t,backend:n}=e,a=t;we(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Le(a[0].shape,a[0].dtype),i=s.values;for(let o=0;ob&&(b=N,v=x)}h[g]=v}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var OG={kernelName:Ds,backendName:"cpu",kernelFunc:PG};function LG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=ba({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],_.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=_.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),h=k.makeZerosTypedArray(d,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var zG={kernelName:fc,backendName:"cpu",kernelFunc:LG},BG=it(Bo,e=>Math.asin(e)),WG={kernelName:Bo,backendName:"cpu",kernelFunc:BG},VG=it(Wo,e=>Math.asinh(e)),UG={kernelName:Wo,backendName:"cpu",kernelFunc:VG},GG=it(Vo,e=>Math.atan(e)),HG={kernelName:Vo,backendName:"cpu",kernelFunc:GG},jG=Rt((e,t)=>Math.atan2(e,t)),qG=Zt(Go,jG),KG={kernelName:Go,backendName:"cpu",kernelFunc:qG},XG=it(Uo,e=>Math.atanh(e)),YG={kernelName:Uo,backendName:"cpu",kernelFunc:XG};function zv(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],b=r.outShape[2]*r.outShape[3],v=r.outShape[3];for(let x=0;xX?X=ue:s==="avg"&&(ne+=ue,J++)}if(isNaN(X))break}let se=W+G*v+C;g[se]=s==="avg"?ne/J:X}}}return f}function _T(e,t,n,a,r=!1,s=!1){let i=Le(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,c=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,d=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Le(t,n,e);for(let g=0;gO&&(O=K,r?B=s?((g*a.inHeight+W)*a.inWidth+q)*a.inChannels+y:(W*a.inWidth+q)*a.inChannels+y:B=G*d+H)}}i.set(B,g,b,T,y)}}return i}function ET(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=Le(r.outShape,n),x=v.values,N=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],T=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],$=r.outShape[4];for(let F=0;Fke?ke=pt:s==="avg"&&(Se+=pt,Ce++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Re=ye+W;x[Re]=s==="avg"?Se/Ce:ke}}}}return v}function ZG(e,t){let n=Le(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f=G&&(G=Q,q=K*u*p+ne*u+se)}}}n.set(q,f,y,N,F,g)}}}return n}function JG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=sr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=zv(d,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var QG={kernelName:Rs,backendName:"cpu",kernelFunc:JG};function eH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;we(r,"avgPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=ET(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var tH={kernelName:gc,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;we([r,s],"avgPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=u.strideDepth,d=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,g=u.filterWidth,y=u.dilationDepth,b=u.dilationHeight,v=u.dilationWidth,x=u.effectiveFilterDepth,N=u.effectiveFilterHeight,T=u.effectiveFilterWidth,C=x-1-u.padInfo.front,$=T-1-u.padInfo.left,F=N-1-u.padInfo.top,O=Le(s.shape,"float32"),B=1/(m*f*g),W=n.bufferSync(r);for(let G=0;G=u.outDepth||Math.floor(ae)!==ae))for(let pe=0;pe=u.outHeight||Math.floor(ue)!==ue))for(let ge=0;ge=u.outWidth||Math.floor(ye)!==ye||(Q+=W.get(G,ae,ue,ye,q))}}}O.set(Q*B,G,H,K,X,q)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var aH={kernelName:Ld,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;we([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=u.strideHeight,d=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,g=u.dilationWidth,y=u.effectiveFilterHeight,b=u.effectiveFilterWidth,v=b-1-u.padInfo.left,x=y-1-u.padInfo.top,N=Le(i.shape,"float32"),T=1/(h*m),C=n.data.get(r.dataId).values,$=Le(r.shape,"float32",C);for(let F=0;F=u.outHeight||Math.floor(X)!==X))for(let ne=0;ne=u.outWidth||Math.floor(J)!==J||(H+=$.get(F,X,J,O))}}N.set(H*T,F,B,W,O)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var sH={kernelName:Od,backendName:"cpu",kernelFunc:rH};function iH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([r,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=a;c==null&&(c=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),g=m.length,y=h.length,b=d.length,v=p.length,x=0,N=0,T=0,C=0;for(let $=0;$=g&&(x=0),N>=v&&(N=0),T>=y&&(T=0),C>=b&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var oH={kernelName:js,backendName:"cpu",kernelFunc:iH};function lH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;we([r],"batchToSpaceND");let o=s.reduce((y,b)=>y*b),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=It({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ba({inputs:{x:h},backend:n,attrs:{perm:c}}),f=It({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Ki({inputs:{x:f},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var uH={kernelName:yc,backendName:"cpu",kernelFunc:lH};function cH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,c=Av(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var pH={kernelName:zd,backendName:"cpu",kernelFunc:cH},dH=it(Ur,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;cf.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return sr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(_.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(x=>qi({inputs:{input:x},backend:n})),g=o.map(x=>mu({inputs:{input:x},backend:n})),y=fu({inputs:f,backend:n,attrs:{axis:s}}),b=fu({inputs:g,backend:n,attrs:{axis:s}}),v=zn({inputs:{real:y,imag:b},backend:n});return f.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(b),v}let c=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return It({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=_.computeOutShape(c.map(f=>f.shape),1);let p=c[0].shape[0]===1,d=Fv(u,i,t[0].dtype,p),h=_.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,d);return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var yH={kernelName:jo,backendName:"cpu",kernelFunc:fu};function AT(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a;we([r,s],"conv2d");let p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,b=d.padInfo.top,v=d.dataFormat==="channelsLast",x=new Ot(d.outShape,r.dtype),N=k.computeStrides(r.shape),T=k.computeStrides(s.shape),C=N[0],$=v?N[1]:N[2],F=v?N[2]:1,O=v?1:N[1],B=x.strides[0],W=v?x.strides[1]:x.strides[2],G=v?x.strides[2]:1,q=v?1:x.strides[1],H=n.data.get(r.dataId).values,K=n.data.get(s.dataId).values,X=x.values;for(let ne=0;ne=d.inHeight)continue;let ge=pe*T[0],ye=J+ue*$;for(let ke=0;ke=d.inWidth)continue;let Ve=ge+Re*T[1],st=ye+Ke*F,lt=Ve;for(let He=0;He=c.inDepth)continue;let ne=K*F[0],J=B+X*$[1];for(let se=0;se=c.inHeight)continue;let ue=ne+ae*F[1],ge=J+pe*$[2];for(let ye=0;ye=c.inWidth)continue;let Ke=ue+Ce*F[2],Ve=ge+Re*c.inChannels,st=Ke;for(let lt=0;ltMath.cos(e)),AH={kernelName:zs,backendName:"cpu",kernelFunc:EH},FH=it(qo,e=>Math.cosh(e)),$H={kernelName:qo,backendName:"cpu",kernelFunc:FH};function DH(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,[u,p,d,h]=r.shape,m=s.shape[0],[f,g]=o,y=Le([m,f,g,h],"float32"),b=n.data.get(s.dataId).values,v=n.data.get(i.dataId).values,x=n.data.get(r.dataId).values,N=k.computeStrides(r.shape),T=k.computeStrides(y.shape);for(let C=0;C=u)continue;let q=f>1?(B-F)*(p-1)/(f-1):0,H=g>1?(W-O)*(d-1)/(g-1):0;for(let K=0;K1?F*(p-1)+K*q:.5*(F+B)*(p-1);if(X<0||X>p-1){for(let ne=0;ne1?O*(d-1)+Q*H:.5*(O+W)*(d-1);if(oe<0||oe>d-1){for(let ge=0;ge1?O*(d-1)+ne*H:.5*(O+W)*(d-1);if(J<0||J>d-1){for(let oe=0;oey+m-b-1:(y,b)=>y+b;for(let y=0;y`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],p=l*s,d=c*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*d*h),g=0;for(let y=0;y`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=_.computeConv2DInfo(r.shape,s.shape,i,d,o,c,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:b}=h,v=b.left,x=b.top,N=h.outChannels/h.inChannels,T=new Ot(h.outShape,r.dtype),C=n.data.get(r.dataId).values,$=n.data.get(s.dataId).values,F=T.values;for(let O=0;O=h.inHeight)continue;let ne=K*p[0],J=B+X*u[1];for(let se=0;se=h.inWidth)continue;let ue=ne+ae*p[1],ge=J+pe*h.inChannels,ye=Q,ke=ue;for(let Se=0;Se{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:b,padInfo:v,strideHeight:x,strideWidth:N,filterHeight:T,filterWidth:C,dilationHeight:$,dilationWidth:F,outShape:O}=_.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),B=k.sizeFromShape(O),W=O.length,G=k.getArrayFromDType(a.dtype,B);for(let q=0;q=0&&ae=0&&uese&&(se=ke)}}}let Q=k.locToIndex([q,H,X,J],W,k.computeStrides(O));G[Q]=se}}}return{dataId:l.write(k.toTypedArray(G,a.dtype),O,a.dtype),shape:O,dtype:a.dtype}}},XH={kernelName:Xd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(a.shape,c.data.get(a.dataId).values),p=k.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:v,strideWidth:x,filterHeight:N,filterWidth:T,dilationHeight:C,dilationWidth:$,outShape:F}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===F.length,()=>`Error in ${Xd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let O=k.toNestedArray(F,c.data.get(s.dataId).values),B=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let W=0;W=0&&oe=0&&pene&&(ne=ue,J=Q,se=ae)}}}B[J][se][X]+=O[W][G][H][X]}}}return{dataId:c.write(k.toTypedArray(B,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},YH={kernelName:Kd,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(a.shape,c.data.get(a.dataId).values),p=k.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:b,strideHeight:v,strideWidth:x,filterHeight:N,filterWidth:T,dilationHeight:C,dilationWidth:$,outShape:F}=_.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===F.length,()=>`Error in ${Kd}, dy must have the same rank as output ${F.length}, but got ${s.rank}`);let O=k.toNestedArray(F,c.data.get(s.dataId).values),B=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let W=0;W=0&&oe=0&&pene&&(ne=ue,J=oe,se=pe)}}}B[W][J][se][X]+=O[W][G][H][X]}}}return{dataId:c.write(k.toTypedArray(B,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ZH(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;we([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",s)}var JH={kernelName:Yd,backendName:"cpu",kernelFunc:ZH},QH=Rt((e,t)=>e===t?1:0),$T=Zt(Jo,QH,null,"bool"),e6={kernelName:Jo,backendName:"cpu",kernelFunc:$T},t6=_.ERF_P,n6=_.ERF_A1,a6=_.ERF_A2,r6=_.ERF_A3,s6=_.ERF_A4,i6=_.ERF_A5,o6=it(Zo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+t6*n);return t*(1-((((i6*a+s6)*a+r6)*a+a6)*a+n6)*a*Math.exp(-n*n))}),l6={kernelName:Zo,backendName:"cpu",kernelFunc:o6};function Ym(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),It({inputs:{x:r},backend:n,attrs:{shape:o}})}var u6={kernelName:Qo,backendName:"cpu",kernelFunc:Ym},c6=Rt((e,t)=>e/t),Bv=Zt(Vs,c6),Wv={kernelName:Vs,backendName:"cpu",kernelFunc:Bv};function DT(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[r,s],u=k.sizeFromShape(c),p=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let g=0;g{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,c]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p=0&&vMath.floor(e/t)),v6=Zt(Hs,x6,null,"int32"),w6={kernelName:Hs,backendName:"cpu",kernelFunc:v6};function k6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=AT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=kp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Lv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var I6={kernelName:Ii,backendName:"cpu",kernelFunc:k6};function N6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=FT({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d}});if(i){let g=f;f=kp({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Lv(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var T6={kernelName:Ni,backendName:"cpu",kernelFunc:N6};function S6(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,c,u,p]=_.prepareAndValidate(a,r);if(c===0)return n.makeTensorInfo(l,a.dtype,[]);let d=Le([c,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f=s/u)throw new Error(`Invalid indices: ${g} does not index into ${a.shape}`);for(let b=0;be>=t?1:0),F6=Zt(qs,A6,null,"bool"),$6={kernelName:qs,backendName:"cpu",kernelFunc:F6};function D6(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=It({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=DT(o,!0,n),c=It({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var R6={kernelName:Jd,backendName:"cpu",kernelFunc:D6},M6=it(il,e=>Number.isFinite(e)?1:0,"bool"),P6={kernelName:il,backendName:"cpu",kernelFunc:M6},O6=it(ol,e=>Math.abs(e)===Infinity?1:0,"bool"),L6={kernelName:ol,backendName:"cpu",kernelFunc:O6},z6=it(ll,e=>Number.isNaN(e)?1:0,"bool"),B6={kernelName:ll,backendName:"cpu",kernelFunc:z6},W6=Rt((e,t)=>e<=t?1:0),V6=Zt(cl,W6,null,"bool"),U6={kernelName:cl,backendName:"cpu",kernelFunc:V6};function G6(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=iT(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var H6={kernelName:eh,backendName:"cpu",kernelFunc:G6},j6=it(pl,e=>Math.log1p(e)),q6={kernelName:pl,backendName:"cpu",kernelFunc:j6},K6=Rt((e,t)=>e&&t),X6=Zt(dl,K6,null,"bool"),Y6={kernelName:dl,backendName:"cpu",kernelFunc:X6},Z6=it(kc,e=>e?0:1,"bool"),J6={kernelName:kc,backendName:"cpu",kernelFunc:Z6},Q6=Rt((e,t)=>e||t),ej=Zt(Ic,Q6,null,"bool"),tj={kernelName:Ic,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;we(r,"LRN");let c=r.shape[3],u=c-1,p=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),h=new Float32Array(d);function m(f){let g=f%c,y=f-g+Math.max(0,g-s),b=f-g+Math.min(g+s,u),v=0;for(;y<=b;y++){let x=p[y];v+=x*x}return v}for(let f=0;f`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=sr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=zv(d,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var lj={kernelName:Js,backendName:"cpu",kernelFunc:oj};function uj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a;we(r,"maxPool3d");let u=_.computePool3DInfo(r.shape,s,i,1,o,l,c),p=n.data.get(r.dataId).values,d=ET(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var cj={kernelName:Tc,backendName:"cpu",kernelFunc:uj};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=a;we([r,s],"maxPool3DGrad");let u=_.computePool3DInfo(s.shape,i,o,1,l,c),p=n.bufferSync(s),d=ZG(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,g=u.dilationDepth,y=u.dilationHeight,b=u.dilationWidth,v=u.effectiveFilterDepth,x=u.effectiveFilterHeight,N=u.effectiveFilterWidth,T=v-1-u.padInfo.front,C=N-1-u.padInfo.left,$=x-1-u.padInfo.top,F=Le(s.shape,"float32"),O=n.bufferSync(r);for(let B=0;B=u.outDepth||Math.floor(Q)!==Q))for(let oe=0;oe=u.outHeight||Math.floor(ae)!==ae))for(let pe=0;pe=u.outWidth||Math.floor(ue)!==ue)continue;let ge=v*x*N-1-d.get(B,Q,ae,ue,W),ye=se*x*N+oe*N+pe,ke=ge===ye?1:0;ke!==0&&(J+=O.get(B,Q,ae,ue,W)*ke)}}}F.set(J,B,G,q,H,W)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var dj={kernelName:ah,backendName:"cpu",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;we([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,_T(h,o.shape,o.dtype,d).values),f=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,b=d.dilationWidth,v=d.effectiveFilterHeight,x=d.effectiveFilterWidth,N=x-1-d.padInfo.left,T=v-1-d.padInfo.top,C=Le(o.shape,"float32"),$=n.data.get(r.dataId).values,F=Le(r.shape,"float32",$);for(let O=0;O=d.outHeight||Math.floor(ne)!==ne))for(let J=0;J=d.outWidth||Math.floor(se)!==se)continue;let Q=v*x-1-m.get(O,ne,se,B),oe=X*x+J,ae=Q===oe?1:0;ae!==0&&(K+=F.get(O,ne,se,B)*ae)}}C.set(K,O,W,G,B)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var mj={kernelName:nh,backendName:"cpu",kernelFunc:hj};function fj(e,t,n,a,r){let s=k.computeStrides(t),i=zv(e,t,n,s,r,"max"),o=_T(e,t,n,r,!0,a);return[i.values,o.values]}var gj={kernelName:rh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;we(a,"MaxPoolWithArgmax");let c=l.data.get(a.dataId).values,u=_.computePool2DInfo(a.shape,r,s,[1,1],i),[p,d]=fj(c,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(d,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Zm(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"sum");let o;r.dtype==="bool"?o=hs({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=sr({inputs:{x:r},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=_.getAxesPermutation(c,l),p=c,d=o;u!=null&&(d=ba({inputs:{x:o},backend:n,attrs:{perm:u}}),p=_.getInnerMostAxes(p.length,l)),_.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,m]=_.computeOutAndReduceShapes(d.shape,p),f=_.upcastType(d.dtype,"int32"),g=Xm(n,h,f),y=k.sizeFromShape(m),b=n.data.get(g.dataId).values,v=n.data.get(d.dataId).values;for(let x=0;xn.disposeIntermediateTensorInfo(f)),m}var xj={kernelName:Qs,backendName:"cpu",kernelFunc:bj};function vj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,c=_.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=ba({inputs:{x:r},backend:n,attrs:{perm:c}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,d]=_.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(d),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;yb[0]+r.shape[v]+b[1]),l=s.map(b=>b[0]),c=s.map((b,v)=>b[0]+r.shape[v]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let b=0;b=c[N]&&(v[N]=(c[N]-1)*2-v[N]+u);v=v.map((N,T)=>N-l[T]);let x=k.locToIndex(v,d,h);y[b]=p[x]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var Ij={kernelName:Sc,backendName:"cpu",kernelFunc:kj},Nj=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Tj=Zt(hl,Nj),Sj={kernelName:hl,backendName:"cpu",kernelFunc:Tj},Cj=Ro(Ad());function MT(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),c=RT({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=_.expandShapeToKeepDim(c.shape,l),p=It({inputs:{x:c},backend:n,attrs:{shape:u}}),d=Ov({inputs:{a:r,b:p},backend:n}),h=wT({inputs:{x:d},backend:n}),m=Zm({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=It({inputs:{x:m},backend:n,attrs:{shape:u}}),g=Bv({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var _j={kernelName:yi,backendName:"cpu",kernelFunc:MT};function Ej(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;we(r,"multinomial");let l=o?r:MT({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,d=[c,s],h=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let m=0;m=0&&u[p]{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=Ym({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=fu({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var Gj={kernelName:vl,backendName:"cpu",kernelFunc:OT};function Hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;we(r,"pad");let o=s.map((y,b)=>y[0]+r.shape[b]+y[1]),l=s.map(y=>y[0]),c=n.data.get(r.dataId).values,u=k.sizeFromShape(r.shape),p=r.shape.length,d=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;yx+l[N]),v=k.locToIndex(b,m,f);g[v]=c[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var LT={kernelName:ri,backendName:"cpu",kernelFunc:Hj},jj=Rt((e,t)=>Math.pow(e,t)),qj=Zt(si,jj),Kj={kernelName:si,backendName:"cpu",kernelFunc:qj};function Xj(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=Rv(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var Yj={kernelName:Cc,backendName:"cpu",kernelFunc:Xj},Zj=it(kl,e=>1/e),Jj={kernelName:kl,backendName:"cpu",kernelFunc:Zj};function Qj(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeBilinear");let l=k.computeStrides(r.shape),[c,u]=o,[p,d,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([p,c,u,m])),y=[s&&c>1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],v=0,x=y[0]/b[0],N=y[1]/b[1];for(let T=0;T1?c-1:c,i&&h>1?u-1:u],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],y=f[0]/g[0],b=f[1]/g[1],v=n.data.get(s.dataId).values,x=0;for(let N=0;N1?d-1:d,s&&u>1?h-1:h],b=[s&&c>1?c-1:c,s&&u>1?u-1:u],v=y[0]/b[0],x=y[1]/b[1],N=0;for(let T=0;T1?u-1:u,i&&m>1?p-1:p],b=[i&&h>1?h-1:h,i&&m>1?m-1:m],v=y[0]/b[0],x=y[1]/b[1],N=1/v,T=1/x,C=Math.ceil(N)*2+2,$=Math.ceil(T)*2+2;for(let F=0;F=h)continue;let ae=O+oe*l[1],pe=oe*v,ue=Math.min(u-1,i?Math.round(pe):Math.floor(pe));if(B===ue)for(let ge=0;ge<$;ge++){let ye=ge+ne;if(ye<0||ye>=m)continue;let ke=ae+ye*l[2],Se=ye*x,Ce=Math.min(p-1,i?Math.round(Se):Math.floor(Se));H===Ce&&(se+=g[ke+J])}}f[K+J]=se}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var iq={kernelName:oh,backendName:"cpu",kernelFunc:sq};function oq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;we(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return sr({inputs:{x:r},backend:n});let l=new Ot(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;ud[h]=r.shape[h]-1-d[h]),l.set(c.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var lq={kernelName:ci,backendName:"cpu",kernelFunc:oq},uq={kernelName:Ol,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[c,u,p,d]=a.shape,[h,m]=_.getImageCenter(i,u,p),f=255,g=Math.sin(r),y=Math.cos(r),b=o.data.get(a.dataId).values;for(let v=0;v=0&&G=0&&q{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),pq={kernelName:pi,backendName:"cpu",kernelFunc:cq};function zT(e,t,n,a,r,s,i,o,l,c){let u=[a/r,r],p=e.values,d=t.values;if(a===0)return Le(n,t.dtype);let h=Le(u,t.dtype);h.values.fill(l);for(let m=0;m=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;me>=0?yq*e:gq*(Math.exp(e)-1)),xq={kernelName:Sl,backendName:"cpu",kernelFunc:bq},vq=it(mi,e=>1/(1+Math.exp(-e))),wq={kernelName:mi,backendName:"cpu",kernelFunc:vq},kq=it(El,e=>e<0?-1:e>0?1:0),Iq={kernelName:El,backendName:"cpu",kernelFunc:kq},Nq=it(hi,e=>Math.sin(e)),Tq={kernelName:hi,backendName:"cpu",kernelFunc:Nq},Sq=it(_l,e=>Math.sinh(e)),Cq={kernelName:_l,backendName:"cpu",kernelFunc:Sq},_q=11920928955078125e-23,BT=Math.log(_q)+2,Eq=it(Al,e=>{let t=e>-BT,n=e{let d=[...u];d[o]=p;let h=Ki({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});return c[o]+=p,h})}var Pq={kernelName:Fl,backendName:"cpu",kernelFunc:Mq},Oq=it(fi,e=>Math.sqrt(e)),Lq={kernelName:fi,backendName:"cpu",kernelFunc:Oq},zq={kernelName:Ac,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;we(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),Wq={kernelName:Hr,backendName:"cpu",kernelFunc:Bq};function Vq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a;we(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),v=It({inputs:{x:r},backend:n,attrs:{shape:y}}),x;if(h){let T=Ki({inputs:{x:v},backend:n,attrs:{begin:m,size:g}});x=It({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))x=n.makeTensorInfo(b,r.dtype,[]);else{let T=n.bufferSync(v),C=gT(b,T,f,m);x=n.makeTensorInfo(C.shape,C.dtype,C.values)}let N=It({inputs:{x},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),N}var Uq={kernelName:$l,backendName:"cpu",kernelFunc:Vq},Gq=it(Dl,e=>Math.tan(e)),Hq={kernelName:Dl,backendName:"cpu",kernelFunc:Gq},jq=it(vi,e=>Math.tanh(e)),qq={kernelName:vi,backendName:"cpu",kernelFunc:jq};function Kq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;we(r,"tile");let i=bT(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var Xq={kernelName:Gr,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;we(r,"topk");let o=n.data.get(r.dataId).values,[l,c]=xT(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var Zq={kernelName:Rl,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;we(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=vT(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Qq={kernelName:ch,backendName:"cpu",kernelFunc:Jq};function e5(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),c=0;for(let h=0;hn.disposeIntermediateTensorInfo(m)),h}var a5={kernelName:Fc,backendName:"cpu",kernelFunc:n5},r5=[TG,EU,CG,EG,MU,FG,DG,MG,OG,zG,WG,UG,HG,KG,YG,QG,tH,aH,sH,IG,oH,uH,pH,DU,OU,hH,AU,fH,yH,vH,kH,bH,SH,_H,NH,AH,$H,RH,PH,LH,BH,WH,UH,HH,qH,KH,YH,XH,Wv,gG,JH,e6,l6,LU,u6,BU,f6,y6,b6,VU,w6,I6,T6,C6,E6,GU,$6,FU,R6,gH,P6,L6,B6,yG,jU,U6,H6,KU,q6,Y6,J6,tj,aj,sj,YU,lj,cj,dj,mj,gj,ij,xj,wj,JU,Ij,Sj,Aj,eG,nG,Dj,Pj,zj,rG,Wj,Uj,Gj,LT,Kj,xG,oG,Yj,$U,Jj,vG,wG,kG,eq,nq,rq,iq,lq,uq,pq,uG,hq,fq,xq,wq,Iq,Tq,Cq,cG,_j,Aq,$q,Rq,Pq,Lq,zq,dG,Wq,Uq,mG,yj,Hq,qq,Xq,Zq,sG,Qq,t5,a5,Vj];for(let e of r5)Dc(e);var Xi={},Gv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function s5(e,t){Xi[e]=t}function ir(e){if(!(e in Xi)){let n=i5(e);if(n!==null)Xi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Xi[e];return t.isContextLost()?(delete Xi[e],ir(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Xi[e])}function o5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function i5(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=o5(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Xi[e]},!1),e===1?t.getContext("webgl",Gv)||t.getContext("experimental-webgl",Gv):t.getContext("webgl2",Gv)}var Ip;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ip||(Ip={}));var ea;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ea||(ea={}));var nn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(nn||(nn={}));function Np(e,t){return[t,e]}function l5(e,t){return e*t}function Tp(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function gu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function u5(e,t){let[n,a]=gu(e,t);return n*a*4}function Hv(e,t){let n=e,a,r,s,i,o,l,c,u,p,d;return ee().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,p=n.HALF_FLOAT,d=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ne(e,t){let n=t();return ee().getBool("DEBUG")&&c5(e),n}function c5(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+p5(e,t))}var d5=596e-10,h5=65504;function m5(e){return!!(ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||d5e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function f5(e,t){let n=Cr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ne(e,()=>e.shaderSource(n,t)),Ne(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function y5(e,t){let n=Cr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ne(e,()=>e.shaderSource(n,t)),Ne(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw g5(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var b5=/ERROR: [0-9]+:([0-9]+):/g;function g5(e,t){let n=b5.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(` `),s=r.length.toString().length+2,i=r.map((p,d)=>k.rightPad((d+1).toString(),s)+p),o=0;for(let p=0;pe.createProgram(),"Unable to create WebGLProgram.")}function v5(e,t){if(Ne(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function jv(e,t){if(Ne(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function w5(e,t){let n=Cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ne(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function k5(e,t){let n=Cr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ne(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function I5(e){return Cr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function N5(e,t){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function T5(e){return Cr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function WT(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),Ne(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),Ne(e,()=>e.enableVertexAttribArray(o)),!0)}function C5(e,t,n){S5(e,n),Ne(e,()=>e.activeTexture(e.TEXTURE0+n)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function _5(e,t,n){return Cr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function E5(e,t,n){return e.getUniformLocation(t,n)}function A5(e,t,n,a){Ne(e,()=>C5(e,t,a)),Ne(e,()=>e.uniform1i(n,a))}function qv(e,t,n){Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ne(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function VT(e,t){Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ne(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function ef(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+F5(e,t))}function F5(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Cr(e,t,n){let a=Ne(e,()=>t());if(a==null)throw new Error(n);return a}function S5(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(an){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function yu(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function bu(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Kv(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[yu(e),...bu(e)]),t}function $5(e,t=!1){let n=ee().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=yu(e),s=2,i=2;return e.length&&([s,i]=bu(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function tf(e){return e%2==0}function nf(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||tf(n)&&tf(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&tf(e[0])&&tf(t[0])}var Xv,Yv;function D5(e){if(Xv==null){let t=ir(e);Xv=t.getParameter(t.MAX_TEXTURE_SIZE)}return Xv}function R5(e){if(Yv==null){let t=ir(e);Yv=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Yv)}function M5(e){if(e===0)return 0;let t,n=ir(e);return xa(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:xa(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function xa(e,t){return e.getExtension(t)!=null}function UT(e){try{if(ir(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function P5(e){if(e===0)return!1;let t=ir(e);if(e===1){if(!xa(t,"OES_texture_float"))return!1}else if(!xa(t,"EXT_color_buffer_float"))return!1;return Zv(t)}function L5(e){if(e===0)return!1;let t=ir(e);if(e===1){if(!xa(t,"OES_texture_float")||!xa(t,"WEBGL_color_buffer_float"))return!1}else{if(xa(t,"EXT_color_buffer_float"))return Zv(t);let n="EXT_color_buffer_half_float";if(xa(t,n)){let a=t.getExtension(n);return O5(t,a)}return!1}return Zv(t)}function Zv(e){let t=Hv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function O5(e,t){let n=Hv(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function z5(e){return e!==2?!1:ir(e).fenceSync!=null}function Sp(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ee=ee();Ee.registerFlag("HAS_WEBGL",()=>Ee.getNumber("WEBGL_VERSION")>0);Ee.registerFlag("WEBGL_VERSION",()=>UT(2)?2:UT(1)?1:0);Ee.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ee.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ee.get("WEBGL_VERSION")===2);Ee.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ee.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ee.registerFlag("WEBGL_PACK",()=>Ee.getBool("HAS_WEBGL"));Ee.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_CLIP",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Ee.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_PACK_REDUCE",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_CONV_IM2COL",()=>Ee.getBool("WEBGL_PACK"));Ee.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>D5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>R5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ee.getNumber("WEBGL_VERSION");return e===0?0:M5(e)});Ee.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ee.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!bh.isMobile());Ee.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>P5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ee.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ee.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ee.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>L5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_FENCE_API_ENABLED",()=>z5(Ee.getNumber("WEBGL_VERSION")));Ee.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ee.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ee.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function mn(){let e,t,n,a,r,s,i,o,l,c;return ee().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",c=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,c=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function Yi(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Jv(e){let t=k.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}var GT=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,B5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ip.DENSE;let t=Tp(e),n=mn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Yi(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${n.output} = result; } `}},W5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ip.DENSE;let t=Tp(e),n=mn();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Yi(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${n.output} = result; } `}},V5=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ea.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=` ${GT} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},U5=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ea.DOWNLOAD;let t=mn();this.outputShape=e,this.userCode=` ${GT} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},G5=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=mn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=` ${Jv(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${s}; int c = imod(flatIndex, ${s}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0); vec4 values = ${a.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${a.output} = vec4(${i}, 0., 0., 0.); } `}},H5=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=mn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; if(localCoords[1] + ${l} < ${e[1]}) { localCoords[1] += ${l}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${s}; c = imod(flatIndex, ${s}); uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0); values = ${a.texture2D}(A, uv); if(offset == 0) { result[${u}] = values[0]; } else if(offset == 1) { result[${u}] = values[1]; } else if(offset == 2) { result[${u}] = values[2]; } else { result[${u}] = values[3]; } } } `}this.userCode=` ${Jv(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${i} ${a.output} = ${o}; } `}};function j5(e){let t=mn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return f5(e,n)}function q5(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return w5(e,t)}function K5(e){let t=new Uint16Array([0,1,2,2,1,3]);return k5(e,t)}function Cp(e,t,n,a,r,s){N5(t,n);let i=I5(e),o=e.TEXTURE_2D;return Ne(e,()=>e.bindTexture(o,i)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ne(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),Ne(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function HT(e){return e.internalFormatFloat}function X5(e,t,n,a){let[r,s]=Np(t,n);return Cp(e,r,s,HT(a),a.textureFormatFloat,e.FLOAT)}function jT(e){return e.internalFormatHalfFloat}function Y5(e,t,n,a){let[r,s]=Np(t,n);return Cp(e,r,s,jT(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function qT(e){return e.downloadTextureFormat}function Z5(e,t,n,a){let[r,s]=Np(t,n);return Cp(e,r,s,qT(a),e.RGBA,e.UNSIGNED_BYTE)}function KT(e){return e.internalFormatPackedFloat}function J5(e,t,n,a){let[r,s]=gu(t,n);return Cp(e,r,s,KT(a),e.RGBA,e.FLOAT)}function XT(e){return e.internalFormatPackedHalfFloat}function Q5(e,t,n,a){let[r,s]=gu(t,n);return Cp(e,r,s,XT(a),e.RGBA,a.textureTypeHalfFloat)}function e8(e,t,n){let a=0,r=3*4,s=3*4+2*4;return Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),WT(e,t,"clipSpacePos",n,3,s,a)&&WT(e,t,"uv",n,2,s,r)}function t8(e,t,n,a,r,s){Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function n8(e,t,n){Ne(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ne(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ne(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function a8(e,t,n,a){let r=e.createBuffer();Ne(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return Ne(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),Ne(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ne(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function r8(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function s8(e,t,n,a){let[r,s]=Np(t,n),i=4,o=new Uint8Array(l5(t*n,i));return Ne(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function i8(e,t,n,a,r,s,i,o){let l=e,c=new Float32Array(u5(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function o8(e,t,n){let a=new Float32Array(t*n*4);return Ne(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var u8=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=ee().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,s5(t,e)):this.gl=ir(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(ee().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Qm(this.gl,r),xa(this.gl,s))this.textureHalfFloatExtension=Qm(this.gl,s);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),xa(this.gl,a))this.colorBufferHalfFloatExtension=Qm(this.gl,a);else if(ee().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",xa(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(xa(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=q5(this.gl),this.indexBuffer=K5(this.gl),this.framebuffer=T5(this.gl),this.textureConfig=Hv(this.gl,this.textureHalfFloatExtension)}get debug(){return ee().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ne(e,()=>e.finish()),Ne(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ne(e,()=>e.deleteFramebuffer(this.framebuffer)),Ne(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ne(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ne(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),X5(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Y5(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Z5(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),n8(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),t8(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Q5(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),J5(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(VT(this.gl,this.framebuffer),this.outputTexture=null),Ne(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>s8(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return i8(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return r8(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=a8(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(ee().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>o8(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=y5(t,e),a=j5(t),r=x5(t);return Ne(t,()=>t.attachShader(r,a)),Ne(t,()=>t.attachShader(r,n)),v5(t,r),this.debug&&jv(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=e8(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ne(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&jv(this.gl,this.program),Ne(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?_5(this.gl,e,t):E5(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ne(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),A5(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=gu(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&jv(this.gl,this.program),ef(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ne(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Qm(this.gl,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=l8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),qv(this.gl,e,this.framebuffer),this.debug&&ef(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(qv(this.gl,this.outputTexture,this.framebuffer),this.debug&&ef(this.gl)):VT(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;qv(a,e,this.framebuffer),this.debug&&ef(a),this.outputTexture=e,Ne(a,()=>a.viewport(0,0,t,n)),Ne(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),Ne(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function l8(e){let t=0;for(;t{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(` `),i=e.map(h=>c8(h,t,a)).join(` `),o=t.texShape,l=mn(),c=h8(l),u,p,d=g8(l);return t.isPacked?(u=p8(t.logicalShape,o),p=f8(l)):(u=d8(t.logicalShape,o),p=m8(l)),a&&(d+=y8),[d,c,p,s,u,i,n].join(` `)}function xu(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return x8(e);case 1:return v8(e);case 2:return w8(e);case 3:return k8(e);case 4:return I8(e);case 5:return N8(e);case 6:return T8(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function ZT(e){switch(e.shapeInfo.logicalShape.length){case 0:return S8(e);case 1:return C8(e);case 2:return _8(e);case 3:return E8(e);default:return A8(e)}}function c8(e,t,n=!1){let a="";n?a+=ZT(e):a+=xu(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=F8(e,t):a+=$8(e,t)),a}function p8(e,t){switch(e.length){case 0:return JT();case 1:return D8(e,t);case 2:return P8(e,t);case 3:return R8(e,t);default:return M8(e,t)}}function d8(e,t){switch(e.length){case 0:return JT();case 1:return O8(e,t);case 2:return V8(e,t);case 3:return L8(e,t);case 4:return z8(e,t);case 5:return B8(e,t);case 6:return W8(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function h8(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function m8(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function f8(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function g8(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${U8} ${G8} ${H8} `}var U8=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,G8=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,H8=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,y8=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function JT(){return` int getOutputCoords() { return 0; } `}function D8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${n[1]}.0); } `:n[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${n[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); return 2 * (resTexRC.x * ${n[1]} + resTexRC.y); } `}function O8(e,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function R8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]})); int index = resTexRC.x * ${n[1]} + resTexRC.y; int b = index / ${r}; index -= b * ${r}; int r = 2 * (index / ${a}); int c = imod(index, ${a}) * 2; return ivec3(b, r, c); } `}function L8(e,t){let n=Yi(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${n} return ivec3(r, c, d); } `}function M8(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l=1?u="coords = 0;":u=o.map(g=>`coords.${p[g+c]} = 0;`).join(` `);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+c]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!f)i===1?h=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:h=` return vec4(outputValue.x); `;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${r}() { ${l} coords = getOutputCoords(); ${u} vec4 outputValue = get${a}(${d}); ${h} } `}function $8(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return` float ${r}() { return sampleTexture(${n}, resultUV); } `;let c=ft(l),u=YT(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,d,h=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(f=>`coords.${h[f+p]} = 0;`).join(` `);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),` float ${r}() { ${c} coords = getOutputCoords(); ${d} return get${a}(${m}); } `}function ft(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function wu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ku(e,t){return t.map(n=>e[n]).join(", ")}function j8(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=b8(s,o,r,t.packedInputs),c=e.createProgram(l),u=null,p=e.getUniformLocation(c,"NAN",!1);ee().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let h=0;h{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function q8(e,t,n,a,r){QT(t.inShapeInfos,n),QT([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),ee().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function K8(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:X8,bincountImpl:eS,bincountReduceImpl:Y8,ceilImpl:Z8,concatImpl:J8,expImpl:Q8,expm1Impl:eK,floorImpl:tK,gatherV2Impl:nK,greaterImpl:aK,lessImpl:rK,linSpaceImpl:sK,logImpl:iK,maxImpl:oK,maximumImpl:lK,minimumImpl:uK,multiplyImpl:cK,negImpl:pK,prodImpl:dK,rangeImpl:hK,rsqrtImpl:mK,simpleAbsImpl:tS,sliceImpl:fK,stridedSliceImpl:gK,subImpl:yK,tileImpl:bK,topKImpl:xK,transposeImpl:Qv,uniqueImpl:vK}=XN;function nS(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:nS(e,t)}function wK(e,t){if(e===1)return"rc";let n="";for(let a=0;a ${t[0]}`;let a="";for(let r=e-2;r= ${t[r]}`,r= ${t}; bool rEdge = rp1 >= ${n}; `}function NK(e,t){let n=e.length,a=SK(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${a[0]}), cEdge ? 0. : getA(${a[1]}), rEdge ? 0. : getA(${a[2]}), rEdge || cEdge ? 0. : getA(${a[3]})`}var aS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=` ${r} ${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${a}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${a>0?"}":""} `}this.userCode=` ${CK(t)} ${Jv(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${e[1]}; int cols = ${e[2]}; ${n} setOutput(result); } `}};function CK(e){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${Yi(["r","c","d"],e)} return ivec3(r, c, d); } `}var _K=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=sS(t,n),r=iS(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=rS(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===nn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===nn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===nn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===nn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===nn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=sS(n,a),s=iS(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=rS(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=ee().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function EK(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function rS(e,t,n,a,r){let s=AK(t,a),i;if(r){let[l,c]=gu(e[0],e[1]);i=l*c}else{let[l,c]=Np(e[0],e[1]);i=l*c}let o=EK(n,s);return i*o}function AK(e,t){switch(e){case nn.PACKED_2X2_FLOAT32:return KT(t);case nn.PACKED_2X2_FLOAT16:return XT(t);case nn.UNPACKED_FLOAT32:return HT(t);case nn.UNPACKED_FLOAT16:return jT(t);case nn.PACKED_4X1_UNSIGNED_BYTE:return qT(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function FK(e){return ee().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?nn.PACKED_2X2_FLOAT32:nn.UNPACKED_FLOAT32:e?nn.PACKED_2X2_FLOAT16:nn.UNPACKED_FLOAT16}function sS(e,t){if(e===ea.UPLOAD)return nn.PACKED_2X2_FLOAT32;if(e===ea.RENDER||e==null)return FK(t);if(e===ea.DOWNLOAD||e===ea.PIXELS)return nn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function iS(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ms=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},Ma="if (isnan(x)) return x;",$K="return x;",oS="return abs(x);",DK="return (x >= 0.0) ? x : (exp(x) - 1.0);",RK=Ma+` return (x < 0.0) ? 0.0 : x; `,MK=Ma+` return (x < 0.0) ? 0.0 : min(6.0, x); `,af="return x;",PK="return x;",OK=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,LK=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,zK=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Iu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},BK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=ft(t),r=wK(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=` void main() { ${a} rc = getOutputCoords(); vec4 packedInput = getA(${r}); setOutput(getChannel(packedInput, ${i})); } `}},WK=Qa.whereImpl,VK=1e-7,UK=1e-4,ew={};function GK(e){return e in ew||(ew[e]={}),ew[e]}var HK=128,jK=600;function qK(){return ee().global.screen==null?1024:ee().global.screen.height*ee().global.screen.width*window.devicePixelRatio*jK/1024/1024}var XK=class extends dc{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ee().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=ir(ee().getNumber("WEBGL_VERSION"));this.binaryCache=GK(ee().getNumber("WEBGL_VERSION")),this.gpgpu=new u8(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new _K(this.gpgpu),this.numMBBeforeWarning=qK(),this.texData=new Fd(this,Jr())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((ee().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ee().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:ea.UPLOAD,refCount:1,complexParentRefCount:0}),a}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,a){if(ee().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:ea.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Iu(i,af):p=new ms(i,af);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);u=_.mergeRealAndImagArrays(p,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Iu(a,af):h=new ms(a,af);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!ee().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ee().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&ee().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Tp(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=_.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}c!=null&&this.disposeIntermediateTensorInfo(c);let p=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;to.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(ee().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return ee().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Jr().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=HK){let n=this.getCPUBackend();return!ee().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(a=>this.texData.get(a.dataId).texture==null&&k.sizeFromShape(a.shape)0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return Jr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new BK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new TK(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[yu(e.shape),...bu(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[yu(t),...bu(t)],s=new aS(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=Kv(a),i;n?i=new W5(s):i=new B5(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Ip.DENSE){let m=Tp(e.outputShape);i.texShape=m.map(f=>f*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let f=this.texData.get(m.dataId);if(f.texture==null){if(!e.packedInputs&&k.sizeFromShape(m.shape)<=ee().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:f.values};e.packedInputs&&(f.isPacked=!0,f.shape=m.shape)}else if(!!f.isPacked!=!!e.packedInputs)m=f.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),f=this.texData.get(m.dataId);else if(f.isPacked&&!nf(f.shape,m.shape)){let g=m,y=m.shape;m.shape=f.shape,m=this.packedReshape(m,y),o.push(m),f=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:f,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=K8(e,l,c),p=this.getAndSaveBinary(u,()=>j8(this.gpgpu,e,l,c)),d=this.activeTimers!=null,h;if(d&&(h=this.startTimer()),q8(this.gpgpu,p,l,c,a),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)})),!ee().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,a,r=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,a,r);return Jr().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(ee().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=D(()=>{if(!ee().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=ee().getBool("DEBUG");ee().set("DEBUG",!1);let t=this.abs(de(1e-8)).dataSync()[0];if(ee().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?VK:UK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=$5(n,o),t.texShape=u),r!=null){let p=Kv(n),d,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=gu(u[0],u[1]),d=new H5(p,[m,h],f)):d=new G5(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=ea.PIXELS:this.texData.get(g.dataId).usage=ea.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,b=this.runWebGLProgram(d,[g],a,null,y),v=this.texData.get(b.dataId);t.texture=v.texture,t.texShape=v.texShape,t.isPacked=v.isPacked,t.usage=v.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(b.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=KK(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function KK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;anew XK,2);var lS=` if (isnan(a)) return a; if (isnan(b)) return b; `,Nu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},rf=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,_p=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(s=` ${ft(r)} coords = getOutputCoords(); `,r===1)s+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=fn("coords",r);s+=` bool nextRowOutOfBounds = (${i[r-2]} + 1) >= ${this.outputShape[r-2]}; bool nextColOutOfBounds = (${i[r-1]} + 1) >= ${this.outputShape[r-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${s} setOutput(result); } `}};function Bn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var ZK={kernelName:sl,backendName:"webgl",kernelFunc:Bn};function fs(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Bn({inputs:{x:a},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let c=Bn({inputs:{x:r},backend:n}),u=n.texData.get(c.dataId);return u.complexParentRefCount++,i.complexTensorInfos={real:o,imag:c},s}var JK={kernelName:Bd,backendName:"webgl",kernelFunc:fs},uS="return (a < 0.) ? b * a : a;",cS=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function QK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _p(cS,r.shape,i.shape):new Nu(uS,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var eX={kernelName:Ks,backendName:"webgl",kernelFunc:QK},pS="return (a < 0.) ? b * a : a;",dS=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function tX(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _p(dS,a.shape,r.shape):new Nu(pS,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var nX={kernelName:ii,backendName:"webgl",kernelFunc:tX},hS="if (isnan(x)) return x;",aX=` if (isnan(a)) return a; if (isnan(b)) return b; `,rX=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Iu(i.shape,t):u=new ms(i.shape,e),o.runWebGLProgram(u,[i],l)}}function an({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(v=>{let[x,N]=v,T={dataId:x.dataId,dtype:x.dtype,shape:l.shape},C={dataId:N.dataId,dtype:N.dtype,shape:c.shape},$=new Nu(e,l.shape,c.shape);return u.runWebGLProgram($,[T,C],ca(x.dtype,N.dtype))}),b=fs({inputs:{real:g,imag:y},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(y),b}let p=s||ca(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(c.dataId),[g,y]=r(l.shape,c.shape,m.values,f.values,p),b=u.makeTensorInfo(y,p),v=u.texData.get(b.dataId);return v.values=g,b}let d=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new _p(t,l.shape,c.shape,n):h=new Nu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],p)}}function sf(e,t=!1){if(e==="linear")return t?PK:$K;if(e==="relu")return t?LK:RK;if(e==="elu")return t?OK:DK;if(e==="relu6")return t?zK:MK;if(e==="prelu")return t?dS:pS;if(e==="leakyrelu")return t?cS:uS;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var mS=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=a?e[1]:e[2],u=Math.ceil(c/2),p=a?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:l?f=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:f=`vec4 activation(vec4 x) { ${i} }`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let b="rc.x",v="rc.x";e[0]`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!nf(r.shape,l)&&!(u.texture!==null&&nf(u.shape,l))?iX(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var oX={kernelName:Il,backendName:"webgl",kernelFunc:be},xS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=` if (inIdx < 0 || inIdx >= ${r}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${l} } int inIdx = inOffset + ${i}; if (${o===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${l} } else if (${o===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${l} } else if (${o===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${l} } setOutput(sumValue); } `}},lX=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,p=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${o}(values, minMaxValue); } `,d="vec4";t==="all"?(i="1.0",p=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,d="bvec4"):t==="any"&&(i="0.0",p=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,d="bvec4");let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${h} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${p} } int inIdx = inOffset + ${c}; if (${u===1}) { ${d} values = ${d}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${p} } else if (${u===2}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${p} } else if (${u===3}) { ${d} values = ${d}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${p} } setOutput(${l}); } `}};function uX(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ji(e,t,n,a){let r=uX(e.shape),s=e;for(let i=0;i6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ft(this.rank),r=nS("rc",this.rank),s=new Array(this.rank);for(let c=0;c=2&&u>=2&&v,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let x=(y>b?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let N=n?[y,p,h]:[y,h,p],T=a?[b,m,d]:[b,d,m],C=be({inputs:{x:e},backend:r,attrs:{shape:N}}),$=be({inputs:{x:t},backend:r,attrs:{shape:T}}),F=[C,$],O=Math.max(y,b),B=n?C.shape[1]:C.shape[2],W=s!=null,G=i!=null,q=l==="leakyrelu",H=l!=null?sf(l,!0):null,K=W||G||q||H!=null,X;if((h===1||m===1)&&B>vS&&K===!1){let J=C,se=$;n&&(J=Sn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),F.push(J)),a&&(se=Sn({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),F.push(se));let Q=m!==1,oe=m===1,ae=J;Q&&(ae=be({inputs:{x:J},backend:r,attrs:{shape:[O,B,1]}}),F.push(ae));let pe=m===1?2:1,ue=se;oe&&(ue=be({inputs:{x:se},backend:r,attrs:{shape:[O,1,B]}}),F.push(ue));let ge=bS({inputs:{a:ae,b:ue},backend:r});X=tw({inputs:{x:ge},backend:r,attrs:{axis:pe,keepDims:!0}}),F.push(ge)}else{let J=ca(e.dtype,t.dtype),se=new mS(N,T,[O,h,m],n,a,W,H,G,q),Q=[C,$];if(s!=null&&Q.push(s),G&&Q.push(i),q){let oe=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Q.push(oe),F.push(oe)}X=r.runWebGLProgram(se,Q,J)}let ne=be({inputs:{x:X},backend:r,attrs:{shape:x}});F.push(X);for(let J of F)r.disposeIntermediateTensorInfo(J);return ne}function gX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a;return lf({a:r,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var yX={kernelName:ki,backendName:"webgl",kernelFunc:gX},wS="return abs(x);";function bX(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=tS(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Iu(a.shape,wS):r=new ms(a.shape,wS),n.runWebGLProgram(r,[a],a.dtype)}var xX={kernelName:Oo,backendName:"webgl",kernelFunc:bX},vX=Ma+` if (abs(x) > 1.) { return NAN; } return acos(x); `,wX=Ze({opSnippet:vX}),kX={kernelName:Lo,backendName:"webgl",kernelFunc:wX},IX=Ma+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,NX=Ze({opSnippet:IX}),TX={kernelName:zo,backendName:"webgl",kernelFunc:NX},kS="return a + b;",SX=an({opSnippet:kS,packedOpSnippet:kS,supportsComplex:!0,cpuKernelImpl:X8}),CX={kernelName:Vr,backendName:"webgl",kernelFunc:SX},_X=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${a}; setOutput(result); } `}},EX=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${a}; setOutput(result); } `}};function uf(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Bn({inputs:{x:a[0]},backend:n});if(a.length>ee().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=uf({inputs:a.slice(0,o),backend:n}),c=uf({inputs:a.slice(o),backend:n});return uf({inputs:[l,c],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>ca(o,l)),s=a.map(o=>o.shape),i=ee().getBool("WEBGL_PACK")?new EX(a[0].shape,s):new _X(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var AX={kernelName:$s,backendName:"webgl",kernelFunc:uf};function FX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("all",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=k.sizeFromShape(h),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Ji(f,f.dtype,"all",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var $X={kernelName:Md,backendName:"webgl",kernelFunc:FX};function DX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=_.getInnerMostAxes(c.length,o)),_.assertAxesAreInnerMostDims("any",c,o);let[d,h]=_.computeOutAndReduceShapes(p.shape,c),m=k.sizeFromShape(h),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Ji(f,f.dtype,"any",n),y;if(i){let b=_.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:b}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(p),y}var RX={kernelName:Pd,backendName:"webgl",kernelFunc:DX},MX=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${a}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${a}; i++) { int inIdx = ${o}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},PX=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ft(o),c=fn("coords",o),u,p;if(s===1){p=o+1;let C=ft(p);u=` ${C} sourceLocR = ${C}(${c.join()}, 0); ++${c[o-1]}; ${C} sourceLocG = ${C}(${c.join()}, 0); ++${c[o-2]}; ${C} sourceLocA = ${C}(${c.join()}, 0); --${c[o-1]}; ${C} sourceLocB = ${C}(${c.join()}, 0); --${c[o-2]};`}else p=o,u=` ${l} sourceLocR = coords; ++${c[o-1]}; ${l} sourceLocG = coords; ++${c[o-2]}; ${l} sourceLocA = coords; --${c[o-1]}; ${l} sourceLocB = coords; --${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],m=d.map(C=>"int "+C),f=fn("sourceLocR",p-1).concat("inIdx.r"),g=fn("sourceLocG",p-1).concat("inIdx.g"),y=fn("sourceLocB",p-1).concat("inIdx.b"),b=fn("sourceLocA",p-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=a?"":` inIdx = round(vec4(getBestIndicesAChannel(${f.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${y.join()}), getBestIndicesAChannel(${b.join()})));`,N=`vec4( getAChannel(${f.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${y.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${b.join()}) : 0.)`,T=a?"":` float getBestIndicesAChannel(${m.join()}) { return getChannel(getBestIndicesA(${d.join()}), vec2(${d.slice(-2).join()})); }`;this.userCode=` float getAChannel(${m.join()}) { return getChannel(getA(${d.join()}), vec2(${d.slice(-2).join()})); } ${T} void main() { ${l} coords = getOutputCoords(); bool hasNextCol = ${c[o-1]} < ${i[o-1]-1}; bool hasNextRow = ${c[o-2]} < ${i[o-2]-1}; ${u} ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h}, sourceLocB${h}, sourceLocA${h}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${N}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${x} vec4 candidate = ${N}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function IS(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=_.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new MX(o,n,a==null),c=[t];a!=null&&c.push(a);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let p=IS(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function NS(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=_.computeOptimalWindowSize(s),o=new PX(r,i,n,a==null),l=a==null?[t]:[t,a],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=NS(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function TS(e,t,n,a){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!ee().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=_.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),c=be({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=IS(e,c,a);s.push(u);let p=be({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),p}return NS(e,t,a)}function OX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=TS(n,l,i[0],"max");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var LX={kernelName:Ds,backendName:"webgl",kernelFunc:OX};function zX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=_.getAxesPermutation(i,r.shape.length),l=r,c=[];o!=null&&(l=Sn({inputs:{x:r},backend:n,attrs:{perm:o}}),c.push(l),i=_.getInnerMostAxes(i.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=TS(n,l,i[0],"min");return c.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var BX={kernelName:fc,backendName:"webgl",kernelFunc:zX},WX=Ma+` if (abs(x) > 1.) { return NAN; } return asin(x); `,VX=Ze({opSnippet:WX}),UX={kernelName:Bo,backendName:"webgl",kernelFunc:VX},GX=Ma+"return log(x + sqrt(x * x + 1.0));",HX=Ze({opSnippet:GX}),jX={kernelName:Wo,backendName:"webgl",kernelFunc:HX},qX=Ma+` return atan(x); `,KX=Ze({opSnippet:qX}),XX={kernelName:Vo,backendName:"webgl",kernelFunc:KX},YX=aX+` return atan(a, b); `,ZX=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+rX+` return result; `,JX=an({opSnippet:YX,packedOpSnippet:ZX}),QX={kernelName:Go,backendName:"webgl",kernelFunc:JX},eY=Ma+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,tY=Ze({opSnippet:eY}),nY={kernelName:Uo,backendName:"webgl",kernelFunc:tY},Ep=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${h}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${p}; wC += ${c}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${C} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=` if (${m}) { avgValue += dot(values, ones); } else { minMaxValue = ${b}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${o}); const ivec2 pads = ivec2(${d}, ${h}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${u}; wR += ${l}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${x}; wC += 4) { int xC = xCCorner + wC * ${c}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), getValue(batch, xR, xC + 3 * ${c}, d) ); ${T} } int xC = xCCorner + ${x}; if (${N===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${T} } else if (${N===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), initializationValue, initializationValue ); ${T} } else if (${N===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), initializationValue ); ${T} } } setOutput(${v}); } `}},nw=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let b=t==="avg",v="0.0";if(b||(v="-1.0 / 1e-20"),n){let F=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${g}, ${y}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${m}; wC += ${p}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${F} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} + wR * ${m} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let x="max",N=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(N="avgValue / count");let T=Math.floor(s/4)*4,C=s%4,$=` if (${b}) { avgValue += dot(values, ones); } else { minMaxValue = ${x}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${o}, ${l}); const ivec3 pads = ivec3(${f}, ${g}, ${y}); const float initializationValue = ${v}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${v}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${d}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${T}; wC += 4) { int xC = xCCorner + wC * ${p}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${p}, ch), getValue(batch, xD, xR, xC + 2 * ${p}, ch), getValue(batch, xD, xR, xC + 3 * ${p}, ch) ); ${$} } int xC = xCCorner + ${T}; if (${C===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${$} } else if (${C===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${p}, ch), initializationValue, initializationValue ); ${$} } else if (${C===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${p}, ch), getValue(batch, xD, xR, xC + 2 * ${p}, ch), initializationValue ); ${$} } } setOutput(${N}); } } `}};function aY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Sp(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,c=1;k.assert(_.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Bn({inputs:{x:r},backend:n});let p=new Ep(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var rY={kernelName:Rs,backendName:"webgl",kernelFunc:aY};function sY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,l,c),d=new nw(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var iY={kernelName:gc,backendName:"webgl",kernelFunc:sY},oY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${c}, ${u}); const float avgMultiplier = float(${p}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${o}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},lY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=d-1-e.padInfo.left,g=1/(t*n*a);this.userCode=` const ivec3 pads = ivec3(${h}, ${m}, ${f}); const float avgMultiplier = float(${g}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${u}; wD += ${o}) { float dyD = float(dyDCorner + wD) / ${r}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${p}; wR += ${l}) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${d}; wC += ${c}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function uY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new lY(d);return n.runWebGLProgram(h,[r],i.dtype)}var cY={kernelName:Ld,backendName:"webgl",kernelFunc:uY};function pY(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Sp([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=a,u=_.computePool2DInfo(i.shape,o,l,1,c),p=new oY(u);return n.runWebGLProgram(p,[r],i.dtype)}var dY={kernelName:Od,backendName:"webgl",kernelFunc:pY};function hY(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return lf({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var mY={kernelName:Ms,backendName:"webgl",kernelFunc:hY},fY=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${o}; float inv = scale * inversesqrt(variance + float(${s})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},gY=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(_.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${o}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${s})); setOutput((x - mean) * inv + offset); } `}},yY=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[a,r,s],u=null;i!=null&&(u=i.shape,c.push(i));let p=null;o!=null&&(p=o.shape,c.push(o));let d=ee().getBool("WEBGL_PACK_NORMALIZATION")?new gY(a.shape,r.shape,s.shape,u,p,l):new fY(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(d,c,c[0].dtype)},bY={kernelName:js,backendName:"webgl",kernelFunc:yY},vY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=`uniform int start[${this.rank}];`,a=xY(this.rank),r,s=e.map((i,o)=>`sourceLoc.${aw[o]} = start[${o}] + coords.${aw[o]};`);r=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` `)} `,this.userCode=` ${n} void main() { ${r} setOutput(getSource(${a})); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},aw=["x","y","z","w","u","v"];function xY(e){if(e===1)return"sourceLoc";if(e<=6)return aw.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var wY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ft(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=` result.x = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${a[this.rank-1]}; result.y = ${s}; --${a[this.rank-1]}; } `,o=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${a[this.rank-2]}; result.z = ${s}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${a[this.rank-1]}; result.w = ${s}; } } `,l=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${l} vec4 result = vec4(0.); ${i} ${o} setOutput(result); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function kY(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=pn.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function Ap(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=pn.parseSliceParams(r,s,i);if(pn.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=fK(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:c}=n.texData.get(r.dataId),u=pn.isSliceContinous(r.shape,o,l);if(c||!u){let p=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wY(l):new vY(l),d=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),kY(r,o,l,n)}var IY={kernelName:Cl,backendName:"webgl",kernelFunc:Ap},NY=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((b,v)=>b*v),l=_.getReshaped(r.shape,s,o),c=_.getPermuted(l.length,s.length),u=_.getReshapedPermuted(r.shape,s,o),p=_.getSliceBeginCoords(i,s.length),d=_.getSliceSize(u,i,s.length),h=[],m=be({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Sn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=be({inputs:{x:f},backend:n,attrs:{shape:u}}),y=Ap({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(m),h.push(f),h.push(g),h.forEach(b=>n.disposeIntermediateTensorInfo(b)),y},TY={kernelName:yc,backendName:"webgl",kernelFunc:NY};function SY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),c=eS(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var CY={kernelName:zd,backendName:"webgl",kernelFunc:SY},_Y="return float(a != b);",SS=an({opSnippet:_Y,dtype:"bool"}),EY={kernelName:fl,backendName:"webgl",kernelFunc:SS};function Fp(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Bn({inputs:{x:r.complexTensorInfos.real},backend:n})}var AY={kernelName:ih,backendName:"webgl",kernelFunc:Fp},FY="return float(int(x));";function $Y(e,t){let n=new ms(e.shape,FY),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function rw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Bn({inputs:{x:r},backend:n});let i=vt(r.shape),o=rw({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=fs({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=Fp({inputs:{input:r},backend:n}),o=rw({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Bn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return $Y(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=SS({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var DY={kernelName:Ps,backendName:"webgl",kernelFunc:rw},CS="return ceil(x);",RY=Ze({opSnippet:CS,packedOpSnippet:CS,cpuKernelImpl:Z8}),MY={kernelName:Ho,backendName:"webgl",kernelFunc:RY},PY=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},OY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function LY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;ee().getBool("WEBGL_PACK_CLIP")?o=new OY(r.shape):o=new PY(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var zY={kernelName:Ur,backendName:"webgl",kernelFunc:LY},BY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function _S(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function WY(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new BY(a.shape),i=[_S(a,r.complexTensorInfos.real),_S(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var VY={kernelName:bc,backendName:"webgl",kernelFunc:WY},UY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m= ${o[m-1]}) { return getChannel( getT${m}(${cf(i,l,f)}), vec2(${cf(c,l,f)})); }`}let d=o.length,h=o[o.length-1];p+=` return getChannel( getT${d}(${cf(i,l,h)}), vec2(${cf(c,l,h)}));`,this.userCode=` float getValue(${i.map(m=>"int "+m)}) { ${p} } void main() { ${r} coords = getOutputCoords(); vec4 result = vec4(getValue(${s}), 0., 0., 0.); ${s[a-1]} = ${s[a-1]} + 1; if (${s[a-1]} < ${n[a-1]}) { result.g = getValue(${s}); } ${s[a-2]} = ${s[a-2]} + 1; if (${s[a-2]} < ${n[a-2]}) { result.a = getValue(${s}); } ${s[a-1]} = ${s[a-1]} - 1; if (${s[a-2]} < ${n[a-2]} && ${s[a-1]} < ${n[a-1]}) { result.b = getValue(${s}); } setOutput(result); } `}};function cf(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function pf(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Bn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var HY={kernelName:Qd,backendName:"webgl",kernelFunc:pf};function Tu(e,t,n){let a=e[0].dtype;if(a==="complex64"){let c=e.map(m=>Fp({inputs:{input:m},backend:n})),u=e.map(m=>pf({inputs:{input:m},backend:n})),p=Tu(c,t,n),d=Tu(u,t,n),h=fs({inputs:{real:p,imag:d},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),u.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(a==="string"){let{tensors2D:c,outShape:u}=ES(e,t,n),p=c.map(g=>({vals:n.readSync(g.dataId),shape:g.shape})),d=c[0].shape[0]===1,h=J8(p,u,a,d),m=_.computeOutShape(e.map(g=>g.shape),t),f=n.makeTensorInfo(m,a,h);return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),f}if(e.length>ee().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=Tu(e.slice(0,c),t,n),p=Tu(e.slice(c),t,n),d=Tu([u,p],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),d}if(ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new GY(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,a)}let{tensors2D:r,outShape:s}=ES(e,t,n),i=new UY(r.map(c=>c.shape)),o=n.runWebGLProgram(i,r,a);r.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=be({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function ES(e,t,n){let a=_.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>be({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function AS(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=_.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return Bn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return _.assertParamsConsistent(l,s),Tu(o,s,n)}var jY={kernelName:jo,backendName:"webgl",kernelFunc:AS},FS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,b=f?3:1,v="",x="";n&&(a?v=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?v=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:v=` float activation(float x) { ${n} } `,x="result = activation(result);");let N=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${v} const ivec2 strides = ivec2(${o}, ${l}); const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${b}]; ivec2 xRCCorner = ivec2(coords[${g}], coords[${y}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${p}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${f}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${m===1}) { if (${f}) { dotProd += getX(batch, xR, xC, ${h}) * getW(wR, wC, ${h}, d2); } else { dotProd += getX(batch, ${h}, xR, xC) * getW(wR, wC, ${h}, d2); } } else if (${m===2}) { vec2 wValues = vec2( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2) ); if (${f}) { vec2 xValues = vec2( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${m===3}) { vec3 wValues = vec3( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2), getW(wR, wC, ${h} + 2, d2) ); if (${f}) { vec3 xValues = vec3( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1), getX(batch, xR, xC, ${h} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC), getX(batch, ${h} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${N} ${x} setOutput(result); } `}},qY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${r}, ${s}, ${i}); const ivec3 pads = ivec3(${t}, ${n}, ${a}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${u}; wF++) { int xF = xFCorner + wF * ${o}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${p}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${m===1}) { dotProd += getX(batch, xF, xR, xC, ${h}) * getW(wF, wR, wC, ${h}, d2); } else if (${m===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${m===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1), getX(batch, xF, xR, xC, ${h} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2), getW(wF, wR, wC, ${h} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},KY=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:p}=n,{left:d,top:h}=o,m=r*a,f=mn(),g=p==="channelsLast",y=g?0:1,b=g?1:2,v="";for(let x=0;x<=1;x++)for(let N=0;N<=1;N++)v+=` blockIndex = rc.y + ${N}; pos = rc.x + ${x}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${l})) * ${i} - ${h}; d0 = offsetY + ${u} * (pos / ${m}); if(d0 < ${t[y]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.); d1 = offsetX + ${c} * (int(mod(float(pos), ${m}.) / ${r}.)); if(d1 < ${t[b]} && d1 >= 0) { ch = int(mod(float(pos), ${r}.)); if (${g}) { innerDims = vec2(d1, ch); result[${x*2+N}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${x*2+N}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${v} ${f.output} = result; } `}};function $S({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],b=(p===1||d===1)&&u>vS,v=l[2]%2!=0&&!!c.isPacked;if(b||!ee().getBool("WEBGL_LAZILY_UNPACK")||!ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!v){let x=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],N=be({inputs:{x:e},backend:a,attrs:{shape:[1,x,n.inChannels]}}),T=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=lf({a:N,b:T,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=be({inputs:{x:C},backend:a,attrs:{shape:n.outShape}}),y.push(N),y.push(T),y.push(C)}else{let x=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),N={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},T=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(nf(c.shape,N.shape),()=>`packed reshape ${c.shape} to ${N.shape} isn't free`);let C=be({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(C);let $=lf({a:N,b:C,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),F=a.texData.get($.dataId);k.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=T,F.shape=n.outShape,g=Bn({inputs:{x:$},backend:a}),g.shape=n.outShape,y.push($)}for(let x of y)a.disposeIntermediateTensorInfo(x);return g}function DS({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:p,outHeight:d,dataFormat:h}=n,m=h==="channelsLast",f=l*c*u,g=d*p,y=[f,g],b=!0,v=!1,x=[],N=be({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),T=be({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});x.push(N),x.push(T);let C=new KY(y,N.shape,n),$=a.runWebGLProgram(C,[N],"float32"),F=be({inputs:{x:$},backend:a,attrs:{shape:[1,y[0],y[1]]}});x.push($),x.push(F);let O=r!=null,B=s!=null,W=o==="leakyrelu",G=o?sf(o,!0):null,q=new mS(F.shape,T.shape,[1,g,n.outChannels],b,v,O,G,B,W),H=[F,T];if(r&&H.push(r),B&&H.push(s),W){let J=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));H.push(J),x.push(J)}let K=a.runWebGLProgram(q,H,"float32"),X=m?[1,d,p,n.outChannels]:[1,n.outChannels,d,p],ne=be({inputs:{x:K},backend:a,attrs:{shape:X}});x.push(K);for(let J of x)a.disposeIntermediateTensorInfo(J);return ne}function XY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=$S({x:r,filter:s,convInfo:d,backend:n});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=DS({x:r,filter:s,convInfo:d,backend:n});else{let f=new FS(d);h=n.runWebGLProgram(f,[r,s],"float32")}let m=be({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),m}var YY={kernelName:Os,backendName:"webgl",kernelFunc:XY},ZY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${s}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},JY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${u}]; ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${s}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},QY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${r}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${s}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${a} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},e7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=a-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${o}, ${l}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${r}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${s}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${a}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${a} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function t7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=a,p=_.convertConv2DDataFormat(l),d=_.computeConv2DInfo(r.shape,u,i,1,o,c,!1,p),h=new ZY(d);return n.runWebGLProgram(h,[r,s],"float32")}var n7={kernelName:Wd,backendName:"webgl",kernelFunc:t7};function a7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=a,p=_.convertConv2DDataFormat(c),d=_.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new JY(d);return n.runWebGLProgram(h,[r,s],"float32")}var r7={kernelName:Ls,backendName:"webgl",kernelFunc:a7};function s7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new qY(c);return n.runWebGLProgram(u,[r,s],"float32")}var i7={kernelName:xc,backendName:"webgl",kernelFunc:s7};function o7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,c=_.computeConv3DInfo(r.shape,l,i,1,o),u=new QY(c);return n.runWebGLProgram(u,[r,s],"float32")}var l7={kernelName:Vd,backendName:"webgl",kernelFunc:o7};function u7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,c=_.computeConv3DInfo(l,s.shape,o,1,i),u=new e7(c);return n.runWebGLProgram(u,[r,s],"float32")}var c7={kernelName:Ud,backendName:"webgl",kernelFunc:u7},p7=hS+` return cos(x); `,d7=Ze({opSnippet:p7}),h7={kernelName:zs,backendName:"webgl",kernelFunc:d7},m7=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,f7=Ze({opSnippet:m7}),g7={kernelName:qo,backendName:"webgl",kernelFunc:f7},y7=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,p]=n;this.outputShape=[c,u,p,l];let d=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[b,v,x]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=` const float height_ratio = float(${f}); const float width_ratio = float(${b}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${s}) { return; } float height_scale = ${g}; float width_scale = ${v}; float in_y = ${y}; if( in_y < 0.0 || in_y > ${h} ) { setOutput(float(${r})); return; } float in_x = ${x}; if( in_x < 0.0 || in_x > ${m} ) { setOutput(float(${r})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${d} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},b7=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=a,u=new y7(r.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[r,s,i],"float32")},x7={kernelName:Ko,backendName:"webgl",kernelFunc:b7},PS=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${RS(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${ft(a)} coords = getOutputCoords(); int end = ${MS(a,"coords")}; float val = ${r}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${o}; ${MS(a,"coords")} = idx; val += getX(${RS(a,"coords")}); } setOutput(val); } `}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function RS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function MS(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function v7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,c=_.getAxesPermutation([s],l),u=r;c!=null&&(u=Sn({inputs:{x:r},backend:n,attrs:{perm:c}}));let p=_.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let d=r.shape[p],h=Bn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new PS(u.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new PS(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(c!=null){let m=_.getUndoAxesPermutation(c),f=Sn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var w7={kernelName:Bs,backendName:"webgl",kernelFunc:v7};function k7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(s.dataId),u=eS(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(s),u=Y8(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var I7={kernelName:Gd,backendName:"webgl",kernelFunc:k7},N7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function T7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=new N7(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var S7={kernelName:Xo,backendName:"webgl",kernelFunc:T7},OS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:r?g=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:g=` float activation(float x) { ${n} } `,y="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${g} const ivec2 strides = ivec2(${c}, ${u}); const ivec2 pads = ivec2(${o}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${f}; int q = d2 - d1 * ${f}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${h}; wR++) { int xR = xRCorner + wR * ${p}; if (xR < 0 || xR >= ${s}) { continue; } for (int wC = 0; wC < ${m}; wC++) { int xC = xCCorner + wC * ${d}; if (xC < 0 || xC >= ${i}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${b} ${y} setOutput(result); } `}},LS=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,d=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=m,g="int xR; int xC; int xCOffset;";for(let x=0;x= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { xTexelR${x}C${T}.zw = vec2(0.); } } else { xTexelR${x}C${T} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { previous.zw = vec2(0.); } xR${x}C${T} = vec4(previous.zw, xTexelR${x}C${T}.xy); } else { xR${x}C${T} = vec4(0, 0, xTexelR${x}C${T}.xy); } `:g+=` if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) { xTexelR${x}C${T} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${T} = vec4(0.); } xR${x}C${T} = xTexelR${x}C${T}; `,T+1= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1); } `,d>1&&(g+=` xCOffset -= 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${T} = vec4(0.); } `),g+=` xR${x}C${T+1} = vec4( xTexelR${x}C${T}.zw, xTexelR${x}C${T+2}.xy); `):g+=` xCOffset = xC + ${C}; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1); } xR${x}C${T+1} = xTexelR${x}C${T+2}; `}}else T= 0 && xR < ${s}) { `,l%2==1?(g+=` xCOffset = xC + 1 - ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${T} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${i}) { xTexelR${x}C${T+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${x}C${T+2} = vec4(0.); } xR${x}C${T} = vec4( xTexelR${x}C${T}.zw, xTexelR${x}C${T+2}.zw); `,T+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xR${x}C${T+1} = vec4(xTexelR${x}C${T+2}.xy, final.xy); `)):(g+=` if(xC >= 0 && xC < ${i}) { xTexelR${x}C${T} = getX(batch, xR, xC, d1); } else { xTexelR${x}C${T} = vec4(0.); } xCOffset = xC + ${u}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${x}C${T+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${x}C${T+2} = vec4(0.); } xR${x}C${T} = vec4( xTexelR${x}C${T}.xy, xTexelR${x}C${T+2}.xy); `,T+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=_.computeConv2DInfo(r.shape,s.shape,i,u,o,c,!0),d;return ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?d=new LS(p):d=new OS(p),n.runWebGLProgram(d,[r,s],"float32")}var _7={kernelName:Ws,backendName:"webgl",kernelFunc:C7},E7=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${s} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${r}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},A7=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${s}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${o}; dm++) { int d2 = d1 * ${o} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function F7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=a,p=_.computeConv2DInfo(r.shape,u,i,o,l,c,!0),d=new E7(p);return n.runWebGLProgram(d,[r,s],"float32")}var $7={kernelName:Hd,backendName:"webgl",kernelFunc:F7};function D7(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=a,p=_.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new A7(p);return n.runWebGLProgram(d,[r,s],"float32")}var R7={kernelName:jd,backendName:"webgl",kernelFunc:D7},M7=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function P7(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=be({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new M7(s),l=n.runWebGLProgram(o,[i],i.dtype),c=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var O7={kernelName:qd,backendName:"webgl",kernelFunc:P7},L7=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:p}=a;this.userCode=` const ivec2 strides = ivec2(${r}, ${s}); const ivec2 pads = ivec2(${u}, ${p}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${l}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${o}; w++) { int wIn = wBeg + w * ${c}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,c=_.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new L7(c);u=n.runWebGLProgram(p,[r,s],"float32");let d=be({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var B7={kernelName:vc,backendName:"webgl",kernelFunc:z7},W7="return (x >= 0.0) ? x : (exp(x) - 1.0);",V7=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,U7=Ze({opSnippet:W7,packedOpSnippet:V7}),G7={kernelName:Yo,backendName:"webgl",kernelFunc:U7},H7="return (b >= 1.0) ? a : a * (b + 1.0);",j7=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,q7=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=ee().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new _p(j7,a.shape,r.shape):new Nu(H7,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},K7={kernelName:Yd,backendName:"webgl",kernelFunc:q7},X7=` return vec4(equal(a, b)); `,Y7="return float(a == b);",Z7=an({opSnippet:Y7,packedOpSnippet:X7,dtype:"bool"}),J7={kernelName:Jo,backendName:"webgl",kernelFunc:Z7},Q7=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${_.ERF_P}; float a1 = ${_.ERF_A1}; float a2 = ${_.ERF_A2}; float a3 = ${_.ERF_A3}; float a4 = ${_.ERF_A4}; float a5 = ${_.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,eZ=Ze({opSnippet:Q7}),tZ={kernelName:Zo,backendName:"webgl",kernelFunc:eZ},zS="return exp(x);",BS=Ze({opSnippet:zS,packedOpSnippet:zS,cpuKernelImpl:Q8}),nZ={kernelName:Us,backendName:"webgl",kernelFunc:BS};function sw(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),be({inputs:{x:s},backend:a,attrs:{shape:o}})}var aZ={kernelName:Qo,backendName:"webgl",kernelFunc:sw},WS="return exp(x) - 1.0;",rZ=Ze({opSnippet:WS,packedOpSnippet:WS,cpuKernelImpl:eK}),sZ={kernelName:el,backendName:"webgl",kernelFunc:rZ},VS=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${r}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${a}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${a}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${s}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function US(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=be({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new VS("real",l,t),u=new VS("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=fs({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let f=be({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function iZ(e){let{inputs:t,backend:n}=e,{input:a}=t;return US(a,!1,n)}var oZ={kernelName:Zd,backendName:"webgl",kernelFunc:iZ},lZ=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function iw(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new lZ(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var uZ={kernelName:wc,backendName:"webgl",kernelFunc:iw},cZ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},pZ={kernelName:tl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new cZ(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},GS="return floor(x);",dZ=Ze({opSnippet:GS,packedOpSnippet:GS,cpuKernelImpl:tK}),hZ={kernelName:Gs,backendName:"webgl",kernelFunc:dZ},mZ=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,fZ=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,gZ=an({opSnippet:mZ,packedOpSnippet:fZ,dtype:"int32"}),yZ={kernelName:Hs,backendName:"webgl",kernelFunc:gZ},bZ=class{constructor(e){this.variableNames=["A"];let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},xZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=mn(),[n,a]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},wZ={kernelName:ph,backendName:"webgl",kernelFunc:vZ},Su;function vZ(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[u,c],d=[u,c,s];(o||i||l)&&(Su==null&&(Su=document.createElement("canvas").getContext("2d")),Su.canvas.width=c,Su.canvas.height=u,Su.drawImage(r,0,0,c,u),r=Su.canvas);let h=n.makeTensorInfo(p,"int32");n.texData.get(h.dataId).usage=ea.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(h.dataId),r);let m=ee().getBool("WEBGL_PACK")?new xZ(d):new bZ(d),f=n.runWebGLProgram(m,[h],"int32");return n.disposeData(h.dataId),f}function kZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=a,f=_.convertConv2DDataFormat(u),g=_.computeConv2DInfo(r.shape,s.shape,l,p,c,d,!1,f),y,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=$S({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(ee().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=DS({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let x=i!=null,N=o!=null,T=h==="leakyrelu",C=h?sf(h,!1):null,$=new FS(g,x,C,N,T),F=[r,s];if(i&&F.push(i),o&&F.push(o),T){let O=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));F.push(O),b.push(O)}y=n.runWebGLProgram($,F,"float32")}let v=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return b.push(y),b.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var IZ={kernelName:Ii,backendName:"webgl",kernelFunc:kZ};function NZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),k.assert(_.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=_.computeConv2DInfo(r.shape,s.shape,l,f,c,p,!0),y=ee().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=d?sf(d,y):null,v=[r,s],x=i!=null,N=o!=null,T=d==="leakyrelu";if(x&&v.push(i),N&&v.push(o),T){let F=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));v.push(F),m.push(F)}let C;y?C=new LS(g,x,b,N,T):C=new OS(g,x,b,N,T);let $=n.runWebGLProgram(C,v,"float32");return m.forEach(F=>n.disposeIntermediateTensorInfo(F)),$}var TZ={kernelName:Ni,backendName:"webgl",kernelFunc:NZ},SZ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ft(t.length),r=ft(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${a} strides = ${a}(${this.strides}); void main() { ${r} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${s}; } setOutput(getX(flattenIndex, coords[1])); } `}};function CZ(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,c,u]=_.prepareAndValidate(a,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),d=be({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/c,c]}}),h=new SZ(i,u,[l,c]),m=n.runWebGLProgram(h,[d,p],d.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var _Z={kernelName:al,backendName:"webgl",kernelFunc:CZ},AZ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ft(this.rank),a=EZ(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${a})); } `}};function EZ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;rn.disposeIntermediateTensorInfo(N)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let f=new AZ(d.shape,m),g=n.runWebGLProgram(f,[d,h],d.dtype);p.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),y}var $Z={kernelName:nl,backendName:"webgl",kernelFunc:FZ},DZ="return float(a > b);",RZ=` return vec4(greaterThan(a, b)); `,MZ=an({opSnippet:DZ,packedOpSnippet:RZ,cpuKernelImpl:aK,dtype:"bool"}),PZ={kernelName:rl,backendName:"webgl",kernelFunc:MZ},OZ="return float(a >= b);",LZ=` return vec4(greaterThanEqual(a, b)); `,zZ=an({opSnippet:OZ,packedOpSnippet:LZ,dtype:"bool"}),BZ={kernelName:qs,backendName:"webgl",kernelFunc:zZ};function WZ(e){let{inputs:t,backend:n}=e,{input:a}=t;return US(a,!0,n)}var VZ={kernelName:Jd,backendName:"webgl",kernelFunc:WZ},UZ="return float(!isnan(x) && !isinf(x));",GZ=Ze({opSnippet:UZ,dtype:"bool"}),HZ={kernelName:il,backendName:"webgl",kernelFunc:GZ},jZ="return float(isinf(x));",qZ=Ze({opSnippet:jZ,dtype:"bool"}),KZ={kernelName:ol,backendName:"webgl",kernelFunc:qZ},XZ="return float(isnan(x));",YZ=Ze({opSnippet:XZ,dtype:"bool"}),ZZ={kernelName:ll,backendName:"webgl",kernelFunc:YZ},JZ="return float(a < b);",QZ=` return vec4(lessThan(a, b)); `,e9=an({opSnippet:JZ,packedOpSnippet:QZ,cpuKernelImpl:rK,dtype:"bool"}),t9={kernelName:ul,backendName:"webgl",kernelFunc:e9},n9="return float(a <= b);",a9=` return vec4(lessThanEqual(a, b)); `,r9=an({opSnippet:n9,packedOpSnippet:a9,dtype:"bool"}),s9={kernelName:cl,backendName:"webgl",kernelFunc:r9};function i9(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=sK(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var o9={kernelName:eh,backendName:"webgl",kernelFunc:i9},l9=`if (x < 0.0) return NAN; return log(x);`,u9=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,c9=Ze({opSnippet:l9,packedOpSnippet:u9,cpuKernelImpl:iK}),p9={kernelName:Xs,backendName:"webgl",kernelFunc:c9},d9="return log(1.0 + x);",h9=Ze({opSnippet:d9}),m9={kernelName:pl,backendName:"webgl",kernelFunc:h9},f9="return float(a >= 1.0 && b >= 1.0);",g9=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,y9=an({opSnippet:f9,packedOpSnippet:g9,dtype:"bool"}),b9={kernelName:dl,backendName:"webgl",kernelFunc:y9},x9="return float(!(x >= 1.0));",v9=Ze({opSnippet:x9}),w9={kernelName:kc,backendName:"webgl",kernelFunc:v9},k9="return float(a >= 1.0 || b >= 1.0);",I9=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,N9=an({opSnippet:k9,packedOpSnippet:I9,dtype:"bool"}),T9={kernelName:Ic,backendName:"webgl",kernelFunc:N9},S9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${s}; j <= ${s}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${o}; setOutput(val); } `}},C9=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${s}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${s}; j <= ${s}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${o}; setOutput(result); } `}},_9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,c=ee().getBool("WEBGL_PACK_NORMALIZATION")?new C9(r.shape,s,i,o,l):new S9(r.shape,s,i,o,l);return n.runWebGLProgram(c,[r],r.dtype)},E9={kernelName:Nc,backendName:"webgl",kernelFunc:_9},A9=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${a}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${a}) * float(${r}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${r}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},F9=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=a,p=new A9(r.shape,o,l,c,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},$9={kernelName:th,backendName:"webgl",kernelFunc:F9};function D9(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ji(i,e.dtype,"max",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function HS(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let b=n.texData.get(h.dataId).values,v=new Array(o);for(let T=0;T`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=_.computePool2DInfo(r.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Bn({inputs:{x:r},backend:n});let p=new Ep(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var B9={kernelName:Js,backendName:"webgl",kernelFunc:z9};function W9(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=a,u=[1,1,1],p=_.computePool3DInfo(r.shape,s,i,u,o,c,l),d=new nw(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var V9={kernelName:Tc,backendName:"webgl",kernelFunc:W9},U9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${o}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${r}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${s}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${s} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},G9=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,d=c-1-e.padInfo.left,h=o*l*c-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${p}, ${d}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${o}; wD += ${r}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${l}; wR += ${s}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${a}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${h} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${l} * ${c} + wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function H9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=a,p=[1,1,1],d=_.computePool3DInfo(i.shape,o,l,p,c,u),h=new nw(d,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new G9(d),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var j9={kernelName:ah,backendName:"webgl",kernelFunc:H9};function q9(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Sp([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:p}=a,d=_.computePool2DInfo(o.shape,l,c,1,u,p),h=!0,m=new Ep(d,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new U9(d),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var K9={kernelName:nh,backendName:"webgl",kernelFunc:q9};function X9(e,t,n,a){let r=new Ep(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Ep(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var Y9={kernelName:rh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let c=[1,1];k.assert(_.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=_.computePool2DInfo(a.shape,r,s,c,i),[p,d]=X9(a,o,u,l);return[p,d]}};function Z9(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ji(i,"float32","mean",a),l=be({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var J9={kernelName:Qs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=_.getAxesPermutation(c,o),p=u!=null,d=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(d){let v=i.texData.get(m.dataId).values,x=new Array(o);for(let C=0;Cc[0]+e[u]+c[1]);let a=e.length,r=ft(a),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${l}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${l}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${r} start = ${r}(${s}); ${r} end = ${r}(${i}); void main() { ${r} outC = getOutputCoords(); for (int i = 0; i < ${a}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${l}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${l}; } } ${r} coords = outC - start; setOutput(getX(${o})); } `}},iJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ft(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(a===1){let h=` ${r} source = rc; if (source < start) { source = start * 2 - source - ${p}; } else if (source >= end) { source = (end - 1) * 2 - source + ${p}; } source -= start; `;d=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[a-1]} += 1; if(${c}) { ${h} result[1] = getChannel(getX(${l.join()}), ${u}); } `}else{let h=` ${r} source = rc; ${r} lt = ${r}(lessThan(source, start)); ${r} gte = ${r}(greaterThanEqual(source, end)); ${r} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${p}) + gte * ((end - 1) * 2 - source + ${p}); source -= start; `;d=` ${r} rc = outputLoc; ${h} result[0] = getChannel(getX(${l.join()}), ${u}); ${o[a-1]} += 1; if(${c}) { ${h} result[1] = getChannel(getX(${l.join()}), ${u}); } rc = outputLoc; ${o[a-2]} += 1; if(${o[a-2]} < ${this.outputShape[a-2]}) { ${h} result[2] = getChannel(getX(${l.join()}), ${u}); ${o[a-1]} += 1; if(${c}) { ${h} result[3] = getChannel(getX(${l.join()}), ${u}); } } `}this.userCode=` const ${r} start = ${r}(${s}); const ${r} end = ${r}(${i}); void main() { ${r} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${d} setOutput(result); } `}},oJ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iJ(a.shape,r,s):new sJ(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},lJ={kernelName:Sc,backendName:"webgl",kernelFunc:oJ},uJ=`if (b == 0.0) return NAN; return mod(a, b);`,cJ=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+rf+` return result; `,pJ=an({opSnippet:uJ,packedOpSnippet:cJ}),dJ={kernelName:hl,backendName:"webgl",kernelFunc:pJ},hJ=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=` uniform float seed; void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},mJ=` if (a == b) { return 1.0; }; return a / b;`,fJ=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,jS=an({opSnippet:mJ,packedOpSnippet:fJ,checkOutOfBounds:!0}),gJ={kernelName:Vs,backendName:"webgl",kernelFunc:jS},qS="return a - b;",KS=an({opSnippet:qS,packedOpSnippet:qS,supportsComplex:!0,cpuKernelImpl:yK}),yJ={kernelName:xi,backendName:"webgl",kernelFunc:KS};function XS(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=HS({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=_.expandShapeToKeepDim(o.shape,i),c=be({inputs:{x:o},backend:n,attrs:{shape:l}}),u=KS({inputs:{a:r,b:c},backend:n}),p=BS({inputs:{x:u},backend:n}),d=tw({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=be({inputs:{x:d},backend:n,attrs:{shape:l}}),m=jS({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),m}var bJ={kernelName:yi,backendName:"webgl",kernelFunc:XS};function xJ(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:XS({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],p=new hJ(c,u,s),d=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),h}var vJ={kernelName:sh,backendName:"webgl",kernelFunc:xJ},YS="return -x;";function wJ(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=pK(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return ee().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Iu(a.shape,YS):r=new ms(a.shape,YS),n.runWebGLProgram(r,[a],a.dtype)}var kJ={kernelName:ml,backendName:"webgl",kernelFunc:wJ},IJ=Qa.nonMaxSuppressionV3Impl;function NJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,c=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=IJ(c,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var TJ={kernelName:gl,backendName:"webgl",kernelFunc:NJ},SJ=Qa.nonMaxSuppressionV4Impl;function CJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:d,validOutputs:h}=SJ(u,p,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var _J={kernelName:yl,backendName:"webgl",kernelFunc:CJ},EJ=Qa.nonMaxSuppressionV5Impl;function AJ(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),d=i,h=o,m=l,f=c,{selectedIndices:g,selectedScores:y}=EJ(u,p,d,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var FJ={kernelName:bl,backendName:"webgl",kernelFunc:AJ},$J=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${a}), float(${n}), float(index == coords.y))); } `}},DJ=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),c=new $J(l,s,i,o),u=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let d=[...r.shape,s],h=be({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},RJ={kernelName:ai,backendName:"webgl",kernelFunc:DJ};function df(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Fp({inputs:{input:a},backend:n}),s=df({inputs:{x:r},backend:n}),i=pf({inputs:{input:a},backend:n}),o=df({inputs:{x:i},backend:n}),l=fs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return iw({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var MJ={kernelName:Pl,backendName:"webgl",kernelFunc:df};function ZS(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Fp({inputs:{input:a},backend:n}),s=ZS({inputs:{x:r},backend:n}),i=pf({inputs:{input:a},backend:n}),o=df({inputs:{x:i},backend:n}),l=fs({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return iw({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var PJ={kernelName:xl,backendName:"webgl",kernelFunc:ZS};function OJ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return sw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=sw({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),c=AS({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var LJ={kernelName:vl,backendName:"webgl",kernelFunc:OJ},zJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let a=e.length,r=ft(a),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=` int start = ${s}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${n})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${r} start = ${r}(${s}); ${r} end = ${r}(${i}); void main() { ${r} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${n})); } else { ${r} coords = outC - start; setOutput(getX(${o})); } } `}},BJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ft(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),l=fn("source",a),c=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1; if(${c}) { `,a===1?"":`} rc = outputLoc; ${o[a-2]} += 1; if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1; if(${c}) {`],d=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new BJ(r.shape,s,i):new zJ(r.shape,s,i);return n.runWebGLProgram(o,[r],r.dtype)},WJ={kernelName:ri,backendName:"webgl",kernelFunc:JS},VJ=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,UJ=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+rf+` return result; `,GJ=an({opSnippet:VJ,packedOpSnippet:UJ}),HJ={kernelName:si,backendName:"webgl",kernelFunc:GJ};function jJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],c=k.parseAxisParam(s,r.shape),u=c,p=_.getAxesPermutation(u,o),d=r;p!=null&&(d=Sn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=_.getInnerMostAxes(u.length,o),l.push(d)),_.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:g,outDtype:y}=dK(d.shape,d.dtype,m,u);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=_.computeOutAndReduceShapes(d.shape,u),g=k.sizeFromShape(f),y=be({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),b=yh(r.dtype),v=Ji(y,b,"prod",n);h=be({inputs:{x:v},backend:n,attrs:{shape:m}}),l.push(y),l.push(v)}if(i){l.push(h);let m=_.expandShapeToKeepDim(h.shape,c);h=be({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var qJ={kernelName:wl,backendName:"webgl",kernelFunc:jJ},QS=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=hK(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},KJ={kernelName:Cc,backendName:"webgl",kernelFunc:QS},XJ="return 1.0 / x;",YJ=Ze({opSnippet:XJ}),ZJ={kernelName:kl,backendName:"webgl",kernelFunc:YJ},JJ=Ma+` return (x < 0.0) ? 0.0 : x; `,QJ=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,eQ=Ze({opSnippet:JJ,packedOpSnippet:QJ}),tQ={kernelName:oi,backendName:"webgl",kernelFunc:eQ},nQ=Ma+` return (x < 0.0) ? 0.0 : min(6.0, x); `,aQ=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,rQ=Ze({opSnippet:nQ,packedOpSnippet:aQ}),sQ={kernelName:ui,backendName:"webgl",kernelFunc:rQ},iQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${p}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},oQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/u[0]}, ${c[1]/u[1]}, ${c[1]/u[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${o}.0, ${o}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${p}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${l-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function lQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=ee().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new oQ(r.shape,l,c,s,i):new iQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],"float32")}var uQ={kernelName:li,backendName:"webgl",kernelFunc:lQ},cQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${p}); const float invWidthScale = float(${d}); const int winHeight = int(${h}); const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new cQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var dQ={kernelName:lh,backendName:"webgl",kernelFunc:pQ},hQ=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/u[0]}, ${c[1]/u[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${o}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}};function mQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,u=new hQ(r.shape,l,c,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var fQ={kernelName:_c,backendName:"webgl",kernelFunc:mQ},gQ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],p=1/c,d=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(d)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${u}); const float invHeightScale = float(${p}); const float invWidthScale = float(${d}); const int winHeight = int(${h}); const int winWidth = int(${m}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${s}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${o[0]}) * (float(dyR) / float(${l[0]})); float sourceFracCol = float(${o[1]}) * (float(dyC) / float(${l[1]})); int sourceNearestRow = int(min( float(int(${a}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function yQ(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new gQ(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var bQ={kernelName:oh,backendName:"webgl",kernelFunc:yQ},xQ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ft(n);this.userCode=` void main() { ${s} coords = getOutputCoords(); setOutput(getX(${r})); } `}},vQ=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ft(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${r}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${o(a.slice())}; if(${r}){ result.g = ${l(a.slice())}; } if(${s}) { result.b = ${c(a.slice())}; if(${r}) { result.a = ${u(a.slice())}; } } setOutput(result); } `;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,b)=>d(b,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function d(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function wQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Bn({inputs:{x:r},backend:n});let l=ee().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vQ(r.shape,o):new xQ(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var kQ={kernelName:ci,backendName:"webgl",kernelFunc:wQ},IQ=class{constructor(e,t,n,a){this.variableNames=["Image"],this.outputShape=[];let r=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=_.getImageCenter(a,r,s),u=l.toFixed(3),p=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=` vec3 fill = vec3(${n.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${p}) * ${i}; float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${p}) * ${o}; int coordX = int(round(coordXFloat + ${u})); int coordY = int(round(coordYFloat + ${p})); ${d} if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${r}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},NQ={kernelName:Ol,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new IQ(a.shape,r,s,i);return o.runWebGLProgram(l,[a],a.dtype)}},TQ=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,SQ=Ze({opSnippet:TQ}),CQ={kernelName:pi,backendName:"webgl",kernelFunc:SQ},_Q="return inversesqrt(x);",EQ=Ze({opSnippet:_Q,cpuKernelImpl:mK}),AQ={kernelName:di,backendName:"webgl",kernelFunc:EQ},e2=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ft(r.length),l=ft(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${r}); void main() { ${l} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${u}); flattenedIndex += index * ${h}; } if (flattenedIndex == coords[0]) { sum += ${d}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function FQ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:p}=_.calculateShapes(s,r,i),d=[p/c,c];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=be({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new e2(l,o,h.shape.length,m.shape.length,u,d),y=n.runWebGLProgram(g,[m,h,f],m.dtype),b=be({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),b}var $Q={kernelName:Nl,backendName:"webgl",kernelFunc:FQ},DQ=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c= 1.0) { setOutput(getA(${r})); } else { setOutput(getB(${r})); } } `}};function RQ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new DQ(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],ca(r.dtype,s.dtype))}var MQ={kernelName:Tl,backendName:"webgl",kernelFunc:RQ},PQ=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${_.SELU_SCALEALPHA}; float scale = ${_.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,OQ=Ze({opSnippet:PQ}),LQ={kernelName:Sl,backendName:"webgl",kernelFunc:OQ},zQ="return 1.0 / (1.0 + exp(-1.0 * x));",BQ=Ze({opSnippet:zQ}),WQ={kernelName:mi,backendName:"webgl",kernelFunc:BQ},VQ=` if (isnan(x)) { return 0.0; } return sign(x); `,UQ=Ze({opSnippet:VQ}),GQ={kernelName:El,backendName:"webgl",kernelFunc:UQ},HQ=hS+` return sin(x); `,jQ=Ze({opSnippet:HQ}),qQ={kernelName:hi,backendName:"webgl",kernelFunc:jQ},KQ=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,XQ=Ze({opSnippet:KQ}),YQ={kernelName:_l,backendName:"webgl",kernelFunc:XQ},ZQ=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,JQ=Ze({opSnippet:ZQ}),QQ={kernelName:Al,backendName:"webgl",kernelFunc:JQ},eee=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,b)=>y*b),l=[[0,0]];l.push(...i);for(let y=1+s.length;yn.disposeIntermediateTensorInfo(y)),g},tee={kernelName:Ec,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:c,strides:u,outputSize:p}=_.calculateShapes(s,r,o),d=!1,h=new e2(c,l,r.shape.length,s.shape.length,u,[p,1],d),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=be({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var aee={kernelName:uh,backendName:"webgl",kernelFunc:nee};function ree(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=_.prepareSplitSize(r,s,o),c=r.shape.length,u=new Array(c).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[o]=d;let m=Ap({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=d,m})}var see={kernelName:Fl,backendName:"webgl",kernelFunc:ree},iee="return sqrt(x);",oee=Ze({opSnippet:iee}),lee={kernelName:fi,backendName:"webgl",kernelFunc:oee},uee="return x * x;",cee=Ze({opSnippet:uee}),pee={kernelName:Ac,backendName:"webgl",kernelFunc:cee},t2="return (a - b) * (a - b);",dee=an({opSnippet:t2,packedOpSnippet:t2}),hee={kernelName:bi,backendName:"webgl",kernelFunc:dee};function mee({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ma+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,s=new ms(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var fee={kernelName:Hr,backendName:"webgl",kernelFunc:mee},gee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ft(n.length),s=ft(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${r} begin = ${r}(${e}); ${r} strides = ${r}(${t}); void main() { ${s} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function yee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:b}=pn.sliceInfo(r.shape,s,i,o,l,c,u,p,d),v=be({inputs:{x:r},backend:n,attrs:{shape:y}}),x;if(h){let T=Ap({inputs:{x:v},backend:n,attrs:{begin:m,size:g}});x=be({inputs:{x:T},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(T)}else if(b.some(T=>T===0))x=n.makeTensorInfo(b,r.dtype,[]);else if(n.shouldExecuteOnCPU([v])){let T=n.texData.get(v.dataId).values,C=Le(v.shape,v.dtype,T),$=gK(b,C,f,m);x=n.makeTensorInfo(b,v.dtype,$.values)}else{let T=new gee(m,f,b);x=n.runWebGLProgram(T,[v],v.dtype)}let N=be({inputs:{x},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(x),N}var bee={kernelName:$l,backendName:"webgl",kernelFunc:yee},xee="return tan(x);",vee=Ze({opSnippet:xee}),wee={kernelName:Dl,backendName:"webgl",kernelFunc:vee},kee=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,Iee=Ze({opSnippet:kee}),Nee={kernelName:vi,backendName:"webgl",kernelFunc:Iee},See=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;rk.decodeString(u)),l=Le(r.shape,r.dtype,o),c=bK(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new See(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var Cee={kernelName:Gr,backendName:"webgl",kernelFunc:n2};function _ee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,c]=xK(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var Eee={kernelName:Rl,backendName:"webgl",kernelFunc:_ee};function Aee(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Sp(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=vK(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([c.length],"int32",c)]}var Fee={kernelName:ch,backendName:"webgl",kernelFunc:Aee};function $ee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],c=new Array(o-1),u=0;for(let f=0;fn.disposeIntermediateTensorInfo(f)),m}var Dee={kernelName:Ml,backendName:"webgl",kernelFunc:$ee},Ree=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,p=` sumValue += dot(values, segFilter); `,d="";r%n>0&&(d=` if (inIdx < 0 || inIdx >= ${r}) { return initializationValue; } `);let h="";r%n>0&&(h=` if (inIdx < 0 || inIdx >= ${r}) { return -1.0; } `),this.userCode=` const float initializationValue = ${o}; float getValue(int batch, int inIdx) { ${d} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${h} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${s})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${s}))); float sumValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${p} } int inIdx = inOffset + ${c}; if (${u===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${p} } else if (${u===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${p} } else if (${u===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${p} } setOutput(${l}); } `}};function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=yh(r.dtype),g=(x,N,T,C,$)=>{let F=x.shape[0],O=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(O,$),W={windowSize:B,inSize:O,batchSize:F,numSegments:$},G=new Ree(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===$)return q;let H=QS({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),K=n2({inputs:{x:H},backend:n,attrs:{reps:[O/B]}});return l.push(H),l.push(K),g(q,N,K,C,$)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Sn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Pee={kernelName:Fc,backendName:"webgl",kernelFunc:Mee},Oee=[E9,$9,yX,xX,kX,TX,CX,AX,$X,RX,LX,BX,UX,jX,QX,XX,nY,iY,rY,cY,dY,mY,bY,TY,CY,DY,MY,zY,VY,JK,jY,n7,r7,YY,l7,c7,i7,h7,g7,x7,w7,I7,S7,$7,R7,_7,O7,B7,G7,K7,J7,tZ,nZ,aZ,sZ,oZ,uZ,pZ,hZ,yZ,wZ,IZ,TZ,_Z,$Z,PZ,BZ,ZK,VZ,HY,HZ,KZ,ZZ,eX,t9,s9,o9,m9,p9,b9,w9,T9,R9,V9,B9,j9,K9,Y9,L9,J9,eJ,rJ,lJ,dJ,vJ,sX,kJ,TJ,_J,FJ,EY,RJ,PJ,LJ,WJ,HJ,nX,qJ,KJ,AY,gJ,ZJ,sQ,tQ,oX,uQ,dQ,fQ,bQ,kQ,NQ,CQ,AQ,$Q,MQ,LQ,WQ,GQ,qQ,YQ,IY,bJ,QQ,tee,aee,see,lee,pee,hee,fee,bee,yJ,mX,wee,Nee,Cee,Eee,fX,Fee,Dee,Pee,MJ];for(let e of Oee)Dc(e);var Lee="3.0.0",zee={"tfjs-core":i1,"tfjs-backend-cpu":fG,"tfjs-backend-webgl":YK,"tfjs-data":$N,"tfjs-layers":$m,"tfjs-converter":SN,tfjs:Lee},Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var $p;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})($p||($p={}));var a2;function Bee(e){a2=e.wasm.cwrap(ki,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Wee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=$p[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return a2(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var Vee={kernelName:ki,backendName:"wasm",setupFunc:Bee,kernelFunc:Wee};function Vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Uee=Vn(Oo);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Wn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every(($,F)=>$===F),C=N.every(($,F)=>$===F);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Gee=!0,Hee=gn(Vr,Gee),r2;function jee(e){r2=e.wasm.cwrap($s,null,["array","number","number","number"])}function qee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return r2(s,r.length,Wn[a.dtype],i),a}var Kee={kernelName:$s,backendName:"wasm",setupFunc:jee,kernelFunc:qee};function hf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Xee={kernelName:sl,backendName:"wasm",kernelFunc:hf},s2;function Yee(e){s2=e.wasm.cwrap(wi,null,["number","array","number","number","number","array","number"])}function mf(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Jee(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Qee={kernelName:wi,backendName:"wasm",kernelFunc:mf,setupFunc:Yee};function Cu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),{dataId:a.dataId,shape:i,dtype:a.dtype}}var ite={kernelName:Il,backendName:"wasm",kernelFunc:Pa},l2;function ote(e){l2=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number"])}function lte(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Pa({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Pa({inputs:{x:s},backend:n,attrs:{shape:N}}),$=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,O,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),K=new Uint8Array(new Int32Array(C.shape).buffer);return l2($,H,T.shape.length,F,K,C.shape.length,i,o,q),G.shape=v,G}var ute={kernelName:Ms,backendName:"wasm",setupFunc:ote,kernelFunc:lte};function ff(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var cte={kernelName:Ps,backendName:"wasm",kernelFunc:ff},u2;function pte(e){u2=e.wasm.cwrap(Ur,null,["number","number","number","number"])}function dte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return u2(o,s,i,c),l}var hte={kernelName:Ur,backendName:"wasm",setupFunc:pte,kernelFunc:dte};function c2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return hf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Pa({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=Fv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=mf({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;m2(m,i?1:0,o?1:0,h,f,Wn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=mf({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Cte={kernelName:Bs,backendName:"wasm",setupFunc:Tte,kernelFunc:Ste},f2;function _te(e){f2=e.wasm.cwrap(Xo,null,["number","number","number","array","number","array","array","number","number"])}function Ete(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return f2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Ate={kernelName:Xo,backendName:"wasm",setupFunc:_te,kernelFunc:Ete},g2;function Fte(e){g2=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $te(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,$=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return g2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,O,x,N,T,C,$,F,W),B}var Dte={kernelName:Ws,backendName:"wasm",setupFunc:Fte,kernelFunc:$te},Rte=!1,Mte=gn(Jo,Rte,"bool"),Pte=Vn(Us);function lw(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pa({inputs:{x:r},backend:a,attrs:{shape:o}})}var Ote={kernelName:Qo,backendName:"wasm",kernelFunc:lw};function Lte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var zte={kernelName:wc,backendName:"wasm",kernelFunc:Lte},y2;function Bte(e){y2=e.wasm.cwrap(tl,null,["number","number","number","number","number","number"])}function Wte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return y2(s,o,l,c,u,i),r}var Vte={kernelName:tl,backendName:"wasm",kernelFunc:Wte,setupFunc:Bte},Ute=Vn(Gs),Gte=!1,Hte=gn(Hs,Gte),b2;function jte(e){b2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number"])}function qte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return b2(u,p,d,h,m,r,g),f}var Kte={kernelName:js,backendName:"wasm",setupFunc:jte,kernelFunc:qte},x2;function Xte(e){x2=e.wasm.cwrap(Ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return x2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var Zte={kernelName:Ii,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},v2;function Jte(e){v2=e.wasm.cwrap(Ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return v2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var ene={kernelName:Ni,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte},w2;function tne(e){w2=e.wasm.cwrap(al,null,["number","number","number","number","number","number","array","number"])}function nne(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Fy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return w2(d,Wn[a.dtype],h,i,p,o,m,f),c}var ane={kernelName:al,backendName:"wasm",setupFunc:tne,kernelFunc:nne},k2;function rne(e){k2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function sne(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Pa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Pa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return k2(g,Wn[r.dtype],v,f,y,c.batchSize,x,b),m.shape=c.outputShape,m}var ine={kernelName:nl,backendName:"wasm",setupFunc:rne,kernelFunc:sne},one=!1,lne=gn(rl,one,"bool"),une=!1,cne=gn(qs,une,"bool"),I2;function pne(e){I2=e.wasm.cwrap(Ks,null,["number","number","number"])}function dne(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;I2(r,n,i)}return s}var hne={kernelName:Ks,backendName:"wasm",setupFunc:pne,kernelFunc:dne},mne=!1,fne=gn(ul,mne,"bool"),gne=!1,yne=gn(cl,gne,"bool"),bne=Vn(Xs),xne=!1,vne=gn(dl,xne,"bool"),N2;function wne(e){N2=e.wasm.cwrap(Ys,null,["number, number, number"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=Cu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;N2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var Ine={kernelName:Ys,backendName:"wasm",setupFunc:wne,kernelFunc:kne},Nne=!1,Tne=gn(Zs,Nne),T2;function Sne(e){T2=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),$=a.dataIdMap.get(C.dataId).id;return T2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,$),C}var _ne={kernelName:Js,backendName:"wasm",setupFunc:Sne,kernelFunc:Cne},S2;function Ene(e){S2=e.wasm.cwrap(Qs,null,["number, number, number"])}function Ane(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=ff({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;S2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var Fne={kernelName:Qs,backendName:"wasm",setupFunc:Ene,kernelFunc:Ane},C2;function $ne(e){C2=e.wasm.cwrap(ei,null,["number, number, number"])}function Dne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;C2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Rne={kernelName:ei,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},Mne=!1,Pne=gn(ti,Mne),One=!0,Lne=gn(ni,One),zne=Vn(ml);function uw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var _2;function Bne(e){_2=e.wasm.cwrap(gl,"number",["number","number","number","number","number"])}function Wne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=_2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=uw(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Vne={kernelName:gl,backendName:"wasm",setupFunc:Bne,kernelFunc:Wne},E2;function Une(e){E2=e.wasm.cwrap(yl,"number",["number","number","number","number","number","bool"])}function Gne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=E2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Hne={kernelName:yl,backendName:"wasm",setupFunc:Une,kernelFunc:Gne},A2;function jne(e){A2=e.wasm.cwrap(bl,"number",["number","number","number","number","number","number"])}function qne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=A2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Kne={kernelName:bl,backendName:"wasm",setupFunc:jne,kernelFunc:qne},Xne=!1,Yne=gn(fl,Xne,"bool"),F2;function Zne(e){F2=e.wasm.cwrap(ai,null,["number","number","number","number","number"])}function Jne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return F2(u,s,i,o,c),l}var Qne={kernelName:ai,backendName:"wasm",setupFunc:Zne,kernelFunc:Jne};function eae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var tae={kernelName:xl,backendName:"wasm",kernelFunc:eae};function nae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return lw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>lw({inputs:{input:l},backend:n,attrs:{dim:r}}));return c2({inputs:o,backend:n,attrs:{axis:r}})}var aae={kernelName:vl,backendName:"wasm",kernelFunc:nae},$2;function rae(e){$2=e.wasm.cwrap(ri,null,["number","array","number","number","array","array","number","number"])}function sae(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return $2(i,c,t.shape.length,Wn[t.dtype],d,h,r,l),o}var iae={kernelName:ri,backendName:"wasm",kernelFunc:sae,setupFunc:rae},oae=!1,lae=gn(si,oae),D2;function uae(e){D2=e.wasm.cwrap(ii,null,["number","number","number"])}function cae(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return D2(s,i,l),o}var pae={kernelName:ii,backendName:"wasm",setupFunc:uae,kernelFunc:cae},R2;function dae(e){R2=e.wasm.cwrap(wl,null,["number","number","number","number"])}function hae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;R2(l,y,Wn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var mae={kernelName:wl,backendName:"wasm",setupFunc:dae,kernelFunc:hae},fae=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Rv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},gae={kernelName:Cc,backendName:"wasm",kernelFunc:fae},yae=!0,bae=gn(Vs,yae),xae=Vn(oi),vae=Vn(ui),M2;function wae(e){M2=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number"])}function kae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ff({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return M2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var Iae={kernelName:li,backendName:"wasm",setupFunc:wae,kernelFunc:kae},P2;function Nae(e){P2=e.wasm.cwrap(ci,null,["number","array","number","array","number","number"])}function Tae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return hf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);return P2(l,u,i.length,p,r.shape.length,c),Pa({inputs:{x:o},attrs:{shape:r.shape},backend:n})}var Sae={kernelName:ci,backendName:"wasm",kernelFunc:Tae,setupFunc:Nae},O2;function Cae(e){O2=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return O2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Eae={kernelName:Ol,backendName:"wasm",kernelFunc:_ae,setupFunc:Cae},Aae=Vn(pi),Fae=Vn(di),L2;function $ae(e){L2=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","array","number","number"])}function Dae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=$y.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return L2(h,m,Wn[s.dtype],l,c,u,f,d,g),o}var Rae={kernelName:Nl,backendName:"wasm",setupFunc:$ae,kernelFunc:Dae},z2;function Mae(e){z2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Pae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return z2(i,o,l,h,u),c}var Oae={kernelName:Tl,backendName:"wasm",kernelFunc:Pae,setupFunc:Mae},B2;function Lae(e){B2=e.wasm.cwrap(mi,null,["number","number"])}function zae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||B2(a,s),r}var Bae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Lae,kernelFunc:zae},Wae=Vn(hi);function gf(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=pn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Km(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Vae(l,u[0],d,s,i);else if(h===3)Uae(l,u[0],u[1],d,s,i);else if(h===4)Gae(l,u[0],u[1],u[2],d,s,i);else{let m=Km(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Vae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c{let d=[...u];d[o]=p;let h=gf({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var Yae={kernelName:Fl,backendName:"wasm",kernelFunc:Xae},Zae=Vn(fi),Jae=Vn(Ac),Qae=!0,ere=gn(bi,Qae),V2;function tre(e){V2=e.wasm.cwrap(Hr,null,["number","number","number"])}function nre(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return V2(i,r,l),o}var are={kernelName:Hr,backendName:"wasm",setupFunc:tre,kernelFunc:nre},U2;function rre(e){U2=e.wasm.cwrap($l,null,["number","array","number","array","array","array","array","array","number","number"])}function sre(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,g.splice(F,0,1)});let y=Pa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(F=>{i[F]=s[F]+1,o[F]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((F,O)=>N.indexOf(O)===-1);if(o.every(F=>F===1)){let F=gf({inputs:{x:r},attrs:{begin:s,size:T},backend:t});return Pa({inputs:{x:F},attrs:{shape:C},backend:t})}let $=t.makeOutput(C,"float32");if(!C.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(C).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get($.dataId).id;U2(F,O,y.shape.length,B,W,G,q,H,C.length,K)}return Pa({inputs:{x:$},attrs:{shape:C},backend:t})}var ire={kernelName:$l,backendName:"wasm",setupFunc:rre,kernelFunc:sre},ore=!0,lre=gn(xi,ore),G2;function ure(e){G2=e.wasm.cwrap(gi,null,["number, number, number"])}function cre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;G2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var pre={kernelName:gi,backendName:"wasm",setupFunc:ure,kernelFunc:cre},dre=Vn(vi),H2;function hre(e){H2=e.wasm.cwrap(Gr,null,["number","array","number","array","number","number"])}function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return j2(i,o,a.shape.length,Wn[a.dtype],r,s,u,d),[c,p]},bre={kernelName:Rl,backendName:"wasm",setupFunc:gre,kernelFunc:yre};function xre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var vre={kernelName:Ml,backendName:"wasm",kernelFunc:xre};function wre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var kre={kernelName:Pl,backendName:"wasm",kernelFunc:wre},Ire=[Uee,Hee,Kee,nte,ste,ute,cte,hte,mte,yte,vte,wte,Nte,Cte,Ate,Dte,Mte,Pte,Ote,zte,Vte,Ute,Hte,Vee,Kte,Zte,ene,ane,ine,lne,cne,Xee,hne,fne,yne,bne,vne,Ine,Tne,_ne,Fne,Rne,Pne,Lne,zne,Vne,Hne,Kne,Yne,Qne,tae,aae,iae,lae,pae,mae,gae,bae,xae,vae,ite,Iae,Sae,Eae,Fae,Aae,Rae,Oae,Bae,Wae,Hae,Kae,Yae,Zae,Jae,ere,are,ire,lre,pre,dre,fre,bre,Qee,vre,kre];for(let e of Ire)Dc(e);var cw=ee();cw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));cw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(cw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var q2=Ro(KE()),Nre='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Tre=Ro(XE()),K2=class extends dc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fd(this,Jr())}write(e,t,n){let a={};return this.move(a,e,t,n),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a){let r=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:r,stringBytes:l,shape:n,dtype:a,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(a),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:r,memoryOffset:o,shape:n,dtype:a}),this.wasm.tfjs.registerTensor(r,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Sre(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{a={};let r=this.dataIdNextNumber++;this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Cre(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function X2(e,t,n){if(yf!=null)return yf;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Dp!=null&&Dp[a]!=null?Dp[a]:n+a}async function _re(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=Nre,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?X2(e,t,Rp!=null?Rp:c):c+l},pw&&(r.instantiateWasm=Cre(X2(e,t,Rp!=null?Rp:"")));let s;t&&e&&yf==null?(s=q2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+q2.default.toString()],{type:"text/javascript"})):s=Tre.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Mp=!1,n({wasm:s})},s.onAbort=()=>{o||Mp||(Mp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Sre(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ere=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],yf=null,Rp=null,Dp={},Mp=!1,pw=!1;function Are(e,t=!1){if(Ly("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");yf=e,pw=t}function Fre(e,t=!1){if(Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rp=e;else{Dp=e;let n=Ere.filter(a=>Dp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pw=t}var $re="3.0.0",Dre=2;Nh("wasm",async()=>{let{wasm:e}=await _re();return new K2(e)},Dre);var Uf={};cc(Uf,{AnchorPosition:()=>ur,DrawBox:()=>Sf,DrawBoxOptions:()=>Iw,DrawFaceLandmarks:()=>Tw,DrawFaceLandmarksOptions:()=>Nw,DrawTextField:()=>bs,DrawTextFieldOptions:()=>Pp,drawContour:()=>_r,drawDetections:()=>Vre,drawFaceExpressions:()=>Ure,drawFaceLandmarks:()=>Gre});function _r(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var bf={};cc(bf,{computeReshapedDimensions:()=>mw,getCenterPoint:()=>to,isDimensions:()=>vf,isEven:()=>xf,isFloat:()=>hw,isTensor:()=>Qi,isTensor1D:()=>Rre,isTensor2D:()=>dw,isTensor3D:()=>Er,isTensor4D:()=>ta,isValidNumber:()=>Oa,isValidProbablitiy:()=>_u,range:()=>or,round:()=>eo});var ln=class{constructor(t,n){if(!Oa(t)||!Oa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new ln(1/this.width,1/this.height)}};function Qi(e,t){return e instanceof Ae&&e.shape.length===t}function Rre(e){return Qi(e,1)}function dw(e){return Qi(e,2)}function Er(e){return Qi(e,3)}function ta(e){return Qi(e,4)}function hw(e){return e%1!=0}function xf(e){return e%2==0}function eo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function vf(e){return e&&e.width&&e.height}function mw({width:e,height:t},n){let a=n/Math.max(t,e);return new ln(Math.round(e*a),Math.round(t*a))}function to(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function or(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Oa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function _u(e){return Oa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Oa)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Oa),s=[a.x,a.y,a.width,a.height].every(Oa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var no=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ar=class{constructor(t,n,a,r,s){this._imageDims=new ln(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ar(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends Ar{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new yt(a,r,s)}};function wf(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function kf(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;cl[u]<=n)}return s}function va(e,t){return D(()=>{let[n,a,r]=t,s=kn([...e.shape.slice(0,3),1],n,"float32"),i=kn([...e.shape.slice(0,3),1],a,"float32"),o=kn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function Nf(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,kn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function Y2(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Eu(e){return 1/(1+Math.exp(-e))}function Z2(e){return Math.log(e/(1-e))}var ao=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Mre=.5,Pre=.43,Ore=.45,Un=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new ln(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof yt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Ore),l=to(t),c=Math.floor(Math.max(0,l.x-Mre*o)),u=Math.floor(Math.max(0,l.y-Pre*o));return new ao(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=kf(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var fw=class extends Un{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],to([t[3],t[4]])]}};var ro=class extends Un{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(to)}};var Au=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${eo(this.distance)})`:""}`}};var Fu=class extends ot{static assertIsValidLabeledBox(t,n){if(ot.assertIsValidBox(t,n),!Oa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var lr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new lr(t.label,n)}};var gw=class extends Fu{static assertIsValidPredictedBox(t,n){if(Fu.assertIsValidLabeledBox(t,n),!_u(t.score)||!_u(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function La(e){return e.detection instanceof yt}function gs(e,t){return{...e,...{detection:t}}}function yw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function Tf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function bw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=Tf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function xw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var vw=EE(Q2()),Jt;function Bre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function ww(e){Jt=e}function kw(){return xw()?ww(yw()):vw.isNodejs()?ww(bw()):null}function Wre(e){if(Jt||kw(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var rt={getEnv:Bre,setEnv:ww,initialize:kw,createBrowserEnv:yw,createFileSystem:Tf,createNodejsEnv:bw,monkeyPatch:Wre,isBrowser:xw,isNodejs:vw.isNodejs};kw();function ys(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function yn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=ys(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ur;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ur||(ur={}));var Pp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ur.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},bs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof bs?t.text:t,this.anchor=n,this.options=new Pp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var Iw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ur.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Pp({...i,...s})}},Sf=class{constructor(t,n={}){this.box=new ot(t),this.options=new Iw(n)}draw(t){let n=yn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new bs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Vre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof yt?a.score:La(a)?a.detection.score:void 0,s=a instanceof yt?a.box:La(a)?a.detection.box:new ot(a),i=r?`${eo(r)}`:void 0;new Sf(s,{label:i}).draw(e)})}function $u(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Cf(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||$u(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function _f(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function xs(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new ln(e.naturalWidth,e.naturalHeight):e instanceof n?new ln(e.videoWidth,e.videoHeight):new ln(e.width,e.height)}function so({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Du(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!$u(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||xs(e),s=so({width:a,height:r});return e instanceof n?yn(s).putImageData(e,0,0):yn(s).drawImage(e,0,0,a,r),s}async function Ef(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ta(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await _i.toPixels(i,n),i.dispose(),n}function Op(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Af(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=xs(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=so({width:t,height:t}),u=e instanceof r?e:Du(e),p=Math.abs(o-l)/2,d=n&&o{if(Er(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ta(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Du(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return or(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return mw({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=or(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ta(i)?i:i.expandDims();return o=Nf(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ja.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return _i.fromPixels(Af(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof cr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(ys);return a.forEach((r,s)=>{if(!Op(r)&&!Er(r)&&!ta(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ta(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Op(r)&&Cf(r))),new cr(a,Array.isArray(e))}async function io(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Ef(o)}let r=yn(a);return t.map(i=>i instanceof yt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=so({width:l,height:c});return yn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function oo(e,t){if(!Er(e)&&!ta(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ta(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ta(e)?1:0);return t.map(o=>o instanceof yt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Ql(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function vs(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function eC(e){let t=await vs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return _f(n)}async function Ff(e){return(await vs(e)).json()}async function tC(e){return new Float32Array(await(await vs(e)).arrayBuffer())}function $f(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Df(e,t){let{manifestUri:n,modelBaseUri:a}=$f(e,t),r=await Ff(n);return Ht.loadWeights(r,a)}function nC(e,t,n=!1){let{width:a,height:r}=n?xs(t):t;return e.width=a,e.height=r,{width:a,height:r}}var Qt=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof jr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof jr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Kn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Df(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=$f(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Cn(e,t,n){return D(()=>{let a=Mi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function Rf(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Cn(e,t.conv0,[2,2])),r=Cn(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=Cn(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function Lp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Cn(e,t.conv0,a?[2,2]:[1,1])),s=Cn(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=Cn(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=Cn(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function lo(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Ru(e,t){return(n,a,r,s)=>{let i=Ca(e(n*a*r*r),[r,r,n,a]),o=nt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Mf(e,t){return(n,a,r)=>{let s=Sa(e(n*a),[n,a]),i=nt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Pf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Mu(e,t){return(n,a,r)=>{let s=Ca(e(3*3*n),[3,3,n,1]),i=Ca(e(n*a),[1,1,n,a]),o=nt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Pf(s,i,o)}}function Pu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Pf(n,a,r)}}function Gn(e,t){return(n,a,r)=>{let s=e[n];if(!Qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Of(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function aC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Lf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function zf(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function rC(e){let t=[],{extractDenseBlock4Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var zp=class extends Qt{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Lp(s,n.dense0,!0);return i=Lp(i,n.dense1),i=Lp(i,n.dense2),i=Lp(i,n.dense3),i=Yn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return rC(t)}extractParams(t){return aC(t)}};function Bp(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function sC(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Mf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function iC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function Bf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Wp=class extends Qt{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t;return Bp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return sC(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),iC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Wf=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Fr=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Wf.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Wf.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Vp=class extends Wp{constructor(t=new zp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Ta(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Fr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Vf(e){return e.expressions instanceof Fr}function Up(e,t){return{...e,...{expressions:t}}}function Ure(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Fr?s:Vf(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=La(s)?s.detection.box.bottomLeft:a||new De(0,0);new bs(l.map(p=>`${p.expression} (${eo(p.probability)})`),c).draw(e)})}function ws(e){return La(e)&&e.landmarks instanceof Un&&e.unshiftedLandmarks instanceof Un&&e.alignedRect instanceof yt}function uo(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new yt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var Nw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Tw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Nw(n)}draw(t){let n=yn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof ro&&(n.strokeStyle=i,n.lineWidth=s,_r(n,this.faceLandmarks.getJawOutline()),_r(n,this.faceLandmarks.getLeftEyeBrow()),_r(n,this.faceLandmarks.getRightEyeBrow()),_r(n,this.faceLandmarks.getNose()),_r(n,this.faceLandmarks.getLeftEye(),!0),_r(n,this.faceLandmarks.getRightEye(),!0),_r(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function Gre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Un?a:ws(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Tw(r).draw(e)})}var oC="0.12.1";function Hre(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function lC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Hre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};or(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function jre(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function uC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=jre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};or(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function cC(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function Sw(e,t,n=!0){let a=n?Ye(e):e;return a=Cn(a,t.separable_conv0,[1,1]),a=Cn(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,cC(e,t.expansion_conv,[2,2])),a}function qre(e,t){let n=Cn(Ye(e),t.separable_conv0,[1,1]);return n=Cn(Ye(n),t.separable_conv1,[1,1]),n=Cn(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Cw=class extends Qt{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(cC(s,n.entry_flow.conv_in,[2,2]));return i=Sw(i,n.entry_flow.reduction_block_0,!1),i=Sw(i,n.entry_flow.reduction_block_1),or(this._numMainBlocks,0,1).forEach(o=>{i=qre(i,n.middle_flow[`main_block_${o}`])}),i=Sw(i,n.exit_flow.reduction_block),i=Ye(Cn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return uC(t,this._numMainBlocks)}extractParams(t){return lC(t,this._numMainBlocks)}};function pC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Mf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function dC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var pr;(function(e){e.FEMALE="female",e.MALE="male"})(pr||(pr={}));var Gp=class extends Qt{constructor(t=new Cw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t,r=Yn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Bp(r,n.fc.age).as1D(),i=Bp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ta(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?pr.MALE:pr.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return pC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Hp=class extends Wp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([kn([68],p,"float32"),kn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>do(p,(d,h)=>hi(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>xf(p)),c=o.filter((u,p)=>!xf(p));return new ro(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var co=class extends Hp{constructor(t=new zp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function hC(e){let t=[],{extractDenseBlock3Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function mC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var _w=class extends Qt{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Rf(s,n.dense0,!0);return i=Rf(i,n.dense1),i=Rf(i,n.dense2),i=Yn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return hC(t)}extractParams(t){return mC(t)}};var jp=class extends Hp{constructor(t=new _w){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Ew=class extends co{};function fC(e,t){return Z(L(e,t.weights),t.biases)}function Aw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=fC(o,t.scale),a?Ye(o):o}function gC(e,t){return Aw(e,t,[1,1],!0)}function Fw(e,t){return Aw(e,t,[1,1],!1)}function Gf(e,t){return Aw(e,t,[2,2],!0,"valid")}function Kre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(hw(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(Ca(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=nt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=nt(e(o)),u=nt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function yC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Kre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Sa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Xre(e,t){let n=Gn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function bC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Xre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!dw(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return bn(e,t),{params:x,paramMappings:t}}function za(e,t){let n=gC(e,t.conv1);return n=Fw(n,t.conv2),n=Z(n,e),n=Ye(n),n}function qp(e,t){let n=Gf(e,t.conv1);n=Fw(n,t.conv2);let a=Yn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var po=class extends Qt{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Gf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=za(i,n.conv32_1),i=za(i,n.conv32_2),i=za(i,n.conv32_3),i=qp(i,n.conv64_down),i=za(i,n.conv64_1),i=za(i,n.conv64_2),i=za(i,n.conv64_3),i=qp(i,n.conv128_down),i=za(i,n.conv128_1),i=za(i,n.conv128_2),i=qp(i,n.conv256_down),i=za(i,n.conv256_1),i=za(i,n.conv256_2),i=qp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return bC(t)}extractParams(t){return yC(t)}};function xC(e){let t=new po;return t.extractWeights(e),t}function Kp(e,t){return{...e,...{descriptor:t}}}function vC(e){return typeof e.age=="number"}function Xp(e,t){return{...e,...{age:t}}}function wC(e){return(e.gender===pr.MALE||e.gender===pr.FEMALE)&&_u(e.genderProbability)}function Yp(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Yre(e,t){function n(l,c){let u=Ca(e(3*3*l),[3,3,l,1]),p=nt(e(l)),d=nt(e(l)),h=nt(e(l)),m=nt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Ca(e(l*c*u*u),[u,u,l,c]),m=nt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:$,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function kC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Yre(n,t),i=r(),o=s(),c={extra_dim:wh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function Zre(e,t){let n=Gn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function IC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zre(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Er(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function wa(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var Jre=.0010000000474974513;function Qre(e,t,n){return D(()=>{let a=es(e,t.filters,n,"same");return a=br(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Jre),qt(a,0,6)})}function ese(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function NC(e,t){return D(()=>{let n,a=wa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=ese(o);a=Qre(a,s.depthwise_conv,l),a=wa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function tse(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function TC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=tse(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function nse(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function ase(e,t){let{sizes:n,centers:a}=nse(e),r=dt(Ue(t,[1,0])),s=ve(L(dn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(dn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function SC(e,t,n){return D(()=>{let a=e.shape[0],r=ase(j(Ka(n.extra_dim,[a,1,1]),[-1,4]),j(e,[-1,4]));r=j(r,[a,r.shape[0]/a,4]);let s=pa(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=j(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ho(e,t){return D(()=>{let n=e.shape[0],a=j(lo(e,t.box_encoding_predictor),[n,-1,1,4]),r=j(lo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function CC(e,t,n){return D(()=>{let a=wa(e,n.conv_0,[1,1]),r=wa(a,n.conv_1,[2,2]),s=wa(r,n.conv_2,[1,1]),i=wa(s,n.conv_3,[2,2]),o=wa(i,n.conv_4,[1,1]),l=wa(o,n.conv_5,[2,2]),c=wa(l,n.conv_6,[1,1]),u=wa(c,n.conv_7,[2,2]),p=ho(t,n.box_predictor_0),d=ho(e,n.box_predictor_1),h=ho(r,n.box_predictor_2),m=ho(i,n.box_predictor_3),f=ho(l,n.box_predictor_4),g=ho(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var na=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ks=class extends Qt{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=NC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=CC(s.out,s.conv11,n.prediction_layer);return SC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new na(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map($=>$*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map($=>$*f);return new yt(u[v],new ao(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return IC(t)}extractParams(t){return kC(t)}};function $w(e){let t=new ks;return t.extractWeights(e),t}function _C(e){return $w(e)}var Dw=class extends ks{};var EC=.4,AC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],FC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],$C=[117.001,114.697,97.404],DC="tiny_yolov2_model",RC="tiny_yolov2_separable_conv_model";var Hf=e=>typeof e=="number";function jf(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Hf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Hf(t.x)&&Hf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Hf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Ou(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function $r(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Ou(n)})}function Dr(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Mi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Ou(n)})}function rse(e,t){let n=Ru(e,t);function a(i,o){let l=nt(e(i)),c=nt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Mu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function MC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=rse(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),$=c(f,g,"conv4"),F=c(g,y,"conv5"),O=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),$=l(f,g,"conv4"),F=l(g,y,"conv5"),O=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function sse(e,t){let n=Gn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Pu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function PC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=sse(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var Ba=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Rw=class extends Qt{constructor(t){super("TinyYolov2");jf(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=$r(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=$r(a,n.conv6),a=$r(a,n.conv7),lo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Ou(lo(t,n.conv0,"valid",!1)):Dr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Dr(a,n.conv6):a,a=n.conv7?Dr(a,n.conv7):a,lo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?va(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ba(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return If(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new Ar(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return PC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Rw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return MC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Ta(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;ya){let N=(b+Eu(g[y][b][v][0]))/c*o,T=(y+Eu(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,$=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,F=N-C/2,O=T-$/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new no(F,O,F+C,O+$),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Lu=Rw;Lu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var mo=class extends Lu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:EC,classes:["face"],...t?{anchors:FC,meanRgb:$C}:{anchors:AC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?RC:DC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function OC(e,t=!0){let n=new mo(t);return n.extractWeights(e),n}var Zp=class extends Ba{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var aa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function fo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ws(l)?r(l):l.detection),i=a||(t instanceof Ae?await oo(t,s):await io(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function zu(e,t,n,a,r){return fo([e],t,async s=>n(s[0]),a,r)}var LC=.4,zC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],BC=[117.001,114.697,97.404];var go=class extends Lu{constructor(){let t={withSeparableConvs:!0,iouThreshold:LC,classes:["face"],anchors:zC,meanRgb:BC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new ks,tinyFaceDetector:new go,tinyYolov2:new mo,faceLandmark68Net:new co,faceLandmark68TinyNet:new jp,faceRecognitionNet:new po,faceExpressionNet:new Vp,ageGenderNet:new Gp},Mw=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),WC=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),VC=(e,t)=>et.tinyYolov2.locateFaces(e,t),Pw=e=>et.faceLandmark68Net.detectLandmarks(e),UC=e=>et.faceLandmark68TinyNet.detectLandmarks(e),GC=e=>et.faceRecognitionNet.computeFaceDescriptor(e),HC=e=>et.faceExpressionNet.predictExpressions(e),jC=e=>et.ageGenderNet.predictAgeAndGender(e),Ow=e=>et.ssdMobilenetv1.load(e),qC=e=>et.tinyFaceDetector.load(e),KC=e=>et.tinyYolov2.load(e),XC=e=>et.faceLandmark68Net.load(e),YC=e=>et.faceLandmark68TinyNet.load(e),ZC=e=>et.faceRecognitionNet.load(e),JC=e=>et.faceExpressionNet.load(e),QC=e=>et.ageGenderNet.load(e),e_=Ow,t_=Mw,n_=Pw;var Lw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Vu=class extends Lw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Up(a,n[r]))}withAgeAndGender(){return new Bu(this,this.input)}},Uu=class extends Lw{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Up(t,n)}withAgeAndGender(){return new Wu(this,this.input)}},xo=class extends Vu{withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},vo=class extends Uu{withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var zw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Bu=class extends zw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Xp(Yp(a,i,o),s)})}withFaceExpressions(){return new Vu(this,this.input)}},Wu=class extends zw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zu(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Xp(Yp(t,a,r),n)}withFaceExpressions(){return new Uu(this,this.input)}},yo=class extends Bu{withFaceExpressions(){return new xo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},bo=class extends Wu{withFaceExpressions(){return new vo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var Jp=class extends aa{constructor(t,n){super();this.parentTask=t;this.input=n}},Rr=class extends Jp{async run(){let t=await this.parentTask;return(await fo(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Kp(t[r],a))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}},Mr=class extends Jp{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Kp(t,n)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}};var Qp=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},ed=class extends Qp{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await oo(this.input,n):await io(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>uo(s,r[i]))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},td=class extends Qp{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await oo(this.input,[n]):await io(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),uo(t,r)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var nd=class extends aa{constructor(t,n=new na){super();this.input=t;this.options=n}},Gu=class extends nd{async run(){let{input:t,options:n}=this,a=n instanceof Zp?r=>et.tinyFaceDetector.locateFaces(r,n):n instanceof na?r=>et.ssdMobilenetv1.locateFaces(r,n):n instanceof Ba?r=>et.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>gs({},a)))})}withFaceLandmarks(t=!1){return new ed(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Vu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Bu(this.runAndExtendWithFaceDetections(),this.input)}},ad=class extends nd{async run(){let t=await new Gu(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?gs({},n):void 0)})}withFaceLandmarks(t=!1){return new td(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Uu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Wu(this.runAndExtendWithFaceDetection(),this.input)}};function a_(e,t=new na){return new ad(e,t)}function rd(e,t=new na){return new Gu(e,t)}async function Bw(e,t){return rd(e,new na(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function r_(e,t={}){return rd(e,new Ba(t)).withFaceLandmarks().withFaceDescriptors()}var s_=Bw;function qf(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var sd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof lr)return i;if(i instanceof Float32Array)return new lr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new lr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>qf(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Au(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>lr.fromJSON(a));return new sd(n,t.distanceThreshold)}};function i_(e){let t=new go;return t.extractWeights(e),t}function Ww(e,t){let{width:n,height:a}=new ln(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Ww(r,{width:n,height:a}));if(ws(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return uo(gs(e,r),s)}return La(e)?gs(e,e.detection.forSize(n,a)):e instanceof Un||e instanceof yt?e.forSize(n,a):e}var ose=typeof process!="undefined",lse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",o_={faceapi:oC,node:ose,browser:lse};return ise;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=face-api.js.map