/* Face-API homepage: author: ' */ var VB=Object.create,Wh=Object.defineProperty,GB=Object.getPrototypeOf,WB=Object.prototype.hasOwnProperty,UB=Object.getOwnPropertyNames,jB=Object.getOwnPropertyDescriptor;var HB=r=>Wh(r,"__esModule",{value:!0});var Br=(r,e)=>()=>(e||(e={exports:{}},r(e.exports,e)),e.exports),et=(r,e)=>{for(var t in e)Wh(r,t,{get:e[t],enumerable:!0})},qB=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let o of UB(e))!WB.call(r,o)&&o!=="default"&&Wh(r,o,{get:()=>e[o],enumerable:!(t=jB(e,o))||t.enumerable});return r},Tc=r=>r&&r.__esModule?r:qB(HB(Wh(r!=null?VB(GB(r)):{},"default",{value:r,enumerable:!0})),r);var oN=Br(()=>{});var PN=Br((ON,$_)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(ON,typeof $_=="object"&&$_,typeof define=="function"&&define)});var LN=Br((MN,R_)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(MN,typeof R_=="object"&&R_,typeof define=="function"&&define)});var BN=Br((zN,F_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(zN,typeof F_=="object"&&F_,typeof define=="function"&&define)});var GN=Br((VN,O_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(VN,typeof O_=="object"&&O_,typeof define=="function"&&define)});var UN=Br((WN,P_)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(WN,typeof P_=="object"&&P_,typeof define=="function"&&define)});var HN=Br((jN,M_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(jN,typeof M_=="object"&&M_,typeof define=="function"&&define)});var qN=Br(()=>{});var KN=Br((Fxe,mg)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(_,w,v){var $=[];w=w==!0?{entropy:!0}:w||{};var A=g(h(w.entropy?[_,b(r)]:_==null?x():_,3),$),R=new f($),M=function(){for(var V=R.g(n),G=i,W=0;V=u;)V/=2,G/=2,W>>>=1;return(V+W)/G};return M.int32=function(){return R.g(4)|0},M.quick=function(){return R.g(4)/4294967296},M.double=M,g(b(R.S),r),(w.pass||v||function(V,G,W,q){return q&&(q.S&&d(q,R),V.state=function(){return d(R,{})}),W?(e[a]=V,G):V})(M,A,"global"in w?w.global:this==e,w.state)}e["seed"+a]=m;function f(_){var w,v=_.length,$=this,A=0,R=$.i=$.j=0,M=$.S=[];for(v||(_=[v++]);A{var x4=PN(),y4=LN(),b4=BN(),_4=GN(),w4=UN(),k4=HN(),Fu=KN();Fu.alea=x4;Fu.xor128=y4;Fu.xorwow=b4;Fu.xorshift7=_4;Fu.xor4096=w4;Fu.tychei=k4;XN.exports=Fu});var PE=Br(()=>{});var Jp=Br(()=>{});var bz=Br(()=>{});var _z=Br(()=>{});var wz=Br((ry,oI)=>{var nI=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return K.buffer!=qe&&wr(K.buffer),Ft}function o(){return K.buffer!=qe&&wr(K.buffer),po}function n(){return K.buffer!=qe&&wr(K.buffer),_r}function s(){return K.buffer!=qe&&wr(K.buffer),Go}function a(){return K.buffer!=qe&&wr(K.buffer),fo}var i=typeof e!="undefined"?e:{},l={},u;for(u in i)i.hasOwnProperty(u)&&(l[u]=i[u]);var c=[],p="./this.program",m=function(I,D){throw D},f=!1,d=!1,h=!1,g=!1;f=typeof window=="object",d=typeof importScripts=="function",h=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!f&&!h&&!d;var x=i.ENVIRONMENT_IS_PTHREAD||!1;x&&(qe=i.buffer,ss=i.DYNAMIC_BASE,So=i.DYNAMICTOP_PTR);var b="";function _(I){return i.locateFile?i.locateFile(I,b):b+I}var w,v,$,A,R,M;if(h){d?b=Jp().dirname(b)+"/":b=__dirname+"/",w=function(D,P){return R||(R=require("fs")),M||(M=Jp()),D=M.normalize(D),R.readFileSync(D,P?null:"utf8")},$=function(D){var P=w(D,!0);return P.buffer||(P=new Uint8Array(P)),ge(P.buffer),P},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof xI))throw I}),process.on("unhandledRejection",ea),m=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var V;try{V=bz()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}Worker=V.Worker}else g?(typeof read!="undefined"&&(w=function(D){return read(D)}),$=function(D){var P;return typeof readbuffer=="function"?new Uint8Array(readbuffer(D)):(P=read(D,"binary"),ge(typeof P=="object"),P)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(m=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(f||d)&&(d?b=self.location.href:document.currentScript&&(b=document.currentScript.src),typeof r!="undefined"&&r&&(b=r),b.indexOf("blob:")!==0?b=b.substr(0,b.lastIndexOf("/")+1):b="",h?(w=function(D,P){return R||(R=require("fs")),M||(M=Jp()),D=M.normalize(D),R.readFileSync(D,P?null:"utf8")},$=function(D){var P=w(D,!0);return P.buffer||(P=new Uint8Array(P)),ge(P.buffer),P}):(w=function(D){var P=new XMLHttpRequest;return P.open("GET",D,!1),P.send(null),P.responseText},d&&($=function(D){var P=new XMLHttpRequest;return P.open("GET",D,!1),P.responseType="arraybuffer",P.send(null),new Uint8Array(P.response)}),v=function(D,P,j){var me=new XMLHttpRequest;me.open("GET",D,!0),me.responseType="arraybuffer",me.onload=function(){if(me.status==200||me.status==0&&me.response){P(me.response);return}j()},me.onerror=j,me.send(null)}),A=function(I){document.title=I});h&&typeof performance=="undefined"&&(performance=_z().performance);var G=i.print||console.log.bind(console),W=i.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(i[u]=l[u]);l=null,i.arguments&&(c=i.arguments),i.thisProgram&&(p=i.thisProgram),i.quit&&(m=i.quit);var q=Atomics.load,Z=Atomics.store,X=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var te;i.noExitRuntime&&(te=i.noExitRuntime),typeof WebAssembly!="object"&&W("no native wasm support detected");var K,re=new WebAssembly.Table({initial:171,maximum:171+0,element:"anyfunc"}),ie,se=0,pe=0,ae=!1,xe=0;function ge(I,D){I||ea("Assertion failed: "+D)}function _e(I){var D=i["_"+I];return ge(D,"Cannot call unknown function "+I+", make sure it is exported"),D}function ke(I,D,P,j,me){var he={string:function(go){var Xa=0;if(go!=null&&go!==0){var dm=(go.length<<2)+1;Xa=Cc(dm),ut(go,Xa,dm)}return Xa},array:function(go){var Xa=Cc(go.length);return kt(go,Xa),Xa}};function fe(go){return D==="string"?Re(go):D==="boolean"?Boolean(go):go}var Se=_e(I),mt=[],pr=0;if(j)for(var Ar=0;Ar=j);){var he=I[D++];if(!he)return me;if(!(he&128)){me+=String.fromCharCode(he);continue}var fe=I[D++]&63;if((he&224)==192){me+=String.fromCharCode((he&31)<<6|fe);continue}var Se=I[D++]&63;if((he&240)==224?he=(he&15)<<12|fe<<6|Se:he=(he&7)<<18|fe<<12|Se<<6|I[D++]&63,he<65536)me+=String.fromCharCode(he);else{var mt=he-65536;me+=String.fromCharCode(55296|mt>>10,56320|mt&1023)}}return me}function Re(I,D){return I?$e(o(),I,D):""}function He(I,D,P,j){if(!(j>0))return 0;for(var me=P,he=P+j-1,fe=0;fe=55296&&Se<=57343){var mt=I.charCodeAt(++fe);Se=65536+((Se&1023)<<10)|mt&1023}if(Se<=127){if(P>=he)break;D[P++]=Se}else if(Se<=2047){if(P+1>=he)break;D[P++]=192|Se>>6,D[P++]=128|Se&63}else if(Se<=65535){if(P+2>=he)break;D[P++]=224|Se>>12,D[P++]=128|Se>>6&63,D[P++]=128|Se&63}else{if(P+3>=he)break;D[P++]=240|Se>>18,D[P++]=128|Se>>12&63,D[P++]=128|Se>>6&63,D[P++]=128|Se&63}}return D[P]=0,P-me}function ut(I,D,P){return He(I,o(),D,P)}function wt(I){for(var D=0,P=0;P=55296&&j<=57343&&(j=65536+((j&1023)<<10)|I.charCodeAt(++P)&1023),j<=127?++D:j<=2047?D+=2:j<=65535?D+=3:D+=4}return D}function kt(I,D){t().set(I,D)}var pt=65536;function vt(I,D){return I%D>0&&(I+=D-I%D),I}var qe,Ft,po,Zt,mo,_r,Go,Jr,fo;function wr(I){qe=I,i.HEAP8=Ft=new Int8Array(I),i.HEAP16=Zt=new Int16Array(I),i.HEAP32=_r=new Int32Array(I),i.HEAPU8=po=new Uint8Array(I),i.HEAPU16=mo=new Uint16Array(I),i.HEAPU32=Go=new Uint32Array(I),i.HEAPF32=Jr=new Float32Array(I),i.HEAPF64=fo=new Float64Array(I)}var No=5256464,Wo=No,Qr=13584,ss=5256464,So=12656,xc=i.INITIAL_MEMORY||16777216;if(x)K=i.wasmMemory,qe=i.buffer;else if(i.wasmMemory)K=i.wasmMemory;else if(K=new WebAssembly.Memory({initial:xc/pt,maximum:2147483648/pt,shared:!0}),!(K.buffer instanceof SharedArrayBuffer))throw W("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),h&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");K&&(qe=K.buffer),xc=qe.byteLength,wr(qe),x||(n()[So>>2]=ss);function is(I){for(;I.length>0;){var D=I.shift();if(typeof D=="function"){D(i);continue}var P=D.func;typeof P=="number"?D.arg===void 0?i.dynCall_v(P):i.dynCall_vi(P,D.arg):P(D.arg===void 0?null:D.arg)}}var Ji=[],$l=[],iy=[],Qp=[],_h=[],em=!1;x&&(em=!0);function Uo(){if(!x){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)uy(i.preRun.shift());is(Ji)}}function wh(){em=!0,is($l)}function ay(){x||is(iy)}function ly(){if(!x){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)Rl(i.postRun.shift());is(_h)}}function uy(I){Ji.unshift(I)}function Rl(I){_h.unshift(I)}var yc=Math.ceil,cy=Math.floor,Qi=0,tm=null,Fl=null;function py(I){ge(!x,"addRunDependency cannot be used in a pthread worker"),Qi++,i.monitorRunDependencies&&i.monitorRunDependencies(Qi)}function my(I){if(Qi--,i.monitorRunDependencies&&i.monitorRunDependencies(Qi),Qi==0&&(tm!==null&&(clearInterval(tm),tm=null),Fl)){var D=Fl;Fl=null,D()}}i.preloadedImages={},i.preloadedAudios={};function ea(I){throw i.onAbort&&i.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),W(I),ae=!0,xe=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(I)}function rm(I,D){return String.prototype.startsWith?I.startsWith(D):I.indexOf(D)===0}var fy="data:application/octet-stream;base64,";function kh(I){return rm(I,fy)}var dy="file://";function vh(I){return rm(I,dy)}var jo="tfjs-backend-wasm-threaded-simd.wasm";kh(jo)||(jo=_(jo));function Ch(){try{if(Y)return new Uint8Array(Y);if($)return $(jo);throw"both async and sync fetching of the wasm failed"}catch(I){ea(I)}}function hy(){return!Y&&(f||d)&&typeof fetch=="function"&&!vh(jo)?fetch(jo,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+jo+"'";return I.arrayBuffer()}).catch(function(){return Ch()}):new Promise(function(I,D){I(Ch())})}function gy(){var I={a:ab};function D(fe,Se){var mt=fe.exports;if(i.asm=mt,ie=Se,!x){var pr=we.unusedWorkers.length;we.unusedWorkers.forEach(function(Ar){we.loadWasmModuleToWorker(Ar,function(){--pr||my("wasm-instantiate")})})}}x||py("wasm-instantiate");function P(fe){D(fe.instance,fe.module)}function j(fe){return hy().then(function(Se){return WebAssembly.instantiate(Se,I)}).then(fe,function(Se){W("failed to asynchronously prepare wasm: "+Se),ea(Se)})}function me(){if(!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!kh(jo)&&!vh(jo)&&typeof fetch=="function")fetch(jo,{credentials:"same-origin"}).then(function(fe){var Se=WebAssembly.instantiateStreaming(fe,I);return Se.then(P,function(mt){W("wasm streaming compile failed: "+mt),W("falling back to ArrayBuffer instantiation"),j(P)})});else return j(P)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,D);return he}catch(fe){return W("Module.instantiateWasm callback failed with error: "+fe),!1}return me(),{}}var xy={};function yy(){we.initRuntime()}x||$l.push({func:function(){Ph()}});var Ih=0,Nh=0,Sh=0;function bc(I,D,P){I=I|0,D=D|0,P=P|0,Ih=I,Sh=D,Nh=P}i.__register_pthread_ptr=bc;var om={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},_c=13568;function wc(I,D){if(I<=0||I>t().length||I&!0||D<0)return-28;if(D==0)return 0;D>=2147483647&&(D=Infinity);var P=Atomics.load(n(),_c>>2),j=0;if(P==I){var me=Atomics.compareExchange(n(),_c>>2,P,0);if(me==P&&(--D,j=1,D<=0))return 1}var he=Atomics.notify(n(),I>>2,D);if(he>=0)return he+j;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=wc;function by(I){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _kill_thread!";n()[I+12>>2]=0;var D=we.pthreads[I];D.worker.terminate(),we.freeThreadData(D),we.runningWorkers.splice(we.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function _y(I){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var D=we.pthreads[I];D.worker.postMessage({cmd:"cancel"})}function wy(I){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";n()[I+12>>2]=0;var D=we.pthreads[I];if(D){var P=D.worker;we.returnWorkerToPool(P)}}var we={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){bc(we.mainThreadBlock,!d,1),fI(we.mainThreadBlock)},initMainThreadBlock:function(){for(var I=8,D=0;D>2]=we.mainThreadBlock;var P=we.mainThreadBlock+156;n()[P>>2]=P;for(var j=13056,D=0;D<128;++D)s()[j/4+D]=0;Atomics.store(s(),we.mainThreadBlock+104>>2,j),Atomics.store(s(),we.mainThreadBlock+40>>2,we.mainThreadBlock),Atomics.store(s(),we.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(we.exitHandlers!==null){for(;we.exitHandlers.length>0;)we.exitHandlers.pop()();we.exitHandlers=null}x&&se&&mI()},threadExit:function(I){var D=Us();D&&(Atomics.store(s(),D+4>>2,I),Atomics.store(s(),D+0>>2,1),Atomics.store(s(),D+60>>2,1),Atomics.store(s(),D+64>>2,0),we.runExitHandlers(),wc(D+0,2147483647),bc(0,0,0),se=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){we.runExitHandlers(),Atomics.store(s(),se+4>>2,-1),Atomics.store(s(),se+0>>2,1),wc(se+0,2147483647),se=pe=0,bc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in we.pthreads){var D=we.pthreads[I];D&&D.worker&&we.returnWorkerToPool(D.worker)}we.pthreads={};for(var P=0;P>2];n()[I.threadInfoStruct+104>>2]=0,cm(D),cm(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&cm(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){delete we.pthreads[I.pthread.thread],we.unusedWorkers.push(I),we.runningWorkers.splice(we.runningWorkers.indexOf(I),1),we.freeThreadData(I.pthread),I.pthread=void 0},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,D){I.onmessage=function(P){var j=P.data,me=j.cmd;if(I.pthread&&(we.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),j.targetThread&&j.targetThread!=Us()){var he=we.pthreads[j.targetThread];he?he.worker.postMessage(P.data,j.transferList):console.error('Internal error! Worker sent a message "'+me+'" to target pthread '+j.targetThread+", but that thread no longer exists!"),we.currentProxiedOperationCallerThread=void 0;return}if(me==="processQueuedMainThreadWork")cb();else if(me==="spawnThread")Rh(P.data);else if(me==="cleanupThread")wy(j.thread);else if(me==="killThread")by(j.thread);else if(me==="cancelThread")_y(j.thread);else if(me==="loaded")I.loaded=!0,D&&D(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(me==="print")G("Thread "+j.threadId+": "+j.text);else if(me==="printErr")W("Thread "+j.threadId+": "+j.text);else if(me==="alert")alert("Thread "+j.threadId+": "+j.text);else if(me==="exit"){var fe=I.pthread&&Atomics.load(s(),I.pthread.thread+68>>2);fe&&we.returnWorkerToPool(I)}else me==="cancelDone"?we.returnWorkerToPool(I):me==="objectTransfer"?we.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?I.postMessage(P.data):W("worker sent an unknown command "+me);we.currentProxiedOperationCallerThread=void 0},I.onerror=function(P){W("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},h&&(I.on("message",function(P){I.onmessage({data:P})}),I.on("error",function(P){I.onerror(P)}),I.on("exit",function(P){console.log("worker exited - TODO: update the worker queue?")})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:K,wasmModule:ie,DYNAMIC_BASE:ss,DYNAMICTOP_PTR:So})},allocateUnusedWorker:function(){var I=_("tfjs-backend-wasm-threaded-simd.worker.js");we.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return we.unusedWorkers.length==0&&(we.allocateUnusedWorker(),we.loadWasmModuleToWorker(we.unusedWorkers[0])),we.unusedWorkers.length>0?we.unusedWorkers.pop():null},busySpinWait:function(I){for(var D=performance.now()+I;performance.now()>2]=I,I}function Sy(I,D){if(x)return Ha(1,1,I,D);Qp.unshift({func:I,arg:D})}function Ty(I,D){if(I==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var P=we.pthreads[I],j=P&&P.worker;if(!j)return;j.postMessage({cmd:"processThreadQueue"})}return 1}function Ey(){ea()}function Ay(I,D){I=I|0,D=D|0}function Dy(I,D,P){if(I<=0||I>t().length||I&!0)return-28;if(d){var j=Atomics.wait(n(),I>>2,D,P);if(j==="timed-out")return-73;if(j==="not-equal")return-6;if(j==="ok")return 0;throw"Atomics.wait returned an unexpected value "+j}else{var me=Atomics.load(n(),I>>2);if(D!=me)return-6;var he=performance.now(),fe=he+P;Atomics.store(n(),_c>>2,I);for(var Se=I;I==Se;){if(he=performance.now(),he>fe)return-73;cb(),I=Atomics.load(n(),_c>>2)}return 0}}function $y(){return Sh|0}function Ry(){return Nh|0}function Fy(I,D,P){o().copyWithin(I,D,D+P)}function Oy(){return navigator.hardwareConcurrency}function Ha(I,D){for(var P=arguments.length-2,j=pm(),me=Cc(P*8),he=me>>3,fe=0;fe>3]),D+=8):(D=D+3&~3,P.push(n()[D>>2]),D+=4);return P}function Py(I,D,P){Pl.length=D;for(var j=P>>3,me=0;me>>16),wr(K.buffer),1}catch(D){}}function zy(I){I=I>>>0;var D=My();if(I<=D)return!1;var P=65536,j=2147483648;if(I>j)return!1;for(var me=16777216,he=1;he<=4;he*=2){var fe=D*(1+.2/he);fe=Math.min(fe,I+100663296);var Se=Math.min(j,vt(Math.max(me,I,fe),P)),mt=Ly(Se);if(mt)return!0}return!1}var Ze={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var I=Ze.eventHandlers.length-1;I>=0;--I)Ze._removeHandler(I);Ze.eventHandlers=[],Ze.deferredCalls=[]},registerRemoveEventListeners:function(){Ze.removeEventListenersRegistered||(Qp.push(Ze.removeAllEventListeners),Ze.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,D,P){function j(fe,Se){if(fe.length!=Se.length)return!1;for(var mt in fe)if(fe[mt]!=Se[mt])return!1;return!0}for(var me in Ze.deferredCalls){var he=Ze.deferredCalls[me];if(he.targetFunction==I&&j(he.argsList,P))return}Ze.deferredCalls.push({targetFunction:I,precedence:D,argsList:P}),Ze.deferredCalls.sort(function(fe,Se){return fe.precedence>2]=P,n()[fe+4>>2]=j,n()[fe+8>>2]=me,pb(I,637534208,D,j,fe),Ic(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return we.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function By(I){var D=wt(I)+1,P=um(D);return ut(I,P,D),P}function Vy(I,D,P,j){var me=pm(),he=Cc(12),fe=0;D&&(fe=By(D)),n()[he>>2]=fe,n()[he+4>>2]=P,n()[he+8>>2]=j,pb(I,657457152,0,fe,he),Ic(me)}function Gy(I,D,P,j){D=D?Re(D):"",Vy(I,D,P,j)}function Wy(I){return I>2?Re(I):I}var Uy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function jy(I){I=Wy(I);var D=Uy[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return D}function nm(I){return jy(I)}function Th(I,D,P){var j=nm(I);if(!j)return-4;if(j.canvasSharedPtr&&(n()[j.canvasSharedPtr>>2]=D,n()[j.canvasSharedPtr+4>>2]=P),j.offscreenCanvas||!j.controlTransferredOffscreen){j.offscreenCanvas&&(j=j.offscreenCanvas);var me=!1;if(j.GLctxObject&&j.GLctxObject.GLctx){var he=j.GLctxObject.GLctx.getParameter(2978);me=he[0]===0&&he[1]===0&&he[2]===j.width&&he[3]===j.height}j.width=D,j.height=P,me&&j.GLctxObject.GLctx.viewport(0,0,D,P)}else if(j.canvasSharedPtr){var fe=n()[j.canvasSharedPtr+8>>2];return Gy(fe,I,D,P),1}else return-4;return 0}function Eh(I,D,P){return x?Ha(2,1,I,D,P):Th(I,D,P)}function Hy(I,D,P){var j=nm(I);return j?Th(I,D,P):Eh(I,D,P)}function qy(I){I=I|0}function Ky(I,D){I=I|0,D=D|0}function Xy(I){var D=I.getExtension("ANGLE_instanced_arrays");if(D)return I.vertexAttribDivisor=function(P,j){D.vertexAttribDivisorANGLE(P,j)},I.drawArraysInstanced=function(P,j,me,he){D.drawArraysInstancedANGLE(P,j,me,he)},I.drawElementsInstanced=function(P,j,me,he,fe){D.drawElementsInstancedANGLE(P,j,me,he,fe)},1}function Yy(I){var D=I.getExtension("OES_vertex_array_object");if(D)return I.createVertexArray=function(){return D.createVertexArrayOES()},I.deleteVertexArray=function(P){D.deleteVertexArrayOES(P)},I.bindVertexArray=function(P){D.bindVertexArrayOES(P)},I.isVertexArray=function(P){return D.isVertexArrayOES(P)},1}function Zy(I){var D=I.getExtension("WEBGL_draw_buffers");if(D)return I.drawBuffers=function(P,j){D.drawBuffersWEBGL(P,j)},1}var rt={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var I=new Float32Array(rt.MINI_TEMP_BUFFER_SIZE),D=0;D>2]:-1;me+=Re(n()[P+he*4>>2],fe<0?void 0:fe)}return me},createContext:function(I,D){var P=I.getContext("webgl",D);if(!P)return 0;var j=rt.registerContext(P,D);return j},registerContext:function(I,D){var P=um(8);n()[P+4>>2]=Us();var j={handle:P,attributes:D,version:D.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=j),rt.contexts[P]=j,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&rt.initExtensions(j),P},makeContextCurrent:function(I){return rt.currentContext=rt.contexts[I],i.ctx=qa=rt.currentContext&&rt.currentContext.GLctx,!(I&&!qa)},getContext:function(I){return rt.contexts[I]},deleteContext:function(I){rt.currentContext===rt.contexts[I]&&(rt.currentContext=null),typeof Ze=="object"&&Ze.removeAllHandlersOnTarget(rt.contexts[I].GLctx.canvas),rt.contexts[I]&&rt.contexts[I].GLctx.canvas&&(rt.contexts[I].GLctx.canvas.GLctxObject=void 0),cm(rt.contexts[I].handle),rt.contexts[I]=null},initExtensions:function(I){if(I||(I=rt.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var D=I.GLctx;Xy(D),Yy(D),Zy(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query");var P=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],j=D.getSupportedExtensions()||[];j.forEach(function(me){P.indexOf(me)!=-1&&D.getExtension(me)})}},populateUniformTable:function(I){for(var D=rt.programs[I],P=rt.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},j=P.uniforms,me=qa.getProgramParameter(D,35718),he=0;he>2;P.alpha=!!n()[j+(0>>2)],P.depth=!!n()[j+(4>>2)],P.stencil=!!n()[j+(8>>2)],P.antialias=!!n()[j+(12>>2)],P.premultipliedAlpha=!!n()[j+(16>>2)],P.preserveDrawingBuffer=!!n()[j+(20>>2)];var me=n()[j+(24>>2)];P.powerPreference=Jy[me],P.failIfMajorPerformanceCaveat=!!n()[j+(28>>2)],P.majorVersion=n()[j+(32>>2)],P.minorVersion=n()[j+(36>>2)],P.enableExtensionsByDefault=n()[j+(40>>2)],P.explicitSwapControl=n()[j+(44>>2)],P.proxyContextToMainThread=n()[j+(48>>2)],P.renderViaOffscreenBackBuffer=n()[j+(52>>2)];var he=nm(I);if(!he)return-4;if(P.explicitSwapControl)return-1;var fe=rt.createContext(he,P);return fe}function eb(I,D){return Qy(I,D)}var Ml={splitPath:function(I){var D=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return D.exec(I).slice(1)},normalizeArray:function(I,D){for(var P=0,j=I.length-1;j>=0;j--){var me=I[j];me==="."?I.splice(j,1):me===".."?(I.splice(j,1),P++):P&&(I.splice(j,1),P--)}if(D)for(;P;P--)I.unshift("..");return I},normalize:function(I){var D=I.charAt(0)==="/",P=I.substr(-1)==="/";return I=Ml.normalizeArray(I.split("/").filter(function(j){return!!j}),!D).join("/"),!I&&!D&&(I="."),I&&P&&(I+="/"),(D?"/":"")+I},dirname:function(I){var D=Ml.splitPath(I),P=D[0],j=D[1];return!P&&!j?".":(j&&(j=j.substr(0,j.length-1)),P+j)},basename:function(I){if(I==="/")return"/";var D=I.lastIndexOf("/");return D===-1?I:I.substr(D+1)},extname:function(I){return Ml.splitPath(I)[3]},join:function(){var I=Array.prototype.slice.call(arguments,0);return Ml.normalize(I.join("/"))},join2:function(I,D){return Ml.normalize(I+"/"+D)}},vc={mappings:{},buffers:[null,[],[]],printChar:function(I,D){var P=vc.buffers[I];D===0||D===10?((I===1?G:W)($e(P,0)),P.length=0):P.push(D)},varargs:void 0,get:function(){vc.varargs+=4;var I=n()[vc.varargs-4>>2];return I},getStr:function(I){var D=Re(I);return D},get64:function(I,D){return I}};function Ah(I){return x?Ha(3,1,I):0}function Dh(I,D,P,j,me){if(x)return Ha(4,1,I,D,P,j,me)}function $h(I,D,P,j){if(x)return Ha(5,1,I,D,P,j);for(var me=0,he=0;he>2],Se=n()[D+(he*8+4)>>2],mt=0;mt>2]=me,0}function tb(I){var D=we.exitHandlers.pop();I&&D()}function rb(I,D){we.exitHandlers===null&&(we.exitHandlers=[]),we.exitHandlers.push(function(){gI(I,D)})}function Rh(I){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var D=we.getNewWorker();if(D.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";we.runningWorkers.push(D);for(var P=um(128*4),j=0;j<128;++j)n()[P+j*4>>2]=0;var me=I.stackBase+I.stackSize,he=we.pthreads[I.pthread_ptr]={worker:D,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,thread:I.pthread_ptr,threadInfoStruct:I.pthread_ptr},fe=he.threadInfoStruct>>2;Atomics.store(s(),fe+(0>>2),0),Atomics.store(s(),fe+(4>>2),0),Atomics.store(s(),fe+(8>>2),0),Atomics.store(s(),fe+(68>>2),I.detached),Atomics.store(s(),fe+(104>>2),P),Atomics.store(s(),fe+(48>>2),0),Atomics.store(s(),fe+(40>>2),he.threadInfoStruct),Atomics.store(s(),fe+(44>>2),42),Atomics.store(s(),fe+(108>>2),I.stackSize),Atomics.store(s(),fe+(84>>2),I.stackSize),Atomics.store(s(),fe+(80>>2),me),Atomics.store(s(),fe+(108+8>>2),me),Atomics.store(s(),fe+(108+12>>2),I.detached),Atomics.store(s(),fe+(108+20>>2),I.schedPolicy),Atomics.store(s(),fe+(108+24>>2),I.schedPrio);var Se=cI(),mt=Se+40;Atomics.store(s(),fe+(176>>2),mt),D.pthread=he;var pr={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,selfThreadId:I.pthread_ptr,parentThreadId:I.parent_pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};D.runPthread=function(){pr.time=performance.now(),D.postMessage(pr,I.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread)}function ob(I,D,P){if(!D&&!P)return om.EINVAL;if(!I)return W("pthread_getschedparam called with a null thread pointer!"),om.ESRCH;var j=n()[I+12>>2];if(j!==I)return W("pthread_getschedparam attempted on thread "+I+", which does not point to a valid thread, or does not exist anymore!"),om.ESRCH;var me=Atomics.load(s(),I+108+20>>2),he=Atomics.load(s(),I+108+24>>2);return D&&(n()[D>>2]=me),P&&(n()[P>>2]=he),0}function Us(){return Ih|0}i._pthread_self=Us;function nb(I,D,P,j){if(typeof SharedArrayBuffer=="undefined")return W("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return W("pthread_create called with a null thread pointer!"),28;var me=[],he=0;if(x&&(me.length===0||he))return dI(687865856,I,D,P,j);if(he)return he;var fe=0,Se=0,mt=0,pr=0,Ar=0;if(D){fe=n()[D>>2],fe+=81920,Se=n()[D+8>>2],mt=n()[D+12>>2]!==0;var Nc=n()[D+16>>2]===0;if(Nc){var fm=n()[D+20>>2],go=n()[D+24>>2],Xa=we.currentProxiedOperationCallerThread?we.currentProxiedOperationCallerThread:Us();ob(Xa,D+20,D+24),pr=n()[D+20>>2],Ar=n()[D+24>>2],n()[D+20>>2]=fm,n()[D+24>>2]=go}else pr=n()[D+20>>2],Ar=n()[D+24>>2]}else fe=2097152;var dm=Se==0;dm?Se=pI(16,fe):(Se-=fe,ge(Se>0));for(var Sc=um(232),fb=0;fb<232>>2;++fb)s()[(Sc>>2)+fb]=0;n()[I>>2]=Sc,n()[Sc+12>>2]=Sc;var yI=Sc+156;n()[yI>>2]=yI;var db={stackBase:Se,stackSize:fe,allocatedOwnStack:dm,schedPolicy:pr,schedPrio:Ar,detached:mt,startRoutine:P,pthread_ptr:Sc,parent_pthread_ptr:Us(),arg:j,transferList:me};return x?(db.cmd="spawnThread",postMessage(db,me)):Rh(db),0}function sb(I){return I=+I,I>=0?+cy(I+.5):+yc(I-.5)}function Fh(I){if(x)return Ha(6,1,I);switch(I){case 30:return 16384;case 85:var D=2147483648;return D/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ny(28),-1}x?we.initWorker():we.initMainThreadBlock();var qa;rt.init();var ib=[null,Sy,Eh,Ah,Dh,$h,Fh],ab={e:Cy,r:Iy,w:Ty,a:Ey,l:Ay,d:Dy,c:wc,h:Ol,g:$y,x:Ry,q:Fy,B:Oy,t:Py,A:zy,u:Hy,k:qy,s:Ky,v:eb,m:Ah,o:Dh,i:$h,p:yy,memory:K||i.wasmMemory,y:tb,z:rb,j:nb,b:Us,f:sb,n:Fh,table:re},Oh=gy();i.asm=Oh;var Ph=i.___wasm_call_ctors=function(){return(Ph=i.___wasm_call_ctors=i.asm.C).apply(null,arguments)},Mh=i._init=function(){return(Mh=i._init=i.asm.D).apply(null,arguments)},sm=i._register_tensor=function(){return(sm=i._register_tensor=i.asm.E).apply(null,arguments)},Lh=i._dispose_data=function(){return(Lh=i._dispose_data=i.asm.F).apply(null,arguments)},Ll=i._dispose=function(){return(Ll=i._dispose=i.asm.G).apply(null,arguments)},im=i._Abs=function(){return(im=i._Abs=i.asm.H).apply(null,arguments)},lb=i._Add=function(){return(lb=i._Add=i.asm.I).apply(null,arguments)},ub=i._AddN=function(){return(ub=i._AddN=i.asm.J).apply(null,arguments)},am=i._ArgMax=function(){return(am=i._ArgMax=i.asm.K).apply(null,arguments)},zh=i._AvgPool=function(){return(zh=i._AvgPool=i.asm.L).apply(null,arguments)},Bh=i._BatchMatMul=function(){return(Bh=i._BatchMatMul=i.asm.M).apply(null,arguments)},H=i._Ceil=function(){return(H=i._Ceil=i.asm.N).apply(null,arguments)},ne=i._ClipByValue=function(){return(ne=i._ClipByValue=i.asm.O).apply(null,arguments)},be=i._Conv2D=function(){return(be=i._Conv2D=i.asm.P).apply(null,arguments)},Ke=i._Conv2DBackpropInput=function(){return(Ke=i._Conv2DBackpropInput=i.asm.Q).apply(null,arguments)},Xe=i._Cos=function(){return(Xe=i._Cos=i.asm.R).apply(null,arguments)},Ht=i._CropAndResize=function(){return(Ht=i._CropAndResize=i.asm.S).apply(null,arguments)},at=i._Cumsum=function(){return(at=i._Cumsum=i.asm.T).apply(null,arguments)},nt=i._DepthToSpace=function(){return(nt=i._DepthToSpace=i.asm.U).apply(null,arguments)},xr=i._DepthwiseConv2dNative=function(){return(xr=i._DepthwiseConv2dNative=i.asm.V).apply(null,arguments)},ta=i._Equal=function(){return(ta=i._Equal=i.asm.W).apply(null,arguments)},ra=i._Exp=function(){return(ra=i._Exp=i.asm.X).apply(null,arguments)},Vh=i._FlipLeftRight=function(){return(Vh=i._FlipLeftRight=i.asm.Y).apply(null,arguments)},lm=i._Floor=function(){return(lm=i._Floor=i.asm.Z).apply(null,arguments)},ho=i._FloorDiv=function(){return(ho=i._FloorDiv=i.asm._).apply(null,arguments)},Ka=i._FusedBatchNorm=function(){return(Ka=i._FusedBatchNorm=i.asm.$).apply(null,arguments)},Gh=i._FusedConv2D=function(){return(Gh=i._FusedConv2D=i.asm.aa).apply(null,arguments)},Sz=i._FusedDepthwiseConv2D=function(){return(Sz=i._FusedDepthwiseConv2D=i.asm.ba).apply(null,arguments)},Tz=i._Gather=function(){return(Tz=i._Gather=i.asm.ca).apply(null,arguments)},Ez=i._GatherNd=function(){return(Ez=i._GatherNd=i.asm.da).apply(null,arguments)},Az=i._Greater=function(){return(Az=i._Greater=i.asm.ea).apply(null,arguments)},Dz=i._GreaterEqual=function(){return(Dz=i._GreaterEqual=i.asm.fa).apply(null,arguments)},$z=i._LeakyRelu=function(){return($z=i._LeakyRelu=i.asm.ga).apply(null,arguments)},Rz=i._Less=function(){return(Rz=i._Less=i.asm.ha).apply(null,arguments)},Fz=i._LessEqual=function(){return(Fz=i._LessEqual=i.asm.ia).apply(null,arguments)},Oz=i._Log=function(){return(Oz=i._Log=i.asm.ja).apply(null,arguments)},Pz=i._LogicalAnd=function(){return(Pz=i._LogicalAnd=i.asm.ka).apply(null,arguments)},Mz=i._Max=function(){return(Mz=i._Max=i.asm.la).apply(null,arguments)},Lz=i._MaxPool=function(){return(Lz=i._MaxPool=i.asm.ma).apply(null,arguments)},zz=i._Maximum=function(){return(zz=i._Maximum=i.asm.na).apply(null,arguments)},Bz=i._Mean=function(){return(Bz=i._Mean=i.asm.oa).apply(null,arguments)},Vz=i._Min=function(){return(Vz=i._Min=i.asm.pa).apply(null,arguments)},Gz=i._Minimum=function(){return(Gz=i._Minimum=i.asm.qa).apply(null,arguments)},Wz=i._Multiply=function(){return(Wz=i._Multiply=i.asm.ra).apply(null,arguments)},Uz=i._Neg=function(){return(Uz=i._Neg=i.asm.sa).apply(null,arguments)},jz=i._NonMaxSuppressionV3=function(){return(jz=i._NonMaxSuppressionV3=i.asm.ta).apply(null,arguments)},Hz=i._NonMaxSuppressionV4=function(){return(Hz=i._NonMaxSuppressionV4=i.asm.ua).apply(null,arguments)},qz=i._NonMaxSuppressionV5=function(){return(qz=i._NonMaxSuppressionV5=i.asm.va).apply(null,arguments)},Kz=i._NotEqual=function(){return(Kz=i._NotEqual=i.asm.wa).apply(null,arguments)},Xz=i._OneHot=function(){return(Xz=i._OneHot=i.asm.xa).apply(null,arguments)},Yz=i._PadV2=function(){return(Yz=i._PadV2=i.asm.ya).apply(null,arguments)},Zz=i._Pow=function(){return(Zz=i._Pow=i.asm.za).apply(null,arguments)},Jz=i._Prelu=function(){return(Jz=i._Prelu=i.asm.Aa).apply(null,arguments)},Qz=i._Prod=function(){return(Qz=i._Prod=i.asm.Ba).apply(null,arguments)},eB=i._RealDiv=function(){return(eB=i._RealDiv=i.asm.Ca).apply(null,arguments)},tB=i._Relu=function(){return(tB=i._Relu=i.asm.Da).apply(null,arguments)},rB=i._Relu6=function(){return(rB=i._Relu6=i.asm.Ea).apply(null,arguments)},oB=i._ResizeBilinear=function(){return(oB=i._ResizeBilinear=i.asm.Fa).apply(null,arguments)},nB=i._Reverse=function(){return(nB=i._Reverse=i.asm.Ga).apply(null,arguments)},sB=i._RotateWithOffset=function(){return(sB=i._RotateWithOffset=i.asm.Ha).apply(null,arguments)},iB=i._Round=function(){return(iB=i._Round=i.asm.Ia).apply(null,arguments)},aB=i._Rsqrt=function(){return(aB=i._Rsqrt=i.asm.Ja).apply(null,arguments)},lB=i._ScatterNd=function(){return(lB=i._ScatterNd=i.asm.Ka).apply(null,arguments)},uB=i._SelectV2=function(){return(uB=i._SelectV2=i.asm.La).apply(null,arguments)},cB=i._Sigmoid=function(){return(cB=i._Sigmoid=i.asm.Ma).apply(null,arguments)},pB=i._Sin=function(){return(pB=i._Sin=i.asm.Na).apply(null,arguments)},mB=i._Softmax=function(){return(mB=i._Softmax=i.asm.Oa).apply(null,arguments)},fB=i._Sqrt=function(){return(fB=i._Sqrt=i.asm.Pa).apply(null,arguments)},dB=i._Square=function(){return(dB=i._Square=i.asm.Qa).apply(null,arguments)},hB=i._SquaredDifference=function(){return(hB=i._SquaredDifference=i.asm.Ra).apply(null,arguments)},gB=i._Step=function(){return(gB=i._Step=i.asm.Sa).apply(null,arguments)},xB=i._StridedSlice=function(){return(xB=i._StridedSlice=i.asm.Ta).apply(null,arguments)},yB=i._Sub=function(){return(yB=i._Sub=i.asm.Ua).apply(null,arguments)},bB=i._Sum=function(){return(bB=i._Sum=i.asm.Va).apply(null,arguments)},_B=i._Tanh=function(){return(_B=i._Tanh=i.asm.Wa).apply(null,arguments)},wB=i._Tile=function(){return(wB=i._Tile=i.asm.Xa).apply(null,arguments)},kB=i._TopK=function(){return(kB=i._TopK=i.asm.Ya).apply(null,arguments)},vB=i._Transpose=function(){return(vB=i._Transpose=i.asm.Za).apply(null,arguments)},CB=i.__FusedMatMul=function(){return(CB=i.__FusedMatMul=i.asm._a).apply(null,arguments)},um=i._malloc=function(){return(um=i._malloc=i.asm.$a).apply(null,arguments)},cm=i._free=function(){return(cm=i._free=i.asm.ab).apply(null,arguments)},uI=i.___errno_location=function(){return(uI=i.___errno_location=i.asm.bb).apply(null,arguments)},cI=i._emscripten_get_global_libc=function(){return(cI=i._emscripten_get_global_libc=i.asm.cb).apply(null,arguments)},IB=i.___em_js__initPthreadsJS=function(){return(IB=i.___em_js__initPthreadsJS=i.asm.db).apply(null,arguments)},pI=i._memalign=function(){return(pI=i._memalign=i.asm.eb).apply(null,arguments)},mI=i.___pthread_tsd_run_dtors=function(){return(mI=i.___pthread_tsd_run_dtors=i.asm.fb).apply(null,arguments)},cb=i._emscripten_main_thread_process_queued_calls=function(){return(cb=i._emscripten_main_thread_process_queued_calls=i.asm.gb).apply(null,arguments)},NB=i._emscripten_current_thread_process_queued_calls=function(){return(NB=i._emscripten_current_thread_process_queued_calls=i.asm.hb).apply(null,arguments)},fI=i._emscripten_register_main_browser_thread_id=function(){return(fI=i._emscripten_register_main_browser_thread_id=i.asm.ib).apply(null,arguments)},SB=i._emscripten_main_browser_thread_id=function(){return(SB=i._emscripten_main_browser_thread_id=i.asm.jb).apply(null,arguments)},TB=i._emscripten_async_run_in_main_thread=function(){return(TB=i._emscripten_async_run_in_main_thread=i.asm.kb).apply(null,arguments)},EB=i._emscripten_sync_run_in_main_thread=function(){return(EB=i._emscripten_sync_run_in_main_thread=i.asm.lb).apply(null,arguments)},AB=i._emscripten_sync_run_in_main_thread_0=function(){return(AB=i._emscripten_sync_run_in_main_thread_0=i.asm.mb).apply(null,arguments)},DB=i._emscripten_sync_run_in_main_thread_1=function(){return(DB=i._emscripten_sync_run_in_main_thread_1=i.asm.nb).apply(null,arguments)},$B=i._emscripten_sync_run_in_main_thread_2=function(){return($B=i._emscripten_sync_run_in_main_thread_2=i.asm.ob).apply(null,arguments)},RB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(RB=i._emscripten_sync_run_in_main_thread_xprintf_varargs=i.asm.pb).apply(null,arguments)},FB=i._emscripten_sync_run_in_main_thread_3=function(){return(FB=i._emscripten_sync_run_in_main_thread_3=i.asm.qb).apply(null,arguments)},dI=i._emscripten_sync_run_in_main_thread_4=function(){return(dI=i._emscripten_sync_run_in_main_thread_4=i.asm.rb).apply(null,arguments)},OB=i._emscripten_sync_run_in_main_thread_5=function(){return(OB=i._emscripten_sync_run_in_main_thread_5=i.asm.sb).apply(null,arguments)},PB=i._emscripten_sync_run_in_main_thread_6=function(){return(PB=i._emscripten_sync_run_in_main_thread_6=i.asm.tb).apply(null,arguments)},MB=i._emscripten_sync_run_in_main_thread_7=function(){return(MB=i._emscripten_sync_run_in_main_thread_7=i.asm.ub).apply(null,arguments)},hI=i._emscripten_run_in_main_runtime_thread_js=function(){return(hI=i._emscripten_run_in_main_runtime_thread_js=i.asm.vb).apply(null,arguments)},pb=i._emscripten_async_queue_on_thread_=function(){return(pb=i._emscripten_async_queue_on_thread_=i.asm.wb).apply(null,arguments)},LB=i._emscripten_tls_init=function(){return(LB=i._emscripten_tls_init=i.asm.xb).apply(null,arguments)},pm=i.stackSave=function(){return(pm=i.stackSave=i.asm.yb).apply(null,arguments)},Cc=i.stackAlloc=function(){return(Cc=i.stackAlloc=i.asm.zb).apply(null,arguments)},Ic=i.stackRestore=function(){return(Ic=i.stackRestore=i.asm.Ab).apply(null,arguments)},gI=i.dynCall_vi=function(){return(gI=i.dynCall_vi=i.asm.Bb).apply(null,arguments)},zB=i.dynCall_v=function(){return(zB=i.dynCall_v=i.asm.Cb).apply(null,arguments)},BB=i.dynCall_ii=function(){return(BB=i.dynCall_ii=i.asm.Db).apply(null,arguments)};i.asm=Oh,i.cwrap=De,i.PThread=we,i.PThread=we,i._pthread_self=Us,i.wasmMemory=K,i.ExitStatus=xI;var mm;i.then=function(I){if(mm)I(i);else{var D=i.onRuntimeInitialized;i.onRuntimeInitialized=function(){D&&D(),I(i)}}return i};function xI(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Fl=function I(){mm||mb(),mm||(Fl=I)};function mb(I){if(I=I||c,Qi>0||(Uo(),Qi>0))return;function D(){mm||(mm=!0,i.calledRun=!0,!ae&&(wh(),ay(),i.onRuntimeInitialized&&i.onRuntimeInitialized(),ly()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),D()},1)):D()}if(i.run=mb,i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return x||(te=!0),x||mb(),e}}();typeof ry=="object"&&typeof oI=="object"?oI.exports=nI:typeof define=="function"&&define.amd?define([],function(){return nI}):typeof ry=="object"&&(ry.WasmBackendModuleThreadedSimd=nI)});var vz=Br((oy,sI)=>{var iI=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o={},n;for(n in t)t.hasOwnProperty(n)&&(o[n]=t[n]);var s=[],a="./this.program",i=function(H,ne){throw ne},l=!1,u=!1,c=!1,p=!1;l=typeof window=="object",u=typeof importScripts=="function",c=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",p=!l&&!c&&!u;var m="";function f(H){return t.locateFile?t.locateFile(H,m):m+H}var d,h,g,x,b,_;c?(u?m=Jp().dirname(m)+"/":m=__dirname+"/",d=function(ne,be){return b||(b=require("fs")),_||(_=Jp()),ne=_.normalize(ne),b.readFileSync(ne,be?null:"utf8")},g=function(ne){var be=d(ne,!0);return be.buffer||(be=new Uint8Array(be)),W(be.buffer),be},process.argv.length>1&&(a=process.argv[1].replace(/\\/g,"/")),s=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof im))throw H}),process.on("unhandledRejection",Ji),i=function(H){process.exit(H)},t.inspect=function(){return"[Emscripten Module object]"}):p?(typeof read!="undefined"&&(d=function(ne){return read(ne)}),g=function(ne){var be;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ne)):(be=read(ne,"binary"),W(typeof be=="object"),be)},typeof scriptArgs!="undefined"?s=scriptArgs:typeof arguments!="undefined"&&(s=arguments),typeof quit=="function"&&(i=function(H){quit(H)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(l||u)&&(u?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",d=function(ne){var be=new XMLHttpRequest;return be.open("GET",ne,!1),be.send(null),be.responseText},u&&(g=function(ne){var be=new XMLHttpRequest;return be.open("GET",ne,!1),be.responseType="arraybuffer",be.send(null),new Uint8Array(be.response)}),h=function(ne,be,Ke){var Xe=new XMLHttpRequest;Xe.open("GET",ne,!0),Xe.responseType="arraybuffer",Xe.onload=function(){if(Xe.status==200||Xe.status==0&&Xe.response){be(Xe.response);return}Ke()},Xe.onerror=Ke,Xe.send(null)},x=function(H){document.title=H});var w=t.print||console.log.bind(console),v=t.printErr||console.warn.bind(console);for(n in o)o.hasOwnProperty(n)&&(t[n]=o[n]);o=null,t.arguments&&(s=t.arguments),t.thisProgram&&(a=t.thisProgram),t.quit&&(i=t.quit);var $;t.wasmBinary&&($=t.wasmBinary);var A;t.noExitRuntime&&(A=t.noExitRuntime),typeof WebAssembly!="object"&&v("no native wasm support detected");var R,M=new WebAssembly.Table({initial:153,maximum:153+0,element:"anyfunc"}),V=!1,G=0;function W(H,ne){H||Ji("Assertion failed: "+ne)}function q(H){var ne=t["_"+H];return W(ne,"Cannot call unknown function "+H+", make sure it is exported"),ne}function Z(H,ne,be,Ke,Xe){var Ht={string:function(ho){var Ka=0;if(ho!=null&&ho!==0){var Gh=(ho.length<<2)+1;Ka=sm(Gh),ie(ho,Ka,Gh)}return Ka},array:function(ho){var Ka=sm(ho.length);return se(ho,Ka),Ka}};function at(ho){return ne==="string"?K(ho):ne==="boolean"?Boolean(ho):ho}var nt=q(H),xr=[],ta=0;if(Ke)for(var ra=0;ra=Ke);)++Xe;if(Xe-ne>16&&H.subarray&&Y)return Y.decode(H.subarray(ne,Xe));for(var Ht="";ne>10,56320|ta&1023)}}return Ht}function K(H,ne){return H?te(xe,H,ne):""}function re(H,ne,be,Ke){if(!(Ke>0))return 0;for(var Xe=be,Ht=be+Ke-1,at=0;at=55296&&nt<=57343){var xr=H.charCodeAt(++at);nt=65536+((nt&1023)<<10)|xr&1023}if(nt<=127){if(be>=Ht)break;ne[be++]=nt}else if(nt<=2047){if(be+1>=Ht)break;ne[be++]=192|nt>>6,ne[be++]=128|nt&63}else if(nt<=65535){if(be+2>=Ht)break;ne[be++]=224|nt>>12,ne[be++]=128|nt>>6&63,ne[be++]=128|nt&63}else{if(be+3>=Ht)break;ne[be++]=240|nt>>18,ne[be++]=128|nt>>12&63,ne[be++]=128|nt>>6&63,ne[be++]=128|nt&63}}return ne[be]=0,be-Xe}function ie(H,ne,be){return re(H,xe,ne,be)}function se(H,ne){ae.set(H,ne)}var pe,ae,xe,ge,_e,ke,De,$e,Re;function He(H){pe=H,t.HEAP8=ae=new Int8Array(H),t.HEAP16=ge=new Int16Array(H),t.HEAP32=ke=new Int32Array(H),t.HEAPU8=xe=new Uint8Array(H),t.HEAPU16=_e=new Uint16Array(H),t.HEAPU32=De=new Uint32Array(H),t.HEAPF32=$e=new Float32Array(H),t.HEAPF64=Re=new Float64Array(H)}var ut=t.INITIAL_MEMORY||16777216;function wt(H){for(;H.length>0;){var ne=H.shift();if(typeof ne=="function"){ne(t);continue}var be=ne.func;typeof be=="number"?ne.arg===void 0?t.dynCall_v(be):t.dynCall_vi(be,ne.arg):be(ne.arg===void 0?null:ne.arg)}}var kt=[],pt=[],vt=[],qe=[],Ft=!1,po=!1;function Zt(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)fo(t.preRun.shift());wt(kt)}function mo(){Ft=!0,wt(pt)}function _r(){wt(vt)}function Go(){po=!0}function Jr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)wr(t.postRun.shift());wt(qe)}function fo(H){kt.unshift(H)}function wr(H){qe.unshift(H)}var No=Math.ceil,Wo=Math.floor,Qr=0,ss=null,So=null;function xc(H){Qr++,t.monitorRunDependencies&&t.monitorRunDependencies(Qr)}function is(H){if(Qr--,t.monitorRunDependencies&&t.monitorRunDependencies(Qr),Qr==0&&(ss!==null&&(clearInterval(ss),ss=null),So)){var ne=So;So=null,ne()}}t.preloadedImages={},t.preloadedAudios={};function Ji(H){throw t.onAbort&&t.onAbort(H),H+="",w(H),v(H),V=!0,G=1,H="abort("+H+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(H)}function $l(H,ne){return String.prototype.startsWith?H.startsWith(ne):H.indexOf(ne)===0}var iy="data:application/octet-stream;base64,";function Qp(H){return $l(H,iy)}var _h="file://";function em(H){return $l(H,_h)}var Uo="tfjs-backend-wasm.wasm";Qp(Uo)||(Uo=f(Uo));function wh(){try{if($)return new Uint8Array($);if(g)return g(Uo);throw"both async and sync fetching of the wasm failed"}catch(H){Ji(H)}}function ay(){return!$&&(l||u)&&typeof fetch=="function"&&!em(Uo)?fetch(Uo,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+Uo+"'";return H.arrayBuffer()}).catch(function(){return wh()}):new Promise(function(H,ne){H(wh())})}function ly(){var H={env:ea,wasi_snapshot_preview1:ea};function ne(at,nt){var xr=at.exports;t.asm=xr,R=xr.memory,He(R.buffer),is("wasm-instantiate")}xc("wasm-instantiate");function be(at){ne(at.instance)}function Ke(at){return ay().then(function(nt){return WebAssembly.instantiate(nt,H)}).then(at,function(nt){v("failed to asynchronously prepare wasm: "+nt),Ji(nt)})}function Xe(){if(!$&&typeof WebAssembly.instantiateStreaming=="function"&&!Qp(Uo)&&!em(Uo)&&typeof fetch=="function")fetch(Uo,{credentials:"same-origin"}).then(function(at){var nt=WebAssembly.instantiateStreaming(at,H);return nt.then(be,function(xr){v("wasm streaming compile failed: "+xr),v("falling back to ArrayBuffer instantiation"),Ke(be)})});else return Ke(be)}if(t.instantiateWasm)try{var Ht=t.instantiateWasm(H,ne);return Ht}catch(at){return v("Module.instantiateWasm callback failed with error: "+at),!1}return Xe(),{}}pt.push();function uy(H){He(R.buffer)}var Rl={splitPath:function(H){var ne=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return ne.exec(H).slice(1)},normalizeArray:function(H,ne){for(var be=0,Ke=H.length-1;Ke>=0;Ke--){var Xe=H[Ke];Xe==="."?H.splice(Ke,1):Xe===".."?(H.splice(Ke,1),be++):be&&(H.splice(Ke,1),be--)}if(ne)for(;be;be--)H.unshift("..");return H},normalize:function(H){var ne=H.charAt(0)==="/",be=H.substr(-1)==="/";return H=Rl.normalizeArray(H.split("/").filter(function(Ke){return!!Ke}),!ne).join("/"),!H&&!ne&&(H="."),H&&be&&(H+="/"),(ne?"/":"")+H},dirname:function(H){var ne=Rl.splitPath(H),be=ne[0],Ke=ne[1];return!be&&!Ke?".":(Ke&&(Ke=Ke.substr(0,Ke.length-1)),be+Ke)},basename:function(H){if(H==="/")return"/";var ne=H.lastIndexOf("/");return ne===-1?H:H.substr(ne+1)},extname:function(H){return Rl.splitPath(H)[3]},join:function(){var H=Array.prototype.slice.call(arguments,0);return Rl.normalize(H.join("/"))},join2:function(H,ne){return Rl.normalize(H+"/"+ne)}},yc={mappings:{},buffers:[null,[],[]],printChar:function(H,ne){var be=yc.buffers[H];ne===0||ne===10?((H===1?w:v)(te(be,0)),be.length=0):be.push(ne)},varargs:void 0,get:function(){yc.varargs+=4;var H=ke[yc.varargs-4>>2];return H},getStr:function(H){var ne=K(H);return ne},get64:function(H,ne){return H}};function cy(H){return 0}function Qi(H,ne,be,Ke,Xe){}function tm(H,ne,be,Ke){for(var Xe=0,Ht=0;Ht>2],nt=ke[ne+(Ht*8+4)>>2],xr=0;xr>2]=Xe,0}function Fl(H){zh(H)}function py(H){Fl(H)}function my(H){return H=+H,H>=0?+Wo(H+.5):+No(H-.5)}var ea={emscripten_notify_memory_growth:uy,fd_close:cy,fd_seek:Qi,fd_write:tm,proc_exit:py,roundf:my},rm=ly();t.asm=rm;var fy=t._init=function(){return(fy=t._init=t.asm.init).apply(null,arguments)},kh=t._register_tensor=function(){return(kh=t._register_tensor=t.asm.register_tensor).apply(null,arguments)},dy=t._dispose_data=function(){return(dy=t._dispose_data=t.asm.dispose_data).apply(null,arguments)},vh=t._dispose=function(){return(vh=t._dispose=t.asm.dispose).apply(null,arguments)},jo=t._Abs=function(){return(jo=t._Abs=t.asm.Abs).apply(null,arguments)},Ch=t._Add=function(){return(Ch=t._Add=t.asm.Add).apply(null,arguments)},hy=t._AddN=function(){return(hy=t._AddN=t.asm.AddN).apply(null,arguments)},gy=t._ArgMax=function(){return(gy=t._ArgMax=t.asm.ArgMax).apply(null,arguments)},xy=t._AvgPool=function(){return(xy=t._AvgPool=t.asm.AvgPool).apply(null,arguments)},yy=t._BatchMatMul=function(){return(yy=t._BatchMatMul=t.asm.BatchMatMul).apply(null,arguments)},Ih=t._Ceil=function(){return(Ih=t._Ceil=t.asm.Ceil).apply(null,arguments)},Nh=t._ClipByValue=function(){return(Nh=t._ClipByValue=t.asm.ClipByValue).apply(null,arguments)},Sh=t._Conv2D=function(){return(Sh=t._Conv2D=t.asm.Conv2D).apply(null,arguments)},bc=t._Conv2DBackpropInput=function(){return(bc=t._Conv2DBackpropInput=t.asm.Conv2DBackpropInput).apply(null,arguments)},om=t._Cos=function(){return(om=t._Cos=t.asm.Cos).apply(null,arguments)},_c=t._CropAndResize=function(){return(_c=t._CropAndResize=t.asm.CropAndResize).apply(null,arguments)},wc=t._Cumsum=function(){return(wc=t._Cumsum=t.asm.Cumsum).apply(null,arguments)},by=t._DepthToSpace=function(){return(by=t._DepthToSpace=t.asm.DepthToSpace).apply(null,arguments)},_y=t._DepthwiseConv2dNative=function(){return(_y=t._DepthwiseConv2dNative=t.asm.DepthwiseConv2dNative).apply(null,arguments)},wy=t._Equal=function(){return(wy=t._Equal=t.asm.Equal).apply(null,arguments)},we=t._Exp=function(){return(we=t._Exp=t.asm.Exp).apply(null,arguments)},ky=t._FlipLeftRight=function(){return(ky=t._FlipLeftRight=t.asm.FlipLeftRight).apply(null,arguments)},vy=t._Floor=function(){return(vy=t._Floor=t.asm.Floor).apply(null,arguments)},Cy=t._FloorDiv=function(){return(Cy=t._FloorDiv=t.asm.FloorDiv).apply(null,arguments)},Iy=t._FusedBatchNorm=function(){return(Iy=t._FusedBatchNorm=t.asm.FusedBatchNorm).apply(null,arguments)},Ol=t._FusedConv2D=function(){return(Ol=t._FusedConv2D=t.asm.FusedConv2D).apply(null,arguments)},Ny=t._FusedDepthwiseConv2D=function(){return(Ny=t._FusedDepthwiseConv2D=t.asm.FusedDepthwiseConv2D).apply(null,arguments)},Sy=t._Gather=function(){return(Sy=t._Gather=t.asm.Gather).apply(null,arguments)},Ty=t._GatherNd=function(){return(Ty=t._GatherNd=t.asm.GatherNd).apply(null,arguments)},Ey=t._Greater=function(){return(Ey=t._Greater=t.asm.Greater).apply(null,arguments)},Ay=t._GreaterEqual=function(){return(Ay=t._GreaterEqual=t.asm.GreaterEqual).apply(null,arguments)},Dy=t._LeakyRelu=function(){return(Dy=t._LeakyRelu=t.asm.LeakyRelu).apply(null,arguments)},$y=t._Less=function(){return($y=t._Less=t.asm.Less).apply(null,arguments)},Ry=t._LessEqual=function(){return(Ry=t._LessEqual=t.asm.LessEqual).apply(null,arguments)},Fy=t._Log=function(){return(Fy=t._Log=t.asm.Log).apply(null,arguments)},Oy=t._LogicalAnd=function(){return(Oy=t._LogicalAnd=t.asm.LogicalAnd).apply(null,arguments)},Ha=t._Max=function(){return(Ha=t._Max=t.asm.Max).apply(null,arguments)},Pl=t._MaxPool=function(){return(Pl=t._MaxPool=t.asm.MaxPool).apply(null,arguments)},kc=t._Maximum=function(){return(kc=t._Maximum=t.asm.Maximum).apply(null,arguments)},Py=t._Mean=function(){return(Py=t._Mean=t.asm.Mean).apply(null,arguments)},My=t._Min=function(){return(My=t._Min=t.asm.Min).apply(null,arguments)},Ly=t._Minimum=function(){return(Ly=t._Minimum=t.asm.Minimum).apply(null,arguments)},zy=t._Multiply=function(){return(zy=t._Multiply=t.asm.Multiply).apply(null,arguments)},Ze=t._Neg=function(){return(Ze=t._Neg=t.asm.Neg).apply(null,arguments)},By=t._NonMaxSuppressionV3=function(){return(By=t._NonMaxSuppressionV3=t.asm.NonMaxSuppressionV3).apply(null,arguments)},Vy=t._NonMaxSuppressionV4=function(){return(Vy=t._NonMaxSuppressionV4=t.asm.NonMaxSuppressionV4).apply(null,arguments)},Gy=t._NonMaxSuppressionV5=function(){return(Gy=t._NonMaxSuppressionV5=t.asm.NonMaxSuppressionV5).apply(null,arguments)},Wy=t._NotEqual=function(){return(Wy=t._NotEqual=t.asm.NotEqual).apply(null,arguments)},Uy=t._OneHot=function(){return(Uy=t._OneHot=t.asm.OneHot).apply(null,arguments)},jy=t._PadV2=function(){return(jy=t._PadV2=t.asm.PadV2).apply(null,arguments)},nm=t._Pow=function(){return(nm=t._Pow=t.asm.Pow).apply(null,arguments)},Th=t._Prelu=function(){return(Th=t._Prelu=t.asm.Prelu).apply(null,arguments)},Eh=t._Prod=function(){return(Eh=t._Prod=t.asm.Prod).apply(null,arguments)},Hy=t._RealDiv=function(){return(Hy=t._RealDiv=t.asm.RealDiv).apply(null,arguments)},qy=t._Relu=function(){return(qy=t._Relu=t.asm.Relu).apply(null,arguments)},Ky=t._Relu6=function(){return(Ky=t._Relu6=t.asm.Relu6).apply(null,arguments)},Xy=t._ResizeBilinear=function(){return(Xy=t._ResizeBilinear=t.asm.ResizeBilinear).apply(null,arguments)},Yy=t._Reverse=function(){return(Yy=t._Reverse=t.asm.Reverse).apply(null,arguments)},Zy=t._RotateWithOffset=function(){return(Zy=t._RotateWithOffset=t.asm.RotateWithOffset).apply(null,arguments)},rt=t._Round=function(){return(rt=t._Round=t.asm.Round).apply(null,arguments)},Jy=t._Rsqrt=function(){return(Jy=t._Rsqrt=t.asm.Rsqrt).apply(null,arguments)},Qy=t._ScatterNd=function(){return(Qy=t._ScatterNd=t.asm.ScatterNd).apply(null,arguments)},eb=t._SelectV2=function(){return(eb=t._SelectV2=t.asm.SelectV2).apply(null,arguments)},Ml=t._Sigmoid=function(){return(Ml=t._Sigmoid=t.asm.Sigmoid).apply(null,arguments)},vc=t._Sin=function(){return(vc=t._Sin=t.asm.Sin).apply(null,arguments)},Ah=t._Softmax=function(){return(Ah=t._Softmax=t.asm.Softmax).apply(null,arguments)},Dh=t._Sqrt=function(){return(Dh=t._Sqrt=t.asm.Sqrt).apply(null,arguments)},$h=t._Square=function(){return($h=t._Square=t.asm.Square).apply(null,arguments)},tb=t._SquaredDifference=function(){return(tb=t._SquaredDifference=t.asm.SquaredDifference).apply(null,arguments)},rb=t._Step=function(){return(rb=t._Step=t.asm.Step).apply(null,arguments)},Rh=t._StridedSlice=function(){return(Rh=t._StridedSlice=t.asm.StridedSlice).apply(null,arguments)},ob=t._Sub=function(){return(ob=t._Sub=t.asm.Sub).apply(null,arguments)},Us=t._Sum=function(){return(Us=t._Sum=t.asm.Sum).apply(null,arguments)},nb=t._Tanh=function(){return(nb=t._Tanh=t.asm.Tanh).apply(null,arguments)},sb=t._Tile=function(){return(sb=t._Tile=t.asm.Tile).apply(null,arguments)},Fh=t._TopK=function(){return(Fh=t._TopK=t.asm.TopK).apply(null,arguments)},qa=t._Transpose=function(){return(qa=t._Transpose=t.asm.Transpose).apply(null,arguments)},ib=t.__FusedMatMul=function(){return(ib=t.__FusedMatMul=t.asm._FusedMatMul).apply(null,arguments)},ab=t._malloc=function(){return(ab=t._malloc=t.asm.malloc).apply(null,arguments)},Oh=t._free=function(){return(Oh=t._free=t.asm.free).apply(null,arguments)},Ph=t.__start=function(){return(Ph=t.__start=t.asm._start).apply(null,arguments)},Mh=t.stackSave=function(){return(Mh=t.stackSave=t.asm.stackSave).apply(null,arguments)},sm=t.stackAlloc=function(){return(sm=t.stackAlloc=t.asm.stackAlloc).apply(null,arguments)},Lh=t.stackRestore=function(){return(Lh=t.stackRestore=t.asm.stackRestore).apply(null,arguments)};t.asm=rm,t.cwrap=X;var Ll;t.then=function(H){if(Ll)H(t);else{var ne=t.onRuntimeInitialized;t.onRuntimeInitialized=function(){ne&&ne(),H(t)}}return t};function im(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}var lb=!1;So=function H(){Ll||am(),Ll||(So=H)};function ub(H){var ne=t.__start;try{ne();var be=0;zh(be,!0)}catch(Xe){if(Xe instanceof im)return;if(Xe=="unwind"){A=!0;return}else{var Ke=Xe;Xe&&typeof Xe=="object"&&Xe.stack&&(Ke=[Xe,Xe.stack]),v("exception thrown: "+Ke),i(1,Xe)}}finally{lb=!0}}function am(H){if(H=H||s,Qr>0||(Zt(),Qr>0))return;function ne(){Ll||(Ll=!0,t.calledRun=!0,!V&&(mo(),_r(),t.onRuntimeInitialized&&t.onRuntimeInitialized(),Bh&&ub(H),Jr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),ne()},1)):ne()}t.run=am;function zh(H,ne){ne&&A&&H===0||(A||(V=!0,G=H,Go(),t.onExit&&t.onExit(H)),i(H,new im(H)))}if(t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();var Bh=!0;return t.noInitialRun&&(Bh=!1),A=!0,am(),e}}();typeof oy=="object"&&typeof sI=="object"?sI.exports=iI:typeof define=="function"&&define.amd?define([],function(){return iI}):typeof oy=="object"&&(oy.WasmBackendModule=iI)});var KB=1e-7,XB=1e-4,Ya=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},js=class{refCount(e){return Ho("refCount")}incRef(e){return Ho("incRef")}timerAvailable(){return!0}time(e){return Ho("time")}read(e){return Ho("read")}readSync(e){return Ho("readSync")}numDataIds(){return Ho("numDataIds")}disposeData(e,t){return Ho("disposeData")}write(e,t,o){return Ho("write")}move(e,t,o,n,s){return Ho("move")}memory(){return Ho("memory")}floatPrecision(){return Ho("floatPrecision")}epsilon(){return this.floatPrecision()===32?KB:XB}dispose(){return Ho("dispose")}};function Ho(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function bI(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function YB(r,e){if(r.length!==e.length)throw Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o,n,s=0;for(;t>0;)s=Math.random()*t|0,t--,o=r[t],n=e[t],r[t]=r[s],e[t]=e[s],r[s]=o,e[s]=n}function Ec(r,e,t){return Math.max(r,Math.min(e,t))}function ZB(r){return r%2==0?r:r+1}function JB(r){let e=0;for(let t=0;tt+` Shapes ${r} and ${e} must match`)}function To(r){T(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function as(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||rr(r)&&!t)for(let o=0;o0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function i3(r,e){let t=1,o=-1;for(let s=0;s=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function Jt(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),T(r.every(o=>o>=-t&&o`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),T(r.every(o=>st(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function hb(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:Jt(e,r).sort(),a=0;for(let i=0;ii)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function gb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function xb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function yb(r,e){for(let t=0;te+=t.length),e}function ls(r){return typeof r=="string"||r instanceof String}function _I(r){return typeof r=="boolean"}function wI(r){return typeof r=="number"}function Ac(r){return Array.isArray(r)?Ac(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":wI(r)?"float32":ls(r)?"string":_I(r)?"bool":"float32"}function Hs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function Dc(r,e){for(let t=e;t=0;--o)t[o]=t[o+1]*r[o+1];return t}function kI(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;si*l);for(let i=0;io*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return kI(0,r,e)}function hm(r,e){let t=$c(r,e);for(let o=0;oo*n,1);if(e==null||e==="float32")return Bl(r,new Float32Array(t));if(e==="int32")return Bl(r,new Int32Array(t));if(e==="bool")return Bl(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function gm(r){r.forEach(e=>{T(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function u3(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n{let[n,s]=o.split(":");this.urlFlags[n]=m3(n,s)})}};function p3(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(f3(e,o[0],o[1]),o.join("="))),e}function f3(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function m3(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function U(){return wb}var wb=null;function CI(r){wb=r}var kb;function vb(){if(kb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");kb=r}return kb}function d3(){let r=vb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function ym(r,e){let t=d3();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var us="Abs",Ks="Acos",Xs="Acosh",xo="Add",qo="AddN",Vl="All",Gl="Any",Ko="ArgMax",oa="ArgMin",Ys="Asin",Zs="Asinh",Js="Atan",Qs="Atanh",ei="Atan2",Xo="AvgPool",Wl="AvgPoolGrad",na="AvgPool3D",Ul="AvgPool3DGrad",Yo="BatchMatMul",sa="BatchToSpaceND",jl="Bincount",Cb="BroadcastTo",Eo="Cast",Zo="Ceil",Ao="ClipByValue",Hl="Complex",ia="ComplexAbs",cs="Concat",Jo="Conv2D",ql="Conv2DBackpropFilter",Qo="Conv2DBackpropInput",aa="Conv3D",Kl="Conv3DBackpropFilterV2",Xl="Conv3DBackpropInputV2",en="Cos",ti="Cosh",tn="Cumsum",ri="CropAndResize",Yl="DenseBincount",oi="DepthToSpace",rn="DepthwiseConv2dNative",Zl="DepthwiseConv2dNativeBackpropFilter",Jl="DepthwiseConv2dNativeBackpropInput",Ql="Diag",la="Dilation2D",Rc="Dilation2DBackpropInput",Fc="Dilation2DBackpropFilter",on="RealDiv",ni="Elu",eu="EluGrad",si="Erf",ii="Equal",nn="Exp",ps="ExpandDims",ai="Expm1",tu="FFT",ua="Fill",li="FlipLeftRight",sn="Floor",an="FloorDiv",ln="FusedBatchNorm",ms="GatherV2",ui="GatherNd",ci="Greater",un="GreaterEqual",Do="Identity",ru="IFFT",ou="Imag",pi="IsFinite",mi="IsInf",fi="IsNan",cn="LeakyRelu",di="Less",hi="LessEqual",nu="LinSpace",pn="Log",gi="Log1p",xi="LogicalAnd",Za="LogicalNot",Ja="LogicalOr",Ib="LogSoftmax",ca="LRN",su="LRNGrad",mn="Max",fn="Maximum",dn="MaxPool",iu="MaxPoolGrad",pa="MaxPool3D",au="MaxPool3DGrad",lu="MaxPoolWithArgmax",hn="Mean",gn="Min",xn="Minimum",ma="MirrorPad",yi="Mod",uu="Multinomial",yn="Multiply",fs="Neg",bi="NotEqual",_i="NonMaxSuppressionV3",wi="NonMaxSuppressionV4",ki="NonMaxSuppressionV5",ds="OnesLike",bn="OneHot",hs="Pack",_n="PadV2",h3="Pool",wn="Pow",kn="Prelu",vi="Prod",fa="Range",cu="Real",Ci="Reciprocal",vn="Relu",gs="Reshape",da="ResizeNearestNeighbor",pu="ResizeNearestNeighborGrad",Cn="ResizeBilinear",mu="ResizeBilinearGrad",In="Relu6",Nn="Reverse",Sn="Round",Tn="Rsqrt",Ii="ScatterNd",xs="Select",Ni="Selu",ys="Slice",En="Sin",Si="Sinh",Ti="Sign",An="Sigmoid",Ei="Softplus",Dn="Sqrt",$n="Sum",ha="SpaceToBatchND",bs="SplitV",Rn="Softmax",Fn="SquaredDifference",ga="Square",On="Sub",fu="SparseToDense",Ai="StridedSlice",Di="Tan",Pn="Tanh",yo="Tile",$i="TopK",Mn="Transpose",du="Unique",_s="Unpack",xa="UnsortedSegmentSum",ws="ZerosLike",$o="Step",Oc="FromPixels",Ri="RotateWithOffset",ks="_FusedMatMul",vs="FusedConv2D",Cs="FusedDepthwiseConv2D";var Pc=ym("kernelRegistry",()=>new Map),bm=ym("gradRegistry",()=>new Map);function Mc(r,e){let t=Nb(r,e);return Pc.get(t)}function Hh(r){return bm.get(r)}function _m(r){let e=Pc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function Qa(r){let{kernelName:e,backendName:t}=r,o=Nb(e,t);Pc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Pc.set(o,r)}function Sb(r){let{kernelName:e}=r;bm.has(e)&&U().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),bm.set(e,r)}function g3(r,e){let t=Nb(r,e);if(!Pc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Pc.delete(t)}function x3(r){if(!bm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);bm.delete(r)}function y3(r,e){_m(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});Qa(n)})}function Nb(r,e){return`${e}_${r}`}var y={};et(y,{arraysEqual:()=>Vr,assert:()=>T,assertNonNegativeIntegerDimensions:()=>gm,assertNonNull:()=>To,assertShapesMatch:()=>Nt,bytesFromStringArray:()=>_b,bytesPerElement:()=>Uh,checkConversionForErrors:()=>yb,clamp:()=>Ec,computeStrides:()=>qs,createScalarValue:()=>b3,createShuffledIndices:()=>n3,decodeString:()=>zc,distSquared:()=>e3,encodeString:()=>el,fetch:()=>w3,flatten:()=>as,getArrayFromDType:()=>xb,getTypedArrayFromDType:()=>gb,hasEncodingLoss:()=>a3,indexToLoc:()=>c3,inferDtype:()=>Ac,inferFromImplicitShape:()=>i3,isBoolean:()=>_I,isFunction:()=>Hs,isInt:()=>st,isNumber:()=>wI,isPromise:()=>xm,isScalarShape:()=>t3,isString:()=>ls,isTypedArray:()=>rr,isValidDtype:()=>bb,locToIndex:()=>u3,makeOnesTypedArray:()=>hm,makeZerosNestedTypedArray:()=>l3,makeZerosTypedArray:()=>$c,nearestDivisor:()=>Dc,nearestLargerEven:()=>ZB,now:()=>hu,parseAxisParam:()=>Jt,randUniform:()=>QB,repeatedTry:()=>s3,rightPad:()=>zl,shuffle:()=>bI,shuffleCombo:()=>YB,sizeFromShape:()=>ft,sizeToSquarishShape:()=>o3,squeezeShape:()=>hb,sum:()=>JB,tanh:()=>r3,toNestedArray:()=>Bl,toTypedArray:()=>Lc});function b3(r,e){return e==="string"?el(r):Lc([r],e)}function _3(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Lc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=as(r)),U().getBool("DEBUG")&&yb(r,e),_3(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o{n=o()},a,i=hu();if(this.backendTimer.timerAvailable()?a=this.backendTimer.time(s):(s(),n.map(u=>u.dataSync()),a=Promise.resolve({kernelMs:hu()-i})),U().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u{k3(p,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function k3(r,e,t){if(e!=="float32")return!1;for(let o=0;o0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function NI(r,e,t){let o={},n={};for(let l=0;lo[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Vr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var TI=20,wm=3,Eb=7;function EI(r,e,t,o){let n=qs(e),s=v3(r,e,t,n),a=e.length,i=qh(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(` `)),l.join(` `)}function v3(r,e,t,o){let n=ft(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?vm(r):r;if(i>1)for(let u=0;uTI){let g=wm*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-wm)*a,i*a));return t==="complex64"&&(x=vm(x),b=vm(b)),["["+x.map((_,w)=>km(_,n[w],t)).join(", ")+", ..., "+b.map((_,w)=>km(_,n[i-wm+w],t)).join(", ")+"]"]}let h=t==="complex64"?vm(r):Array.from(r);return["["+h.map((g,x)=>km(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>TI){for(let h=0;h`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||xb(t,this.size),this.strides=qs(e)}set(e,...t){t.length===0&&(t=[0]),T(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;nzc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Fi().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>zc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Fi().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Fi().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Bc.print(this,e)}clone(){return this.throwIfDisposed(),Bc.clone(this)}toString(e=!1){let t=this.dataSync();return EI(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Bc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Fi().makeVariable(this,e,t,o)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function F(){return ym("Tensor",()=>Ve)}F();var tl=class extends Ve{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Vr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Fi().disposeTensor(this),this.dataId=e.dataId,Fi().incRef(this,null)}dispose(){Fi().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(tl,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Ln={};et(Ln,{assertTypesMatch:()=>Ob,getTensorsInContainer:()=>Cm,isTensorInList:()=>N3,makeTypesMatch:()=>Ge});var Ab;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Ab||(Ab={}));var Db;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Db||(Db={}));var $b;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})($b||($b={}));var Rb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(Rb||(Rb={}));var Fb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Fb||(Fb={}));var I3={float32:Rb,int32:Db,bool:$b,complex64:Fb};function mr(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return I3[r][e]}function gu(r){return mr(r,"int32")}function Ge(r,e){if(r.dtype===e.dtype)return[r,e];let t=mr(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Ob(r,e){T(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function N3(r,e){return e.some(t=>t.id===r.id)}function Cm(r){let e=[],t=new Set;return FI(r,e,t),e}function FI(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!S3(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),FI(s,e,t))}}function S3(r){return Array.isArray(r)||typeof r=="object"}function Pb(r){return r.kernelName!=null}var Mb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},xu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Mb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){_m(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof js)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n(nthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return xu.nextTensorId++}nextVariableId(){return xu.nextVariableId++}clone(e){let t=E.runKernel(Do,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return E.runKernel(Eo,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(!(Mc(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=Pb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Pb(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Mc(d,this.backendName);T(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let _=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,_);let w=_.map(v=>{if(v.rank!=null)return v;let{dataId:$,shape:A,dtype:R}=v;return this.makeTensorFromDataId($,A,R)});if(n){let v=this.getTensorsForGradient(d,h,w);o=this.saveTensorsForBackwardMode(v)}return w}}else{let{forwardFunc:d}=e,h=g=>{!n||(o=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=Pb(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),n&&this.addTapeNode(u,c,t,m,o,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=Hh(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(T(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&ls(e[0])&&(s=e.map(l=>el(l)));let a=n.write(s,t,o),i=new Ve(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=_b(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new Ve(t,o,e,this.nextTensorId());return this.trackTensor(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new tl(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Uh(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof tl||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Uh(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=Hh(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=$c(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Cm(e),o=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(T(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));T(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=NI(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?T3(s.shape):o,SI(i,a,u=>this.tidy(u),E3);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return T(Hs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{T(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,l)=>{n[l]=i});let s=(i,l)=>(o=e(...t,l),T(o.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),T(Hs(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,l)=>{let u=o.gradFunc(i,l),c=Array.isArray(u)?u:[u];T(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),T(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=hu(),o=await this.backend.time(e);return o.wallMs=hu()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Mb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};xu.nextTensorId=0;xu.nextVariableId=0;function T3(r){let e=hm(ft(r),"float32");return E.makeTensor(e,r,"float32")}function Lb(){let r=vb();if(r._tfengine==null){let e=new jh(r);r._tfengine=new xu(e)}return CI(r._tfengine.ENV),DI(()=>r._tfengine),r._tfengine}var E=Lb();function E3(r,e){let t={a:r,b:e};return E.runKernel(xo,t)}var Vc={};et(Vc,{isBrowser:()=>zb,isMobile:()=>D3});function A3(){return typeof navigator!="undefined"&&navigator!=null}function D3(){if(A3()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function zb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Oi=U();Oi.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Oi.registerFlag("IS_BROWSER",()=>zb());Oi.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Oi.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Oi.registerFlag("PROD",()=>!1);Oi.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Oi.getBool("DEBUG"));Oi.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Oi.registerFlag("IS_TEST",()=>!1);Oi.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function kr(r,e){let t=r;if(rr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||rr(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&U().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&OI(r,o,[]),o}function OI(r,e,t){if(t=t||[],!Array.isArray(r)&&!rr(r)){T(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}T(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),T(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n=0&&(n=o),PI(o,n,e,t),r==null||!rr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=kr(r,n);!rr(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?Lc(r,n):as(r,[],!0);return E.makeTensor(i,s,n)}function ya(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>k(s,`${e}[${a}]`,t,o))}var MI="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+MI;let n=(...s)=>{E.startScope(t);try{let a=o(...s);return xm(a)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(a),a}catch(a){throw E.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function $3(r,e){let t=k(r,"real","complex"),o=k(e,"imag","complex");Nt(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return E.runKernel(Hl,n)}var bo=S({complex_:$3});function Gr(r,e,t,o){if(o==null&&(o=Ac(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!rr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){gm(e);let n=ft(e),s=ft(t);T(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!rr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?Lc(r,o):as(r,[],!0),E.makeTensor(r,e,o)}function Dr(r,e,t){let o=kr(r,t);return Gr(r,e,o,t)}var Im={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Kh=4;async function LI(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Kh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var Bb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function zI(r){return Bb?Buffer.byteLength(r):new Blob([r]).size}function BI(r){if(Bb)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function Vb(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Pi(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:zI(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:zI(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function O3(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function P3(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function M3(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function F3(){let r=O3(),e=P3(),t=M3();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},GI=r=>St.registerSaveRouter(r),WI=r=>St.registerLoadRouter(r),UI=r=>St.getSaveHandlers(r),jI=(r,e)=>St.getLoadHandlers(r,e);var Gb="tensorflowjs",Wb=1,yu="models_store",rl="model_info_store";function HI(){if(!U().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function Ub(r){let e=r.result;e.createObjectStore(yu,{keyPath:"modelPath"}),e.createObjectStore(rl,{keyPath:"modelPath"})}var ba=class{constructor(e){if(this.indexedDB=HI(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(Gb,Wb);s.onupgradeneeded=()=>Ub(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(yu,"readonly"),u=i.objectStore(yu).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Pi(t),l=a.transaction(rl,"readwrite"),u=l.objectStore(rl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(yu,"readwrite");let f=p.objectStore(yu).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(rl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};ba.URL_SCHEME="indexeddb://";var qI=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ba.URL_SCHEME)?L3(r.slice(ba.URL_SCHEME.length)):null;St.registerSaveRouter(qI);St.registerLoadRouter(qI);function L3(r){return new ba(r)}function z3(r){return r.startsWith(ba.URL_SCHEME)?r.slice(ba.URL_SCHEME.length):r}var jb=class{constructor(){this.indexedDB=HI()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(Gb,Wb);o.onupgradeneeded=()=>Ub(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(rl,"readonly"),i=s.objectStore(rl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=z3(e),new Promise((t,o)=>{let n=this.indexedDB.open(Gb,Wb);n.onupgradeneeded=()=>Ub(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(rl,"readwrite"),i=a.objectStore(rl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(yu,"readwrite");let f=u.objectStore(yu).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var _a="/",Wc="tensorflowjs_models",KI="info",B3="model_topology",V3="weight_specs",G3="weight_data",W3="model_metadata";function XI(r){return{info:[Wc,r,KI].join(_a),topology:[Wc,r,B3].join(_a),weightSpecs:[Wc,r,V3].join(_a),weightData:[Wc,r,G3].join(_a),modelMetadata:[Wc,r,W3].join(_a)}}function U3(r){let e=r.split(_a);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(_a)}function j3(r){return r.startsWith(wa.URL_SCHEME)?r.slice(wa.URL_SCHEME.length):r}var wa=class{constructor(e){if(!U().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=XI(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Pi(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,BI(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=VI(a),t}};wa.URL_SCHEME="localstorage://";var YI=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(wa.URL_SCHEME)?H3(r.slice(wa.URL_SCHEME.length)):null;St.registerSaveRouter(YI);St.registerLoadRouter(YI);function H3(r){return new wa(r)}var Hb=class{constructor(){T(U().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),T(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Wc+_a,o=_a+KI;for(let n=0;n"scheme must not be undefined or null."),e.endsWith(Uc)&&(e=e.slice(0,e.indexOf(Uc))),T(e.length>0,()=>"scheme must not be an empty string.");let o=Wr.getInstance();T(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Yh(r){if(r.indexOf(Uc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Wr.getSchemes().join(",")}`);return{scheme:r.split(Uc)[0],path:r.split(Uc)[1]}}async function ZI(r,e,t=!1){T(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=St.getLoadHandlers(r);T(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),T(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=St.getSaveHandlers(e);T(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),T(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Yh(r).scheme,l=Yh(r).path,u=i===Yh(r).scheme,c=await n.load();t&&u&&await Wr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Wr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function JI(){let r=Wr.getSchemes(),e={};for(let t of r){let o=await Wr.getManager(t).listModels();for(let n in o){let s=t+Uc+n;e[s]=o[n]}}return e}async function QI(r){let e=Yh(r);return Wr.getManager(e.scheme).removeModel(e.path)}async function eN(r,e){return ZI(r,e,!1)}async function tN(r,e){return ZI(r,e,!0)}var rN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(U().get("IS_BROWSER")){U().setPlatform("browser",new rN);try{Wr.registerManager(wa.URL_SCHEME,new Hb)}catch(r){}try{Wr.registerManager(ba.URL_SCHEME,new jb)}catch(r){}}var q3={importFetch:()=>oN()},qb;var nN=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return U().global.fetch!=null?U().global.fetch(e,t):(qb==null&&(qb=q3.importFetch()),qb(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};U().get("IS_NODE")&&U().setPlatform("node",new nN);function Ce(r,e="float32",t){return e=e||"float32",gm(r),new ct(r,e,t)}function K3(r,e){let t=k(r,"x","cast");if(!bb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return E.runKernel(Eo,o,n)}var oe=S({cast_:K3});function X3(r){let t={x:k(r,"x","clone","string_or_numeric")};return E.runKernel(Do,t)}var Ro=S({clone_:X3});function Kb(r,e=!1){console.log(r.toString(e))}Lb();var Y3={buffer:Ce,cast:oe,clone:Ro,print:Kb};$I(Y3);var vr={};et(vr,{browserFiles:()=>aN,browserHTTPRequest:()=>cN,concatenateArrayBuffers:()=>Gc,copyModel:()=>eN,decodeWeights:()=>Xh,encodeWeights:()=>LI,fromMemory:()=>mN,getLoadHandlers:()=>jI,getModelArtifactsInfoForJSON:()=>Pi,getSaveHandlers:()=>UI,http:()=>Qh,isHTTPScheme:()=>Jh,listModels:()=>JI,loadWeights:()=>lN,moveModel:()=>tN,registerLoadRouter:()=>WI,registerSaveRouter:()=>GI,removeModel:()=>QI,weightsLoaderFactory:()=>Zb,withSaveHandler:()=>fN});var Z3="model",J3=".json",Q3=".weights.bin";function sN(r){return new Promise(e=>setTimeout(e)).then(r)}var ol=class{constructor(e){if(!U().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ol.URL_SCHEME)&&(e=e.slice(ol.URL_SCHEME.length)),(e==null||e.length===0)&&(e=Z3),this.modelTopologyFileName=e+J3,this.weightDataFileName=e+Q3}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await sN(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await sN(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Pi(e)}}}};ol.URL_SCHEME="downloads://";var iN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,_=m.indexOf(h);if(f[_]=b,f.indexOf(null)===-1){let w={modelTopology:l,weightSpecs:p,weightData:Gc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),o(w)}},g.onerror=x=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>Vb(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=Vb(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},tV=r=>U().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(ol.URL_SCHEME)?eV(r.slice(ol.URL_SCHEME.length)):null;St.registerSaveRouter(tV);function eV(r="model"){return new ol(r)}function aN(r){return new iN(r)}function Xb(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){T(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){T(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),T(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),T(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function Yb(r,e){e==null&&(e={});let t=e.fetchFunc==null?U().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await Xb(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await Xb(i,e.onProgress,l,u)}async function lN(r,e="",t,o){return Zb(a=>Yb(a,{requestInit:o}))(r,e,t)}function Zb(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=Im[x]*ft(g.shape),_=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((w,v)=>{w===g.name&&(_(),a[v]=!0)}):_(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}. Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let w=0;w{let v=g.slice(w.groupOffset,w.groupOffset+w.sizeBytes),$=Xh(v,[w.manifestEntry]);for(let A in $)p[A]=$[A]}),m+=d}),p}}var rV="application/octet-stream",oV="application/json",Zh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(T(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=U().platform.fetch,T(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&T(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:oV}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:rV}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Pi(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=nV(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await Yb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Gc(u)]}};Zh.URL_SCHEME_REGEX=/^https?:\/\//;function nV(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function Jh(r){return r.match(Zh.URL_SCHEME_REGEX)!=null}var uN=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>Jh(o)):t=Jh(r),t)return Qh(r,e)}return null};St.registerSaveRouter(uN);St.registerLoadRouter(uN);function Qh(r,e){return new Zh(r,e)}function cN(r,e){return Qh(r,e)}var eg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},pN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function mN(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new eg(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new eg({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new eg({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function fN(r){return new pN(r)}var dN={};et(dN,{confusionMatrix:()=>uV});function sV(r,e,t=!1,o=!1){let n=k(r,"a","matMul"),s=k(e,"b","matMul");[n,s]=Ge(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return E.runKernel(Yo,a,i)}var We=S({matMul_:sV});function iV(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:k(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return E.runKernel(bn,s,a)}var Is=S({oneHot_:iV});function aV(r,e){let t=k(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{T(s>=0&&s`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return E.runKernel(Mn,o,n)}var Ue=S({transpose_:aV});function lV(r,e,t){let o=k(r,"labels","confusionMatrix"),n=k(e,"predictions","confusionMatrix");T(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),T(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),T(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),T(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),T(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=Is(oe(o,"int32"),t),a=Is(oe(n,"int32"),t),i=Ue(s),l=We(i,a);return oe(l,"int32")}var uV=S({confusionMatrix_:lV});var tg={};et(tg,{fromPixels:()=>mV,toPixels:()=>pV});function Jb(r,e,t){if(To(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=kr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Gr(r,e,o,t)}var jc;function cV(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState element.")}if(Mc(Oc,E.backendName)!=null){let d={pixels:r},h={numChannels:e};return E.runKernel(Oc,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(jc==null&&(jc=document.createElement("canvas").getContext("2d")),jc.canvas.width=u,jc.canvas.height=c,jc.drawImage(r,0,0,u,c),p=jc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var mV=S({fromPixels_:cV});var rg={};et(rg,{prepareAndValidate:()=>hN});function hN(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ft(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;pp/u),1].slice(0,s);return[l,a,u,c]}var og={};et(og,{calculateShapes:()=>gN,validateInput:()=>ng,validateUpdateShape:()=>Qb});function Qb(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;pfV,computeFlatOffset:()=>hV,computeOutShape:()=>xN,getNormalizedAxes:()=>NN,isSliceContinous:()=>dV,maskToAxes:()=>sg,parseSliceParams:()=>e_,sliceInfo:()=>gV,startForAxis:()=>CN,startIndicesWithElidedDims:()=>wN,stopForAxis:()=>IN,stopIndicesWithElidedDims:()=>kN,stridesForAxis:()=>vN,stridesWithElidedDims:()=>yN});function fV(r,e,t){let o=r.shape.length;T(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),T(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function sg(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function xN(r,e,t){let o=[];for(let n=0;n0){let f=e[0],d=t+1;c=wN(a,f,d,o,r),p=kN(i,f,d,n,r),m=yN(s,f,d,r)}else for(let f=0;f-1)s[i]=0;else{let l=bN(e,t,i),u=o[l];r&1<-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=bN(e,t,i),u=o[l];r&1<0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=Ec(0,a,l-1),a}function IN(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=Ec(0,a,l):a=Ec(-1,a,l-1),a}function dV(r,e,t){let o=t.length;for(let n=0;n1){o=n;break}for(let n=o+1;n0||t[n]!==r[n])return!1;return!0}function hV(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o{T(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.lengtha>=0?a:(T(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function gV(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=sg(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=sg(i),h=r.slice();d.forEach(A=>{u[A]=0,c[A]=1,h.splice(A,0,1)});let{begin:g,end:x,strides:b}=NN(h,m,f,u,c,p,n,s,a);u=g,c=x,p=b;let _=sg(l);_.forEach(A=>{c[A]=u[A]+1,p[A]=1});let w=xN(u,c,p),v=w.filter((A,R)=>_.indexOf(R)===-1);return{nonStrided:p.every(A=>A===1),$begin:u,$end:c,$strides:p,size:w,newShape:h,outShape:v}}var J={};et(J,{Serializable:()=>ig,SerializationMap:()=>ka,registerClass:()=>eo});var ig=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ka=class{constructor(){this.classNameMap={}}static getMap(){return ka.instance==null&&(ka.instance=new ka),ka.instance}static register(e){ka.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function eo(r){T(r.className!=null,()=>"Class being registered does not have the static className property defined."),T(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),T(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ka.register(r)}var SN={};et(SN,{TEST_EPSILON_FLOAT16:()=>TN,encodeStrings:()=>EN,expectArrayBuffersEqual:()=>vV,expectArraysClose:()=>yV,expectArraysEqual:()=>_V,expectNumbersClose:()=>wV,expectPromiseToFail:()=>bV,expectValuesInRange:()=>kV,testEpsilon:()=>t_});var xV=.001,TN=.1;function yV(r,e,t){return t==null&&(t=t_()),r_(r,e,(o,n)=>o_(o,n,t))}function t_(){return E.backend.floatPrecision()===32?xV:TN}function r_(r,e,t){let o=!0;if((rr(r)||rr(e))&&(o=!1),rr(r)&&rr(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=kr(r),i=kr(e);if(!Vr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=rr(r)?r:as(r),s=rr(e)?e:as(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}. Actual: ${n}. Expected: ${s}.`);for(let a=0;ae.fail(),()=>e())}function _V(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return ls(r)||ls(r[0])||ls(e)||ls(e[0])?r_(r,t,(o,n)=>o==n):r_(r,e,(o,n)=>o_(o,n,0))}function wV(r,e,t){if(t==null&&(t=t_()),!o_(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function o_(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function kV(r,e,t){for(let o=0;ot)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function vV(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function EN(r){for(let e=0;et.dispose())}function Dt(r){return E.keep(r)}function EV(r){return E.time(r)}function AN(r){return E.setBackend(r)}function AV(){return E.ready()}function DV(){return E.backendName}function $V(r){E.removeBackend(r)}function RV(r){return E.findBackend(r)}function FV(r){return E.findBackendFactory(r)}function bu(r,e,t=1){return E.registerBackend(r,e,t)}function s_(){return E.backend}function OV(r,e){U().setPlatform(r,e)}function PV(r,e){let t=k(r,"a","add"),o=k(e,"b","add");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(xo,n)}var Q=S({add_:PV});function MV(r,e){let t=k(r,"a","floorDiv"),o=k(e,"b","floorDiv");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(an,n)}var _u=S({floorDiv_:MV});function LV(r,e){let t=k(r,"a","div"),o=k(e,"b","div");if([t,o]=Ge(t,o),t.dtype==="int32"&&o.dtype==="int32")return _u(t,o);let n={a:t,b:o},s={};return E.runKernel(on,n,s)}var de=S({div_:LV});function zV(r,e){let t=k(r,"a","mul"),o=k(e,"b","mul");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(yn,n)}var O=S({mul_:zV});function BV(r){let e=k(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return E.runKernel(ia,t)}else{let t={x:e};return E.runKernel(us,t)}}var Tt=S({abs_:BV});function VV(r){let t={x:k(r,"x","acos")};return E.runKernel(Ks,t)}var Nm=S({acos_:VV});function GV(r){let t={x:k(r,"x","acosh")};return E.runKernel(Xs,t)}var Sm=S({acosh_:GV});function WV(r){T(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),T(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>k(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!Vr(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return E.runKernel(qo,o)}var i_=S({addN_:WV});function UV(r,e=null,t=!1){let n={x:k(r,"x","all","bool")},s={axis:e,keepDims:t};return E.runKernel(Vl,n,s)}var wu=S({all_:UV});function jV(r,e=null,t=!1){let n={x:k(r,"x","any","bool")},s={axis:e,keepDims:t};return E.runKernel(Gl,n,s)}var nl=S({any_:jV});function HV(r,e=0){let o={x:k(r,"x","argMax")},n={axis:e};return E.runKernel(Ko,o,n)}var sl=S({argMax_:HV});function qV(r,e=0){let o={x:k(r,"x","argMin")},n={axis:e};return E.runKernel(oa,o,n)}var Tm=S({argMin_:qV});function KV(r){let t={x:k(r,"x","asin")};return E.runKernel(Ys,t)}var Em=S({asin_:KV});function XV(r){let t={x:k(r,"x","asinh")};return E.runKernel(Zs,t)}var Am=S({asinh_:XV});function YV(r){let t={x:k(r,"x","atan")};return E.runKernel(Js,t)}var Dm=S({atan_:YV});function ZV(r,e){let t=k(r,"a","atan2"),o=k(e,"b","atan2");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(ei,n)}var $m=S({atan2_:ZV});function JV(r){let t={x:k(r,"x","atanh")};return E.runKernel(Qs,t)}var Rm=S({atanh_:JV});function QV(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=DN(n);return ku(r,i,t,s,o,null,null,l)}function a_(r,e,t,o,n,s,a="channelsLast"){let[i,l]=lg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return ku(r,u,t,o,n,s,!1,a)}function eG(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=l_(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return $N(r,c,t,o,n,!1,p,s)}function ku(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=lg(t),[x,b]=lg(o),_=qc(m,x),w=qc(f,b),{padInfo:v,outHeight:$,outWidth:A}=tG(n,u,c,h,g,_,w,s,i),R=a?d*p:d,M;return i==="channelsFirst"?M=[l,R,$,A]:i==="channelsLast"&&(M=[l,$,A,R]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:$,outWidth:A,outChannels:R,padInfo:v,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:_,effectiveFilterWidth:w,dilationHeight:x,dilationWidth:b,inShape:r,outShape:M,filterShape:e}}function $N(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,_]=l_(t),[w,v,$]=l_(o),A=qc(f,w),R=qc(d,v),M=qc(h,$),{padInfo:V,outDepth:G,outHeight:W,outWidth:q}=rG(n,u,c,p,x,b,_,A,R,M,i),Z=s?g*m:g,X;return a==="channelsFirst"?X=[l,Z,G,W,q]:a==="channelsLast"&&(X=[l,G,W,q,Z]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:W,outWidth:q,outChannels:Z,padInfo:V,strideDepth:x,strideHeight:b,strideWidth:_,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:A,effectiveFilterHeight:R,effectiveFilterWidth:M,dilationDepth:w,dilationHeight:v,dilationWidth:$,inShape:r,outShape:X,filterShape:e}}function oG(r,e,t,o,n){o==null&&(o=u_(r,e,t));let s=r[0],a=r[1],i=vu((s-e+2*o)/t+1,n),l=vu((a-e+2*o)/t+1,n);return[i,l]}function nG(r,e,t,o,n,s){n==null&&(n=u_(r,e,o));let a=r[0],i=r[1],l=r[2],u=vu((a-e+2*n)/o+1,s),c=vu((i-e+2*n)/o+1,s),p=vu((l-e+2*n)/o+1,s);return[u,c,p,t]}function u_(r,e,t,o=1){let n=qc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function lg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function l_(r){return typeof r=="number"?[r,r,r]:r}function qc(r,e){return e<=1?r:r+(r-1)*(e-1)}function tG(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=oG([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=vu((e-s+m+f)/o+1,i),p=vu((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function rG(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=nG([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-o,b=Math.floor(h/2),_=h-b,w=Math.floor(g/2),v=g-w,$=Math.floor(x/2),A=x-$;p={top:w,bottom:v,left:$,right:A,front:b,back:_,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function vu(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Oo(r){let[e,t,o]=lg(r);return e===1&&t===1&&o===1}function yr(r,e){return Oo(r)||Oo(e)}function DN(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function sG(r,e){let o={x:k(r,"x","reshape","string_or_numeric")},n={shape:e};return E.runKernel(gs,o,n)}var L=S({reshape_:sG});function iG(r,e,t,o,n){let s=k(r,"x","avgPool","float32"),a=1;T(yr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&T(st(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Xo,u,c);return p=oe(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var va=S({avgPool_:iG});function aG(r,e,t,o,n,s="NDHWC"){let a=k(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&T(st(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(na,u,c);return p=oe(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Fm=S({avgPool3d_:aG});function lG(r,e=0){T(r.length>=1,()=>"Pass at least one tensor to concat");let t=ya(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${s.dtype}. `)}),t.length===1)return Ro(t[0]);let o=t,n={axis:e};return E.runKernel(cs,o,n)}var Je=S({concat_:lG});function uG(r){let t={x:k(r,"x","sigmoid")};return E.runKernel(An,t)}var Ur=S({sigmoid_:uG});function cG(r,e,t){let o=k(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return E.runKernel(ys,n,s)}var Fe=S({slice_:cG});function pG(r){let t={x:k(r,"x","tanh")};return E.runKernel(Pn,t)}var Mi=S({tanh_:pG});function mG(r,e,t,o,n,s){let a=k(r,"forgetBias","basicLSTMCell"),i=k(e,"lstmKernel","basicLSTMCell"),l=k(t,"lstmBias","basicLSTMCell"),u=k(o,"data","basicLSTMCell"),c=k(n,"c","basicLSTMCell"),p=k(s,"h","basicLSTMCell"),m=Je([u,p],1),f=We(m,i),d=Q(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Fe(d,[0,0],x),_=Fe(d,[0,g],x),w=Fe(d,[0,g*2],x),v=Fe(d,[0,g*3],x),$=Q(O(Ur(b),Mi(_)),O(c,Ur(Q(a,w)))),A=O(Mi($),Ur(v));return[$,A]}var fG=S({basicLSTMCell_:mG});function dG(r,e,t){let o=k(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);T(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),T(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),T(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return E.runKernel(sa,s,a)}var Ca=S({batchToSpaceND_:dG});function RN(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function hG(r,e,t,o,n,s){s==null&&(s=.001);let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;n!=null&&(u=k(n,"scale","batchNorm"));let c;o!=null&&(c=k(o,"offset","batchNorm")),T(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),T(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),T(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:RN(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=E.runKernel(ln,m,f);return L(d,a.shape)}var zn=S({batchNorm_:hG});function gG(r,e,t,o,n,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;n!=null&&(u=k(n,"scale","batchNorm"));let c;return o!=null&&(c=k(o,"offset","batchNorm")),T(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),T(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),T(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var c_=S({batchNorm2d_:gG});function xG(r,e,t,o,n,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;n!=null&&(u=k(n,"scale","batchNorm"));let c;return o!=null&&(c=k(o,"offset","batchNorm")),T(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),T(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),T(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var p_=S({batchNorm3d_:xG});function yG(r,e,t,o,n,s){let a=k(r,"x","batchNorm"),i=k(e,"mean","batchNorm"),l=k(t,"variance","batchNorm"),u;n!=null&&(u=k(n,"scale","batchNorm"));let c;return o!=null&&(c=k(o,"offset","batchNorm")),T(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),T(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),T(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&T(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&T(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),zn(a,i,l,c,u,s)}var m_=S({batchNorm4d_:yG});function bG(r,e,t){let o=k(r,"x","bincount"),n=k(e,"weights","bincount");T(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return E.runKernel(jl,s,a)}var f_=S({bincount_:bG});function _G(r,e){let t=k(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.lengtht.rank){let u=t.shape.slice();for(;u.length=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ro(t);let i={x:t},l={reps:s};return E.runKernel(yo,i,l)}var il=S({broadcastTo_:_G});function wG(r){let t={x:k(r,"x","ceil")};return E.runKernel(Zo,t)}var Om=S({ceil_:wG});function kG(r,e,t){let o=k(r,"x","clipByValue");T(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return E.runKernel(Ao,n,s)}var nr=S({clipByValue_:kG});function vG(r){return Je(r,0)}var d_=S({concat1d_:vG});function CG(r,e){return Je(r,e)}var h_=S({concat2d_:CG});function IG(r,e){return Je(r,e)}var g_=S({concat3d_:IG});function NG(r,e){return Je(r,e)}var x_=S({concat4d_:NG});function SG(r,e,t,o,n="NHWC",s=[1,1],a){let i=k(r,"x","conv2d"),l=k(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&T(st(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];T(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),T(yr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=E.runKernel(Jo,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var jr=S({conv2d_:SG});function TG(r,e,t,o,n="NWC",s=1,a){let i=k(r,"x","conv1d"),l=k(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),T(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),T(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&T(st(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),T(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),T(yr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),T(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=jr(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var Cu=S({conv1d_:TG});function EG(r,e,t,o,n,s="NHWC",a){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),T(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),T(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),T(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];T(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),T(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&T(st(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=E.runKernel(Qo,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Kc=S({conv2DBackpropInput_:EG});function AG(r,e,t,o,n,s){let a=k(r,"x","conv2dTranspose"),i=k(e,"filter","conv2dTranspose");return Kc(t,a,i,o,n,"NHWC",s)}var Iu=S({conv2dTranspose_:AG});function DG(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=k(r,"x","conv3d"),i=k(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),T(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),T(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),T(yr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=E.runKernel(aa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var Pm=S({conv3d_:DG});function $G(r,e,t,o,n){T(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];T(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),T(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),T(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),T(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),T(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=E.runKernel(Xl,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var ug=S({conv3DBackpropInput_:$G});function RG(r,e,t,o,n){let s=k(r,"x","conv3dTranspose"),a=k(e,"filter","conv3dTranspose");return ug(t,s,a,o,n)}var FG=S({conv3dTranspose_:RG});function OG(r){let t={x:k(r,"x","cos")};return E.runKernel(en,t)}var Ia=S({cos_:OG});function PG(r){let t={x:k(r,"x","cosh")};return E.runKernel(ti,t)}var Nu=S({cosh_:PG});function MG(r,e=0,t=!1,o=!1){let s={x:k(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return E.runKernel(tn,s,a)}var Su=S({cumsum_:MG});function LG(r,e,t,o=!1){let n=k(r,"x","denseBincount"),s=k(e,"weights","denseBincount");T(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),T(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),T(t>=0,()=>`size must be non-negative, but got ${t}.`),T(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return E.runKernel(Yl,a,i)}var y_=S({denseBincount_:LG});function zG(r,e,t="NHWC"){let o=k(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];T(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying ${n} and ${e} for depthToSpace with input shape ${o.shape}`),T(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${e} for depthToSpace with input shape ${o.shape}`),T(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return E.runKernel(oi,i,l)}var Mm=S({depthToSpace_:zG});function BG(r,e,t,o,n="NHWC",s=[1,1],a){let i=k(r,"x","depthwiseConv2d"),l=k(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),T(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),T(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&T(st(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=E.runKernel(rn,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Ns=S({depthwiseConv2d_:BG});function VG(r){let t={x:k(r,"x","diag")};return E.runKernel(Ql,t)}var GG=S({diag_:VG});function WG(r,e,t,o,n=[1,1],s="NHWC"){let a=k(r,"x","dilation2d"),i=k(e,"filter","dilation2d");T(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),T(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),T(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=E.runKernel(la,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Lm=S({dilation2d_:WG});function UG(r,e){let t=r.length,o=[];for(let n=0;n1&&a===1&&o.unshift(s)}return o}function Ct(r,e){let t=[];for(let o=0;o1)&&t.unshift(s)}return t}function ze(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&Nt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return E.runKernel(xs,u)}var $t=S({where_:HG});function qG(r){let t={x:k(r,"x","zerosLike")};return E.runKernel(ws,t)}var Ie=S({zerosLike_:qG});function KG(r,e){let t=k(r,"a","div"),o=k(e,"b","div");[t,o]=Ge(t,o);let n=de(t,o),s=Ie(n),a=_o(o,s);return $t(a,s,n)}var zm=S({divNoNan_:KG});function XG(r,e){let t=k(r,"t1","dot"),o=k(e,"t2","dot");T((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(T(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=We(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=We(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=We(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return We(t,a)}}var b_=S({dot_:XG});function YG(r){let t={x:k(r,"x","elu")};return E.runKernel(ni,t)}var Ss=S({elu_:YG});function ZG(r){let e=k(r,"x","erf");T(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=oe(e,"float32"));let t={x:e};return E.runKernel(si,t)}var Bm=S({erf_:ZG});function JG(r){let t={x:k(r,"x","exp")};return E.runKernel(nn,t)}var Xt=S({exp_:JG});function QG(r,e=0){let t=k(r,"x","expandDims","string_or_numeric");T(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return E.runKernel(ps,o,n)}var sr=S({expandDims_:QG});function eW(r){let t={x:k(r,"x","expm1")};return E.runKernel(ai,t)}var Vm=S({expm1_:eW});function tW(r,e){let t=k(r,"x","tile","string_or_numeric");T(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return E.runKernel(yo,o,n)}var Po=S({tile_:tW});function rW(r,e,t,o="float32"){e==null&&(e=r);let n=Ce([r,e],o),s=r<=e?r:e;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),T(st(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=E.runKernel(ca,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Gm=S({localResponseNormalization_:dW});function hW(r){let t={x:k(r,"x","log")};return E.runKernel(pn,t)}var ir=S({log_:hW});function gW(r){let t={x:k(r,"x","log1p")};return E.runKernel(gi,t)}var Au=S({log1p_:gW});function xW(r){return T(Hs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=k(e,"x","tf.grad","string_or_numeric"),n=t!=null?k(t,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(o),[o],n);return n!=null&&Nt(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),cg(a),a[0]})}}function yW(r){return T(Hs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{T(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=ya(e,"args","tf.grads","string_or_numeric"),n=t!=null?k(t,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(...o),o,n);return n!=null&&Nt(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cg(a),a})}}function bW(r){return T(Hs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{T(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),T(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=E.gradients(()=>r(e),[e],t);return cg(o),{grad:o[0],value:n}}}function _W(r){return T(Hs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{T(Array.isArray(e)&&e.every(n=>n instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),T(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=E.gradients(()=>r(...e),e,t);return t!=null&&Nt(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cg(o.grads),o}}function pg(r,e){T(Hs(r),()=>"The f passed in variableGrads(f) must be a function"),T(e==null||Array.isArray(e)&&e.every(u=>u instanceof tl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in E.registeredVariables)e.push(E.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),T(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=E.gradients(r,e,null,s);T(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),T(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Hr(r){return E.customGrad(r)}function cg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function wW(r){let t={x:k(r,"x","neg")};return E.runKernel(fs,t)}var je=S({neg_:wW});function kW(r){let t={x:k(r,"x","softplus")};return E.runKernel(Ei,t)}var Es=S({softplus_:kW});function vW(r){let e=k(r,"x","logSigmoid");return Hr(o=>({value:je(Es(je(o))),gradFunc:a=>O(a,Ur(je(o)))}))(e)}var C_=S({logSigmoid_:vW});function CW(r,e=null,t=!1){let n={x:k(r,"x","max")},s={reductionIndices:e,keepDims:t};return E.runKernel(mn,n,s)}var ar=S({max_:CW});function IW(r,e){let t=k(r,"a","sub"),o=k(e,"b","sub");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(On,n)}var ue=S({sub_:IW});function NW(r,e=null,t=!1){let o=k(r,"x","sum");o.dtype==="bool"&&(o=oe(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel($n,n,s)}var ye=S({sum_:NW});function SW(r,e=-1){let t=k(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Hr((n,s)=>{let a=!0,i=ar(n,e,!0),l=ue(n,i),u=ue(oe(l,"float32"),ir(ye(Xt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Xt(f);return ue(p,O(ye(p,e,d),h))}}})(t)}var Du=S({logSoftmax_:SW});function I_(r,e){for(let t=0;tr[s]);return[t,n]}function Vn(r,e){let t=e.map(o=>1);return FN(r,t,e)}function TW(r,e,t){T(I_(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function S_(r,e){if(I_(r,e))return null;let t=[];for(let o=0;ot.push(o)),t}function Wm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function EW(r,e){let t=[];for(let o=e-r;o`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),T(yr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&T(st(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(dn,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ea=S({maxPool_:OW});function PW(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=k(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),T(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),T(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&T(st(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(pa,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var jm=S({maxPool3d_:PW});function MW(r,e,t,o,n=!1){let a={x:k(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=E.runKernel(lu,a,i);return{result:l[0],indexes:l[1]}}var E_=S({maxPoolWithArgmax_:MW});function LW(r,e){let t=k(r,"a","maximum"),o=k(e,"b","maximum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=oe(t,"int32"),o=oe(o,"int32")),ze(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(fn,n)}var qr=S({maximum_:LW});function zW(r,e=null,t=!1){let n={x:k(r,"x","mean")},s={axis:e,keepDims:t};return E.runKernel(hn,n,s)}var ht=S({mean_:zW});function BW(r,e=null,t=!1){let n={x:k(r,"x","min")},s={axis:e,keepDims:t};return E.runKernel(gn,n,s)}var Li=S({min_:BW});function VW(r,e){let t=k(r,"a","minimum"),o=k(e,"b","minimum");[t,o]=Ge(t,o),t.dtype==="bool"&&(t=oe(t,"int32"),o=oe(o,"int32")),ze(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(xn,n)}var As=S({minimum_:VW});function GW(r,e,t){T(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=k(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");T(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),T(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return E.runKernel(ma,a,s)}var Hm=S({mirrorPad_:GW});function WW(r,e){let t=k(r,"a","mod"),o=k(e,"b","mod");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(yi,n)}var qm=S({mod_:WW});function UW(r){let e=k(r,"x","square"),t={};return E.runKernel("Square",{x:e},t)}var Pe=S({square_:UW});function jW(r,e=null,t=!1){r=k(r,"x","moments");let o=Jt(e,r.shape),n=ht(r,o,t),s=n.shape;t||(s=Vn(n.shape,o));let a=Pe(ue(oe(r,"float32"),L(n,s))),i=ht(a,o,t);return{mean:n,variance:i}}var Yc=S({moments_:jW});function HW(r,e,t,o){let n=k(e,"data","multiRNNCell"),s=ya(t,"c","multiRNNCell"),a=ya(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=E.runKernel(uu,l,u);return a===1?L(c,[c.size]):c}var A_=S({multinomial_:KW});function XW(r,e){let t=k(r,"a","notEqual"),o=k(e,"b","notEqual");[t,o]=Ge(t,o),ze(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(bi,n)}var Gn=S({notEqual_:XW});function gt(r,e="float32"){if(e==="complex64"){let o=gt(r,"float32"),n=gt(r,"float32");return bo(o,n)}let t=$c(ft(r),e);return E.makeTensor(t,r,e)}function Cr(r,e="float32"){if(e==="complex64"){let o=Cr(r,"float32"),n=gt(r,"float32");return bo(o,n)}let t=hm(ft(r),e);return E.makeTensor(t,r,e)}function YW(r){let t={x:k(r,"x","onesLike")};return E.runKernel(ds,t)}var er=S({onesLike_:YW});function ZW(r,e){let t=k(r,"v1","outerProduct"),o=k(e,"v2","outerProduct");T(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return We(n,s)}var JW=S({outerProduct_:ZW});function QW(r,e,t=0){let o=k(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return E.runKernel(_n,s,n)}var $r=S({pad_:QW});function e4(r,e,t=0){return T(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),$r(r,[e],t)}var t4=S({pad1d_:e4});function r4(r,e,t=0){return T(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$r(r,e,t)}var o4=S({pad2d_:r4});function n4(r,e,t=0){return T(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$r(r,e,t)}var s4=S({pad3d_:n4});function i4(r,e,t=0){return T(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),$r(r,e,t)}var a4=S({pad4d_:i4});function l4(r,e,t){let o=k(r,"x","spaceToBatchND");T(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),T(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),T(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return E.runKernel(ha,n,s)}var Aa=S({spaceToBatchND_:l4});function p4(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=k(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),T(yr(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=a_(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=c4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=u4([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:Aa(i,c,f),b=(t==="avg"?()=>va(g,e,s,h):()=>Ea(g,e,s,h))(),_=m?b:Ca(b,c,d);return l?L(_,[_.shape[1],_.shape[2],_.shape[3]]):_}function u4(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function c4(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var D_=S({pool_:p4});function m4(r,e){let t=k(r,"base","pow"),o=k(e,"exp","pow");[t,o]=Ge(t,o);let n={a:t,b:o};return E.runKernel(wn,n)}var Rr=S({pow_:m4});function f4(r,e){let t=k(r,"x","prelu"),o=k(e,"alpha","prelu"),n={x:t,alpha:o};return E.runKernel(kn,n)}var Da=S({prelu_:f4});function d4(r,e=null,t=!1){let o=k(r,"x","prod");o.dtype==="bool"&&(o=oe(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(vi,n,s)}var Ru=S({prod_:d4});function h4(r,e,t){let o=ft(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},L_=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=fg.alea(s.toString()),this.randn=new Zc(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=fg.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function v4(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new L_(e,t,o,n),a=Ce(r,o);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),qt(e,0)}var R4=S({reverse1d_:$4});function F4(r,e){let t=k(r,"x","reverse");return T(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),qt(t,e)}var O4=S({reverse2d_:F4});function P4(r,e){let t=k(r,"x","reverse");return T(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),qt(t,e)}var M4=S({reverse3d_:P4});function L4(r,e){let t=k(r,"x","reverse");return T(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),qt(t,e)}var z4=S({reverse4d_:L4});function B4(r){let t={x:k(r,"x","round")};return E.runKernel(Sn,t)}var Ym=S({round_:B4});function V4(r){let t={x:k(r,"x","rsqrt")};return E.runKernel(Tn,t)}var Pu=S({rsqrt_:V4});function le(r,e){if((rr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&rr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Gr(r,[],[],e)}function G4(r){let t={x:k(r,"x","selu")};return E.runKernel(Ni,t)}var Mu=S({selu_:G4});function W4(r,e,t,o,n,s=[1,1],a="NHWC"){let i=k(r,"x","separableConv2d"),l=k(e,"depthwiseFilter","separableConv2d"),u=k(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");T(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),T(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),T(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),T(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];T(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=Ns(c,l,o,n,a,s),g=jr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var Zm=S({separableConv2d_:W4});async function U4(r,e){let t=k(r,"x","setdiff1d"),o=k(e,"y","setdiff1d");T(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),T(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),T(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Fe(o,[e],[t])}var Qm=S({slice1d_:K4});function X4(r,e,t){let o=k(r,"x","slice2d");return T(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Fe(o,e,t)}var hg=S({slice2d_:X4});function Y4(r,e,t){let o=k(r,"x","slice3d");return T(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Fe(o,e,t)}var ef=S({slice3d_:Y4});function Z4(r,e,t){let o=k(r,"x","slice4d");return T(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Fe(o,e,t)}var Qc=S({slice4d_:Z4});function J4(r,e=-1){let t=k(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return E.runKernel(Rn,o,n)}var $a=S({softmax_:J4});function Q4(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(tu,e)}var Ra=S({fft_:Q4});function eU(r){T(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(ru,e)}var zi=S({ifft_:eU});function tU(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=zi(n)}else{let n=[t,2*(e-1)],s=L(al(r),[t,e]),a=L(Tu(r),[t,e]),i=qt(Fe(s,[0,1],[t,e-2]),1),l=O(qt(Fe(a,[0,1],[t,e-2]),1),le(-1)),u=Je([s,i],1),c=Je([a,l],1),p=L(bo(u,c),[n[0],n[1]]);o=zi(p)}if(o=al(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var Bu=S({irfft_:tU});function rU(r,e,t=0){let n={x:k(r,"x","split")},s={numOrSizeSplits:e,axis:t};return E.runKernel(bs,n,s)}var lr=S({split_:rU});function oU(r,e){T(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Fe(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Je([r,gt(d)],r.shape.length-1),t=e}else n=r;let s=Ie(n),a=L(bo(n,s),[o,t]),i=Ra(a),l=Math.floor(t/2)+1,u=al(i),c=Tu(i),p=lr(u,[l,t-l],u.shape.length-1),m=lr(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(bo(p[0],m[0]),f)}var Fa=S({rfft_:oU});function nU(r){let t={x:k(r,"x","sqrt")};return E.runKernel(Dn,t)}var xt=S({sqrt_:nU});function sU(r,e){let t=k(r,"a","squaredDifference"),o=k(e,"b","squaredDifference");[t,o]=Ge(t,o),ze(t.shape,o.shape);let n={a:t,b:o},s={};return E.runKernel(Fn,n,s)}var Vu=S({squaredDifference_:sU});function iU(r,e){let t=k(r,"x","squeeze");return L(t,hb(t.shape,e).newShape)}var wo=S({squeeze_:iU});function aU(r,e=0){let t=ya(r,"tensors","stack","string_or_numeric");T(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&T(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return E.runKernel(hs,o,n)}var Bt=S({stack_:aU});function lU(r,e=0){let o={x:k(r,"x","step")},n={alpha:e};return E.runKernel($o,o,n)}var $s=S({step_:lU});function uU(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:k(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return E.runKernel(Ai,c,p)}var tf=S({stridedSlice_:uU});function cU(r){let t={x:k(r,"x","tan")};return E.runKernel(Di,t)}var rf=S({tan_:cU});function Vt(r,e){To(r);let t=kr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Gr(r,null,t,e)}function Bi(r,e,t){if(To(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=kr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Gr(r,e,o,t)}function pU(r,e,t){if(To(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=kr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Gr(r,e,o,t)}function mU(r,e,t){if(To(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=kr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Gr(r,e,o,t)}function fU(r,e,t){if(To(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=kr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,Gr(r,e,o,t)}function dU(r,e=1,t=!0){let o=k(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=E.runKernel($i,s,a);return{values:i,indices:l}}var of=S({topk_:dU});function hU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Zc(e,t,o,!0,n),a=Ce(r,o);for(let i=0;i0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=E.runKernel(du,o,n);return{values:s,indices:a}}var ep=S({unique_:gU});function xU(r,e,t){let o=k(r,"x","unsortedSegmentSum"),n=k(e,"segmentIds","unsortedSegmentSum","int32");T(st(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return E.runKernel(xa,s,a)}var nf=S({unsortedSegmentSum_:xU});function yU(r,e=0){let t=k(r,"x","unstack","string_or_numeric");T(e>=-t.shape.length&&e`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return E.runKernel(_s,o,n)}var ur=S({unstack_:yU});function V_(r,e=!0,t,o){return E.makeVariable(r,e,t,o)}function G_(r,e){let t=[];for(let s=0;s0,()=>"mask cannot be scalar"),Nt(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h"Shape mismatch in v and x");let l=le(1),u=ue(l,i),c=O(ue(a,s),u);if(n){T(o!=null,()=>"When using zeroDebias: true, step is required.");let p=k(o,"step","movingAverage");c=de(c,ue(l,Rr(i,p)))}return Q(s,c)}var CU=S({movingAverage_:vU});function IU(r,e,t){let o=k(r,"indices","scatterND","int32"),n=k(e,"updates","scatterND");ng(n,o,t);let s={indices:o,updates:n},a={shape:t};return E.runKernel(Ii,s,a)}var W_=S({scatterND_:IU});function ZN(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function NU(r,e,t,o=0){let n=k(r,"sparseIndices","sparseToDense","int32"),s=k(e,"sparseValues","sparseToDense"),a=k(o,"defaultValue","sparseToDense",s.dtype);ZN(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return E.runKernel(fu,i,l)}var af=S({sparseToDense_:NU});function SU(r,e){let t=k(e,"indices","gatherND","int32"),n={params:k(r,"x","gatherND"),indices:t};return E.runKernel(ui,n)}var U_=S({gatherND_:SU});function JN(r,e){if(e==null)return r.shape.slice();if(Vr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),T(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?n.clone():n;let s=JN(n,t),a=1-e,i=de(Ts(Q(Ds(s,0,1,"float32",o),a)),a);return O(n,i)}var j_=S({dropout_:TU});function H_(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function lf(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),T(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),Nt(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];T(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=gb("bool",l);for(let p=0;pg.value-h.value),c[p]=0;for(let h=0;hRU,depthwiseConv2d:()=>MU,matMul:()=>zU});function DU(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),T(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),T(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),T(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];T(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),T(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&T(st(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return E.runKernel(ql,p,m)}var tp=S({conv2DBackpropFilter_:DU});function Uu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return O(r,$s(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function ju(r,e){let t=e,o=Ct(r.shape,e.shape);return o.length>0&&(t=ye(t,o)),L(t,r.shape)}function Hu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Ir(r);if(e==="elu")return Ss(r);if(e==="relu6")return Ou(r);if(e==="prelu")return Da(r,t);if(e==="leakyrelu")return Sa(r,o);throw new Error(`Unknown fused activation ${e}.`)}var qu=(r,e)=>!(r>0)||e==="linear";function $U({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",qu(E.state.gradientDepth,l)===!1){let v=jr(r,e,t,o,n,s,a);return i!=null&&(v=Q(v,i)),Hu(v,l,u,c)}let p=k(r,"x","conv2d"),m=k(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&T(st(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),T(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),T(yr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),T(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=ku(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=Ge(g,p),ze(h.outShape,g.shape));let x;u!=null&&(x=k(u,"prelu weights","fused conv2d"));let b=(v,$)=>{let[A,R,M,V]=$,G=Uu(v,M,l);T(Oo(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let W=Kc(R.shape,G,A,t,o),q=tp(R,G,A.shape,t,o),Z=[W,q];if(V!=null){let X=ju(V,G);Z.push(X)}return Z},_={x:f,filter:m,bias:g,preluActivationWeights:x},w={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Hr(($,A,R)=>{let M=E.runKernel(vs,_,w);return R([A,$,M]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m):Hr(($,A,R,M)=>{let V=E.runKernel(vs,_,w);return M([A,$,V,R]),d&&(V=L(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:b}})(f,m,g)}var RU=S({fusedConv2d_:$U});function FU(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return E.runKernel(Zl,u,c)}var gg=S({depthwiseConv2dNativeBackpropFilter_:FU});function OU(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=E.runKernel(Jl,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xg=S({depthwiseConv2dNativeBackpropInput_:OU});function PU({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(qu(E.state.gradientDepth,l)===!1){let v=Ns(r,e,t,o,n,s,a);return i!=null&&(v=Q(v,i)),Hu(v,l,u,c)}let p=k(r,"x","depthwiseConv2d"),m=k(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),T(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),T(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),T(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),T(yr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&T(st(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=ku(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=k(i,"bias","fused conv2d"),[g]=Ge(g,p),ze(h.outShape,g.shape));let x;u!=null&&(x=k(u,"prelu weights","fused depthwiseConv2d"));let b=(v,$)=>{T(Oo(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[A,R,M,V]=$,G=Uu(v,M,l),W=xg(R.shape,G,A,t,o,s,a),q=gg(R,G,A.shape,t,o,s,a);if(V!=null){let Z=ju(g,G);return[W,q,Z]}return[W,q]},_={x:f,filter:m,bias:g,preluActivationWeights:x},w={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Hr(($,A,R)=>{let M=E.runKernel(Cs,_,w);return R([A,$,M]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m):Hr(($,A,R,M)=>{let V=E.runKernel(Cs,_,w);return M([A,$,V,R]),d&&(V=L(V,[V.shape[1],V.shape[2],V.shape[3]])),{value:V,gradFunc:b}})(f,m,g)}var MU=S({fusedDepthwiseConv2d_:PU});function LU({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(qu(E.state.gradientDepth,s)===!1){let V=We(r,e,t,o);return n!=null&&(V=Q(V,n)),Hu(V,s,a,i)}let l=k(r,"a","fused matMul"),u=k(e,"b","fused matMul");[l,u]=Ge(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ft(d),x=ft(h);T(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),T(Vr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),T(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),_=t?L(l,[g,c,m]):L(l,[g,m,c]),w=o?L(u,[x,f,p]):L(u,[x,p,f]),v;n!=null&&(v=k(n,"bias","fused matMul"),[v]=Ge(v,l),ze(b,v.shape));let $;a!=null&&($=k(a,"prelu weights","fused matMul"));let A=(V,G)=>{let[W,q,Z,X]=G,Y=Uu(L(V,Z.shape),Z,s),te,K;if(!t&&!o?(te=We(Y,q,!1,!0),K=We(W,Y,!0,!1)):!t&&o?(te=We(Y,q,!1,!1),K=We(Y,W,!0,!1)):t&&!o?(te=We(q,Y,!1,!0),K=We(W,Y,!1,!1)):(te=We(q,Y,!0,!0),K=We(Y,W,!0,!0)),n!=null){let re=ju(X,Y);return[te,K,re]}else return[te,K]},R={a:_,b:w,bias:v,preluActivationWeights:$},M={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?Hr((G,W,q)=>{let Z=E.runKernel(ks,R,M);return q([G,W,Z]),{value:L(Z,b),gradFunc:A}})(_,w):Hr((G,W,q,Z)=>{let X=E.runKernel(ks,R,M);return Z([G,W,X,q]),{value:L(X,b),gradFunc:A}})(_,w,v)}var zU=S({fusedMatMul_:LU});function BU(r){return lf(r,.54,.46)}var QN=S({hammingWindow_:BU});function VU(r){return lf(r,.5,.5)}var yg=S({hannWindow_:VU});function GU(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Fe(r,s,e)),s+=t;if(o)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),T(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),T(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),T(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),T(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),T(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return E.runKernel(ri,c,p)}var t0=S({cropAndResize_:UU});function jU(r){let e=k(r,"image","flipLeftRight","float32");T(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return E.runKernel(li,t,{})}var r0=S({flipLeftRight_:jU});function HU(r,e,t=0,o=.5){let n=k(r,"image","rotateWithOffset","float32");T(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return E.runKernel(Ri,s,a)}var o0=S({rotateWithOffset_:HU});function Un(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),T(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),T(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),T(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),T(e.rank===1,()=>"scores must be a 1D tensor"),T(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),T(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function qU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppression"),a=k(e,"scores","nonMaxSuppression"),i=Un(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return E.runKernel(_i,{boxes:s,scores:a},l)}var n0=S({nonMaxSuppression_:qU});function s0(r,e,t){let o=KU(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function KU(r,e,t){return YU(r,e,t||XU)}function XU(r,e){return r>e?1:r>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function K_(r,e,t,o,n){return q_(r,e,t,o,n,0)}function X_(r,e,t,o,n,s){return q_(r,e,t,o,n,0,!1,s,!0)}function Y_(r,e,t,o,n,s){return q_(r,e,t,o,n,s,!0)}function q_(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;gn&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(i0);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:_}=g;if(x=_;--v){let $=ZU(r,b,p[v]);if($>=o){w=!0;break}if(g.score=g.score*JU(o,c,$),g.score<=n)break}g.suppressBeginIndex=p.length,w||(g.score===x?(p.push(b),m.push(g.score)):g.score>n&&s0(u,g,i0))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function ZU(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),_=Math.max(x-h,0)*Math.max(b-g,0);return _/(f+d-_)}function JU(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function i0(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function QU(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=k(r,"boxes","nonMaxSuppressionAsync"),a=k(e,"scores","nonMaxSuppressionAsync"),i=Un(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=K_(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Vt(p,"int32")}var a0=QU;function ej(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=Un(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=E.runKernel(ki,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var l0=S({nonMaxSuppressionWithScore_:ej});async function tj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=Un(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=Y_(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(m,"int32"),selectedScores:Vt(f)}}var u0=tj;function rj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppression"),i=k(e,"scores","nonMaxSuppression"),l=Un(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel(wi,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var c0=S({nonMaxSuppressionPadded_:rj});async function oj(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=k(r,"boxes","nonMaxSuppressionAsync"),i=k(e,"scores","nonMaxSuppressionAsync"),l=Un(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=X_(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(d,"int32"),validOutputs:le(h,"int32")}}var p0=oj;function nj(r,e,t=!1,o=!1){let n=k(r,"images","resizeBilinear");T(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),T(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),T(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Cn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var _g=S({resizeBilinear_:nj});function sj(r,e,t=!1,o=!1){let n=k(r,"images","resizeNearestNeighbor");T(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),T(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),T(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),T(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(da,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wg=S({resizeNearestNeighbor_:sj});function ij(r,e,t){T(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),T(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=k(r,"a","bandPart");T(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(Jc(0,s,1,"int32"),[-1,1]),l=Jc(0,a,1,"int32"),u=ue(i,l),c=fr(Mo(u,le(+e,"int32")),to(u,le(-t,"int32"))),p=gt([s,a],o.dtype);return L(Bt(ur(L(o,[-1,s,a])).map(m=>$t(c,m,p))),n)}var m0=S({bandPart_:ij});function aj(r){let e;if(Array.isArray(r)){e=!1,T(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=lr(r,r.shape[0],0).map(n=>wo(n,[0]));T(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n{let s=o[n];if(n>0)for(let a=0;a=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return d0(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=ur(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=d0(l,e);n.push(u),s.push(c)});let a=L(Bt(n,0),r.shape),i=L(Bt(s,0),r.shape);return[a,i]}}function d0(r,e=!1){return E.tidy(()=>{T(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Xc(t),s=Ro(r),a=Bi([[1]],[1,1]),i=Ro(a),l=t>=o?o:t;for(let u=0;u{let f=Fe(s,[u,u],[t-u,1]),d=Wu(f),h=Fe(s,[u,u],[1,1]),g=$t(Qt(h,0),Bi([[-1]]),Bi([[1]])),x=ue(h,O(g,d)),b=de(f,x);b.shape[0]===1?i=Ro(a):i=Je([a,Fe(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let _=je(de(We(g,x),d)),w=Fe(s,[u,0],[t-u,o]),v=O(_,i),$=Ue(i);if(u===0)s=ue(w,We(v,We($,w)));else{let M=ue(w,We(v,We($,w)));s=Je([Fe(s,[0,0],[u,o]),M],0)}let A=Ue(v),R=Fe(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=ue(R,We(We(R,i),A));else{let M=ue(R,We(We(R,i),A));n=Je([Fe(n,[0,0],[t,u]),M],1)}return[i,s,n]}),Te([c,p,m])}return!e&&t>o&&(n=Fe(n,[0,0],[t,o]),s=Fe(s,[0,0],[o,o])),[n,s]})}var h0=S({qr_:lj});var Gt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Gt||(Gt={}));function uj(r,e,t=Gt.SUM_BY_NONZERO_WEIGHTS){let o=k(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=k(e,"weights","computeWeightedLoss"));let s=n==null?o:O(o,n);if(t===Gt.NONE)return s;if(t===Gt.SUM)return ye(s);if(t===Gt.MEAN){if(n==null)return ht(s);{let a=o.size/n.size,i=de(ye(s),ye(n));return a>1?de(i,le(a)):i}}if(t===Gt.SUM_BY_NONZERO_WEIGHTS){if(n==null)return de(ye(s),le(o.size));{let a=O(n,Cr(o.shape)),i=oe(ye(Gn(a,le(0))),"float32");return de(ye(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Nr=S({computeWeightedLoss_:uj});function cj(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=k(r,"labels","absoluteDifference"),s=k(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=k(t,"weights","absoluteDifference")),Nt(n.shape,s.shape,"Error in absoluteDifference: ");let i=Tt(ue(n,s));return Nr(i,a,o)}var g0=S({absoluteDifference_:cj});function pj(r,e,t,o,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","cosineDistance"),a=k(e,"predictions","cosineDistance"),i=null;o!=null&&(i=k(o,"weights","cosineDistance")),Nt(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ue(l,ye(O(s,a),t,!0));return Nr(u,i,n)}var x0=S({cosineDistance_:pj});function mj(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=k(r,"labels","hingeLoss"),s=k(e,"predictions","hingeLoss"),a=null;t!=null&&(a=k(t,"weights","hingeLoss")),Nt(n.shape,s.shape,"Error in hingeLoss: ");let i=le(1);n=ue(O(le(2),n),i);let l=Ir(ue(i,O(n,s)));return Nr(l,a,o)}var y0=S({hingeLoss_:mj});function fj(r,e,t,o=1,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","huberLoss"),a=k(e,"predictions","huberLoss"),i=null;t!=null&&(i=k(t,"weights","huberLoss")),Nt(s.shape,a.shape,"Error in huberLoss: ");let l=le(o),u=Tt(ue(a,s)),c=As(u,l),p=ue(u,c),m=Q(O(le(.5),Pe(c)),O(l,p));return Nr(m,i,n)}var b0=S({huberLoss_:fj});function dj(r,e,t,o=1e-7,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"labels","logLoss"),a=k(e,"predictions","logLoss"),i=null;t!=null&&(i=k(t,"weights","logLoss")),Nt(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(o),c=je(O(s,ir(Q(a,u)))),p=O(ue(l,s),ir(Q(ue(l,a),u))),m=ue(c,p);return Nr(m,i,n)}var _0=S({logLoss_:dj});function hj(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=k(r,"labels","meanSquaredError"),s=k(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=k(t,"weights","meanSquaredError")),Nt(n.shape,s.shape,"Error in meanSquaredError: ");let i=Vu(n,s);return Nr(i,a,o)}var w0=S({meanSquaredError_:hj});function gj(r,e){let t=k(r,"labels","sigmoidCrossEntropyWithLogits"),o=k(e,"logits","sigmoidCrossEntropyWithLogits");Nt(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Ir(o),s=O(o,t),a=Au(Xt(je(Tt(o))));return Q(ue(n,s),a)}function xj(r,e,t,o=0,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"multiClassLabels","sigmoidCrossEntropy"),a=k(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","sigmoidCrossEntropy")),Nt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(.5);s=Q(O(s,ue(c,u)),O(p,u))}let l=gj(s,a);return Nr(l,i,n)}var k0=S({sigmoidCrossEntropy_:xj});function yj(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Hr((n,s,a)=>{let l=Um(s,[t],!0),u=ue(oe(s,"float32"),l);a([n,u]);let c=je(O(u,n));return{value:ye(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=Vn(f.shape,[t]);return[O(L(f,x),ue(oe(h,"float32"),Xt(g))),O(L(f,x),ue(Xt(g),oe(h,"float32")))]}}})(r,e)}function bj(r,e,t,o=0,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=k(r,"onehotLabels","softmaxCrossEntropy"),a=k(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=k(t,"weights","softmaxCrossEntropy")),Nt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(s.shape[1]);s=Q(O(s,ue(c,u)),de(u,p))}let l=yj(s,a);return Nr(l,i,n)}var v0=S({softmaxCrossEntropy_:bj});var _j={fft:Ra,ifft:zi,rfft:Fa,irfft:Bu},wj={hammingWindow:QN,hannWindow:yg,frame:bg,stft:e0},Rs={flipLeftRight:r0,resizeNearestNeighbor:wg,resizeBilinear:_g,rotateWithOffset:o0,cropAndResize:t0,nonMaxSuppression:n0,nonMaxSuppressionAsync:a0,nonMaxSuppressionWithScore:l0,nonMaxSuppressionWithScoreAsync:u0,nonMaxSuppressionPadded:c0,nonMaxSuppressionPaddedAsync:p0},Z_={bandPart:m0,gramSchmidt:f0,qr:h0},kj={absoluteDifference:g0,computeWeightedLoss:Nr,cosineDistance:x0,hingeLoss:y0,huberLoss:b0,logLoss:_0,meanSquaredError:w0,sigmoidCrossEntropy:k0,softmaxCrossEntropy:v0};var Fr=class extends ig{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Te(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return pg(e,t)}dispose(){this.iterations_!=null&&Te(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Fr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var rp=class extends Fr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:B(()=>Ie(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:B(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;B(()=>{let c=Q(O(l,this.rho),O(Pe(i),1-this.rho)),p=O(de(xt(Q(u,this.epsilon)),xt(Q(l,this.epsilon))),i),m=Q(O(u,this.rho),O(Pe(p),1-this.rho));l.assign(c),u.assign(m);let f=Q(O(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Te(this.accumulatedGrads.map(e=>e.variable)),Te(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rp.className="Adadelta";eo(rp);var op=class extends Fr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:B(()=>Na(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;B(()=>{let l=Q(i,Pe(a));i.assign(l);let u=Q(O(de(a,xt(Q(l,E.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Te(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};op.className="Adagrad";eo(op);var np=class extends Fr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(o).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);B(()=>{let o=ue(1,this.accBeta1),n=ue(1,this.accBeta2);t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:B(()=>Ie(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:B(()=>Ie(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=Q(O(c,this.beta1),O(u,1-this.beta1)),f=Q(O(p,this.beta2),O(Pe(u),1-this.beta2)),d=de(m,o),h=de(f,n);c.assign(m),p.assign(f);let g=Q(O(de(d,Q(xt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Te(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Rr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Rr(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};np.className="Adam";eo(np);var sp=class extends Fr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);B(()=>{let o=ue(1,this.accBeta1),n=de(-this.learningRate,Q(O(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ie(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ie(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=Q(O(c,this.beta1),O(u,1-this.beta1)),f=O(p,this.beta2),d=Tt(u),h=qr(f,d);c.assign(m),p.assign(h);let g=Q(O(de(n,o),de(m,Q(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(Q(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Te(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Te(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};sp.className="Adamax";eo(sp);var ll=class extends Fr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=E.registeredVariables[o];B(()=>{let i=Q(O(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Dt(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};ll.className="SGD";eo(ll);var ip=class extends ll{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:B(()=>Ie(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&B(()=>{let l,u=Q(O(this.m,a),i);this.useNesterov?l=Q(O(this.c,Q(i,O(u,this.m))),s):l=Q(O(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Te(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};ip.className="Momentum";eo(ip);var ap=class extends Fr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=E.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:B(()=>Ie(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:B(()=>Ie(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:B(()=>Ie(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;B(()=>{let c=Q(O(l,this.decay),O(Pe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=Q(O(p,this.decay),O(i,1-this.decay)),f=de(O(i,this.learningRate),xt(ue(c,Q(Pe(m),this.epsilon)))),d=Q(O(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ue(s,d);s.assign(h)}else{let p=Q(O(l,this.decay),O(Pe(i),1-this.decay)),m=Q(O(u,this.momentum),de(O(i,this.learningRate),xt(Q(p,this.epsilon))));l.assign(p),u.assign(m);let f=ue(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Te(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Te(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Te(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ap.className="RMSProp";eo(ap);var Oa=class{static sgd(e){return new ll(e)}static momentum(e,t,o=!1){return new ip(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new ap(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new np(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new rp(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new sp(e,t,o,n,s)}static adagrad(e,t=.1){return new op(e,t)}};var ul={sgd:Oa.sgd,momentum:Oa.momentum,adadelta:Oa.adadelta,adagrad:Oa.adagrad,rmsprop:Oa.rmsprop,adamax:Oa.adamax,adam:Oa.adam};var vj=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function uf(){return new Promise(r=>vj(()=>r()))}var N={};et(N,{ERF_A1:()=>Fj,ERF_A2:()=>Oj,ERF_A3:()=>Pj,ERF_A4:()=>Mj,ERF_A5:()=>Lj,ERF_P:()=>Rj,PARALLELIZE_THRESHOLD:()=>kg,SELU_SCALE:()=>Q_,SELU_SCALEALPHA:()=>J_,applyActivation:()=>Hu,assertAndGetBroadcastShape:()=>ze,assertAxesAreInnerMostDims:()=>TW,assertParamsConsistent:()=>Cj,assignToTypedArray:()=>Hj,axesAreInnerMostDims:()=>I_,calculateShapes:()=>gN,combineLocations:()=>FN,complexWithEvenIndex:()=>Wj,complexWithOddIndex:()=>Uj,computeConv2DInfo:()=>ku,computeConv3DInfo:()=>$N,computeDefaultPad:()=>u_,computeDilation2DInfo:()=>QV,computeOptimalWindowSize:()=>Nj,computeOutAndReduceShapes:()=>N_,computeOutShape:()=>Ij,computePool2DInfo:()=>a_,computePool3DInfo:()=>eG,convertConv2DDataFormat:()=>DN,eitherStridesOrDilationsAreOne:()=>yr,expandShapeToKeepDim:()=>Vn,exponent:()=>Kj,exponents:()=>qj,fromStringArrayToUint8:()=>eH,fromUint8ToStringArray:()=>Qj,getAxesPermutation:()=>S_,getBroadcastDims:()=>UG,getComplexWithIndex:()=>jj,getFusedBiasGradient:()=>ju,getFusedDyActivation:()=>Uu,getImageCenter:()=>Sj,getInnerMostAxes:()=>EW,getPermuted:()=>Ej,getReductionAxes:()=>Ct,getReshaped:()=>Tj,getReshapedPermuted:()=>Aj,getSliceBeginCoords:()=>Dj,getSliceSize:()=>$j,getUndoAxesPermutation:()=>Wm,log:()=>Bj,mergeRealAndImagArrays:()=>Vj,prepareAndValidate:()=>hN,prepareSplitSize:()=>Xj,segment_util:()=>C0,shouldFuse:()=>qu,slice_util:()=>or,splitRealAndImagArrays:()=>Gj,tupleValuesAreOne:()=>Oo,upcastType:()=>mr,validateInput:()=>ng,validateUpdateShape:()=>Qb,warn:()=>zj});function Cj(r,e){let t=r[0].length;r.forEach((n,s)=>{T(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),T(e>=0&&e`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function Ij(r,e){let t=r[0].slice();for(let o=1;o=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function Aj(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);T(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}T(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var C0={};et(C0,{collectGatherOpShapeInfo:()=>Jj,computeOutShape:()=>Zj,segOpComputeOptimalWindowSize:()=>Yj});function Yj(r,e){let t=!1,o;for(r<=kg?(o=r,t=!0):o=Dc(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=Dc(r,o+1);return o}function Zj(r,e,t){let o=[],n=r.length;for(let s=0;sn))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) ( ${s}).`);if(tzc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function eH(r){return r.map(e=>el(e))}var Sr={};et(Sr,{nonMaxSuppressionV3Impl:()=>K_,nonMaxSuppressionV4Impl:()=>X_,nonMaxSuppressionV5Impl:()=>Y_,whereImpl:()=>G_});var vg={kernelName:us,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,$s(oe(t,"float32"),-1))}}};var I0={kernelName:Ks,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Pe(oe(t,"float32")),n=xt(ue(le(1),o));return je(de(r,n))}}}};var N0={kernelName:Xs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=xt(ue(Pe(oe(t,"float32")),1));return de(r,o)}}}};var S0={kernelName:xo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=r,l=Ct(t.shape,n);return l.length>0&&(i=ye(i,l)),L(i,t.shape)},b:()=>{let i=r,l=Ct(o.shape,n);return l.length>0&&(i=ye(i,l)),L(i,o.shape)}}}};var T0={kernelName:qo,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var E0={kernelName:Ko,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var A0={kernelName:oa,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ie(t)}}};var D0={kernelName:Ys,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,xt(ue(le(1),Pe(oe(t,"float32")))))}}};var $0={kernelName:Zs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=xt(Q(le(1),Pe(oe(t,"float32"))));return de(r,o)}}}};var R0={kernelName:ei,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=Q(Pe(t),Pe(o)),l=O(r,de(o,i)),u=Ct(t.shape,n);return u.length>0&&(l=ye(l,u)),L(l,t.shape)},b:()=>{let i=Q(Pe(t),Pe(o)),l=je(O(r,de(t,i))),u=Ct(o.shape,n);return u.length>0&&(l=ye(l,u)),L(l,o.shape)}}}};var F0={kernelName:Js,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Q(Pe(oe(t,"float32")),1))}}};var O0={kernelName:Qs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,ue(le(1),Pe(oe(t,"float32"))))}}};function tH(r,e,t,o,n,s){let a=k(r,"dy","avgPool3dGrad"),i=k(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),T(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),T(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&T(st(n),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${n}.`);let p={dy:l,input:u},m={filterSize:t,strides:o,pad:n,dimRoundingMode:s},f=E.runKernel(Ul,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var P0=S({avgPool3dGrad_:tH});var M0={kernelName:na,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>P0(r,o,n,s,a,i)}}};function rH(r,e,t,o,n){let s=k(r,"dy","avgPoolGrad"),a=k(e,"input","avgPoolGrad");T(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),T(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),T(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=E.runKernel(Wl,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var L0=S({avgPoolGrad_:rH});var z0={kernelName:Xo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>L0(r,o,n,s,a)}}};var B0={kernelName:Yo,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>We(r,n,!1,!0),b:()=>We(o,r,!0,!1)}:!s&&a?{a:()=>We(r,n,!1,!1),b:()=>We(r,o,!0,!1)}:s&&!a?{a:()=>We(n,r,!1,!0),b:()=>We(o,r,!1,!1)}:{a:()=>We(n,r,!0,!0),b:()=>We(r,o,!0,!0)}}};var V0={kernelName:sa,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>Aa(r,o,n)}}};var G0={kernelName:Cb,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l1&&i.push(l);return{x:()=>ye(r,i,!0)}}};var W0={kernelName:Eo,gradFunc:r=>({x:()=>r.clone()})};var U0={kernelName:Zo,gradFunc:r=>({x:()=>Ie(r)})};var j0={kernelName:Ao,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>$t(fr(to(o,n),Mo(o,s)),r,Ie(r))}}};var H0={kernelName:ia,inputsToSave:["x"],gradFunc:vg.gradFunc};var q0={kernelName:cs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=Jt(n,e[0].shape)[0],a=o.map(l=>l[s]);return lr(r,a,s).map(l=>()=>l)}};var K0={kernelName:Jo,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return T(Oo(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Kc(o.shape,r,n,a,i,l),filter:()=>tp(o,r,n.shape,a,i,l)}}};var X0={kernelName:Qo,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>jr(r,n,s,a,i,1,l),filter:()=>tp(r,o,n.shape,s,a,i,l)}}};function oH(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),T(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),T(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),T(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),T(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),T(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return E.runKernel(Kl,i,l)}var Y0=S({conv3DBackpropFilter_:oH});var Z0={kernelName:aa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;T(Oo(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>ug(a.shape,r,i,n,s),filter:()=>Y0(a,r,i.shape,n,s)}}};var J0={kernelName:en,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(je(Lu(oe(t,"float32"))),r)}}};var Q0={kernelName:ti,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(zu(oe(t,"float32")),r)}}};var eS={kernelName:tn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=S_([n],o.rank),l=Su(r,n,s,!a);return i!=null&&(l=Ue(l,i)),l}}}};var tS={kernelName:rn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;T(Oo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return T(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),T(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),T(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),T(yr(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&T(st(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>xg(l.shape,r,u,n,s,o,a),filter:()=>gg(l,r,u.shape,n,s,o,a)}}};var rS={kernelName:la,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>E.runKernel(Rc,s,t),filter:()=>E.runKernel(Fc,a,t)}}};var oS={kernelName:ni,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>E.runKernel(eu,o)}}};var nS={kernelName:si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=O(Xt(je(Pe(t))),2/Math.sqrt(Math.PI));return{x:()=>O(r,o)}}};var sS={kernelName:nn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,t)}}};var iS={kernelName:ps,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var aS={kernelName:ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Xt(t))}}};var lS={kernelName:sn,gradFunc:r=>({x:()=>Ie(r)})};var uS={kernelName:an,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=de(r,oe(o,"float32")),l=Ct(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=Ct(o.shape,n);l.length>0&&(i=L(ye(i,l),o.shape));let u=Pe(o);return je(de(i,oe(u,"float32")))}}}};var cS={kernelName:ln,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?le(1):i,u=Ct(s.shape,n.shape),c=[];if(s.rank===1){for(let w=0;ws.rank===1?L(O(O(r,Po(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(O(O(r,f),l),n.shape),mean:()=>{let w=O(O(f,le(-1)),m);return s.rank===1&&(w=ye(w,u)),L(w,s.shape)},variance:()=>{let w=O(O(d,p),m);return s.rank===1&&(w=ye(w,u)),L(w,s.shape)},scale:()=>{let w=O(p,f),v=O(r,w);return s.rank===1&&(v=ye(v,u)),L(v,s.shape)},offset:()=>{let w=r;return s.rank===1&&(w=ye(w,u)),L(w,s.shape)}}}};var fS={kernelName:ms,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=Jt(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=pS(0,p),h=pS(p+1,p+1+f),g=mS([c,[u],m]),x=L(r,g),b=L(n,[u]),_=mS([[p],d,h]),w=Ue(x,_),v=nf(w,b,o.shape[a]),$=Wm(_);return v=Ue(v,$),v},indices:()=>n}}};function pS(r,e){let t=[];for(let o=r;o{let[t,o]=e;return{a:()=>Ie(t),b:()=>Ie(o)}}};var hS={kernelName:Do,gradFunc:r=>({x:()=>oe(r,"float32")})};var gS={kernelName:pi,gradFunc:r=>({x:()=>Ie(r)})};var xS={kernelName:mi,gradFunc:r=>({x:()=>Ie(r)})};var yS={kernelName:fi,gradFunc:r=>({x:()=>Ie(r)})};var bS={kernelName:cn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=Qt(o,0);return{x:()=>$t(s,r,O(r,n))}}};var _S={kernelName:gi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Q(t,1))}}};var wS={kernelName:pn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,oe(t,"float32"))}}};var kS={kernelName:Ib,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=Xt(o);return ue(r,O(ye(r,n,s),a))}}}};function nH(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return E.runKernel(su,i,l)}var vS=S({localResponseNormalizationBackprop_:nH});var CS={kernelName:ca,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>vS(o,n,r,s,a,i,l)}}};function Cg(r,e,t,o){return e.rankO(r,oe(_o(t,e),r.dtype))}}var ew={kernelName:mn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=Jt(n,s.shape),l=Cg(r,a,s,i);return{x:()=>l.x()}}};var IS={kernelName:fn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>O(r,oe(to(t,o),"float32")),b:()=>O(r,oe(Eu(t,o),"float32"))}}};function sH(r,e,t,o,n,s,a){let i=k(r,"dy","maxPool3dGrad"),l=k(e,"input","maxPool3dGrad"),u=k(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),T(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),T(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),T(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&T(st(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:o,strides:n,pad:s,dimRoundingMode:a},g=E.runKernel(au,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var NS=S({maxPool3dGrad_:sH});var SS={kernelName:pa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>NS(r,o,n,s,a,i,l)}}};function iH(r,e,t,o,n,s,a){let i=k(r,"dy","maxPoolGrad"),l=k(e,"input","maxPoolGrad"),u=k(t,"output","maxPoolGrad");T(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),T(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),T(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&T(st(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return E.runKernel(iu,c,p)}var TS=S({maxPoolGrad_:iH});var ES={kernelName:dn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>TS(r,o,n,s,a,i)}}};var AS={kernelName:hn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=Jt(n,o.shape),i=N_(o.shape,s)[1],l=ft(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return de(O(p,Cr(o.shape,"float32")),l)}}}};var DS={kernelName:gn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=Jt(n,s.shape),l=Cg(r,a,s,i);return{x:()=>l.x()}}};var $S={kernelName:xn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>O(r,oe(Mo(t,o),"float32")),b:()=>O(r,oe(Qt(t,o),"float32"))}}};var RS={kernelName:ma,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Fe(r,s,o.shape)}}};var FS={kernelName:yi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=Ct(t.shape,n);return i.length>0?L(ye(r,i),t.shape):r},b:()=>{let i=O(r,je(Ts(de(t,o)))),l=Ct(o.shape,n);return l.length>0?L(ye(i,l),o.shape):i}}}};var OS={kernelName:yn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=O(r,oe(o,"float32")),l=Ct(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=Ct(o.shape,n);return l.length>0?L(ye(i,l),o.shape):i}}}};var PS={kernelName:fs,gradFunc:r=>({x:()=>je(r)})};var MS={kernelName:bn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>gt(t.shape,"float32")}}};var LS={kernelName:ds,gradFunc:r=>({x:()=>Ie(r)})};var zS={kernelName:hs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return ur(r,o).map(s=>()=>s)}};var tw={kernelName:_n,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Fe(r,s,o.shape)}}};var BS={kernelName:wn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=ze(s.shape,a.shape);return{a:()=>{let c=oe(a,"float32"),p=O(r,O(c,Rr(s,ue(c,le(1))))),m=Ct(s.shape,i);return m.length>0&&(p=ye(p,m)),L(p,s.shape)},b:()=>{let c=Qt(s,0),p=$t(c,ir(s),Ie(s)),m=O(r,O(n,p)),f=Ct(a.shape,i);return f.length>0&&(m=ye(m,f)),L(m,a.shape)}}}};var VS={kernelName:kn,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=Qt(t,0);return{x:()=>$t(n,r,O(r,o)),alpha:()=>{let s=$t(n,Ie(r),O(r,t)),a=Ct(o.shape,r.shape);return a.length>0&&(s=ye(s,a)),L(s,o.shape)}}}};var GS={kernelName:on,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=de(r,oe(o,"float32")),l=Ct(t.shape,n);return l.length>0?L(ye(i,l),t.shape):i},b:()=>{let i=O(r,oe(t,"float32")),l=Ct(o.shape,n);l.length>0&&(i=L(ye(i,l),o.shape));let u=Pe(o);return je(de(i,oe(u,"float32")))}}}};var WS={kernelName:Ci,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,je(Pe(t)))}}};var US={kernelName:In,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=O(Mo(t,6),$s(t));return{x:()=>O(r,oe(o,"float32"))}}};var jS={kernelName:vn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,oe($s(t),"float32"))}}};var HS={kernelName:gs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var qS={kernelName:Cn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(mu,n,t)}}};var KS={kernelName:da,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(pu,n,t)}}};var XS={kernelName:Nn,gradFunc:(r,e,t)=>{let{dims:o}=t,n=Jt(o,r.shape);return{x:()=>qt(r,n)}}};var YS={kernelName:Sn,gradFunc:r=>({x:()=>Ie(r)})};var ZS={kernelName:Tn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>je(de(r,O(Rr(t,1.5),2)))}}};var JS={kernelName:xs,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>oe(Ie(t),"float32"),t:()=>O(r,oe(t,r.dtype)),e:()=>O(r,oe(Ta(t),r.dtype))}}};var QS={kernelName:Ni,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Qt(t,le(0)),n=le(J_),s=le(Q_),a=O(r,s),i=O(O(r,n),Xt(oe(t,"float32")));return $t(o,a,i)}}}};var eT={kernelName:An,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(t,ue(le(1),t)))}}};var tT={kernelName:Ti,gradFunc:r=>({x:()=>Ie(r)})};var rT={kernelName:En,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(Ia(oe(t,"float32")),r)}}};var oT={kernelName:Si,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(Nu(oe(t,"float32")),r)}}};var nT={kernelName:ys,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=e_(o,n,s),u=[];for(let c=0;c$r(r,u)}}};var sT={kernelName:Rn,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=O(r,o);return{logits:()=>ue(a,O(ye(a,[n],s),o))}}};var iT={kernelName:Ei,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,Ur(t))}}};var rw={kernelName:ha,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>Ca(r,o,n)}}};var ow={kernelName:bs,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Je(r,o)}}};var aT={kernelName:Dn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,O(xt(oe(t,"float32")),2))}}};var lT={kernelName:ga,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(r,O(oe(t,"float32"),2))}}};var uT={kernelName:Fn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=le(2);return{a:()=>O(r,O(n,ue(t,o))),b:()=>O(r,O(n,ue(o,t)))}}};var cT={kernelName:$o,gradFunc:r=>({x:()=>Ie(r)})};var pT={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=ze(t.shape,o.shape);return{a:()=>{let i=r,l=Ct(t.shape,n);return l.length>0&&(i=ye(i,l)),L(i,t.shape)},b:()=>{let i=r,l=Ct(o.shape,n);return l.length>0&&(i=ye(i,l)),L(je(i),o.shape)}}}};var mT={kernelName:$n,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;Jt(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=O(i,Cr(o.shape,"float32"));return{x:()=>l}}};var fT={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>de(r,Pe(Ia(t)))}}};var dT={kernelName:Pn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>O(ue(le(1),Pe(t)),r)}}};var hT={kernelName:yo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ie(o);if(o.rank===1)for(let i=0;i{let o=t,{perm:n}=o,s=Wm(n);return{x:()=>Ue(r,s)}}};var xT={kernelName:_s,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Bt(r,n)}}};var yT={kernelName:xa,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>aH(r,t)}}};function aH(r,e){let t=qr(e,Ie(e)),o=Bn(r,t),n=to(e,le(0,"int32")),s=o.rank-n.rank;for(let i=0;i({x:()=>Ie(r)})};var lH=[vg,I0,N0,S0,T0,E0,A0,D0,$0,R0,F0,O0,M0,z0,B0,V0,G0,W0,U0,j0,H0,q0,X0,K0,Z0,J0,Q0,eS,tS,rS,GS,oS,nS,sS,iS,aS,uS,lS,cS,fS,dS,hS,gS,xS,yS,bS,_S,wS,kS,CS,ew,ew,IS,SS,ES,AS,DS,$S,RS,FS,OS,PS,MS,LS,zS,tw,tw,BS,VS,WS,US,jS,HS,qS,KS,XS,YS,ZS,JS,QS,eT,tT,rT,oT,nT,sT,iT,rw,rw,ow,ow,aT,uT,lT,cT,pT,mT,fT,dT,hT,gT,xT,yT,bT];for(let r of lH)Sb(r);F().prototype.abs=function(){return this.throwIfDisposed(),Tt(this)};F().prototype.acos=function(){return this.throwIfDisposed(),Nm(this)};F().prototype.acosh=function(){return this.throwIfDisposed(),Sm(this)};F().prototype.add=function(r){return this.throwIfDisposed(),Q(this,r)};F().prototype.all=function(r,e){return this.throwIfDisposed(),wu(this,r,e)};F().prototype.any=function(r,e){return this.throwIfDisposed(),nl(this,r,e)};F().prototype.argMax=function(r){return this.throwIfDisposed(),sl(this,r)};F().prototype.argMin=function(r){return this.throwIfDisposed(),Tm(this,r)};F().prototype.asScalar=function(){return this.throwIfDisposed(),T(this.size===1,()=>"The array must have only 1 element."),L(this,[])};F().prototype.asType=function(r){return this.throwIfDisposed(),oe(this,r)};F().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};F().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};F().prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};F().prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};F().prototype.asin=function(){return this.throwIfDisposed(),Em(this)};F().prototype.asinh=function(){return this.throwIfDisposed(),Am(this)};F().prototype.atan=function(){return this.throwIfDisposed(),Dm(this)};F().prototype.atan2=function(r){return this.throwIfDisposed(),$m(this,r)};F().prototype.atanh=function(){return this.throwIfDisposed(),Rm(this)};F().prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),va(this,r,e,t,o)};F().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),Ca(this,r,e)};F().prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),zn(this,r,e,t,o,n)};F().prototype.broadcastTo=function(r){return this.throwIfDisposed(),il(this,r)};F().prototype.cast=function(r){return this.throwIfDisposed(),oe(this,r)};F().prototype.ceil=function(){return this.throwIfDisposed(),Om(this)};F().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),nr(this,r,e)};F().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Je([this,...r],e)};F().prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Cu(this,r,e,t,o,n,s)};F().prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),Iu(this,r,e,t,o,n)};F().prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),jr(this,r,e,t,o,n,s)};F().prototype.cos=function(){return this.throwIfDisposed(),Ia(this)};F().prototype.cosh=function(){return this.throwIfDisposed(),Nu(this)};F().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Su(this,r,e,t)};F().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Mm(this,r,e)};F().prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Ns(this,r,e,t,o,n,s)};F().prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),Lm(this,r,e,t,o,n)};F().prototype.divNoNan=function(r){return this.throwIfDisposed(),zm(this,r)};F().prototype.div=function(r){return this.throwIfDisposed(),de(this,r)};F().prototype.dot=function(r){return this.throwIfDisposed(),b_(this,r)};F().prototype.elu=function(){return this.throwIfDisposed(),Ss(this)};F().prototype.equal=function(r){return this.throwIfDisposed(),_o(this,r)};F().prototype.erf=function(){return this.throwIfDisposed(),Bm(this)};F().prototype.exp=function(){return this.throwIfDisposed(),Xt(this)};F().prototype.expandDims=function(r){return this.throwIfDisposed(),sr(this,r)};F().prototype.expm1=function(){return this.throwIfDisposed(),Vm(this)};F().prototype.fft=function(){return this.throwIfDisposed(),Ra(this)};F().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.floor=function(){return this.throwIfDisposed(),Ts(this)};F().prototype.floorDiv=function(r){return this.throwIfDisposed(),_u(this,r)};F().prototype.gather=function(r,e){return this.throwIfDisposed(),Bn(this,r,e)};F().prototype.greaterEqual=function(r){return this.throwIfDisposed(),to(this,r)};F().prototype.greater=function(r){return this.throwIfDisposed(),Qt(this,r)};F().prototype.ifft=function(){return this.throwIfDisposed(),zi(this)};F().prototype.irfft=function(){return this.throwIfDisposed(),Bu(this)};F().prototype.isFinite=function(){return this.throwIfDisposed(),__(this)};F().prototype.isInf=function(){return this.throwIfDisposed(),w_(this)};F().prototype.isNaN=function(){return this.throwIfDisposed(),k_(this)};F().prototype.leakyRelu=function(r){return this.throwIfDisposed(),Sa(this,r)};F().prototype.lessEqual=function(r){return this.throwIfDisposed(),Mo(this,r)};F().prototype.less=function(r){return this.throwIfDisposed(),Eu(this,r)};F().prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),Gm(this,r,e,t,o)};F().prototype.logSigmoid=function(){return this.throwIfDisposed(),C_(this)};F().prototype.logSoftmax=function(r){return this.throwIfDisposed(),Du(this,r)};F().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Um(this,r,e)};F().prototype.log=function(){return this.throwIfDisposed(),ir(this)};F().prototype.log1p=function(){return this.throwIfDisposed(),Au(this)};F().prototype.logicalAnd=function(r){return this.throwIfDisposed(),fr(this,r)};F().prototype.logicalNot=function(){return this.throwIfDisposed(),Ta(this)};F().prototype.logicalOr=function(r){return this.throwIfDisposed(),$u(this,r)};F().prototype.logicalXor=function(r){return this.throwIfDisposed(),T_(this,r)};F().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),We(this,r,e,t)};F().prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),Ea(this,r,e,t,o)};F().prototype.max=function(r,e){return this.throwIfDisposed(),ar(this,r,e)};F().prototype.maximum=function(r){return this.throwIfDisposed(),qr(this,r)};F().prototype.mean=function(r,e){return this.throwIfDisposed(),ht(this,r,e)};F().prototype.min=function(r,e){return this.throwIfDisposed(),Li(this,r,e)};F().prototype.minimum=function(r){return this.throwIfDisposed(),As(this,r)};F().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),Hm(this,r,e)};F().prototype.mod=function(r){return this.throwIfDisposed(),qm(this,r)};F().prototype.mul=function(r){return this.throwIfDisposed(),O(this,r)};F().prototype.neg=function(){return this.throwIfDisposed(),je(this)};F().prototype.norm=function(r,e,t){return this.throwIfDisposed(),Wu(this,r,e,t)};F().prototype.notEqual=function(r){return this.throwIfDisposed(),Gn(this,r)};F().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),Is(this,r,e,t)};F().prototype.onesLike=function(){return this.throwIfDisposed(),er(this)};F().prototype.pad=function(r,e){return this.throwIfDisposed(),$r(this,r,e)};F().prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),D_(this,r,e,t,o,n)};F().prototype.pow=function(r){return this.throwIfDisposed(),Rr(this,r)};F().prototype.prelu=function(r){return this.throwIfDisposed(),Da(this,r)};F().prototype.prod=function(r,e){return this.throwIfDisposed(),Ru(this,r,e)};F().prototype.reciprocal=function(){return this.throwIfDisposed(),Xm(this)};F().prototype.relu=function(){return this.throwIfDisposed(),Ir(this)};F().prototype.relu6=function(){return this.throwIfDisposed(),Ou(this)};F().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};F().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};F().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),_g(this,r,e,t)};F().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),wg(this,r,e,t)};F().prototype.reverse=function(r){return this.throwIfDisposed(),qt(this,r)};F().prototype.rfft=function(){return this.throwIfDisposed(),Fa(this)};F().prototype.round=function(){return this.throwIfDisposed(),Ym(this)};F().prototype.rsqrt=function(){return this.throwIfDisposed(),Pu(this)};F().prototype.selu=function(){return this.throwIfDisposed(),Mu(this)};F().prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Zm(this,r,e,t,o,n,s)};F().prototype.sigmoid=function(){return this.throwIfDisposed(),Ur(this)};F().prototype.sign=function(){return this.throwIfDisposed(),Jm(this)};F().prototype.sin=function(){return this.throwIfDisposed(),Lu(this)};F().prototype.sinh=function(){return this.throwIfDisposed(),zu(this)};F().prototype.slice=function(r,e){return this.throwIfDisposed(),Fe(this,r,e)};F().prototype.softmax=function(r){return this.throwIfDisposed(),$a(this,r)};F().prototype.softplus=function(){return this.throwIfDisposed(),Es(this)};F().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),Aa(this,r,e)};F().prototype.split=function(r,e){return this.throwIfDisposed(),lr(this,r,e)};F().prototype.sqrt=function(){return this.throwIfDisposed(),xt(this)};F().prototype.square=function(){return this.throwIfDisposed(),Pe(this)};F().prototype.squaredDifference=function(r){return this.throwIfDisposed(),Vu(this,r)};F().prototype.squeeze=function(r){return this.throwIfDisposed(),wo(this,r)};F().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Bt(t,e)};F().prototype.step=function(r){return this.throwIfDisposed(),$s(this,r)};F().prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),tf(this,r,e,t,o,n,s,a,i)};F().prototype.sub=function(r){return this.throwIfDisposed(),ue(this,r)};F().prototype.sum=function(r,e){return this.throwIfDisposed(),ye(this,r,e)};F().prototype.tan=function(){return this.throwIfDisposed(),rf(this)};F().prototype.tanh=function(){return this.throwIfDisposed(),Mi(this)};F().prototype.tile=function(r){return this.throwIfDisposed(),Po(this,r)};F().prototype.toBool=function(){return this.throwIfDisposed(),oe(this,"bool")};F().prototype.toFloat=function(){return this.throwIfDisposed(),oe(this,"float32")};F().prototype.toInt=function(){return this.throwIfDisposed(),oe(this,"int32")};F().prototype.topk=function(r,e){return this.throwIfDisposed(),of(this,r,e)};F().prototype.transpose=function(r){return this.throwIfDisposed(),Ue(this,r)};F().prototype.unique=function(r){return this.throwIfDisposed(),ep(this,r)};F().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),nf(this,r,e)};F().prototype.unstack=function(r){return this.throwIfDisposed(),ur(this,r)};F().prototype.where=function(r,e){return this.throwIfDisposed(),$t(r,this,e)};F().prototype.zerosLike=function(){return this.throwIfDisposed(),Ie(this)};var lw={};et(lw,{maxNorm:()=>cH,minMaxNorm:()=>fH,nonNeg:()=>mH,unitNorm:()=>pH});var nw;function Yt(){return nw==null&&(nw=s_().epsilon()),nw}function Kr(){return"channelsLast"}var ko=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ko.prototype)}},Or=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Or.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Ne=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ne.prototype)}},cf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,cf.prototype)}};function jn(r,e){if(Array.isArray(r)){let t=[];for(let o=0;ot.toUpperCase())}var qn={};function lp(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function iw(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>iw(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:iw(o))}}}function Vi(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in qn)a=qn[s];else if(a=e[s],a==null)throw new z(`Unknown ${o}: ${r}. This may be due to one of the following reasons: 1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${o}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in qn?[i,l]=qn.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${o}: ${a}. This may be due to one of the following reasons: 1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(qn))u[f]=qn[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},qn);for(let f of Object.keys(t))qn[f]=t[f];iw(s.config);let m=l(i,s.config,t,n);return qn=Object.assign({},p),m}else{let u=Object.assign({},qn);for(let p of Object.keys(t))qn[p]=t[p];let c=new i(s.config);return qn=Object.assign({},u),c}}}function uH(r,e){return re?1:0}function pf(r,e){return-1*uH(r,e)}function Kn(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function _T(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function Gi(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function Ig(r,e,t=0,o=Infinity){return Lo(t>=0),Lo(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function Wt(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>Wt(t,`element ${o+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${wT(r)}.`)}function wT(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>wT(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function kT(r,e){let t=y.now(),o;return(...s)=>{let a=y.now();return a-txt(ye(O(r,r),e,!0)))}var up=class extends J.Serializable{getConfig(){return{}}},mf=class extends up{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=aw(e,this.axis),o=nr(t,0,this.maxValue);return O(e,de(o,Q(Yt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};mf.className="MaxNorm";J.registerClass(mf);var ff=class extends up{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>de(e,Q(Yt(),aw(e,this.axis))))}getConfig(){return{axis:this.axis}}};ff.className="UnitNorm";J.registerClass(ff);var df=class extends up{apply(e){return Ir(e)}};df.className="NonNeg";J.registerClass(df);var hf=class extends up{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=aw(e,this.axis),o=Q(O(this.rate,nr(t,this.minValue,this.maxValue)),O(1-this.rate,t));return O(e,de(o,Q(Yt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};hf.className="MinMaxNorm";J.registerClass(hf);var vT={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ot(r){return lp(r)}function CT(r,e={}){return Vi(r,J.SerializationMap.getMap().classNameMap,e,"constraint")}function Pt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in vT?vT[r]:r,config:{}};return CT(t)}else return r instanceof up?r:CT(r)}function cH(r){return new mf(r)}function pH(r){return new ff(r)}function mH(){return new df}function fH(r){return new hf(r)}var fw={};et(fw,{constant:()=>wH,glorotNormal:()=>TH,glorotUniform:()=>SH,heNormal:()=>EH,heUniform:()=>AH,identity:()=>IH,leCunNormal:()=>DH,leCunUniform:()=>$H,ones:()=>_H,orthogonal:()=>RH,randomNormal:()=>vH,randomUniform:()=>kH,truncatedNormal:()=>CH,varianceScaling:()=>NH,zeros:()=>bH});var IT=["channelsFirst","channelsLast"],NT=["nearest","bilinear"],ST=["valid","same","causal"],TT=["max","avg"],ET=["sum","mul","concat","ave"];var cp=new Map;function Rt(r){Gi(IT,"DataFormat",r)}function AT(r){Gi(NT,"InterpolationFormat",r)}function Xr(r){Gi(ST,"PaddingMode",r)}function uw(r){Gi(TT,"PoolMode",r)}var gf=[],DT="/";function Fs(r,e){gf.push(r);try{let t=e();return gf.pop(),t}catch(t){throw gf.pop(),t}}function dH(){return gf.length===0?"":gf.join(DT)+DT}function Sg(r){if(!$T(r))throw new Error("Not a valid tensor name: '"+r+"'");return dH()+r}function Tg(r){if(!$T(r))throw new Error("Not a valid tensor name: '"+r+"'");cp.has(r)||cp.set(r,0);let e=cp.get(r);if(cp.set(r,cp.get(r)+1),e>0){let t=`${r}_${e}`;return cp.set(t,1),t}else return r}var hH=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function $T(r){return!!r.match(hH)}function RT(r){return r===parseInt(r.toString(),10)}function Xn(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=La(r,1);return Eg(t,[1,e,1])})}function PT(r){let e=[Xn(r.shape)];return r.reshape(e)}function MT(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],Xn(r.shape,1)];return r.reshape(e)}function za(r,e,t){return B(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return hg(r,[e,0],[t,r.shape[1]]);case 3:return ef(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return Qc(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Fe(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Fe(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function cw(r,e,t){return B(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:return hg(r,[0,e],[r.shape[0],t]);case 3:return ef(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return Qc(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function xf(r,e,t,o){return B(()=>{switch(r.rank){case 1:return Qm(r,e,t);case 2:switch(o){case 1:return za(r,e,t);case 2:return cw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return za(r,e,t);case 2:return ef(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return cw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return za(r,e,t);case 2:return Qc(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return Qc(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return cw(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function pp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Je(r,e)}function pw(r,e){switch(r.rank){case 1:return d_([r,e]);case 2:return h_([r,e],0);case 3:return g_([r,e],0);case 4:return x_([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Eg(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Po(r,e)}function mp(r,e=0,t=1,o,n){return dg(r,e,t,o,n)}function Yn(r,e,t,o){if(r.rank<2||e.rank<2)throw new Ne(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Ne(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return Wn.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?mw(r.rank,o,Kr()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return Wn.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?mw(r.rank,o,Kr()):null,activation:t}).reshape(p)}}function Ag(r,e,t){return B(()=>(Array.isArray(e)?e=Vt(e,"int32"):e=e.toInt(),Bn(r,e,t)))}function Xu(r){return O(r,r)}function mw(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function ro(r,e,t){return B(()=>(t==null&&(t=Kr()),Rt(t),r.add(mw(r.rank,e,t))))}function LT(r,e=1){if(e!==1)throw new Ne(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return Ss(r)}function zT(r){return B(()=>de(r,Tt(r).add(1)))}function Dg(r,e,t,o){return B(()=>j_(r,e,t,o))}function BT(r){return B(()=>{let e=Q(.5,O(.2,r));return nr(e,0,1)})}function cl(r,e,t=!1){return t?r():e()}var VT=["fanIn","fanOut","fanAvg"],GT=["normal","uniform","truncatedNormal"];function gH(r){Gi(VT,"FanMode",r)}function xH(r){Gi(GT,"Distribution",r)}var oo=class extends J.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},yf=class extends oo{apply(e,t){return gt(e,t)}};yf.className="Zeros";J.registerClass(yf);var Yu=class extends oo{apply(e,t){return Cr(e,t)}};Yu.className="Ones";J.registerClass(Yu);var bf=class extends oo{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return B(()=>O(le(this.value),Cr(e,t)))}getConfig(){return{value:this.value}}};bf.className="Constant";J.registerClass(bf);var _f=class extends oo{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ds(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};_f.className="RandomUniform";J.registerClass(_f);var wf=class extends oo{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};wf.className="RandomNormal";J.registerClass(wf);var kf=class extends oo{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`truncatedNormal does not support dType ${t}.`);return Gu(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};kf.className="TruncatedNormal";J.registerClass(kf);var vf=class extends oo{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return B(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,Xc(e[0]))})}getConfig(){return{gain:this.gain}}};vf.className="Identity";J.registerClass(vf);function yH(r,e="channelsLast"){let t,o;if(Rt(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=Xn(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=Xn(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=Xn(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var Mr=class extends oo{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,gH(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,xH(this.distribution),this.seed=e.seed}apply(e,t){let o=yH(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Ne(`${this.getClassName()} does not support dType ${t}.`);return Gu(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Ds(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Mr.className="VarianceScaling";J.registerClass(Mr);var fp=class extends Mr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};fp.className="GlorotUniform";J.registerClass(fp);var dp=class extends Mr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};dp.className="GlorotNormal";J.registerClass(dp);var hp=class extends Mr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};hp.className="HeNormal";J.registerClass(hp);var gp=class extends Mr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};gp.className="HeUniform";J.registerClass(gp);var xp=class extends Mr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};xp.className="LeCunNormal";J.registerClass(xp);var yp=class extends Mr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mr.className}};yp.className="LeCunNormal";J.registerClass(yp);var Cf=class extends oo{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Ne("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return B(()=>{if(e.length<2)throw new Ne("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=mp(o,0,1,"float32"),s=Z_.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),O(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Cf.className="Orthogonal";J.registerClass(Cf);var WT={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function UT(r,e={}){return Vi(r,J.SerializationMap.getMap().classNameMap,e,"initializer")}function It(r){return lp(r)}function dt(r){if(typeof r=="string"){let e=r in WT?WT[r]:r;if(e==="GlorotNormal")return new dp;if(e==="GlorotUniform")return new fp;if(e==="HeNormal")return new hp;if(e==="HeUniform")return new gp;if(e==="LeCunNormal")return new xp;if(e==="LeCunUniform")return new yp;{let t={};return t.className=e,t.config={},UT(t)}}else return r instanceof oo?r:UT(r)}function bH(){return new yf}function _H(){return new Yu}function wH(r){return new bf(r)}function kH(r){return new _f(r)}function vH(r){return new wf(r)}function CH(r){return new kf(r)}function IH(r){return new vf(r)}function NH(r){return new Mr(r)}function SH(r){return new fp(r)}function TH(r){return new dp(r)}function EH(r){return new hp(r)}function AH(r){return new gp(r)}function DH(r){return new xp(r)}function $H(r){return new yp(r)}function RH(r){return new Cf(r)}var Xw={};et(Xw,{Layer:()=>Me,RNN:()=>ao,RNNCell:()=>bl,activation:()=>Zq,add:()=>iK,alphaDropout:()=>WK,average:()=>aK,averagePooling1d:()=>Yw,averagePooling2d:()=>Zw,averagePooling3d:()=>Jw,avgPool1d:()=>gK,avgPool2d:()=>yK,avgPool3d:()=>_K,avgPooling1d:()=>xK,avgPooling2d:()=>bK,avgPooling3d:()=>wK,batchNormalization:()=>fK,bidirectional:()=>OK,concatenate:()=>lK,conv1d:()=>Wq,conv2d:()=>Uq,conv2dTranspose:()=>jq,conv3d:()=>Hq,convLstm2d:()=>DK,convLstm2dCell:()=>$K,cropping2D:()=>Kq,dense:()=>Jq,depthwiseConv2d:()=>Yq,dot:()=>mK,dropout:()=>Qq,elu:()=>Mq,embedding:()=>sK,flatten:()=>tK,gaussianDropout:()=>GK,gaussianNoise:()=>VK,globalAveragePooling1d:()=>kK,globalAveragePooling2d:()=>vK,globalMaxPool1d:()=>MK,globalMaxPool2d:()=>LK,globalMaxPooling1d:()=>I1,globalMaxPooling2d:()=>N1,gru:()=>IK,gruCell:()=>NK,input:()=>Qg,inputLayer:()=>Pq,layerNormalization:()=>dK,leakyReLU:()=>zq,lstm:()=>SK,lstmCell:()=>TK,masking:()=>UK,maxPool1d:()=>zK,maxPool2d:()=>BK,maxPooling1d:()=>S1,maxPooling2d:()=>T1,maxPooling3d:()=>CK,maximum:()=>uK,minimum:()=>cK,multiply:()=>pK,permute:()=>nK,prelu:()=>Bq,reLU:()=>Lq,repeatVector:()=>rK,reshape:()=>oK,rnn:()=>RK,separableConv2d:()=>qq,simpleRNN:()=>EK,simpleRNNCell:()=>AK,softmax:()=>Vq,spatialDropout1d:()=>eK,stackedRNNCells:()=>FK,thresholdedReLU:()=>Gq,timeDistributed:()=>PK,upSampling2d:()=>Xq,zeroPadding2d:()=>hK});var FH=0;function $g(){return FH++}var Rg={};function pl(r=""){return r in Rg||(Rg[r]=0),Rg[r]+=1,r+Rg[r].toString()}function Fg(r){return Array.isArray(r)&&Array.isArray(r[0])}function bp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Oe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Qe(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function _p(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var jT="Variable",If=class{constructor(e,t="float32",o=jT,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=$g(),o=o==null?jT:o,this.originalName=Sg(o),this.name=Tg(this.originalName),this.trainable_=n,this.constraint=s,this.val=V_(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),OH(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function OH(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function Nf(r){return r.map(e=>e.read())}function wp(r){r.forEach(e=>{e[0].write(e[1])})}var Et=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Lr=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=$g(),a!=null&&(this.originalName=Sg(a),this.name=Tg(this.originalName)),this.rank=t.length}},PH=0,ml=class{constructor(e,t){this.callArgs=t,this.id=PH++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},MH=0,Me=class extends J.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=MH++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=Hn(o)+"_"+pl(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Or(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return dr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return dr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ko(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ko(`Layer ${this.name} is not connected, no input to return.`);return dr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ko(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ko(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return dr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;os.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of yt(e))a.push(i.shape);this.build(dr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=yt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=dr(l),this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=LH(e),i=this.computeOutputShape(a),l,u=zH(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new Lr(u,c,this,yt(e),t,this.name,p)):l=new Lr(u,i,this,yt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Ne("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ko(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ko(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Or(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _p(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Nf(e?this.trainableWeights:this.weights)}setWeights(e){B(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=Nf(t);for(let s=0;ss.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=yt(e);t=yt(t),o=yt(o),n=yt(n),s=bp(s),a=bp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new ml({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;me.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function LH(r){r=yt(r);let e=[];for(let t of r)e.push(t.shape);return dr(e)}function zH(r){return"float32"}function dw(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s0){let n=await Promise.all(e);for(let s=0;sQ(this.totals[n],O(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:B(()=>{let n=O(de(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),Dt(t[o])}))}},Lg=class extends fl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;inew zg(o,e))}var no=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),no.checkForDuplicate(t),no.constructors[e]==null&&(no.constructors[e]=[]),no.constructors[e].push(t)}static checkForDuplicate(e){for(let t in no.constructors)no.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){no.constructors={}}static createCallbacks(e){let t=[];for(let o in no.constructors){let n=+o;e>=n&&t.push(...no.constructors[n])}return t.map(o=>new o)}};no.constructors={};function Vg(r,e,t,o,n,s,a,i,l){let u=new Lg,c=[new qT,...no.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new Mg(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Yr(r,e={},t=!1){return Vi(r,J.SerializationMap.getMap().classNameMap,e,"layer",t)}function Sf(r,e){return B(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ye(Xu(r),e,!0),o=Na(t.shape,Yt()),n=xt(qr(t,o));return de(r,n)})}function ji(r,e){return B(()=>ht(Xu(ue(e,r)),-1))}function kp(r,e){return B(()=>ht(Tt(ue(e,r)),-1))}function dl(r,e){return B(()=>{let t=ue(r,e),o=nr(Tt(r),Yt(),Number.MAX_VALUE),n=Tt(de(t,o));return O(100,ht(n,-1))})}function VH(r,e){return B(()=>{let t=nr(e,Yt(),Number.MAX_VALUE),o=ir(Q(1,t)),n=nr(r,Yt(),Number.MAX_VALUE),s=ir(Q(1,n));return ht(Xu(ue(o,s)),-1)})}function GH(r,e){return B(()=>{let t=qr(0,ue(1,O(r,e)));return ht(Xu(t),-1)})}function WH(r,e){return B(()=>{let t=qr(0,ue(1,O(r,e)));return ht(t,-1)})}function UH(r,e){return B(()=>{let t=ye(O(r,e),-1),o=ar(O(ue(1,r),e),-1);return qr(0,Q(1,ue(o,t)))})}function jH(r,e){return B(()=>{let t=Math.log(2),o=ue(e,r),n=ue(Q(o,Es(O(-2,o))),t);return ht(n,-1)})}function Zu(r,e,t=!1){return B(()=>{if(t)e=$a(e);else{let o=ye(e,e.shape.length-1,!0);e=de(e,o)}return e=nr(e,Yt(),1-Yt()),je(ye(O(r.toFloat(),ir(e)),e.shape.length-1))})}function vp(r,e,t=!1){return B(()=>{let o=Ts(PT(r)).toInt();e=nr(e,Yt(),1-Yt());let n=e.shape,s=Is(o,n[n.length-1]).reshape(n);return Zu(s,e,t)})}function HH(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return B(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function Cp(r,e){return B(()=>{let t;return t=nr(e,Yt(),1-Yt()),t=ir(de(t,ue(1,t))),ht(HH(r,t),-1)})}function qH(r,e){return B(()=>{let t=nr(r,Yt(),1),o=nr(e,Yt(),1);return ye(O(r,ir(de(t,o))),-1)})}function KH(r,e){return B(()=>{let t=ir(Q(Yt(),e));return ht(ue(e,O(r,t)),-1)})}function Tf(r,e){return B(()=>{let t=Sf(r,-1),o=Sf(e,-1),n=O(t,o);return je(ye(n,-1))})}var Ef={meanSquaredError:ji,meanAbsoluteError:kp,meanAbsolutePercentageError:dl,meanSquaredLogarithmicError:VH,squaredHinge:GH,hinge:WH,categoricalHinge:UH,logcosh:jH,categoricalCrossentropy:Zu,sparseCategoricalCrossentropy:vp,binaryCrossentropy:Cp,kullbackLeiblerDivergence:qH,poisson:KH,cosineProximity:Tf};function Gg(r){if(typeof r=="string"){if(r in Ef)return Ef[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function Af(r,e){return B(()=>{let t=O(.5,er(e)),o=Ma(Qt(e,t),r.dtype);return ht(_o(r,o),-1)})}function Df(r,e){return B(()=>Ma(_o(sl(r,-1),sl(e,-1)),"float32"))}function KT(r,e){return B(()=>fr(r.equal(1),e.equal(1)).sum().cast("float32"))}function XH(r,e){return B(()=>fr(r.equal(1),e.equal(0)).sum().cast("float32"))}function YH(r,e){return B(()=>fr(r.equal(0),e.equal(1)).sum().cast("float32"))}function hw(r,e){return B(()=>{let t=KT(r,e),o=YH(r,e),n=t.add(o);return $t(Qt(n,0),t.div(n),0).cast("float32")})}function XT(r,e){return B(()=>{let t=KT(r,e),o=XH(r,e),n=t.add(o);return $t(Qt(n,0),t.div(n),0).cast("float32")})}function Wg(r,e){return Cp(r,e)}function Ug(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),_o(r,e).asType("float32")}var ZH=ji,JH=ji,QH=kp,eq=kp,tq=dl,rq=dl,$f=Zu,oq=Tf,gw=vp,jg={binaryAccuracy:Af,categoricalAccuracy:Df,precision:hw,categoricalCrossentropy:$f,sparseCategoricalCrossentropy:gw,mse:ZH,MSE:JH,mae:QH,MAE:eq,mape:tq,MAPE:rq,cosine:oq};function YT(r){if(typeof r=="string"&&r in jg)return jg[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function Rf(r){if(Lo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(Ef))if(Ef[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(jg))if(jg[t]===r){e=t;break}return e!==void 0?e:r.name}}function ZT(r){let e={Adagrad:()=>ul.adagrad(.01),Adadelta:()=>ul.adadelta(1,.95,Yt()),Adam:()=>ul.adam(.001,.9,.999,Yt()),Adamax:()=>ul.adamax(.002,.9,.999,Yt(),0),RMSProp:()=>ul.rmsprop(.001,.9,0,Yt()),SGD:()=>ul.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var JT=1*1024*1024;function yw(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!xw(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>JT&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${JT}.`)}}function xw(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!xw(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!xw(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function QT(r,e,t,o=console.log){let n=sq(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),Hg(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function Hg(r,e,t=console.log){let o="";for(let n=0;n0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function iq(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];Hg(a,e,t)}function aq(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;pd.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(bw[c]==null){let d=uq(a,e);p=d.sorted,m=d.recipientCounts,bw[c]=p,t1[c]=m}p=bw[c],m={},n||Object.assign(m,t1[c]);let f=new Ps(e);for(let d=0;do.maxNumTensors&&(o.maxNumTensors=M),M0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=r1(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=r1(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:pq(o)}}function pq(r){let e={};for(let t in r)e[t]=r[t].size;return e}function r1(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function cq(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;ob.name)}`);Kn(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let _=b.sourceLayer,w=b.nodeIndex,v=b.tensorIndex;this.outputLayers.push(_),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(v)}for(let b of this.inputs){let _=b.sourceLayer,w=b.nodeIndex,v=b.tensorIndex;Lo(w===0,"input layer has >1 nodes"),Lo(v===0,"input layer has >1 tensors"),this.inputLayers.push(_),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;bb.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},o={},n={},s={},a={},i=[],l=(b,_,w,v,$,A)=>{(v==null||$==null||A==null)&&(v=b.sourceLayer,$=b.nodeIndex,A=b.tensorIndex);let R=v.inboundNodes[$];if(w.indexOf(R)!==-1)throw new Or(`The tensor ${b.name} at layer "${v.name}" is part of a cycle.`);if(_.indexOf(R)!==-1)return;this.containerNodes.add(zo.nodeKey(v,$)),v.id in a||(a[v.id]=Object.keys(a).length),w.indexOf(R)===-1&&w.push(R);let M=R.inboundLayers.length;for(let V=0;V=0;)w.splice(w.indexOf(R),1);i.push(R)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){o[b.id]=b,b.id in t||(t[b.id]=0);let _=t[b.id],w=n[b.outboundLayer.id]==null?0:n[b.outboundLayer.id];_=Math.max(_,w),n[b.outboundLayer.id]=_,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=_;for(let v=0;vparseInt(b,10)).sort(pf);this.layers=[];for(let b of d){let _=f[b];_.sort((w,v)=>{let $=a[w.id],A=a[v.id];return $A?1:0});for(let w of _)w instanceof zo&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(pf);let h=this.inputs.slice(),g=[];for(let b of d)for(let _ of m[b]){let w=_.outboundLayer;if(w!=null){for(let v of _.inputTensors)if(h.indexOf(v)===-1)throw new Or(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${w.name}". The following previous layers were accessed without issue: ${g}`);for(let v of _.outputTensors)h.push(v);g.push(w.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let _=x.filter(w=>w===b).length;if(_!==1)throw new Or(`The name "${b}" is used ${_} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new ml({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new z(`${a.length} of ${n} weights are not set: ${a}`)}wp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${hl}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=qg(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return B(()=>{e=yt(e);let o=new Ps;for(let n=0;n{e=yt(e);let o;return t==null?o=jn(null,e.length):o=yt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=bp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;iparseInt(i,10)).sort(pf);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;hparseInt(l,10)).sort(pf);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,x,b,_;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[w,v]=d[0];h.mask==null&&(h.mask=v),b=yt(p.call(w,h)),_=yt(p.computeMask(w,v)),g=[w],x=[v]}else g=d.map(w=>w[0]),x=d.map(w=>w[1]),h.mask==null&&(h.mask=x),b=yt(p.call(g,h)),_=yt(p.computeMask(g,x));if(p.activityRegularizer)throw new Ne("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w{let e=[];for(let t of this.layers)for(let o=0;o0){let h=[];for(let g=0;g0&&g.apply(dr(b),_)}function u(g){let x=g.name,b=Yr(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(n),s[x]=b,g.inboundNodes.forEach(w=>{if(!(w instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${w}`);i(b,w)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!_T(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let _ of b)l(x,_)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],_=g[2];Lo(x in s);let v=s[x].inboundNodes[b].outputTensors;m.push(v[_])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],_=g[2];Lo(x in s);let v=s[x].inboundNodes[b].outputTensors;f.push(v[_])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function mq(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Kg(r,e){return mq(r,e,"classWeight")}async function Xg(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=B(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Te(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Vt(a,"float32")}else return null}function o1(r,e){return O(r,e)}var fq=32;function s1(r,e){let t,o,n=e;t=n.xs,o=n.ys,y.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=n1("input",r.inputNames,t),a=n1("output",r.outputNames,o),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function n1(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function dq(r){if(r.length===3)throw new Ne("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function a1(r,e,t){let o=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(i1(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=dq(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Bg(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=Vg(c,p,t.epochs,null,null,hq(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d=t.batchesPerEpoch:_.done){if(n){let w;i1(t.validationData)?w=yt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):w=yt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?fq:t.validationBatchSize,verbose:0}));for(let v=0;v0)throw new Ne("Verbose mode is not implemented yet.");y.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=gq(e)?e:await e.iterator(),i=0,l=0;for(;o?l{if(u.value){let{xs:c,ys:p}=s1(r,u.value),m=c.concat(p),f=B(()=>n(m));if(Te(m),l===0)for(let h=0;hQ(s[h],O(d,g))),l>0&&Te(x)}Te(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function Ip(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>za(o,e,t-e)):za(r,e,t-e)}function Zg(r,e){return B(()=>r==null?null:Array.isArray(r)?r.map(t=>Zg(t,e)):Ag(r,e.dtype==="int32"?e:e.toInt()))}function Jg(r,e){let t=[],o=0,n=null;for(;o=r&&(n=r),t.push([o,n]),o=n;return t}async function xq(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),x;g!=null&&(x=Pr(0,g)),a==null&&(a=1);let{callbackList:b,history:_}=Vg(i,a,s,m,g,f,n,h,p);b.setModel(r),r.history=_,await b.onTrainBegin(),r.stopTraining_=!1;for(let w=m;w{let V=A[R][0],G=A[R][1],W=za($,V,G-V);M.batch=R,M.size=G-V;let q=Zg(t,W),Z=e(q);for(let X=0;X0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Ne("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let A=!0,R=await r.standardizeUserData(a,i,null,null,A,p);l=R[0],u=R[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let A=Math.floor(n[0].shape[0]*(1-o.validationSplit)),R=n[0].shape[0];l=Ip(n,A,R),n=Ip(n,0,A),u=Ip(s,A,R),s=Ip(s,0,A),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),_,w;d?(r.makeTestFunction(),_=r.testFunction,w=b.slice().concat(b.map(A=>"val_"+A))):(_=null,h=[],w=b.slice());let v=Bg(o.callbacks,o.yieldEvery);return await xq(r,x,g,b,p,o.epochs,o.verbose,v,_,h,o.shuffle,w,o.initialEpoch,null,null)}finally{r.isTraining=!1,gl(n,e),gl(s,t),gl(l,a),gl(u,i),c!=null&&Te(c)}}function _w(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;tt.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function yq(r){return r instanceof Ve}function ww(r){return Array.isArray(r)}function c1(r){return!yq(r)&&!ww(r)}function p1(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(ww(r)&&r.length>0)a=!0;else if(c1(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(c1(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(ww(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=_w(s),t!=null)for(let a=0;a=0&&u!==c)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function bq(r,e,t){let o=Kn(r.map(s=>s.shape[0]));o.sort();let n=Kn(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!y.arraysEqual(o,n))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function _q(r,e,t){let o=[ji,Cp,Zu];for(let n=0;n1)throw new z(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var kq="layers-model",vo=class extends zo{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");QT(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=ZT(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Fr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Gg(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Gg(i))}else{let a=Gg(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=wq(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Fs("metric",()=>{for(let a=0;a{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Cp?["accuracy","acc"].indexOf(d)!==-1?m=Af:["crossentropy","ce"].indexOf(d)!==-1&&(m=Wg):this.lossFunctions[a]===vp?["accuracy","acc"].indexOf(d)!==-1?m=Ug:["crossentropy","ce"].indexOf(d)!==-1&&(m=gw):["accuracy","acc"].indexOf(d)!==-1?m=Df:["crossentropy","ce"].indexOf(d)!==-1&&(m=$f);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=YT(d),p=c+Rf(d);let h;Fs(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;Yg(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return dr(u)}finally{gl(a[0],e),gl(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),l1(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new z(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new Ps;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;li.name);for(let i=0;i0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return B(()=>{let n=this.checkNumSamples(e);if(o)throw new Ne("Verbose predictLoop() is not implemented yet.");let s=Jg(n,t),a=this.outputs.map(i=>[]);for(let i=0;i{let u=s[i][0],c=s[i][1],p=Ip(e,u,c),m=[];if(Array.isArray(p))for(let d=0;da[c].push(u));return dr(a.map(i=>Je(i,0)))})}predict(e,t={}){let o=_w(e);m1(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Yg(n),this.predictLoop(o,n)}finally{gl(o,e)}}predictOnBatch(e){m1(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Or("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a0&&e[0].shape[0]%n!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Kg(n,this.outputNames);u=[];for(let p=0;p{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Ne("Verbose mode is not implemented yet.");if(s!=null)throw new Ne("steps mode in testLoop() is not implemented yet");{let l=Jg(a,o),u=Vt(Pr(0,a));for(let c=0;c1&&(s+=`_${sw(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h1&&h{d=Q(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>B(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;uHn(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=Hn(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Hn(Rf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Hn(Rf(e)));{let e={};for(let t in this.metrics)e[t]=Hn(Rf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ju(e.optimizer_config),o=Yr(t),n;if(typeof e.loss=="string")n=Pa(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>Pa(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=Pa(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Pa(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Pa(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=vr.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await vr.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:kq,generatedBy:`TensorFlow.js tfjs-layers v${hl}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await vr.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=vr.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;yw(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){yw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};vo.className="Model";J.registerClass(vo);var kw=class extends vo{};kw.className="Functional";J.registerClass(kw);async function f1(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=Ju(t),n=Yr(o,e);if(r.weightsManifest!=null){let s=await vr.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Te(s)}return n}async function d1(r,e){if(e==null&&(e={}),typeof r=="string"){let t=vr.getLoadHandlers(r,e);if(t.length===0)t.push(vr.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return vq(r,void 0,e)}async function vq(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=Yr(Ju(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=Cq(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Te(u),Te(c.map(p=>p.tensor))}return i}function Cq(r,e){let t=vr.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var Hi=class extends vo{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:pl("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Hi||e instanceof vo,o;if(t){if(o=e,o.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=Og({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=dw(this.outputs[0])}this.inboundNodes=[],new ml({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:jn(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Qe(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new vo({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Or("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Hi))throw new Ne(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=Yr(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};Hi.className="Sequential";J.registerClass(Hi);function h1(r){return new vo(r)}function g1(r){return new Hi(r)}function x1(r,e){return e==null&&(e={}),d1(r,e)}function Qg(r){return Og(r)}function y1(r,e){no.registerCallbackConstructor(r,e)}var so=class extends J.Serializable{getConfig(){return{}}},vw=class extends so{apply(e,t=1){return LT(e,t)}};vw.className="elu";J.registerClass(vw);var Cw=class extends so{apply(e){return Mu(e)}};Cw.className="selu";J.registerClass(Cw);var Iw=class extends so{apply(e){return Ir(e)}};Iw.className="relu";J.registerClass(Iw);var Nw=class extends so{apply(e){return B(()=>As(6,Ir(e)))}};Nw.className="relu6";J.registerClass(Nw);var Sw=class extends so{apply(e){return e}};Sw.className="linear";J.registerClass(Sw);var Tw=class extends so{apply(e){return Ur(e)}};Tw.className="sigmoid";J.registerClass(Tw);var Ew=class extends so{apply(e){return BT(e)}};Ew.className="hardSigmoid";J.registerClass(Ew);var Aw=class extends so{apply(e){return Es(e)}};Aw.className="softplus";J.registerClass(Aw);var Dw=class extends so{apply(e){return zT(e)}};Dw.className="softsign";J.registerClass(Dw);var $w=class extends so{apply(e){return Mi(e)}};$w.className="tanh";J.registerClass($w);var Ff=class extends so{apply(e,t=-1){return $a(e,t)}};Ff.className="softmax";J.registerClass(Ff);var Rw=class extends so{apply(e,t=-1){return Du(e,t)}};Rw.className="logSoftmax";J.registerClass(Rw);var Fw=class extends so{apply(e,t=1){return B(()=>Ur(e.mul(t)).mul(e))}};Fw.className="swish";J.registerClass(Fw);function Ms(r){return r.getClassName()}function Ow(r,e={}){return Vi(r,J.SerializationMap.getMap().classNameMap,e,"activation")}function Ls(r){if(r==null){let e={};return e.className="linear",e.config={},Ow(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},Ow(e)}else return r instanceof so?r:Ow(r)}function Pw(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var Mw=class extends J.Serializable{},ec=class extends Mw{constructor(e){super();Pw(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return B(()=>{let t=gt([1]);return this.hasL1&&(t=Q(t,ye(O(this.l1,Tt(e))))),this.hasL2&&(t=Q(t,ye(O(this.l2,Xu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};ec.className="L1L2";J.registerClass(ec);function b1(r){return Pw(r),new ec({l1:r!=null?r.l1:null,l2:0})}function _1(r){return Pw(r),new ec({l2:r!=null?r.l2:null,l1:0})}var w1={l1l2:"L1L2"};function lt(r){return lp(r)}function k1(r,e={}){return Vi(r,J.SerializationMap.getMap().classNameMap,e,"regularizer")}function bt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in w1?w1[r]:r,config:{}};return k1(t)}else return r instanceof Mw?r:k1(r)}var Of=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let o=Ir(e);return this.maxValue!=null&&(o=nr(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Of.className="ReLU";J.registerClass(Of);var Pf=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Oe(e);return Sa(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Pf.className="LeakyReLU";J.registerClass(Pf);var Mf=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=dt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=bt(e.alphaRegularizer),this.alphaConstraint=Pt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Qe(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n(Rt(e),e==="channelsFirst"?Ue(r,[0,2,3,1]):r))}function Lw(r,e){return B(()=>(Rt(e),e==="channelsFirst"?Ue(r,[0,2,3,4,1]):r))}function Iq(r,e,t,o=1,n="valid",s,a=1){return B(()=>{if(s==null&&(s=Kr()),Rt(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ue(r,[0,2,1])),n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Cu(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=ro(i,t)),i})}function v1(r,e,t,o=[1,1],n="valid",s,a,i=null){return B(()=>{if(s==null&&(s=Kr()),Rt(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=Gf(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Wn.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ue(l,[0,3,1,2])),l})}function Nq(r,e,t,o=[1,1,1],n="valid",s,a){return B(()=>{if(s==null&&(s=Kr()),Rt(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=Lw(r,s);if(n==="causal")throw new Ne("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Pm(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=ro(i,t)),s==="channelsFirst"&&(i=Ue(i,[0,4,1,2,3])),i})}var Np=class extends Me{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Np.verifyArgs(t),this.rank=e,Wt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ne(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=xl(t.kernelSize,e,"kernelSize"),this.strides=xl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Xr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Rt(this.dataFormat),this.activation=Ls(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=dt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Pt(t.biasConstraint),this.biasRegularizer=bt(t.biasRegularizer),this.activityRegularizer=bt(t.activityRegularizer),this.dilationRate=xl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Lo("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ig(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ms(this.activation),useBias:this.useBias,biasInitializer:It(this.biasInitializer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},tc=class extends Np{constructor(e,t){super(e,t);this.kernel=null,tc.verifyArgs(t),this.filters=t.filters,Wt(this.filters,"filters"),this.kernelInitializer=dt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Pt(t.kernelConstraint),this.kernelRegularizer=bt(t.kernelRegularizer)}build(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return B(()=>{e=Oe(e);let o,n=this.bias==null?null:this.bias.read(),s=Ng(this.activation.getClassName());if(s!=null&&this.rank===2)o=v1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=Iq(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=v1(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=Nq(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ne("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=Qe(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s 0 but got ${JSON.stringify(e.filters)}`)}},yl=class extends tc{constructor(e){super(2,e);yl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ig(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};yl.className="Conv2D";J.registerClass(yl);var rc=class extends tc{constructor(e){super(3,e);rc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};rc.className="Conv3D";J.registerClass(rc);var Wf=class extends yl{constructor(e){super(e);if(this.inputSpec=[new Et({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Qe(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Et({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return B(()=>{let o=Oe(e);if(o.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=Vf(l,m,c,this.padding),h=Vf(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=Ue(o,[0,2,3,1]));let x=Iu(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ue(x,[0,3,1,2])),this.bias!=null&&(x=ro(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Qe(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=Vf(t[n],l,a,this.padding),t[s]=Vf(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Wf.className="Conv2DTranspose";J.registerClass(Wf);var zw=class extends tc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=dt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=bt(t.depthwiseRegularizer),this.depthwiseConstraint=Pt(t.depthwiseConstraint),this.pointwiseInitializer=dt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=bt(t.pointwiseRegularizer),this.pointwiseConstraint=Pt(t.pointwiseConstraint)}build(e){if(e=Qe(e),e.length{e=Oe(e);let o;if(this.rank===1)throw new Ne("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ue(e,[0,2,3,1])),o=Zm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=ro(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=Ue(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=It(this.depthwiseInitializer),e.pointwiseInitializer=It(this.pointwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.pointwiseRegularizer=lt(this.pointwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseConstraint),e.pointwiseConstraint=Ot(this.pointwiseConstraint),e}};zw.className="SeparableConv";var Uf=class extends zw{constructor(e){super(2,e)}};Uf.className="SeparableConv2D";J.registerClass(Uf);var oc=class extends tc{constructor(e){super(1,e);oc.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ig(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};oc.className="Conv1D";J.registerClass(oc);var jf=class extends Me{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return B(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let o=xf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return xf(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=xf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return xf(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};jf.className="Cropping2D";J.registerClass(jf);var Hf=class extends Me{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,AT(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return B(()=>{let o=Oe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=Ue(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return Ue(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Hf.className="UpSampling2D";J.registerClass(Hf);function Sq(r,e,t=[1,1],o="valid",n,s){return B(()=>{n==null&&(n=Kr()),Rt(n);let a=Gf(r,n);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=Ns(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}var qf=class extends Np{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=dt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Pt(e.depthwiseConstraint),this.depthwiseRegularizer=bt(e.depthwiseRegularizer)}build(e){if(e=Qe(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{e=Oe(e);let o=Sq(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=ro(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=io(t,this.kernelSize[0],this.padding,this.strides[0]),a=io(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=It(this.depthwiseInitializer),e.depthwiseRegularizer=lt(this.depthwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseRegularizer),e}};qf.className="DepthwiseConv2D";J.registerClass(qf);function Bw(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function Vw(r,e,t,o=!1,n,s,a=!1,i=!1){return B(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Pr(2,l));if(e=Ue(e,u),s!=null)throw new Ne("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=sr(n,-1)),n=Ue(n,u)),o&&(e=qt(e,0),n!=null&&(n=qt(n,0)));let c=[],p,m=t,f=e.shape[0],d=ur(e),h;n!=null&&(h=ur(n));for(let x=0;xr(b,m));if(n==null)p=_[0],m=_[1];else{let w=B(()=>{let v=h[x],$=er(v).sub(v),A=_[0].mul(v).add(m[0].mul($)),R=m.map((M,V)=>_[1][V].mul(v).add(M.mul($)));return{output:A,newStates:R}});p=w.output,m=w.newStates}i&&c.push(p)}let g;return i&&(g=Bt(c,1)),[p,g,m]})}var ao=class extends Me{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Sp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Et({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Pr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Fg(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return B(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;oi.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Et({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ko("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>gt([o,n])):this.states_=[gt([o,this.cell.stateSize])];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>gt([o,n])):this.states_[0]=gt([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let n=0;nDt(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=Bw(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new Et({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof Lr){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return B(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Oe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=Vw((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return B(()=>{let t=gt(e.shape);return t=ye(t,[1,2]),t=La(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?Eg(t,[1,o]):t):this.cell.stateSize>1?[Eg(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===ao.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=Yr(n,o);return new e(Object.assign(t,{cell:s}))}};ao.className="RNN";J.registerClass(ao);var bl=class extends Me{},Tp=class extends bl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Wt(this.units,"units"),this.activation=Ls(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=Ku([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0er(e),rate:this.dropout,training:n})),0er(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=Yn(O(e,a),this.kernel.read()):s=Yn(e,this.kernel.read()),this.bias!=null&&(s=ro(s,this.bias.read())),i!=null&&(o=O(o,i));let l=Q(s,Yn(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ms(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),recurrentInitializer:It(this.recurrentInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),recurrentRegularizer:lt(this.recurrentRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Tp.className="SimpleRNNCell";J.registerClass(Tp);var Kf=class extends ao{constructor(e){e.cell=new Tp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};Kf.className="SimpleRNN";J.registerClass(Kf);var Ep=class extends bl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Wt(this.units,"units"),this.activation=Ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=Ku([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Qe(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0er(e),rate:this.dropout,training:o,count:3})),0er(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Xf.className="GRU";J.registerClass(Xf);var _l=class extends bl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Wt(this.units,"units"),this.activation=Ls(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Ls(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=dt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=Ku([1,Os([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Ku([1,Os([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Qe(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends oo{apply(l,u){let c=s.apply([a]),p=new Yu().apply([a]),m=s.apply([a*2]);return pw(pw(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return B(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0er(e),rate:this.dropout,training:o,count:4})),0er(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0{this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Yf.className="LSTM";J.registerClass(Yf);var Sp=class extends bl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return B(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i{Fs(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(Yr(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Nf(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;aDg(e(),t),a=()=>cl(s,e,o);return!n||n<=1?Dt(a().clone()):Array(n).fill(void 0).map(a).map(l=>Dt(l.clone()))}var Tq=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n{if(this.cell.dropoutMask!=null&&(Te(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Te(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return B(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=gt(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ko("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_=[gt(s)];else if(e==null)Te(this.states_),this.keptStates!=null&&(Te(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>gt(s)):this.states_[0]=gt(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Te(this.states_);for(let i=0;iDt(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=io(u,n[0],s,a[0],i[0]),m=io(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};Gw.className="ConvRNN2D";var Ap=class extends _l{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Wt(this.filters,"filters"),this.kernelSize=xl(o,2,"kernelSize"),this.kernelSize.forEach(l=>Wt(l,"kernelSize")),this.strides=xl(n||1,2,"strides"),this.strides.forEach(l=>Wt(l,"strides")),this.padding=s||"valid",Xr(this.padding),this.dataFormat=a||"channelsLast",Rt(this.dataFormat),this.dilationRate=xl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Wt(l,"dilationRate"))}build(e){var t;e=Qe(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends oo{apply(m,f){let d=u.apply([c]),h=Cr([c]),g=u.apply([c*2]);return pp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return B(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0er(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(ie,se,pe)=>!se||!se[pe]?ie:O(se[pe],ie),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0er(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),_=3,[w,v,$,A]=lr(this.kernel.read(),i,_),[R,M,V,G]=this.useBias?lr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,w,R,this.padding),p=this.inputConv(p,v,M,this.padding),m=this.inputConv(m,$,V,this.padding),f=this.inputConv(f,A,G,this.padding);let[W,q,Z,X]=lr(this.recurrentKernel.read(),i,_);h=this.recurrentConv(h,W),g=this.recurrentConv(g,q),x=this.recurrentConv(x,Z),b=this.recurrentConv(b,X);let Y=this.recurrentActivation.apply(Q(c,h)),te=this.recurrentActivation.apply(Q(p,g)),K=Q(O(te,a),O(Y,this.activation.apply(Q(m,x)))),re=O(this.recurrentActivation.apply(Q(f,b)),this.activation.apply(K));return[re,re,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=Tq(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=jr(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?ro(s,o,this.dataFormat):s}recurrentConv(e,t){return jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Ap.className="ConvLSTM2DCell";J.registerClass(Ap);var Zf=class extends Gw{constructor(e){let t=new Ap(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Zf.className="ConvLSTM2D";J.registerClass(Zf);var Dp=class extends Me{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n{this.invokeCallHook(e,t);let o=Oe(e);if(0Dg(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Dp.className="Dropout";J.registerClass(Dp);var Jf=class extends Dp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Jf.className="SpatialDropout1D";J.registerClass(Jf);var Qf=class extends Me{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Wt(this.units,"units"),this.activation=Ls(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=dt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=dt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Pt(e.kernelConstraint),this.biasConstraint=Pt(e.biasConstraint),this.kernelRegularizer=bt(e.kernelRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Qe(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Qe(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let o=Oe(e),n=Ng(this.activation.getClassName()),s;return n!=null?s=Yn(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=Yn(o,this.kernel.read()),this.bias!=null&&(s=ro(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ms(this.activation),useBias:this.useBias,kernelInitializer:It(this.kernelInitializer),biasInitializer:It(this.biasInitializer),kernelRegularizer:lt(this.kernelRegularizer),biasRegularizer:lt(this.biasRegularizer),activityRegularizer:lt(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Qf.className="Dense";J.registerClass(Qf);var ed=class extends Me{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Qe(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Xn(e,1)]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let o=Oe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s{this.invokeCallHook(e,t);let o=Oe(e);return this.activation.apply(o)})}getConfig(){let e={activation:Ms(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};td.className="Activation";J.registerClass(td);var rd=class extends Me{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return B(()=>(e=Oe(e),OT(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};rd.className="RepeatVector";J.registerClass(rd);var od=class extends Me{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let o=Oe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};od.className="Reshape";J.registerClass(od);var nd=class extends Me{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Pr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Et({ndim:this.dims.length+1})]}computeOutputShape(e){e=Qe(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return Ue(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};nd.className="Permute";J.registerClass(nd);var sd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Oe(e),n=-1;return nl(Gn(o,this.maskValue),n)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let o=Oe(e),n=-1,s=!0,a=nl(Gn(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};sd.className="Masking";J.registerClass(sd);var id=class extends Me{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Wt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Wt(this.outputDim,"outputDim"),this.embeddingsInitializer=dt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=bt(e.embeddingsRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.embeddingsConstraint=Pt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return B(()=>this.maskZero?(e=Oe(e),Gn(e,Ie(e))):null)}computeOutputShape(e){if(e=Qe(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n{this.invokeCallHook(e,t);let o=Oe(e);return o.dtype!=="int32"&&(o=Ma(o,"int32")),Ag(this.embeddings.read(),o.as1D()).reshape(Qe(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:It(this.embeddingsInitializer),embeddingsRegularizer:lt(this.embeddingsRegularizer),activityRegularizer:lt(this.activityRegularizer),embeddingsConstraint:Ot(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};id.className="Embedding";J.registerClass(id);var wl=class extends Me{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Ne}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;ss.length);e.indexOf(null)===-1&&Kn(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return B(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=Os(n);for(let a of e){let i=a.rank;for(let l=0;l1){let c=Pr(1,u).concat([0]);o.push(Ue(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ue(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Pr(0,i-1));a=Ue(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:sr(n,0));let o=t[0];for(let n=1;n{let t=e[0].clone();for(let o=1;o{let t=e[0].clone();for(let o=1;o{let t=e[0].clone();for(let o=1;o{let t=e[0];for(let o=1;o{let t=e[0];for(let o=1;o1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return B(()=>pp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return B(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a3||e.shape.length>3)throw new Ne("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Ne("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return B(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;uo){a=n-o;let l=[];for(let u=0;u0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new z(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>fd(s,e[a].shape.length)):n=[fd(this.axes,t.shape.length),fd(this.axes,o.shape.length)],this.normalize&&(t=Sf(t,n[0]),o=Sf(o,n[1])),Eq(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[fd(this.axes,e.length),fd(this.axes,t.length)],o}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Ne("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};dd.className="Dot";J.registerClass(dd);var hd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let o=Oe(e);return cl(()=>mp(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};hd.className="GaussianNoise";J.registerClass(hd);var gd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let o=Oe(e);return this.rate>0&&this.rate<1?cl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(mp(o.shape,1,s))},()=>o,t.training||!1):o})}};gd.className="GaussianDropout";J.registerClass(gd);var xd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return cl(()=>{let s=Oe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=to(Ds(o),this.rate);u=Ma(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Oe(e),t.training||!1)}return e})}};xd.className="AlphaDropout";J.registerClass(xd);function yd(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=c_(r,e,t,o,n,s);else if(r.rank===3)a=p_(r,e,t,o,n,s);else if(r.rank===4)a=m_(r,e,t,o,n,s);else throw new Ne(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function Aq(r,e,t,o,n=.001){return B(()=>{let s=Yc(r,o),a=s.mean,i=s.variance;return[yd(r,a,i,t,e,n),a,i]})}function Dq(r,e,t,o,n=.001){return B(()=>{let s=Yc(r,o),a=s.mean,i=s.variance,l=[];for(let d of Pr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[yd(r,u,c,m,p,n),a,i]})}function $q(r,e,t,o,n=.001){return y.arraysEqual(o.slice().sort(),Pr(0,r.rank-1))?Aq(r,e,t,o,n):Dq(r,e,t,o,n)}var bd=class extends Me{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=dt(e.betaInitializer||"zeros"),this.gammaInitializer=dt(e.gammaInitializer||"ones"),this.movingMeanInitializer=dt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=dt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Pt(e.betaConstraint),this.gammaConstraint=Pt(e.gammaConstraint),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer)}build(e){e=Qe(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Et({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return B(()=>{let o=t.training==null?!1:t.training,n=Oe(e),s=n.shape,a=s.length,i=Pr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=jn(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Pr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),_=this.movingVariance.read().reshape(u),w=this.center?this.beta.read().reshape(u):null,v=this.scale?this.gamma.read().reshape(u):null;return yd(n,b,_,w,v,this.epsilon)}else return yd(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=$q(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,_,w)=>{B(()=>{let v=1-w,$=b.read(),A=$.sub(_).mul(v);b.write($.sub(A))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:It(this.betaInitializer),gammaInitializer:It(this.gammaInitializer),movingMeanInitializer:It(this.movingMeanInitializer),movingVarianceInitializer:It(this.movingVarianceInitializer),betaRegularizer:lt(this.betaRegularizer),gammaRegularizer:lt(this.gammaRegularizer),betaConstraint:Ot(this.betaConstraint),gammaConstraint:Ot(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};bd.className="BatchNormalization";J.registerClass(bd);var _d=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=dt(e.betaInitializer||"zeros"),this.gammaInitializer=dt(e.gammaInitializer||"ones"),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Qe(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==Kn(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Oe(e),n=o.shape,s=n.length;return B(()=>{let a=!0,{mean:i,variance:l}=Yc(o,this.axis,a),u=jn(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=Kr()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],$r(r,o)})}var wd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Kr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){e=Qe(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return B(()=>Rq(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};wd.className="ZeroPadding2D";J.registerClass(wd);function ex(r,e,t,o,n,s){return B(()=>{Rt(n),uw(s),Xr(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=Kr()),s==null&&(s="max"),r=Gf(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Ea(r,e,t,i):a=va(r,e,t,i),n==="channelsFirst"&&(a=Ue(a,[0,3,1,2])),a})}function C1(r,e,t,o,n,s){return B(()=>{Rt(n),uw(s),Xr(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=Kr()),s==null&&(s="max"),r=Lw(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=jm(r,e,t,i):a=Fm(r,e,t,i),n==="channelsFirst"&&(a=Ue(a,[0,4,1,2,3])),a})}var Ww=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Wt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Wt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Xr(this.padding),this.inputSpec=[new Et({ndim:3})]}computeOutputShape(e){e=Qe(e);let t=io(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return B(()=>{this.invokeCallHook(e,t),e=La(Oe(e),2);let o=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return wo(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},kd=class extends Ww{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),ex(e,t,o,n,s,"max")}};kd.className="MaxPooling1D";J.registerClass(kd);var vd=class extends Ww{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),ex(e,t,o,n,s,"avg")}};vd.className="AveragePooling1D";J.registerClass(vd);var Uw=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Wt(this.poolSize,"poolSize"),Wt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Xr(this.padding),this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=io(t,this.poolSize[0],this.padding,this.strides[0]),o=io(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Cd=class extends Uw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),ex(e,t,o,n,s,"max")}};Cd.className="MaxPooling2D";J.registerClass(Cd);var Id=class extends Uw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),ex(e,t,o,n,s,"avg")}};Id.className="AveragePooling2D";J.registerClass(Id);var jw=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Wt(this.poolSize,"poolSize"),Wt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),Xr(this.padding),this.inputSpec=[new Et({ndim:5})]}computeOutputShape(e){e=Qe(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=io(t,this.poolSize[0],this.padding,this.strides[0]),o=io(o,this.poolSize[1],this.padding,this.strides[1]),n=io(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Nd=class extends jw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),C1(e,t,o,n,s,"max")}};Nd.className="MaxPooling3D";J.registerClass(Nd);var Sd=class extends jw{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return Rt(s),Xr(n),C1(e,t,o,n,s,"avg")}};Sd.className="AveragePooling3D";J.registerClass(Sd);var Hw=class extends Me{constructor(e){super(e);this.inputSpec=[new Et({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Ne}},Td=class extends Hw{constructor(e){super(e||{})}call(e,t){return B(()=>{let o=Oe(e);return ht(o,1)})}};Td.className="GlobalAveragePooling1D";J.registerClass(Td);var Ed=class extends Hw{constructor(e){super(e||{})}call(e,t){return B(()=>{let o=Oe(e);return ar(o,1)})}};Ed.className="GlobalMaxPooling1D";J.registerClass(Ed);var qw=class extends Me{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Rt(this.dataFormat),this.inputSpec=[new Et({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Ne}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ad=class extends qw{call(e,t){return B(()=>{let o=Oe(e);return this.dataFormat==="channelsLast"?ht(o,[1,2]):ht(o,[2,3])})}};Ad.className="GlobalAveragePooling2D";J.registerClass(Ad);var Dd=class extends qw{call(e,t){return B(()=>{let o=Oe(e);return this.dataFormat==="channelsLast"?ar(o,[1,2]):ar(o,[2,3])})}};Dd.className="GlobalMaxPooling2D";J.registerClass(Dd);var Kw=class extends Me{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=Yr(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},$d=class extends Kw{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Qe(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Qe(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return B(()=>(e=Oe(e),Vw((a,i)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};$d.className="TimeDistributed";J.registerClass($d);function Fq(r){Gi(ET,"BidirectionalMergeMode",r)}var Oq="concat",Rd=class extends Kw{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=Yr(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=Yr(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Oq:e.mergeMode,Fq(this.mergeMode),e.weights)throw new Ne("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):dr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=Bw(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new Et({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Ne("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof Lr;for(let u of a)if(u instanceof Lr!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return B(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=qt(s,1));let i;return this.mergeMode==="concat"?i=pp([n,s]):this.mergeMode==="sum"?i=Q(n,s):this.mergeMode==="ave"?i=O(.5,Q(n,s)):this.mergeMode==="mul"?i=O(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Fs(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Fs(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=Yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Ne("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};Rd.className="Bidirectional";J.registerClass(Rd);function Pq(r){return new Wi(r)}function Mq(r){return new Lf(r)}function Lq(r){return new Of(r)}function zq(r){return new Pf(r)}function Bq(r){return new Mf(r)}function Vq(r){return new Bf(r)}function Gq(r){return new zf(r)}function Wq(r){return new oc(r)}function Uq(r){return new yl(r)}function jq(r){return new Wf(r)}function Hq(r){return new rc(r)}function qq(r){return new Uf(r)}function Kq(r){return new jf(r)}function Xq(r){return new Hf(r)}function Yq(r){return new qf(r)}function Zq(r){return new td(r)}function Jq(r){return new Qf(r)}function Qq(r){return new Dp(r)}function eK(r){return new Jf(r)}function tK(r){return new ed(r)}function rK(r){return new rd(r)}function oK(r){return new od(r)}function nK(r){return new nd(r)}function sK(r){return new id(r)}function iK(r){return new ad(r)}function aK(r){return new ud(r)}function lK(r){return new md(r)}function uK(r){return new cd(r)}function cK(r){return new pd(r)}function pK(r){return new ld(r)}function mK(r){return new dd(r)}function fK(r){return new bd(r)}function dK(r){return new _d(r)}function hK(r){return new wd(r)}function Yw(r){return new vd(r)}function gK(r){return Yw(r)}function xK(r){return Yw(r)}function Zw(r){return new Id(r)}function yK(r){return Zw(r)}function bK(r){return Zw(r)}function Jw(r){return new Sd(r)}function _K(r){return Jw(r)}function wK(r){return Jw(r)}function kK(r){return new Td(r)}function vK(r){return new Ad(r)}function I1(r){return new Ed(r)}function N1(r){return new Dd(r)}function S1(r){return new kd(r)}function T1(r){return new Cd(r)}function CK(r){return new Nd(r)}function IK(r){return new Xf(r)}function NK(r){return new Ep(r)}function SK(r){return new Yf(r)}function TK(r){return new _l(r)}function EK(r){return new Kf(r)}function AK(r){return new Tp(r)}function DK(r){return new Zf(r)}function $K(r){return new Ap(r)}function RK(r){return new ao(r)}function FK(r){return new Sp(r)}function OK(r){return new Rd(r)}function PK(r){return new $d(r)}var MK=I1,LK=N1,zK=S1,BK=T1;function VK(r){return new hd(r)}function GK(r){return new gd(r)}function WK(r){return new xd(r)}function UK(r){return new sd(r)}var Qw={};et(Qw,{MAPE:()=>t6,MSE:()=>n6,binaryAccuracy:()=>jK,binaryCrossentropy:()=>HK,categoricalAccuracy:()=>KK,categoricalCrossentropy:()=>XK,cosineProximity:()=>JK,mape:()=>r6,meanAbsoluteError:()=>QK,meanAbsolutePercentageError:()=>e6,meanSquaredError:()=>o6,mse:()=>s6,precision:()=>YK,recall:()=>ZK,sparseCategoricalAccuracy:()=>qK});function jK(r,e){return Af(r,e)}function HK(r,e){return Wg(r,e)}function qK(r,e){return Ug(r,e)}function KK(r,e){return Df(r,e)}function XK(r,e){return $f(r,e)}function YK(r,e){return hw(r,e)}function ZK(r,e){return XT(r,e)}function JK(r,e){return Tf(r,e)}function QK(r,e){return kp(r,e)}function e6(r,e){return dl(r,e)}function t6(r,e){return dl(r,e)}function r6(r,e){return dl(r,e)}function o6(r,e){return ji(r,e)}function n6(r,e){return ji(r,e)}function s6(r,e){return ji(r,e)}var ek={};et(ek,{modelFromJSON:()=>f1});var tk={};et(tk,{l1:()=>a6,l1l2:()=>i6,l2:()=>l6});function i6(r){return new ec(r)}function a6(r){return b1(r)}function l6(r){return _1(r)}var tx=class extends fl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof vo))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function rx(r,e){return re}var ox=class extends tx{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Ne("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=rx:this.mode==="max"?this.monitorFunc=E1:this.monitor.indexOf("acc")!==-1?this.monitorFunc=E1:this.monitorFunc=rx,this.monitorFunc===rx&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===rx?Infinity:-Infinity}async onEpochEnd(e,t){await Ui(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function u6(r){return new ox(r)}var A1={earlyStopping:u6};var Zn;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Zn||(Zn={}));var D1;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(D1||(D1={}));var rk={};function $1(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};rk[r]=t}function nx(r){return rk[r]}function R1(r){delete rk[r]}function C(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return hr(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>hr(m,t,o,n));let u=hr(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function hr(r,e,t,o){let[n,s]=Zr(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[sx(n,i)]);return a!==void 0?e[sx(n,a)][s]:void 0}function F1(r,e,t){return e[sx(r,t.currentContextId)]}function zs(r,e){let[t,o]=Zr(r);return[sx(t,e&&e.currentContextId),o]}function sx(r,e){return e?`${r}-${e}`:r}function Zr(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function Fd(r,e,t){let o=C("pad",r,e,t);if(o==="explicit"){o=C("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function Bs(r){return r.kept?r:Ro(r)}var ok={};et(ok,{json:()=>c6});var c6=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var nk={};et(nk,{json:()=>p6});var p6=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var sk={};et(sk,{json:()=>m6});var m6=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var ik={};et(ik,{json:()=>f6});var f6=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var ak={};et(ak,{json:()=>d6});var d6=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var lk={};et(lk,{json:()=>h6});var h6=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var uk={};et(uk,{json:()=>g6});var g6=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var ck={};et(ck,{json:()=>x6});var x6=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var pk={};et(pk,{json:()=>y6});var y6=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}];var mk={};et(mk,{json:()=>b6});var b6=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var fk={};et(fk,{json:()=>_6});var _6=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var dk={};et(dk,{json:()=>w6});var w6=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var hk={};et(hk,{json:()=>k6});var k6=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var gk={};et(gk,{json:()=>v6});var v6=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var xk={};et(xk,{json:()=>C6});var C6=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var yk={};et(yk,{json:()=>I6});var I6=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var bk={};et(bk,{json:()=>N6});var N6=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var ix=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[ok,nk,sk,ik,ak,lk,uk,fk,mk,ck,dk,hk,gk,xk,yk,bk,pk],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=zs(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=zs(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=zs(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=nx(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=ax(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ax(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=dx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=dx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=ux(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=ux(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=fx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=fx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=lx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=lx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=gx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=gx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=mx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=mx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=hx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=hx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=cx(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=cx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=px(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=px(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=O1(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=O1(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=zs(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:_k(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=zs(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=zs(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function S6(r){let e=U().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function P1(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):S6(r);return e?t:t.toLowerCase()}function ax(r,e,t,o=!1){let n=r[e];return n!=null?P1(n.s,o):t}function lx(r,e,t){let o=r[e];return o?o.b:t}function ux(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function _k(r){switch(typeof r=="string"&&(r=Zn[r]),r){case Zn.DT_FLOAT:return"float32";case Zn.DT_INT32:case Zn.DT_INT64:case Zn.DT_INT8:case Zn.DT_UINT8:return"int32";case Zn.DT_BOOL:return"bool";case Zn.DT_DOUBLE:return"float32";case Zn.DT_STRING:return"string";default:return null}}function O1(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function cx(r,e,t){let o=r[e];return o&&o.type?_k(o.type):t}function px(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>_k(n)):t}function M1(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function mx(r,e,t){let o=r[e];return o&&o.shape?M1(o.shape):t}function fx(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function dx(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>P1(s,o)):t}function hx(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>M1(n)):t}function gx(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var wk=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return hr(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return hr(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return ux(this.node.rawAttrs,e,t);if(o.s!=null)return ax(this.node.rawAttrs,e,t);if(o.b!=null)return lx(this.node.rawAttrs,e,t);if(o.shape!=null)return mx(this.node.rawAttrs,e,t);if(o.type!=null)return cx(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return fx(this.node.rawAttrs,e,t);if(o.list.s!=null)return dx(this.node.rawAttrs,e,t);if(o.list.shape!=null)return hx(this.node.rawAttrs,e,t);if(o.list.b!=null)return gx(this.node.rawAttrs,e,t);if(o.list.type!=null)return px(this.node.rawAttrs,e,t)}return t}};var L1=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[Q(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[i_(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[qm(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[O(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[de(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[zm(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[_u(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ue(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[As(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[qr(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Rr(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[Vu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var z1=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[Tt(C("x",r,e,t))];case"Acos":return[Nm(C("x",r,e,t))];case"Acosh":return[Sm(C("x",r,e,t))];case"Asin":return[Em(C("x",r,e,t))];case"Asinh":return[Am(C("x",r,e,t))];case"Atan":return[Dm(C("x",r,e,t))];case"Atan2":return[$m(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Rm(C("x",r,e,t))];case"Ceil":return[Om(C("x",r,e,t))];case"Complex":return[bo(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[Ia(C("x",r,e,t))];case"Cosh":return[Nu(C("x",r,e,t))];case"Elu":return[Ss(C("x",r,e,t))];case"Erf":return[Bm(C("x",r,e,t))];case"Exp":return[Xt(C("x",r,e,t))];case"Expm1":return[Vm(C("x",r,e,t))];case"Floor":return[Ts(C("x",r,e,t))];case"Log":return[ir(C("x",r,e,t))];case"Log1p":return[Au(C("x",r,e,t))];case"Imag":return[Tu(C("x",r,e,t))];case"Neg":return[je(C("x",r,e,t))];case"Reciprocal":return[Xm(C("x",r,e,t))];case"Real":return[al(C("x",r,e,t))];case"Relu":return[Ir(C("x",r,e,t))];case"Round":return[Ym(C("x",r,e,t))];case"Selu":return[Mu(C("x",r,e,t))];case"Sigmoid":return[Ur(C("x",r,e,t))];case"Sin":return[Lu(C("x",r,e,t))];case"Sign":return[Jm(C("x",r,e,t))];case"Sinh":return[zu(C("x",r,e,t))];case"Softplus":return[Es(C("x",r,e,t))];case"Sqrt":return[xt(C("x",r,e,t))];case"Square":return[Pe(C("x",r,e,t))];case"Tanh":return[Mi(C("x",r,e,t))];case"Tan":return[rf(C("x",r,e,t))];case"ClipByValue":return[nr(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[Ou(C("x",r,e,t))];case"Rsqrt":return[Pu(hr(r.inputNames[0],e,t))];case"Prod":return[Ru(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[Sa(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[Da(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Co(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;ot+` Shapes ${r} and ${e} must match`)}}}function B1(r){return!(typeof r=="number"||r.some(e=>e<0))}function $p(r,e,t){let o=xx(r,t),n=!B1(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=xx(s.shape,o)}),!B1(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function xx(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var kk=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Dt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Co(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,Dt(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,ur(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];B(()=>{t=L(t,[1,o,s]);for(let l=0;l{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);Co(t,s.shape,"TensorList shape mismatch: "),Dt(s)}),this.idTensor=le(0),this.maxNumElements=n,Dt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new nc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);Co(e,this.elementShape,"TensorList shape mismatch: ");let n=$p(this.elementShape,this.tensors,e);return B(()=>{let s=this.tensors.map(a=>L(a,n));return Bt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=$p(this.elementShape,this.tensors,e),n=this.tensors.pop();return Co(n.shape,e,"TensorList shape mismatch: "),L(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Co(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Dt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Co(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=$p(this.elementShape,this.tensors,t);return L(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Co(this.elementShape,t.shape,"TensorList shape mismatch: "),Dt(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Co(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=$p(this.elementShape,this.tensors,o);return e.length===0?Dr([],[0].concat(n)):B(()=>{let s=e.map(a=>L(this.tensors[a],n));return Bt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Co(this.elementShape,t,"TensorList shape mismatch: ");let o=$p(this.elementShape,this.tensors,t);return this.size()===0?Dr([],[0].concat(o)):B(()=>{let n=this.tensors.map(s=>L(s,o));return Je(n,0)})}};function V1(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);Co(n,e,"TensorList shape mismatch: ");let s=ur(r);return new nc(s,e,o)}function G1(r,e,t){return new nc([],r,e,t)}function W1(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new nc([],t,r.dtype,o),a=ur(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function U1(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=xx(s,t),i=o===0?0:r.size/o,l=B(()=>{let c=[];r=L(r,[1,o,i]);for(let p=0;p{switch(r.op){case"If":case"StatelessIf":{let o=C("thenBranch",r,e,t),n=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=C("body",r,e,t),n=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=C("pred",r,e,t);return[Bs(o)]}case"Switch":{let o=C("pred",r,e,t),n=C("data",r,e,t);return n.kept||(n=Bs(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>hr(n,e,t)!==void 0);if(o){let n=hr(o,e,t);return[Bs(n)]}return}case"Enter":{let o=C("frameName",r,e,t),n=C("tensor",r,e,t);return t.enterFrame(o),[Bs(n)]}case"Exit":{let o=C("tensor",r,e,t);return t.exitFrame(),[Bs(o)]}case"NextIteration":{let o=C("tensor",r,e,t);return t.nextIteration(),[Bs(o)]}case"TensorArrayV3":{let o=C("size",r,e,t),n=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new kk(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=C("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=C("tensorArrayId",r,e,t),n=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[le(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=C("indices",r,e,t),n=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=W1(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=C("elementShape",r,e,t),n=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=G1(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=C("tensorListId",r,e,t),n=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=V1(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=C("tensorListId",r,e,t),n=t.getTensorList(o.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=C("tensorListId",r,e,t),n=C("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=U1(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function H1(r,e,t){let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=Fd(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var q1=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[Cu(C("x",r,e,t),C("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=C("strides",r,e,t),n=Fd(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[jr(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=H1(r,e,t);return[Wn.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=H1(r,e,t);return[Wn.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,e,t),n=C("strides",r,e,t),s=Fd(r,e,t);return[Iu(C("x",r,e,t),C("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,e,t),n=Fd(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[Ns(C("input",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Pm(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[va(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Ea(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=E_(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Fm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[jm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[Lm(C("x",r,e,t),C("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var K1=(r,e,t)=>{switch(r.op){case"Fill":{let o=C("shape",r,e,t),n=C("dtype",r,e,t),s=C("value",r,e,t);return[Na(o,s,n)]}case"LinSpace":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("num",r,e,t);return[v_(o,n,s)]}case"Multinomial":{let o=C("logits",r,e,t),n=C("numSamples",r,e,t),s=C("seed",r,e,t);return[A_(o,n,s)]}case"OneHot":{let o=C("indices",r,e,t),n=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[Is(o,n,s,a)]}case"Ones":return[Cr(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[er(C("x",r,e,t))];case"RandomUniform":return[Ds(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("step",r,e,t);return[Jc(o,n,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let o=C("shape",r,e,t),n=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[Gu(o,n,s,C("dtype",r,e,t),a)]}case"Zeros":return[gt(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ie(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function vk(r,e,t){let o=C("boxes",r,e,t),n=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var X1=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=vk(r,e,t),u=await Rs.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=vk(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await Rs.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=vk(r,e,t);return[await Rs.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=oe(C("condition",r,e,t),"bool"),n=[await sf(o)];return o.dispose(),n}case"ListDiff":return B_(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Y1=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=C("x",r,e,t),n=C("k",r,e,t),s=C("sorted",r,e,t),a=of(o,n,s);return[a.values,a.indices]}case"Unique":{let o=C("x",r,e,t),n=ep(o);return[n.values,n.indices]}case"UniqueV2":{let o=C("x",r,e,t),n=C("axis",r,e,t),s=ep(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Z1=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=C("default",r,e,t);return[hr(r.name,e,t)||o];case"Placeholder":return[hr(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[Bs(u)]}case"IdentityN":return C("x",r,e,t).map(u=>Bs(u));case"Snapshot":let n=C("x",r,e,t);return[Bs(n)];case"Shape":return[Vt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Vt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;ue.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),B(()=>{let n=ur(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i{let n=[];for(let s=0;s{switch(r.op){case"HashTable":case"HashTableV2":{let n=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new Ck(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var Q1=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Rs.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[Rs.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=C("image",r,e,t),n=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[Rs.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var eE=(r,e,t)=>{switch(r.op){case"Equal":return[_o(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[Gn(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[Qt(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[to(C("a",r,e,t),C("b",r,e,t))];case"Less":return[Eu(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[Mo(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[fr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[Ta(C("a",r,e,t))];case"LogicalOr":return[$u(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[$t(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var tE=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[Ue(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[Wn.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var rE=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[zn(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[zn(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[Gm(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[$a(C("x",r,e,t))];case"LogSoftmax":return[Du(C("x",r,e,t))];case"SparseToDense":return[af(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var oE=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ar(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ht(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Li(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ye(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[wu(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[nl(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[sl(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[Tm(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[Ru(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Su(C("x",r,e,t),a,i,l)]}case"Bincount":let o=C("x",r,e,t),n=C("weights",r,e,t),s=C("size",r,e,t);return[f_(o,n,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[y_(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var nE=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,e,t),n=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,o),[Je(s,n)]}case"Gather":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[Bn(o,oe(n,"int32"),0)]}case"GatherV2":{let o=C("axis",r,e,t),n=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[Bn(s,oe(a,"int32"),o,n)]}case"Reverse":{let o=C("dims",r,e,t),n=[];for(let a=0;a{let o=C("axis",r,e,t),n=C("tensors",r,e,t),s=n[0].shape,a=wo(n[0]).shape,i=n.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(wo(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Bt(i,o)]});case"Unpack":{let o=C("axis",r,e,t),n=C("tensor",r,e,t);return ur(n,o)}case"Tile":{let o=C("reps",r,e,t);return[Po(C("x",r,e,t),o)]}case"Split":case"SplitV":{let o=C("axis",r,e,t),n=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return lr(s,n,o)}case"ScatterNd":{let o=C("indices",r,e,t),n=C("values",r,e,t),s=C("shape",r,e,t);return[W_(o,n,s)]}case"GatherNd":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[U_(o,n)]}case"SparseToDense":{let o=C("sparseIndices",r,e,t),n=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[af(o,s,n,s.dtype===a.dtype?a:oe(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var sE=(r,e,t)=>{switch(r.op){case"FFT":return[Ra(C("x",r,e,t))];case"IFFT":return[zi(C("x",r,e,t))];case"RFFT":return[Fa(C("x",r,e,t))];case"IRFFT":return[Bu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var iE=(r,e,t)=>{switch(r.op){case"Cast":return[oe(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let o=C("axis",r,e,t);return[sr(C("x",r,e,t),o)]}case"Squeeze":{let o=C("axis",r,e,t);return[wo(C("x",r,e,t),o)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[Hm(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[$r(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let o=C("blockShape",r,e,t),n=C("paddings",r,e,t);return[Aa(C("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=C("blockShape",r,e,t),n=C("crops",r,e,t);return[Ca(C("x",r,e,t),o,n)]}case"DepthToSpace":{let o=C("blockSize",r,e,t),n=C("dataFormat",r,e,t).toUpperCase();return[Mm(C("x",r,e,t),o,n)]}case"BroadcastTo":return[il(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Ik(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return B(()=>L1(s,a,i));case"basic_math":return B(()=>z1(s,a,i));case"control":return j1(s,a,i);case"convolution":return B(()=>q1(s,a,i));case"creation":return B(()=>K1(s,a,i));case"dynamic":return X1(s,a,i);case"evaluation":return B(()=>Y1(s,a,i));case"image":return B(()=>Q1(s,a,i));case"graph":return B(()=>Z1(s,a,i));case"logical":return B(()=>eE(s,a,i));case"matrices":return B(()=>tE(s,a,i));case"normalization":return B(()=>rE(s,a,i));case"reduction":return B(()=>oE(s,a,i));case"slice_join":return B(()=>nE(s,a,i));case"spectral":return B(()=>sE(s,a,i));case"transformation":return B(()=>iE(s,a,i));case"hash_table":return J1(s,a,i,o);case"custom":let l=nx(s.op);if(l&&l.customExecutor)return l.customExecutor(new wk(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var yx=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Sk(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>Zr(m)[0]),c=[];o!=null&&(c=o.map(m=>Zr(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((Nk(m)||T6(m)||E6(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function aE(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>Zr(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var A6=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],D6=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],$6=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function Nk(r){return A6.indexOf(r.op)>=0}function T6(r){return D6.indexOf(r.op)>=0}function E6(r){return $6.indexOf(r.op)>=0}var Rp=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new Rp(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=Sk(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return aE(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[Zr(p)[0]]),s=t.map(p=>Zr(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return B(()=>{let p=new yx(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=Zr(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;hhr(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=F1(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new yx(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>hr(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(_=>this.graph.nodes[Zr(_)[0]]),i=o.map(_=>Zr(_)[0]),l=i.map(_=>this.graph.nodes[_]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=Sk(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(_=>({node:_,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(_=>{let[w,v]=Zr(_),$=[];$[v]=e[_],d[w]=$});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let _=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(_)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(_=>!Nk(_)&&!hr(_.name,d,t)).map(_=>_.name);if(b.length>0){let _="";throw p!=null&&(_=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${_}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,n,o)&&([m]=zs(p.node.name,o)),n[p.node.name]==null){let f=Ik(p.node,n,o,this._resourceManager);m||([m]=zs(p.node.name,o));let d=o.currentContext;y.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=zs(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!hr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!hr(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=Zr(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=Zr(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=Zr(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var Tk=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var R6="?tfjs-format=file",F6="model.json",bx=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Tk}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=vr.browserHTTPRequest(e,this.loadOptions);else{let t=vr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(vr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=vr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Rp(ix.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=ix.Instance.transformGraph(e.modelInitializer);this.initializer=new Rp(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=vr.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function lE(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${F6}${R6}`);let t=new bx(r,e);return await t.load(),t}var _x="3.1.0";var Pk={};et(Pk,{CSVDataset:()=>zd,Dataset:()=>qi,FileDataSource:()=>Ud,TextLineDataset:()=>Md,URLDataSource:()=>jd,array:()=>AE,csv:()=>BE,func:()=>VE,generator:()=>GE,microphone:()=>UE,version_data:()=>Sx,webcam:()=>WE,zip:()=>DE});var EE=Tc(Km());var dE=Tc(Km());function uE(r,e){return wx(r,e)}function wx(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(kl(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=wx(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function pE(r,e=Ek){return cE(r,e)}function cE(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(kl(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=cE(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function Ek(r){return r===null?null:kl(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function kx(r,e){let t=new Map;wx(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(y.isPromise(s)){let a=await s;t.set(n,a)}}return wx(r,e,t)}function kl(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function mE(r){return r==null||O6(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function O6(r){return r===null||typeof r!="object"&&typeof r!="function"}function fE(r){return uE(r,P6)}function P6(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:kl(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var Od=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var Fp=class extends Od{constructor(){super(Fp.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;nt===!0)}rowMajorBatch(e,t=!0){return new vE(this,e,t)}columnMajorBatch(e,t=!0,o=Ek){return this.rowMajorBatch(e,t).map(s=>pE(s,o))}concatenate(e,t){return new Dk(Ak([this,e]),t)}take(e){return e<0||e==null?this:new kE(this,e)}skip(e){return e<0||e==null?this:new wE(this,e)}prefetch(e){return new Rk(this,e)}shuffle(e,t){return new TE(this,e,t)}serial(){return new _E(this)}},hE=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:fE(e),done:!1}}},gE=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},_E=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},wE=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vE=class extends Kt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},CE=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Te(e.value)}}},IE=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ln.getTensorsInContainer(e.value),o=this.transform(e.value),n=Ln.getTensorsInContainer(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},NE=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},$k=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Ln.getTensorsInContainer(e.value),o=await this.transform(e.value),n=Ln.getTensorsInContainer(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},Op=class extends Kt{constructor(){super();this.outputQueue=new Fp,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},SE=class extends Op{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Ln.getTensorsInContainer(e.value),o=this.transform(e.value),n=Ln.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)Ln.isTensorInList(s,n)||s.dispose();return!0}},Dk=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Va;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Va||(Va={}));var yE=class extends Kt{constructor(e,t=Va.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof Kt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await kx(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case Va.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Va.SHORTEST:return{value:null,done:!0};case Va.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Rk=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Od(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},TE=class extends Rk{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=dE.alea(o||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var qi=class{constructor(){this.size=null}batch(e,t=!0){let o=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),lo(async()=>(await o.iterator()).columnMajorBatch(e,t,M6),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,lo(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,lo(async()=>(await t.iterator()).filter(n=>B(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return lo(async()=>(await t.iterator()).map(o=>B(()=>e(o))),this.size)}mapAsync(e){let t=this;return lo(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return lo(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,lo(async()=>{let n=Pd(async()=>({value:await t.iterator(),done:!1}));return xE(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=EE.alea(t||y.now().toString());return lo(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,lo(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};qi.MAX_BUFFER_SIZE=1e4;function lo(r,e=null){return new class extends qi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function AE(r){return lo(async()=>Ak(r),r.length)}function DE(r){if(!kl(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t{let t=await kx(r,o=>{if(o instanceof qi)return{value:o.iterator(),recurse:!1};if(kl(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return bE(t,Va.SHORTEST)},e)}function M6(r){if(r===null)return null;let e=r[0];return mE(e)?{value:L6(r),recurse:!1}:{value:null,recurse:!0}}function L6(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Bt(r):Dr(r)}var Md=class extends qi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var vx='"',Ld=Symbol("out"),$E=Symbol("field"),Cx=Symbol("quote"),Fk=Symbol("quoteafterquote"),RE=Symbol("quoteinquote"),zd=class extends qi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Md(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(y.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(U().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Bd(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(y.sizeFromShape(t));return o.set(e,o.length-e.length),Dr(o,t)}};var Vd=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=Bi([a,s,l,i],[1,4])}else this.cropBox=Bi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(U().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new Vd(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=tg.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return B(()=>{let t=sr(oe(e,"float32"),0),o;o=Rs.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return L(o,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var Gd=class{};var Ix=class extends Kt{split(e){return new FE(this,e)}},FE=class extends Ix{constructor(e,t){super();this.upstream=e,this.impl=new OE(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},OE=class extends Op{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var Ok=class extends Kt{decodeUTF8(){return new ME(this)}},ME=class extends Ix{constructor(e){super();this.upstream=e,this.impl=new LE(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},LE=class extends Op{constructor(e){super();if(this.upstream=e,U().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=PE();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return U().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var Wd=class extends Ok{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(U().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function zE(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=z6(r));let n=await y.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new Wd(s,e)}else throw new Error(n.statusText)}var z6=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function Nx(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var Ud=class extends Gd{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Nx(this.input)&&U().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Wd(this.input,this.options)}};var jd=class extends Gd{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Nx(this.url)?new Ud(this.url,this.fileOptions).iterator():zE(this.url,this.fileOptions)}};function BE(r,e={}){return new zd(new jd(r),e)}function VE(r){let e=Pd(r);return lo(async()=>e)}function GE(r){return lo(async()=>{let e=await r();return Pd(()=>e.next())})}async function WE(r,e){return Vd.create(r,e)}async function UE(r){return Bd.create(r)}var Sx="3.1.0";function ee(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var B6=Sr.whereImpl,Pp=class extends js{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Ya(this,Fo())}nextDataId(){return Pp.nextDataId++}write(e,t,o){this.firstUse&&(this.firstUse=!1,U().get("IS_NODE")&&N.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return N.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Fo().makeTensorFromDataId(n,t,o,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ee([e],"where");let t=this.readSync(e.dataId);return B6(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Pp.nextDataId=0;var Hk={};et(Hk,{addImpl:()=>ZE,bincountImpl:()=>Hd,bincountReduceImpl:()=>Mk,ceilImpl:()=>QE,concatImpl:()=>qd,expImpl:()=>tA,expm1Impl:()=>oA,floorImpl:()=>sA,gatherV2Impl:()=>zk,greaterImpl:()=>aA,lessImpl:()=>uA,linSpaceImpl:()=>Bk,logImpl:()=>pA,maxImpl:()=>Vk,maximumImpl:()=>fA,minimumImpl:()=>hA,multiplyImpl:()=>Tx,negImpl:()=>yA,notEqualImpl:()=>_A,prodImpl:()=>vA,rangeImpl:()=>Yd,rsqrtImpl:()=>IA,simpleAbsImpl:()=>jE,sliceImpl:()=>Zd,squaredDifferenceImpl:()=>TA,stridedSliceImpl:()=>Gk,subImpl:()=>AA,tileImpl:()=>Wk,topKImpl:()=>Uk,transposeImpl:()=>Xd,uniqueImpl:()=>jk});function jE(r){let e=new Float32Array(r.length);for(let t=0;t{let{x:e}=r.inputs,t=r.backend;ee(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=jE(n),t.makeOutput(o,e.shape,"float32")},HE={kernelName:us,backendName:"cpu",kernelFunc:V6};function Ye(r){return(e,t,o,n,s)=>{let a=N.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=N.getBroadcastDims(e,a),g=N.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x_[A]=0);let w=y.locToIndex(_,p,f),v=b.slice(-m);g.forEach(A=>v[A]=0);let $=y.locToIndex(v,m,d);c[x]=r(o[w],n[$])}return[c,a]}}function cr(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var qE={kernelName:Hl,backendName:"cpu",kernelFunc:cr};function Mp(r,e,t="float32"){if(t==="complex64"){let n=Mp(r,e,"float32"),s=Mp(r,e,"float32");return cr({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Tr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var KE={kernelName:Do,backendName:"cpu",kernelFunc:Tr};function Jn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var XE={kernelName:cu,backendName:"cpu",kernelFunc:Jn};function Qn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Tr({inputs:{x:n},backend:t});let a=Mp(t,n.shape,n.dtype),i=Qn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=cr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Jn({inputs:{input:n},backend:t}),i=Qn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Tr({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=y.toTypedArray([0],n.dtype),[l,u]=Ye((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var YE={kernelName:Eo,backendName:"cpu",kernelFunc:Qn};function ot(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;ee([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=Qn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=Qn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,_=l.data.get(x.dataId).values,w=l.data.get(b.dataId).values,[v,$,A]=t(a.shape,i.shape,f,d,_,w),R=l.makeTensorInfo(A,"float32",v),M=l.makeTensorInfo(A,"float32",$),V=cr({inputs:{real:R,imag:M},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(R),l.disposeIntermediateTensorInfo(M),V}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function Lp(r){return(e,t,o,n,s,a)=>{let i=N.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=N.getBroadcastDims(e,i),d=N.getBroadcastDims(t,i),h=N.mergeRealAndImagArrays(o,n),g=N.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),_=t.length,w=y.computeStrides(t);if(f.length+d.length===0)for(let v=0;vA[W]=0);let R=y.locToIndex(A,x,b),M=$.slice(-_);d.forEach(W=>M[W]=0);let V=y.locToIndex(M,_,w),G=r(h[R*2],h[R*2+1],g[V*2],g[V*2+1]);p[v]=G.real,m[v]=G.imag}return[p,m,i]}}var ZE=Ye((r,e)=>r+e),G6=Lp((r,e,t,o)=>({real:r+t,imag:e+o})),Ga=ot(xo,ZE,G6),JE={kernelName:xo,backendName:"cpu",kernelFunc:Ga};function Hd(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Mk(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=Ce([n,t],e.dtype);for(let i=0;i=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function es(r){return(e,t,o)=>{let n=y.getTypedArrayFromDType(t,e.length);for(let s=0;s{let{x:a}=o;if(ee(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m{let{x:a}=o;if(ee(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var QE=es(r=>Math.ceil(r)),W6=ts(Zo,QE),eA={kernelName:Zo,backendName:"cpu",kernelFunc:W6};function qd(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?N.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;uMath.exp(r)),Lk=ts(nn,tA),rA={kernelName:nn,backendName:"cpu",kernelFunc:Lk};var oA=es(r=>Math.expm1(r)),U6=ts(ai,oA),nA={kernelName:ai,backendName:"cpu",kernelFunc:U6};var sA=es(r=>Math.floor(r)),j6=ts(sn,sA),iA={kernelName:sn,backendName:"cpu",kernelFunc:j6};function zk(r,e,t){let o=Ce(t,r.dtype);for(let n=0;nr>e?1:0),H6=ot(ci,aA,null,"bool"),lA={kernelName:ci,backendName:"cpu",kernelFunc:H6};var uA=Ye((r,e)=>rMath.log(r)),K6=ts(pn,pA),mA={kernelName:pn,backendName:"cpu",kernelFunc:K6};function Vk(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;si&&(i=u)}n[s]=i}return n}var fA=Ye((r,e)=>Math.max(r,e)),X6=ot(fn,fA),dA={kernelName:fn,backendName:"cpu",kernelFunc:X6};var hA=Ye((r,e)=>Math.min(r,e)),Y6=ot(xn,hA),gA={kernelName:xn,backendName:"cpu",kernelFunc:Y6};var Tx=Ye((r,e)=>r*e),Z6=Lp((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),Kd=ot(yn,Tx,Z6),xA={kernelName:yn,backendName:"cpu",kernelFunc:Kd};function yA(r,e,t){let o=y.createScalarValue(-1,t);return Tx([],e,o,r,t)}function J6(r){let{inputs:e,backend:t}=r,{x:o}=e;ee(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=yA(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var bA={kernelName:fs,backendName:"cpu",kernelFunc:J6};var _A=Ye((r,e)=>r!==e?1:0),Q6=ot(bi,_A,null,"bool"),wA={kernelName:bi,backendName:"cpu",kernelFunc:Q6};function Xd(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;ct.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var CA={kernelName:vi,backendName:"cpu",kernelFunc:e5};function Yd(r,e,t,o){let n=r===e,s=r1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,o);e1/Math.sqrt(r)),t5=ts(Tn,IA),NA={kernelName:Tn,backendName:"cpu",kernelFunc:t5};function Zd(r,e,t,o,n){let s=or.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let p=or.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?N.fromUint8ToStringArray(r):r,u=Ce(o,n,l),c=Ce(t,n);for(let p=0;pd+e[h]);c.set(u.get(...f),...m)}return n==="string"?N.fromStringArrayToUint8(c.values):c.values}function rs(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;ee(n,"slice");let[i,l]=or.parseSliceParams(n,s,a);or.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=Zd(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var SA={kernelName:ys,backendName:"cpu",kernelFunc:rs};var TA=Ye((r,e)=>{let t=r-e;return t*t}),r5=ot(Fn,TA),EA={kernelName:Fn,backendName:"cpu",kernelFunc:r5};function Gk(r,e,t,o){let n=Ce(r,e.dtype);for(let s=0;sr-e),o5=Lp((r,e,t,o)=>({real:r-t,imag:e-o})),Jd=ot(On,AA,o5),DA={kernelName:On,backendName:"cpu",kernelFunc:Jd};function Wk(r,e){let t=new Array(r.rank);for(let n=0;n_.value-b.value);let h=p*o,g=l.subarray(h,h+o),x=u.subarray(h,h+o);for(let b=0;b{for(let g=0;gnew Pp,1);var qk=Ae(ni,r=>r>=0?r:Math.exp(r)-1),RA={kernelName:ni,backendName:"cpu",kernelFunc:qk};function Kk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;ee([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;ur<0?e*r:r);function Xk(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;ee([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=n5(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var OA={kernelName:kn,backendName:"cpu",kernelFunc:Xk};var Yk=Ae(vn,r=>Math.max(0,r)),PA={kernelName:vn,backendName:"cpu",kernelFunc:Yk};var Zk=Ae(In,r=>Math.min(Math.max(0,r),6)),MA={kernelName:In,backendName:"cpu",kernelFunc:Zk};function zp(r,e,t,o,n){if(t==="linear")return Tr({inputs:{x:e},backend:r});if(t==="relu")return Yk({inputs:{x:e},backend:r});if(t==="elu")return qk({inputs:{x:e},backend:r});if(t==="relu6")return Zk({inputs:{x:e},backend:r});if(t==="prelu")return Xk({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return Kk({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function tt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var LA={kernelName:gs,backendName:"cpu",kernelFunc:tt};function Jk(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;ee([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let w=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let v=a?[g,c,m]:[g,m,c],$=i?[x,f,p]:[x,p,f],A=tt({inputs:{x:n},backend:t,attrs:{shape:v}}),R=tt({inputs:{x:s},backend:t,attrs:{shape:$}}),M=a?A.shape[1]:A.shape[2],V=a?A.shape[2]:A.shape[1],G=i?R.shape[1]:R.shape[2],W=Math.max(g,x),q=t.data.get(A.dataId).values,Z=t.data.get(R.dataId).values,X=y.computeStrides(A.shape),Y=y.computeStrides(R.shape),[te,K,re]=a?[X[0],1,X[1]]:[X[0],X[1],1],[ie,se,pe]=i?[1,Y[1],Y[0]]:[Y[1],1,Y[0]],ae=V*G,xe=Ce([W,V,G],A.dtype),ge=xe.values,_e=t.blockSize;for(let ke=0;keMath.acos(r)),VA={kernelName:Ks,backendName:"cpu",kernelFunc:i5};var a5=Ae(Xs,r=>Math.acosh(r)),GA={kernelName:Xs,backendName:"cpu",kernelFunc:a5};function l5(r){let{inputs:e,backend:t}=r,o=e;ee(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=Ce(o[0].shape,o[0].dtype),a=s.values;for(let i=0;ib&&(b=v,_=w)}f[g]=_}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var HA={kernelName:Ko,backendName:"cpu",kernelFunc:p5};function m5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;ee(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=tr({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;gt.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var qA={kernelName:oa,backendName:"cpu",kernelFunc:m5};var f5=Ae(Ys,r=>Math.asin(r)),KA={kernelName:Ys,backendName:"cpu",kernelFunc:f5};var d5=Ae(Zs,r=>Math.asinh(r)),XA={kernelName:Zs,backendName:"cpu",kernelFunc:d5};var h5=Ae(Js,r=>Math.atan(r)),YA={kernelName:Js,backendName:"cpu",kernelFunc:h5};var g5=Ye((r,e)=>Math.atan2(r,e)),x5=ot(ei,g5),ZA={kernelName:ei,backendName:"cpu",kernelFunc:x5};var y5=Ae(Qs,r=>Math.atanh(r)),JA={kernelName:Qs,backendName:"cpu",kernelFunc:y5};function Bp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=Ce(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],_=n.outShape[3];for(let w=0;wte?te=ge:s==="avg"&&(K+=ge,re++)}if(isNaN(te))break}let ie=W+q*_+A;g[ie]=s==="avg"?K/re:te}}}return h}function Ex(r,e,t,o,n=!1,s=!1){let a=Ce(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=Ce(e,t,r);for(let g=0;gV&&(V=Y,n?G=s?((g*o.inHeight+W)*o.inWidth+Z)*o.inChannels+x:(W*o.inWidth+Z)*o.inChannels+x:G=q*m+X)}}a.set(G,g,b,$,x)}}return a}function Ax(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Ce(n.outShape,t),w=_.values,v=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],$=n.outShape[2]*n.outShape[3]*n.outShape[4],A=n.outShape[3]*n.outShape[4],R=n.outShape[4];for(let M=0;MDe?De=Ft:s==="avg"&&($e+=Ft,Re++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let He=ke+W;w[He]=s==="avg"?$e/Re:De}}}}return _}function QA(r,e){let t=Ce(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h=q&&(q=se,Z=Y*c*p+K*c+ie)}}}t.set(Z,h,x,v,M,g)}}}return t}function b5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;ee(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Tr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Bp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var e2={kernelName:Xo,backendName:"cpu",kernelFunc:b5};function _5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;ee(n,"avgPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Ax(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var t2={kernelName:na,backendName:"cpu",kernelFunc:_5};function w5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;ee([n,s],"avgPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,_=c.dilationWidth,w=c.effectiveFilterDepth,v=c.effectiveFilterHeight,$=c.effectiveFilterWidth,A=w-1-c.padInfo.front,R=$-1-c.padInfo.left,M=v-1-c.padInfo.top,V=Ce(s.shape,"float32"),G=1/(d*h*g),W=t.bufferSync(n);for(let q=0;q=c.outDepth||Math.floor(ae)!==ae))for(let xe=0;xe=c.outHeight||Math.floor(ge)!==ge))for(let _e=0;_e<$;_e+=_){let ke=(ie+_e)/f;if(ke<0||ke>=c.outWidth||Math.floor(ke)!==ke)continue;se+=W.get(q,ae,ge,ke,Z)}}}V.set(se*G,q,X,Y,te,Z)}return t.makeTensorInfo(V.shape,V.dtype,V.values)}var r2={kernelName:Ul,backendName:"cpu",kernelFunc:w5};function k5(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;ee([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,_=b-1-c.padInfo.left,w=x-1-c.padInfo.top,v=Ce(a.shape,"float32"),$=1/(f*d),A=t.data.get(n.dataId).values,R=Ce(n.shape,"float32",A);for(let M=0;M=c.outHeight||Math.floor(te)!==te))for(let K=0;K=c.outWidth||Math.floor(re)!==re)continue;X+=R.get(M,te,re,V)}}v.set(X*$,M,G,W,V)}return t.makeTensorInfo(v.shape,v.dtype,v.values)}var o2={kernelName:Wl,backendName:"cpu",kernelFunc:k5};function v5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ee([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,_=p.length,w=0,v=0,$=0,A=0;for(let R=0;R=g&&(w=0),v>=_&&(v=0),$>=x&&($=0),A>=b&&(A=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var n2={kernelName:ln,backendName:"cpu",kernelFunc:v5};function C5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;ee([n],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=tt({inputs:{x:n},backend:t,attrs:{shape:l}}),d=tr({inputs:{x:f},backend:t,attrs:{perm:u}}),h=tt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=rs({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var s2={kernelName:sa,backendName:"cpu",kernelFunc:C5};function I5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=Hd(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var i2={kernelName:jl,backendName:"cpu",kernelFunc:I5};var N5=Ae(Ao,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;uh.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Tr({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(N.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(w=>Jn({inputs:{input:w},backend:t})),g=i.map(w=>Ki({inputs:{input:w},backend:t})),x=vl({inputs:h,backend:t,attrs:{axis:s}}),b=vl({inputs:g,backend:t,attrs:{axis:s}}),_=cr({inputs:{real:x,imag:b},backend:t});return h.forEach(w=>t.disposeIntermediateTensorInfo(w)),g.forEach(w=>t.disposeIntermediateTensorInfo(w)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),_}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return tt({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=N.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=qd(c,a,e[0].dtype,p),f=N.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var c2={kernelName:cs,backendName:"cpu",kernelFunc:vl};function Qk(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;ee([n,s],"conv2d");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,_=m.dataFormat==="channelsLast",w=new ct(m.outShape,n.dtype),v=y.computeStrides(n.shape),$=y.computeStrides(s.shape),A=v[0],R=_?v[1]:v[2],M=_?v[2]:1,V=_?1:v[1],G=w.strides[0],W=_?w.strides[1]:w.strides[2],q=_?w.strides[2]:1,Z=_?1:w.strides[1],X=t.data.get(n.dataId).values,Y=t.data.get(s.dataId).values,te=w.values;for(let K=0;K=m.inHeight)continue;let _e=xe*$[0],ke=re+ge*R;for(let De=0;De=m.inWidth)continue;let wt=_e+He*$[1],kt=ke+ut*M,pt=wt;for(let vt=0;vt=u.inDepth)continue;let K=Y*M[0],re=G+te*R[1];for(let ie=0;ie=u.inHeight)continue;let ge=K+ae*M[1],_e=re+xe*R[2];for(let ke=0;ke=u.inWidth)continue;let ut=ge+Re*M[2],wt=_e+He*u.inChannels,kt=ut;for(let pt=0;ptMath.cos(r)),x2={kernelName:en,backendName:"cpu",kernelFunc:R5};var F5=Ae(ti,r=>Math.cosh(r)),y2={kernelName:ti,backendName:"cpu",kernelFunc:F5};function O5(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,x=Ce([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,_=t.data.get(a.dataId).values,w=t.data.get(n.dataId).values,v=y.computeStrides(n.shape),$=y.computeStrides(x.shape);for(let A=0;A=c)continue;let Z=h>1?(G-M)*(p-1)/(h-1):0,X=g>1?(W-V)*(m-1)/(g-1):0;for(let Y=0;Y1?M*(p-1)+Y*Z:.5*(M+G)*(p-1);if(te<0||te>p-1){for(let K=0;K1?V*(m-1)+se*X:.5*(V+W)*(m-1);if(pe<0||pe>m-1){for(let _e=0;_e1?V*(m-1)+K*X:.5*(V+W)*(m-1);if(re<0||re>m-1){for(let pe=0;pex+d-b-1:(x,b)=>x+b;for(let x=0;x`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=N.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,_=b.left,w=b.top,v=f.outChannels/f.inChannels,$=new ct(f.outShape,n.dtype),A=t.data.get(n.dataId).values,R=t.data.get(s.dataId).values,M=$.values;for(let V=0;V=f.inHeight)continue;let K=Y*p[0],re=G+te*c[1];for(let ie=0;ie=f.inWidth)continue;let ge=K+ae*p[1],_e=re+xe*f.inChannels,ke=se,De=ge;for(let $e=0;$e{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:_,strideHeight:w,strideWidth:v,filterHeight:$,filterWidth:A,dilationHeight:R,dilationWidth:M,outShape:V}=N.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),G=y.sizeFromShape(V),W=V.length,q=y.getArrayFromDType(o.dtype,G);for(let X=0;X=0&&xe=0&&_ese&&(se=$e)}}}let pe=y.locToIndex([X,Y,K,ie],W,y.computeStrides(V));q[pe]=se}}}return{dataId:l.write(y.toTypedArray(q,o.dtype),V,o.dtype),shape:V,dtype:o.dtype}}};var T2={kernelName:Fc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:_,strideWidth:w,filterHeight:v,filterWidth:$,dilationHeight:A,dilationWidth:R,outShape:M}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===M.length,()=>`Error in ${Fc}, dy must have the same rank as output ${M.length}, but got ${s.rank}`);let V=y.toNestedArray(M,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let q=0;q=0&&ae=0&&gere&&(re=_e,ie=pe,se=xe)}}}G[ie][se][K]+=V[q][Z][Y][K]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var E2={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:_,strideWidth:w,filterHeight:v,filterWidth:$,dilationHeight:A,dilationWidth:R,outShape:M}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===M.length,()=>`Error in ${Rc}, dy must have the same rank as output ${M.length}, but got ${s.rank}`);let V=y.toNestedArray(M,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let q=0;q=0&&ae=0&&gere&&(re=_e,ie=ae,se=ge)}}}G[q][ie][se][K]+=V[q][Z][Y][K]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function G5(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;ee([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var A2={kernelName:eu,backendName:"cpu",kernelFunc:G5};var W5=Ye((r,e)=>r===e?1:0),tv=ot(ii,W5,null,"bool"),D2={kernelName:ii,backendName:"cpu",kernelFunc:tv};var U5=N.ERF_P,j5=N.ERF_A1,H5=N.ERF_A2,q5=N.ERF_A3,K5=N.ERF_A4,X5=N.ERF_A5,Y5=Ae(si,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+U5*t);return e*(1-((((X5*o+K5)*o+q5)*o+H5)*o+j5)*o*Math.exp(-t*t))}),$2={kernelName:si,backendName:"cpu",kernelFunc:Y5};function Vp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),tt({inputs:{x:n},backend:t,attrs:{shape:i}})}var R2={kernelName:ps,backendName:"cpu",kernelFunc:Vp};var Z5=Ye((r,e)=>r/e),Qd=ot(on,Z5),eh={kernelName:on,backendName:"cpu",kernelFunc:Qd};function Dx(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m=0&&vMath.floor(r/e)),nX=ot(an,oX,null,"int32"),M2={kernelName:an,backendName:"cpu",kernelFunc:nX};function sX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=Qk({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ga({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=zp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var L2={kernelName:vs,backendName:"cpu",kernelFunc:sX};function iX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=ev({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=Ga({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=zp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var z2={kernelName:Cs,backendName:"cpu",kernelFunc:iX};function aX(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=N.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=Ce([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let b=0;br>=e?1:0),cX=ot(un,uX,null,"bool"),G2={kernelName:un,backendName:"cpu",kernelFunc:cX};function pX(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=tt({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Dx(i,!0,t),u=tt({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var W2={kernelName:ru,backendName:"cpu",kernelFunc:pX};var mX=Ae(pi,r=>Number.isFinite(r)?1:0,"bool"),U2={kernelName:pi,backendName:"cpu",kernelFunc:mX};var fX=Ae(mi,r=>Math.abs(r)===Infinity?1:0,"bool"),j2={kernelName:mi,backendName:"cpu",kernelFunc:fX};var dX=Ae(fi,r=>Number.isNaN(r)?1:0,"bool"),H2={kernelName:fi,backendName:"cpu",kernelFunc:dX};var hX=Ye((r,e)=>r<=e?1:0),gX=ot(hi,hX,null,"bool"),q2={kernelName:hi,backendName:"cpu",kernelFunc:gX};function xX(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=Bk(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var K2={kernelName:nu,backendName:"cpu",kernelFunc:xX};var yX=Ae(gi,r=>Math.log1p(r)),X2={kernelName:gi,backendName:"cpu",kernelFunc:yX};var bX=Ye((r,e)=>r&&e),_X=ot(xi,bX,null,"bool"),Y2={kernelName:xi,backendName:"cpu",kernelFunc:_X};var wX=Ae(Za,r=>r?0:1,"bool"),Z2={kernelName:Za,backendName:"cpu",kernelFunc:wX};var kX=Ye((r,e)=>r||e),vX=ot(Ja,kX,null,"bool"),J2={kernelName:Ja,backendName:"cpu",kernelFunc:vX};function CX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;ee(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),_=0;for(;x<=b;x++){let w=p[x];_+=w*w}return _}for(let h=0;h`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Tr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=Bp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var rD={kernelName:dn,backendName:"cpu",kernelFunc:NX};function SX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;ee(n,"maxPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=Ax(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var oD={kernelName:pa,backendName:"cpu",kernelFunc:SX};function TX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;ee([n,s],"maxPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=QA(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,_=c.effectiveFilterDepth,w=c.effectiveFilterHeight,v=c.effectiveFilterWidth,$=_-1-c.padInfo.front,A=v-1-c.padInfo.left,R=w-1-c.padInfo.top,M=Ce(s.shape,"float32"),V=t.bufferSync(n);for(let G=0;G=c.outDepth||Math.floor(se)!==se))for(let pe=0;pe=c.outHeight||Math.floor(ae)!==ae))for(let xe=0;xe=c.outWidth||Math.floor(ge)!==ge)continue;let _e=_*w*v-1-m.get(G,se,ae,ge,W),ke=ie*w*v+pe*v+xe,De=_e===ke?1:0;if(De===0)continue;re+=V.get(G,se,ae,ge,W)*De}}}M.set(re,G,q,Z,X,W)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var nD={kernelName:au,backendName:"cpu",kernelFunc:TX};function EX(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;ee([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=Ce(m.outShape,i.dtype,Ex(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,_=m.effectiveFilterHeight,w=m.effectiveFilterWidth,v=w-1-m.padInfo.left,$=_-1-m.padInfo.top,A=Ce(i.shape,"float32"),R=t.data.get(n.dataId).values,M=Ce(n.shape,"float32",R);for(let V=0;V=m.outHeight||Math.floor(K)!==K))for(let re=0;re=m.outWidth||Math.floor(ie)!==ie)continue;let se=_*w-1-d.get(V,K,ie,G),pe=te*w+re,ae=se===pe?1:0;if(ae===0)continue;Y+=M.get(V,K,ie,G)*ae}}A.set(Y,V,W,q,G)}return t.makeTensorInfo(A.shape,A.dtype,A.values)}var sD={kernelName:iu,backendName:"cpu",kernelFunc:EX};function iD(r,e,t,o,n){let s=y.computeStrides(e),a=Bp(r,e,t,s,n,"max"),i=Ex(r,e,t,n,!0,o);return[a.values,i.values]}var aD={kernelName:lu,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;ee(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=N.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=iD(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function sc(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;ee(n,"sum");let i;n.dtype==="bool"?i=Qn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Tr({inputs:{x:n},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=N.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=tr({inputs:{x:i},backend:t,attrs:{perm:c}}),p=N.getInnerMostAxes(p.length,l)),N.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=N.computeOutAndReduceShapes(m.shape,p),h=N.upcastType(m.dtype,"int32"),g=Mp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,_=t.data.get(m.dataId).values;for(let w=0;wt.disposeIntermediateTensorInfo(g)),h}var uD={kernelName:hn,backendName:"cpu",kernelFunc:AX};function DX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;ee(n,"min");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=tr({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x_[0]+n.shape[w]+_[1]),l=s.map(_=>_[0]),u=s.map((_,w)=>_[0]+n.shape[w]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=y.computeStrides(n.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,d);for(let _=0;_=u[$]&&(w[$]=(u[$]-1)*2-w[$]+c);w=w.map(($,A)=>$-l[A]);let v=y.locToIndex(w,m,f);x[_]=p[v]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var pD={kernelName:ma,backendName:"cpu",kernelFunc:$X};var RX=Ye((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),FX=ot(yi,RX),mD={kernelName:yi,backendName:"cpu",kernelFunc:FX};var dD=Tc(Km());function nv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],n.shape),u=ov({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=N.expandShapeToKeepDim(u.shape,l),p=tt({inputs:{x:u},backend:t,attrs:{shape:c}}),m=Jd({inputs:{a:n,b:p},backend:t}),f=Lk({inputs:{x:m},backend:t}),d=sc({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=tt({inputs:{x:d},backend:t,attrs:{shape:c}}),g=Qd({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var fD={kernelName:Rn,backendName:"cpu",kernelFunc:nv};function OX(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;ee(n,"multinomial");let l=i?n:nv({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d=0&&c[p]{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Vp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=vl({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var vD={kernelName:hs,backendName:"cpu",kernelFunc:sv};function WX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;ee(n,"pad");let i=s.map((b,_)=>b[0]+n.shape[_]+b[1]),l=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),p=n.shape.length,m=y.computeStrides(n.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let b=0;b$+l[A]),v=y.locToIndex(w,d,h);g[v]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var $x={kernelName:_n,backendName:"cpu",kernelFunc:WX};var UX=Ye((r,e)=>Math.pow(r,e)),jX=ot(wn,UX),CD={kernelName:wn,backendName:"cpu",kernelFunc:jX};function HX(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=Yd(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var ID={kernelName:fa,backendName:"cpu",kernelFunc:HX};var qX=Ae(Ci,r=>1/r),ND={kernelName:Ci,backendName:"cpu",kernelFunc:qX};function KX(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;ee(n,"resizeBilinear");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=0,w=x[0]/b[0],v=x[1]/b[1];for(let $=0;$1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],_=t.data.get(s.dataId).values,w=0;for(let v=0;v1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],_=x[0]/b[0],w=x[1]/b[1],v=0;for(let $=0;$1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],_=x[0]/b[0],w=x[1]/b[1],v=1/_,$=1/w,A=Math.ceil(v)*2+2,R=Math.ceil($)*2+2;for(let M=0;M=f)continue;let ae=V+pe*l[1],xe=pe*_,ge=Math.min(c-1,a?Math.round(xe):Math.floor(xe));if(G===ge)for(let _e=0;_e=d)continue;let De=ae+ke*l[2],$e=ke*w,Re=Math.min(p-1,a?Math.round($e):Math.floor($e));X===Re&&(ie+=g[De+re])}}h[Y+re]=ie}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var AD={kernelName:pu,backendName:"cpu",kernelFunc:ZX};function JX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;ee(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Tr({inputs:{x:n},backend:t});let l=new ct(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;cm[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var DD={kernelName:Nn,backendName:"cpu",kernelFunc:JX};var $D={kernelName:Ri,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=N.getImageCenter(a,c,p),h=255,g=Math.sin(n),x=Math.cos(n),b=i.data.get(o.dataId).values;for(let w=0;w=0&&Z=0&&X{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),RD={kernelName:Sn,backendName:"cpu",kernelFunc:QX};function Rx(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return Ce(t,e.dtype);let f=Ce(c,e.dtype);f.values.fill(l);for(let d=0;d=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let d=0;dr>=0?o8*r:r8*(Math.exp(r)-1)),PD={kernelName:Ni,backendName:"cpu",kernelFunc:n8};var s8=Ae(An,r=>1/(1+Math.exp(-r))),MD={kernelName:An,backendName:"cpu",kernelFunc:s8};var i8=Ae(Ti,r=>r<0?-1:r>0?1:0),LD={kernelName:Ti,backendName:"cpu",kernelFunc:i8};var a8=Ae(En,r=>Math.sin(r)),zD={kernelName:En,backendName:"cpu",kernelFunc:a8};var l8=Ae(Si,r=>Math.sinh(r)),BD={kernelName:Si,backendName:"cpu",kernelFunc:l8};var u8=11920928955078125e-23,VD=Math.log(u8)+2,c8=Ae(Ei,r=>{let e=r>-VD,t=r{let m=[...c];m[i]=p;let f=rs({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var jD={kernelName:bs,backendName:"cpu",kernelFunc:f8};var d8=Ae(Dn,r=>Math.sqrt(r)),HD={kernelName:Dn,backendName:"cpu",kernelFunc:d8};var qD={kernelName:ga,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;ee(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),KD={kernelName:$o,backendName:"cpu",kernelFunc:h8};function g8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;ee(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(n.shape,s,a,i,l,u,c,p,m),_=tt({inputs:{x:n},backend:t,attrs:{shape:x}}),w;if(f){let $=rs({inputs:{x:_},backend:t,attrs:{begin:d,size:g}});w=tt({inputs:{x:$},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo($)}else if(b.some($=>$===0))w=t.makeTensorInfo(b,n.dtype,[]);else{let $=t.bufferSync(_),A=Gk(b,$,h,d);w=t.makeTensorInfo(A.shape,A.dtype,A.values)}let v=tt({inputs:{x:w},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(_),t.disposeIntermediateTensorInfo(w),v}var XD={kernelName:Ai,backendName:"cpu",kernelFunc:g8};var x8=Ae(Di,r=>Math.tan(r)),YD={kernelName:Di,backendName:"cpu",kernelFunc:x8};var y8=Ae(Pn,r=>Math.tanh(r)),ZD={kernelName:Pn,backendName:"cpu",kernelFunc:y8};function b8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;ee(n,"tile");let a=Wk(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var JD={kernelName:yo,backendName:"cpu",kernelFunc:b8};function _8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;ee(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=Uk(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var QD={kernelName:$i,backendName:"cpu",kernelFunc:_8};function w8(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;ee(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=jk(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var e$={kernelName:du,backendName:"cpu",kernelFunc:w8};function k8(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;ft.disposeIntermediateTensorInfo(d)),f}var r$={kernelName:xa,backendName:"cpu",kernelFunc:v8};var C8=[BA,HE,VA,GA,JE,WA,UA,jA,HA,qA,KA,XA,YA,ZA,JA,e2,t2,r2,o2,zA,n2,s2,i2,YE,eA,a2,qE,l2,c2,m2,f2,p2,h2,g2,d2,x2,y2,b2,_2,w2,k2,v2,C2,I2,N2,S2,E2,T2,eh,RA,A2,D2,$2,rA,R2,nA,F2,O2,P2,iA,M2,L2,z2,B2,V2,lA,G2,KE,W2,u2,U2,j2,H2,FA,cA,q2,K2,mA,X2,Y2,Z2,J2,Q2,eD,dA,rD,oD,nD,sD,aD,tD,uD,cD,gA,pD,mD,hD,xA,bA,gD,xD,yD,wA,bD,kD,vD,$x,CD,OA,CA,ID,XE,ND,PA,MA,LA,SD,TD,ED,AD,DD,$D,RD,NA,FD,OD,PD,MD,LD,zD,BD,SA,fD,GD,WD,UD,jD,HD,qD,EA,KD,XD,DA,lD,YD,ZD,JD,QD,kA,e$,t$,r$,_D];for(let r of C8)Qa(r);var ic={},iv={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function o$(r,e){ic[r]=e}function Bo(r){if(!(r in ic)){let t=I8(r);if(t!==null)ic[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=ic[r];return e.isContextLost()?(delete ic[r],Bo(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),ic[r])}function N8(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function I8(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=N8(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete ic[r]},!1),r===1?e.getContext("webgl",iv)||e.getContext("experimental-webgl",iv):e.getContext("webgl2",iv)}var Cl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(Cl||(Cl={}));var Er;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Er||(Er={}));var br;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(br||(br={}));function ac(r,e){return[e,r]}function n$(r,e){return r*e}function Il(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function Xi(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function s$(r,e){let[t,o]=Xi(r,e);return t*o*4}function oh(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return U().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ee(r,e){let t=e();return U().getBool("DEBUG")&&S8(r),t}function S8(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+T8(r,e))}var E8=596e-10,A8=65504;function i$(r){return!!(U().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||E8r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function a$(r,e){let t=Wa(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ee(r,()=>r.shaderSource(t,e)),Ee(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function l$(r,e){let t=Wa(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ee(r,()=>r.shaderSource(t,e)),Ee(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw D8(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var $8=/ERROR: [0-9]+:([0-9]+):/g;function D8(r,e){let t=$8.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(` `),s=n.length.toString().length+2,a=n.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;pr.createProgram(),"Unable to create WebGLProgram.")}function c$(r,e){if(Ee(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Fx(r,e){if(Ee(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function p$(r,e){let t=Wa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ee(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ee(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function m$(r,e){let t=Wa(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ee(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ee(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function f$(r){return Wa(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function d$(r,e){let t=U().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function h$(r){return Wa(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function av(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ee(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),Ee(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),Ee(r,()=>r.enableVertexAttribArray(i)),!0)}function F8(r,e,t){R8(r,t),Ee(r,()=>r.activeTexture(r.TEXTURE0+t)),Ee(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function g$(r,e,t){return Wa(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function x$(r,e,t){return r.getUniformLocation(e,t)}function y$(r,e,t,o){Ee(r,()=>F8(r,e,o)),Ee(r,()=>r.uniform1i(t,o))}function Ox(r,e,t){Ee(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ee(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function lv(r,e){Ee(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ee(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function sh(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+O8(r,e))}function O8(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function Wa(r,e,t){let o=Ee(r,()=>e());if(o==null)throw new Error(t);return o}function R8(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(ot){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function Nl(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Sl(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Px(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Nl(r),...Sl(r)]),e}function b$(r,e=!1){let t=U().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=Nl(r),s=2,a=2;return r.length&&([s,a]=Sl(r)),o=n*(s/2)*(a/2),y.sizeToSquarishShape(o).map(i=>i*2)}return y.sizeToSquarishShape(o)}function Mx(r){return r%2==0}function lc(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||Mx(t)&&Mx(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Mx(r[0])&&Mx(e[0])}var uv,cv;function _$(r){if(uv==null){let e=Bo(r);uv=e.getParameter(e.MAX_TEXTURE_SIZE)}return uv}function w$(r){if(cv==null){let e=Bo(r);cv=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,cv)}function k$(r){if(r===0)return 0;let e,t=Bo(r);return Vo(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:Vo(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function Vo(r,e){return r.getExtension(e)!=null}function pv(r){try{if(Bo(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function v$(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!Vo(e,"OES_texture_float"))return!1}else if(!Vo(e,"EXT_color_buffer_float"))return!1;return mv(e)}function C$(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!Vo(e,"OES_texture_float")||!Vo(e,"WEBGL_color_buffer_float"))return!1}else{if(Vo(e,"EXT_color_buffer_float"))return mv(e);let o="EXT_color_buffer_half_float";if(Vo(e,o)){let n=e.getExtension(o);return P8(e,n)}return!1}return mv(e)}function mv(r){let e=oh(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function P8(r,e){let t=oh(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function I$(r){return r!==2?!1:Bo(r).fenceSync!=null}function Yi(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Be=U();Be.registerFlag("HAS_WEBGL",()=>Be.getNumber("WEBGL_VERSION")>0);Be.registerFlag("WEBGL_VERSION",()=>pv(2)?2:pv(1)?1:0);Be.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Be.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Be.get("WEBGL_VERSION")===2);Be.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Be.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Be.registerFlag("WEBGL_PACK",()=>Be.getBool("HAS_WEBGL"));Be.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_CLIP",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Be.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_PACK_REDUCE",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_LAZILY_UNPACK",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_CONV_IM2COL",()=>Be.getBool("WEBGL_PACK"));Be.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>_$(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>w$(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Be.getNumber("WEBGL_VERSION");return r===0?0:k$(r)});Be.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Be.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Vc.isMobile());Be.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>v$(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Be.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Be.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Be.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>C$(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_FENCE_API_ENABLED",()=>I$(Be.getNumber("WEBGL_VERSION")));Be.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Be.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Be.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});function Mt(){let r,e,t,o,n,s,a,i,l,u;return U().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,l="",u=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,l=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,u=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function Vs(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function Gp(r){let e=y.computeStrides(r).map(t=>t.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z; } `}var Lx=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `;var fv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Cl.DENSE;let t=Il(e),o=Mt();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Vs(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${o.output} = result; } `}};var dv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Cl.DENSE;let t=Il(e),o=Mt();this.outputShape=e,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${Vs(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${o.output} = result; } `}};var hv=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Er.DOWNLOAD;let t=Mt();this.outputShape=e,this.userCode=` ${Lx} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}};var gv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Er.DOWNLOAD;let t=Mt();this.outputShape=e,this.userCode=` ${Lx} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}};var xv=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=Mt(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=` ${Gp(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${a}; int c = imod(flatIndex, ${a}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0); vec4 values = ${n.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${n.output} = vec4(${i}, 0., 0., 0.); } `}};var yv=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=Mt(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=` localCoords = coords; if(localCoords[2] + ${c} < ${e[2]}) { localCoords[2] += ${c}; if(localCoords[1] + ${u} < ${e[1]}) { localCoords[1] += ${u}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${a}; c = imod(flatIndex, ${a}); uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0); values = ${n.texture2D}(A, uv); if(offset == 0) { result[${p}] = values[0]; } else if(offset == 1) { result[${p}] = values[1]; } else if(offset == 2) { result[${p}] = values[2]; } else { result[${p}] = values[3]; } } } `}this.userCode=` ${Gp(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${i} ${n.output} = ${l}; } `}};function N$(r){let e=Mt(),t=`${e.version} precision highp float; ${e.attribute} vec3 clipSpacePos; ${e.attribute} vec2 uv; ${e.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return a$(r,t)}function S$(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return p$(r,e)}function T$(r){let e=new Uint16Array([0,1,2,2,1,3]);return m$(r,e)}function ih(r,e,t,o,n,s){d$(e,t);let a=f$(r),i=r.TEXTURE_2D;return Ee(r,()=>r.bindTexture(i,a)),Ee(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ee(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ee(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ee(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ee(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),Ee(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function bv(r){return r.internalFormatFloat}function E$(r,e,t,o){let[n,s]=ac(e,t);return ih(r,n,s,bv(o),o.textureFormatFloat,r.FLOAT)}function _v(r){return r.internalFormatHalfFloat}function A$(r,e,t,o){let[n,s]=ac(e,t);return ih(r,n,s,_v(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function wv(r){return r.downloadTextureFormat}function D$(r,e,t,o){let[n,s]=ac(e,t);return ih(r,n,s,wv(o),r.RGBA,r.UNSIGNED_BYTE)}function kv(r){return r.internalFormatPackedFloat}function $$(r,e,t,o){let[n,s]=Xi(e,t);return ih(r,n,s,kv(o),r.RGBA,r.FLOAT)}function vv(r){return r.internalFormatPackedHalfFloat}function R$(r,e,t,o){let[n,s]=Xi(e,t);return ih(r,n,s,vv(o),r.RGBA,o.textureTypeHalfFloat)}function F$(r,e,t){let o=0,n=3*4,s=3*4+2*4;return Ee(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),av(r,e,"clipSpacePos",t,3,s,o)&&av(r,e,"uv",t,2,s,n)}function O$(r,e,t,o,n,s){Ee(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),Ee(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),Ee(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function P$(r,e,t){Ee(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ee(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ee(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ee(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function M$(r,e,t,o){let n=r.createBuffer();Ee(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return Ee(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ee(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ee(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function L$(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function z$(r,e,t,o){let[n,s]=ac(e,t),a=4,i=new Uint8Array(n$(e*t,a));return Ee(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function B$(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(s$(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function V$(r,e,t){let o=new Float32Array(e*t*4);return Ee(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var Cv=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=U().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,o$(t,e)):this.gl=Bo(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(U().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=nh(this.gl,s),Vo(this.gl,a))this.textureHalfFloatExtension=nh(this.gl,a);else if(U().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),Vo(this.gl,n))this.colorBufferHalfFloatExtension=nh(this.gl,n);else if(U().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",Vo(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(Vo(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=S$(this.gl),this.indexBuffer=T$(this.gl),this.framebuffer=h$(this.gl),this.textureConfig=oh(this.gl,this.textureHalfFloatExtension)}get debug(){return U().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ee(e,()=>e.finish()),Ee(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ee(e,()=>e.deleteFramebuffer(this.framebuffer)),Ee(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ee(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ee(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),E$(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),A$(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),D$(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),P$(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),O$(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),R$(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),$$(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(lv(this.gl,this.framebuffer),this.outputTexture=null),Ee(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>z$(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return B$(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return L$(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=M$(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(U().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>V$(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=l$(t,e),n=N$(t),s=u$(t);return Ee(t,()=>t.attachShader(s,n)),Ee(t,()=>t.attachShader(s,o)),c$(t,s),this.debug&&Fx(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=F$(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ee(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Fx(this.gl,this.program),Ee(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?g$(this.gl,e,t):x$(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ee(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),y$(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=Xi(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Fx(this.gl,this.program),sh(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ee(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ee(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=nh(this.gl,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=M8(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ox(this.gl,e,this.framebuffer),this.debug&&sh(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ox(this.gl,this.outputTexture,this.framebuffer),this.debug&&sh(this.gl)):lv(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;Ox(n,e,this.framebuffer),this.debug&&sh(n),this.outputTexture=e,Ee(n,()=>n.viewport(0,0,t,o)),Ee(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),Ee(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function M8(r){let e=0;for(;e{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(` `),a=r.map(d=>L8(d,e,o)).join(` `),i=e.texShape,l=Mt(),u=V8(l),c,p,m=U8(l);return e.isPacked?(c=z8(e.logicalShape,i),p=W8(l)):(c=B8(e.logicalShape,i),p=G8(l)),o&&(m+=j8),[m,u,p,s,c,a,t].join(` `)}function Wp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return H8(r);case 1:return q8(r);case 2:return K8(r);case 3:return X8(r);case 4:return Y8(r);case 5:return Z8(r);case 6:return J8(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function U$(r){switch(r.shapeInfo.logicalShape.length){case 0:return Q8(r);case 1:return eY(r);case 2:return tY(r);case 3:return rY(r);default:return oY(r)}}function L8(r,e,t=!1){let o="";t?o+=U$(r):o+=Wp(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=nY(r,e):o+=sY(r,e)),o}function z8(r,e){switch(r.length){case 0:return j$();case 1:return iY(r,e);case 2:return uY(r,e);case 3:return aY(r,e);default:return lY(r,e)}}function B8(r,e){switch(r.length){case 0:return j$();case 1:return cY(r,e);case 2:return hY(r,e);case 3:return pY(r,e);case 4:return mY(r,e);case 5:return fY(r,e);case 6:return dY(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function V8(r){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${r.texture2D}(textureSampler, uv).r; } `}function G8(r){return` void setOutput(float val) { ${r.output} = vec4(val, 0, 0, 0); } `}function W8(r){return` void setOutput(vec4 val) { ${r.output} = val; } `}function U8(r){return`${r.version} precision highp float; precision highp int; precision highp sampler2D; ${r.varyingFs} vec2 resultUV; ${r.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${r.defineSpecialNaN} ${r.defineSpecialInf} ${r.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${gY} ${xY} ${yY} `}var gY=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,xY=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,yY=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,j8=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function j$(){return` int getOutputCoords() { return 0; } `}function iY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return 2 * (resTexRC.x * ${t[1]} + resTexRC.y); } `}function cY(r,e){return e[0]===1?` int getOutputCoords() { return int(resultUV.x * ${e[1]}.0); } `:e[1]===1?` int getOutputCoords() { return int(resultUV.y * ${e[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); return resTexRC.x * ${e[1]} + resTexRC.y; } `}function aY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; int b = index / ${n}; index -= b * ${n}; int r = 2 * (index / ${o}); int c = imod(index, ${o}) * 2; return ivec3(b, r, c); } `}function pY(r,e){let t=Vs(["r","c","d"],r);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); int index = resTexRC.x * ${e[1]} + resTexRC.y; ${t} return ivec3(r, c, d); } `}function lY(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(` `);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,_)=>`coords.${p[_+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=` return vec4(outputValue.xy, outputValue.xy); `;else if(h&&!x)a===1?f=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:f=` return vec4(outputValue.x); `;else if(i.length){let b=s-2,_=s-1;i.indexOf(b)>-1&&i.indexOf(_)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(_)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${n}() { ${l} coords = getOutputCoords(); ${c} vec4 outputValue = get${o}(${m}); ${f} } `}function sY(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return` float ${n}() { return sampleTexture(${t}, resultUV); } `;let u=Le(l),c=G$(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(` `);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),` float ${n}() { ${u} coords = getOutputCoords(); ${m} return get${o}(${d}); } `}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function jp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Hp(r,e){return e.map(t=>r[t]).join(", ")}function H$(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=W$(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);U().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function K$(r,e,t,o,n){q$(e.inShapeInfos,t),q$([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),U().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function X$(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:Y$,bincountImpl:zx,bincountReduceImpl:Z$,ceilImpl:J$,concatImpl:Q$,expImpl:eR,expm1Impl:tR,floorImpl:rR,gatherV2Impl:oR,greaterImpl:nR,lessImpl:sR,linSpaceImpl:iR,logImpl:aR,maxImpl:lR,maximumImpl:uR,minimumImpl:cR,multiplyImpl:pR,negImpl:mR,prodImpl:fR,rangeImpl:dR,rsqrtImpl:hR,simpleAbsImpl:Bx,sliceImpl:gR,stridedSliceImpl:xR,subImpl:yR,tileImpl:bR,topKImpl:_R,transposeImpl:qp,uniqueImpl:wR}=Hk;function Iv(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Ut(r,e){return e===1?[r]:Iv(r,e)}function kR(r,e){if(r===1)return"rc";let t="";for(let o=0;o ${e[0]}`;let o="";for(let n=r-2;n= ${e[n]}`,n= ${e}; bool rEdge = rp1 >= ${t}; `}function wY(r,e){let t=r.length,o=kY(t,e);return t===1?`getA(rc), rc + 1 >= ${r[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${o[0]}), cEdge ? 0. : getA(${o[1]}), rEdge ? 0. : getA(${o[2]}), rEdge || cEdge ? 0. : getA(${o[3]})`}var ah=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=` ${s} ${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${n}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${n>0?"}":""} `}this.userCode=` ${vY(t)} ${Gp(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${e[1]}; int cols = ${e[2]}; ${o} setOutput(result); } `}};function vY(r){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${Vs(["r","c","d"],r)} return ivec3(r, c, d); } `}var Sv=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=CR(t,o),s=IR(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=vR(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===br.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===br.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===br.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===br.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===br.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=CR(o,n),a=IR(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=vR(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=U().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function CY(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function vR(r,e,t,o,n){let s=IY(e,o),a;if(n){let[l,u]=Xi(r[0],r[1]);a=l*u}else{let[l,u]=ac(r[0],r[1]);a=l*u}let i=CY(t,s);return a*i}function IY(r,e){switch(r){case br.PACKED_2X2_FLOAT32:return kv(e);case br.PACKED_2X2_FLOAT16:return vv(e);case br.UNPACKED_FLOAT32:return bv(e);case br.UNPACKED_FLOAT16:return _v(e);case br.PACKED_4X1_UNSIGNED_BYTE:return wv(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function NY(r){return U().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?br.PACKED_2X2_FLOAT32:br.UNPACKED_FLOAT32:r?br.PACKED_2X2_FLOAT16:br.UNPACKED_FLOAT16}function CR(r,e){if(r===Er.UPLOAD)return br.PACKED_2X2_FLOAT32;if(r===Er.RENDER||r==null)return NY(e);if(r===Er.DOWNLOAD||r===Er.PIXELS)return br.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function IR(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var uo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},gr="if (isnan(x)) return x;",NR="return x;",Tv="return abs(x);";var SR="return (x >= 0.0) ? x : (exp(x) - 1.0);",TR=gr+` return (x < 0.0) ? 0.0 : x; `,ER=gr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,lh="return x;";var AR="return x;",DR=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,$R=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,RR=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Gs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}};var Ev=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=Ut("rc",t),n=Le(t),s=kR(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${n} rc = getOutputCoords(); vec4 packedInput = getA(${s}); setOutput(getChannel(packedInput, ${i})); } `}};var SY=Sr.whereImpl,TY=1e-7,EY=1e-4,Vx={};function AY(r){return r in Vx||(Vx[r]={}),Vx[r]}var DY=128,$Y=600;function RY(){return U().global.screen==null?1024:U().global.screen.height*U().global.screen.width*window.devicePixelRatio*$Y/1024/1024}var Kp=class extends js{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!U().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Bo(U().getNumber("WEBGL_VERSION"));this.binaryCache=AY(U().getNumber("WEBGL_VERSION")),this.gpgpu=new Cv(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Sv(this.gpgpu),this.numMBBeforeWarning=RY(),this.texData=new Ya(this,Fo())}nextDataId(){return Kp.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((U().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||U().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:Er.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(U().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:Er.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new Gs(i,lh):m=new uo(i,lh);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=N.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new Gs(n,lh):d=new uo(n,lh);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!U().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&U().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&U().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...Il(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=N.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Fo().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ce(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(U().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return U().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Fo().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=DY){let o=this.getCPUBackend();return!U().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Fo().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Ev(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Nv(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[Nl(e.shape),...Sl(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[Nl(t),...Sl(t)],a=new ah(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=Px(n),i;o?i=new dv(a):i=new fv(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Cl.DENSE){let h=Il(e.outputShape);i.texShape=h.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(h=>{if(h.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(h.dataId);if(g.texture==null){if(!e.packedInputs&&y.sizeFromShape(h.shape)<=U().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:h.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=h.shape)}else if(!!g.isPacked!=!!e.packedInputs)h=g.isPacked?this.unpackTensor(h):this.packTensor(h),l.push(h),g=this.texData.get(h.dataId);else if(g.isPacked&&!lc(g.shape,h.shape)){let x=h,b=h.shape;h.shape=g.shape,h=this.packedReshape(h,b),l.push(h),g=this.texData.get(h.dataId),x.shape=b}return this.uploadToGPU(h.dataId),{shape:h.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=X$(e,u,c),m=this.getAndSaveBinary(p,()=>H$(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;if(f&&(d=this.startTimer()),K$(this.gpgpu,m,u,c,n),l.forEach(h=>this.disposeIntermediateTensorInfo(h)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)})),!U().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let h=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),h}return a}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(U().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!U().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=U().getBool("DEBUG");U().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(U().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?TY:EY}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=b$(o,l),t.texShape=p),s!=null){let m=Px(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=Xi(p[0],p[1]),f=new yv(m,[h,d],g)):f=new xv(m,[h,d],g);let x=this.makeTensorInfo([h,d],n);g?this.texData.get(x.dataId).usage=Er.PIXELS:this.texData.get(x.dataId).usage=Er.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,_=this.runWebGLProgram(f,[x],n,null,b),w=this.texData.get(_.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(_.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=FY(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};Kp.nextDataId=0;function FY(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;onew Kp,2);var Gx=` if (isnan(a)) return a; if (isnan(b)) return b; `;var os=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,o),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}};var Tl=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;var Ws=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(a=` ${Le(s)} coords = getOutputCoords(); `,s===1)a+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let l=Ut("coords",s);a+=` bool nextRowOutOfBounds = (${l[s-2]} + 1) >= ${this.outputShape[s-2]}; bool nextColOutOfBounds = (${l[s-1]} + 1) >= ${this.outputShape[s-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${a} setOutput(result); } `}};function jt(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var OR={kernelName:Do,backendName:"webgl",kernelFunc:jt};function co(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=jt({inputs:{x:o},backend:t}),l=jt({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var PR={kernelName:Hl,backendName:"webgl",kernelFunc:co};var Av="return (a < 0.) ? b * a : a;",Dv=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function OY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(Dv,n.shape,a.shape):new os(Av,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var MR={kernelName:cn,backendName:"webgl",kernelFunc:OY};var $v="return (a < 0.) ? b * a : a;",Rv=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function PY(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(Rv,o.shape,n.shape):new os($v,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var LR={kernelName:kn,backendName:"webgl",kernelFunc:PY};var Wx="if (isnan(x)) return x;",zR=` if (isnan(a)) return a; if (isnan(b)) return b; `,BR=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function ve({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=U().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new Gs(a.shape,e):c=new uo(a.shape,r),i.runWebGLProgram(c,[a],l)}}function it({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(_=>{let[w,v]=_,$={dataId:w.dataId,dtype:w.dtype,shape:l.shape},A={dataId:v.dataId,dtype:v.dtype,shape:u.shape},R=new os(r,l.shape,u.shape);return c.runWebGLProgram(R,[$,A],mr(w.dtype,v.dtype))}),b=co({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||mr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=n(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),_=c.texData.get(b.dataId);return _.values=g,b}let m=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Ws(e,l.shape,u.shape,t):f=new os(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function El(r,e=!1){if(r==="linear")return e?AR:NR;if(r==="relu")return e?$R:TR;if(r==="elu")return e?DR:SR;if(r==="relu6")return e?RR:ER;if(r==="prelu")return e?Rv:$v;if(r==="leakyrelu")return e?Dv:Av;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var uh=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${i} }`:u?g=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${i} }`:g=`vec4 activation(vec4 x) { ${i} }`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let _="rc.x",w="rc.x";e[0]`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!lc(n.shape,l)&&!(c.texture!==null&&lc(c.shape,l))?WR(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var UR={kernelName:gs,backendName:"webgl",kernelFunc:ce};var jx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=` if (inIdx < 0 || inIdx >= ${s}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${c} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${o}; float sumValue = 0.0; for (int i = 0; i < ${i}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${u} } int inIdx = inOffset + ${i}; if (${l===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${u} } else if (${l===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${u} } else if (${l===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${u} } setOutput(sumValue); } `}};var Pv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${l}(values, minMaxValue); } `,f="vec4";t==="all"?(i="1.0",m=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,f="bvec4"):t==="any"&&(i="0.0",m=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,f="bvec4");let d="";s%o>0&&(d=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${i}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${d} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${o}; vec4 minMaxValue = vec4(${i}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; ${f} values = ${f}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${m} } int inIdx = inOffset + ${c}; if (${p===1}) { ${f} values = ${f}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${m} } else if (${p===2}) { ${f} values = ${f}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${m} } else if (${p===3}) { ${f} values = ${f}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${m} } setOutput(${u}); } `}};function MY(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=N.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function Io(r,e,t,o){let n=MY(r.shape),s=r;for(let a=0;a6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Le(this.rank),s=Iv("rc",this.rank),a=new Array(this.rank);for(let c=0;c=2&&c>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let v=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let $=t?[x,p,f]:[x,f,p],A=o?[b,d,m]:[b,m,d],R=ce({inputs:{x:r},backend:n,attrs:{shape:$}}),M=ce({inputs:{x:e},backend:n,attrs:{shape:A}}),V=[R,M],G=Math.max(x,b),W=t?R.shape[1]:R.shape[2],q=s!=null,Z=a!=null,X=l==="leakyrelu",Y=l!=null?El(l,!0):null,te=q||Z||X||Y!=null,K;if((f===1||d===1)&&W>zv&&te===!1){let ie=R,se=M;t&&(ie=Lt({inputs:{x:R},backend:n,attrs:{perm:[0,2,1]}}),V.push(ie)),o&&(se=Lt({inputs:{x:M},backend:n,attrs:{perm:[0,2,1]}}),V.push(se));let pe=d!==1,ae=d===1,xe=ie;pe&&(xe=ce({inputs:{x:ie},backend:n,attrs:{shape:[G,W,1]}}),V.push(xe));let ge=d===1?2:1,_e=se;ae&&(_e=ce({inputs:{x:se},backend:n,attrs:{shape:[G,1,W]}}),V.push(_e));let ke=Ov({inputs:{a:xe,b:_e},backend:n});K=ch({inputs:{x:ke},backend:n,attrs:{axis:ge,keepDims:!0}}),V.push(ke)}else{let ie=mr(r.dtype,e.dtype),se=new uh($,A,[G,f,d],t,o,q,Y,Z,X),pe=[R,M];if(s!=null&&pe.push(s),Z&&pe.push(a),X){let ae=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));pe.push(ae),V.push(ae)}K=n.runWebGLProgram(se,pe,ie)}let re=ce({inputs:{x:K},backend:n,attrs:{shape:v}});V.push(K);for(let ie of V)n.disposeIntermediateTensorInfo(ie);return re}function zY(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return cc({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var KR={kernelName:ks,backendName:"webgl",kernelFunc:zY};var XR="return abs(x);";function BY(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=Bx(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return U().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Gs(o.shape,XR):n=new uo(o.shape,XR),t.runWebGLProgram(n,[o],o.dtype)}var YR={kernelName:us,backendName:"webgl",kernelFunc:BY};var VY=gr+` if (abs(x) > 1.) { return NAN; } return acos(x); `,GY=ve({opSnippet:VY}),ZR={kernelName:Ks,backendName:"webgl",kernelFunc:GY};var WY=gr+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,UY=ve({opSnippet:WY}),JR={kernelName:Xs,backendName:"webgl",kernelFunc:UY};var QR="return a + b;",jY=it({opSnippet:QR,packedOpSnippet:QR,supportsComplex:!0,cpuKernelImpl:Y$}),eF={kernelName:xo,backendName:"webgl",kernelFunc:jY};var Bv=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${o.join(` `)} float result = ${n}; setOutput(result); } `}};var Vv=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${o.join(` `)} vec4 result = ${n}; setOutput(result); } `}};function Hx(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return jt({inputs:{x:o[0]},backend:t});if(o.length>U().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=Hx({inputs:o.slice(0,l),backend:t}),c=Hx({inputs:o.slice(l),backend:t});return Hx({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>mr(l,u)),s=o.map(l=>l.shape),i=U().getBool("WEBGL_PACK")?new Vv(o[0].shape,s):new Bv(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var tF={kernelName:qo,backendName:"webgl",kernelFunc:Hx};function HY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("all",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=Io(h,h.dtype,"all",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var rF={kernelName:Vl,backendName:"webgl",kernelFunc:HY};function qY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("any",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=Io(h,h.dtype,"any",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=ce({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=ce({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var oF={kernelName:Gl,backendName:"webgl",kernelFunc:qY};var Gv=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${n}; i++) { int inIdx = ${l}; float candidate = getA(batch, inIdx); if (candidate ${i} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}};var Wv=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=Ut("coords",l),p,m;if(a===1){m=l+1;let R=Le(m);p=` ${R} sourceLocR = ${R}(${c.join()}, 0); ++${c[l-1]}; ${R} sourceLocG = ${R}(${c.join()}, 0); ++${c[l-2]}; ${R} sourceLocA = ${R}(${c.join()}, 0); --${c[l-1]}; ${R} sourceLocB = ${R}(${c.join()}, 0); --${c[l-2]};`}else m=l,p=` ${u} sourceLocR = coords; ++${c[l-1]}; ${u} sourceLocG = coords; ++${c[l-2]}; ${u} sourceLocA = coords; --${c[l-1]}; ${u} sourceLocB = coords; --${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(R=>"int "+R),g=Ut("sourceLocR",m-1).concat("inIdx.r"),x=Ut("sourceLocG",m-1).concat("inIdx.g"),b=Ut("sourceLocB",m-1).concat("inIdx.b"),_=Ut("sourceLocA",m-1).concat("inIdx.a"),w=o==="max"?"greaterThan":"lessThan",v=n?"":` inIdx = round(vec4(getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${x.join()}), getBestIndicesAChannel(${b.join()}), getBestIndicesAChannel(${_.join()})));`,$=`vec4( getAChannel(${g.join()}), hasNextCol ? getAChannel(${x.join()}) : 0., hasNextRow ? getAChannel(${b.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${_.join()}) : 0.)`,A=n?"":` float getBestIndicesAChannel(${h.join()}) { return getChannel(getBestIndicesA(${f.join()}), vec2(${f.slice(-2).join()})); }`;this.userCode=` float getAChannel(${h.join()}) { return getChannel(getA(${f.join()}), vec2(${f.slice(-2).join()})); } ${A} void main() { ${u} coords = getOutputCoords(); bool hasNextCol = ${c[l-1]} < ${i[l-1]-1}; bool hasNextRow = ${c[l-2]} < ${i[l-2]-1}; ${p} ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d}, sourceLocB${d}, sourceLocA${d}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${$}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${v} vec4 candidate = ${$}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function nF(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=N.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new Gv(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=nF(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function sF(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=N.computeOptimalWindowSize(s),i=new Wv(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=sF(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function qx(r,e,t,o){let n=[t];if(N.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!U().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=N.computeOutAndReduceShapes(e.shape,n),l=y.sizeFromShape(i),u=ce({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=nF(r,u,o);s.push(c);let p=ce({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return sF(r,e,o)}function KY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Lt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=qx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var iF={kernelName:Ko,backendName:"webgl",kernelFunc:KY};function XY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Lt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=qx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var aF={kernelName:oa,backendName:"webgl",kernelFunc:XY};var YY=gr+` if (abs(x) > 1.) { return NAN; } return asin(x); `,ZY=ve({opSnippet:YY}),lF={kernelName:Ys,backendName:"webgl",kernelFunc:ZY};var JY=gr+"return log(x + sqrt(x * x + 1.0));",QY=ve({opSnippet:JY}),uF={kernelName:Zs,backendName:"webgl",kernelFunc:QY};var e7=gr+` return atan(x); `,t7=ve({opSnippet:e7}),cF={kernelName:Js,backendName:"webgl",kernelFunc:t7};var r7=zR+` return atan(a, b); `,o7=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+BR+` return result; `,n7=it({opSnippet:r7,packedOpSnippet:o7}),pF={kernelName:ei,backendName:"webgl",kernelFunc:n7};var s7=gr+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,i7=ve({opSnippet:s7}),mF={kernelName:Qs,backendName:"webgl",kernelFunc:i7};var Zi=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let R=">=";this.userCode=` const ivec2 strides = ivec2(${i}, ${l}); const ivec2 pads = ivec2(${f}, ${d}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${m}; wC += ${c}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${R} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let _="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let v=Math.floor(a/4)*4,$=a%4,A=` if (${h}) { avgValue += dot(values, ones); } else { minMaxValue = ${_}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${i}, ${l}); const ivec2 pads = ivec2(${f}, ${d}); const float initializationValue = ${b}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${b}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${p}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${v}; wC += 4) { int xC = xCCorner + wC * ${c}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), getValue(batch, xR, xC + 3 * ${c}, d) ); ${A} } int xC = xCCorner + ${v}; if (${$===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${A} } else if (${$===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), initializationValue, initializationValue ); ${A} } else if (${$===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${c}, d), getValue(batch, xR, xC + 2 * ${c}, d), initializationValue ); ${A} } } setOutput(${w}); } `}},pc=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let _=t==="avg",w="0.0";if(_||(w="-1.0 / 1e-20"),o){let V=">=";this.userCode=` const ivec3 strides = ivec3(${i}, ${l}, ${u}); const ivec3 pads = ivec3(${g}, ${x}, ${b}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${f}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${d}; wR += ${p}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${h}; wC += ${m}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${V} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} + wR * ${h} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let v="max",$=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&($="avgValue / count");let A=Math.floor(a/4)*4,R=a%4,M=` if (${_}) { avgValue += dot(values, ones); } else { minMaxValue = ${v}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${i}, ${l}, ${u}); const ivec3 pads = ivec3(${g}, ${x}, ${b}); const float initializationValue = ${w}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${w}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${f}; wD += ${c}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${d}; wR += ${p}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${A}; wC += 4) { int xC = xCCorner + wC * ${m}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${m}, ch), getValue(batch, xD, xR, xC + 2 * ${m}, ch), getValue(batch, xD, xR, xC + 3 * ${m}, ch) ); ${M} } int xC = xCCorner + ${A}; if (${R===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${M} } else if (${R===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${m}, ch), initializationValue, initializationValue ); ${M} } else if (${R===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${m}, ch), getValue(batch, xD, xR, xC + 2 * ${m}, ch), initializationValue ); ${M} } } setOutput(${$}); } } `}};function a7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;Yi(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:n},backend:t});let p=new Zi(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var fF={kernelName:Xo,backendName:"webgl",kernelFunc:a7};function l7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new pc(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var dF={kernelName:na,backendName:"webgl",kernelFunc:l7};var Uv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=` const ivec2 pads = ivec2(${c}, ${p}); const float avgMultiplier = float(${m}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${l}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${u}; wC+= ${i}) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},jv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*o*n);this.userCode=` const ivec3 pads = ivec3(${d}, ${h}, ${g}); const float avgMultiplier = float(${x}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${p}; wD += ${l}) { float dyD = float(dyDCorner + wD) / ${s}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${m}; wR += ${u}) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${f}; wC += ${c}) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function u7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new jv(m);return t.runWebGLProgram(f,[n],a.dtype)}var hF={kernelName:Ul,backendName:"webgl",kernelFunc:u7};function c7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;Yi([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=new Uv(c);return t.runWebGLProgram(p,[n],a.dtype)}var gF={kernelName:Wl,backendName:"webgl",kernelFunc:c7};function p7(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return cc({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var xF={kernelName:Yo,backendName:"webgl",kernelFunc:p7};var Hv=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${i}; float scale = ${l}; float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}};var qv=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${i}; vec4 scale = ${l}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${a})); setOutput((x - mean) * inv + offset); } `}};var m7=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=U().getBool("WEBGL_PACK_NORMALIZATION")?new qv(o.shape,n.shape,s.shape,c,p,l):new Hv(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},yF={kernelName:ln,backendName:"webgl",kernelFunc:m7};var Kv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=`uniform int start[${this.rank}];`,n=f7(this.rank),s,a=e.map((i,l)=>`sourceLoc.${Xv[l]} = start[${l}] + coords.${Xv[l]};`);s=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${a.join(` `)} `,this.userCode=` ${o} void main() { ${s} setOutput(getSource(${n})); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Xv=["x","y","z","w","u","v"];function f7(r){if(r===1)return"sourceLoc";if(r<=6)return Xv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var Yv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=Ut("coords",this.rank),n=Ut("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=` result.x = ${a}; if (++${o[this.rank-1]} < ${e[this.rank-1]}) { ++${n[this.rank-1]}; result.y = ${a}; --${n[this.rank-1]}; } `,l=this.rank===1?"":` --${o[this.rank-1]}; if (++${o[this.rank-2]} < ${e[this.rank-2]}) { ++${n[this.rank-2]}; result.z = ${a}; if (++${o[this.rank-1]} < ${e[this.rank-1]}) { ++${n[this.rank-1]}; result.w = ${a}; } } `,u=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${u} vec4 result = vec4(0.); ${i} ${l} setOutput(result); } `}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function d7(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=or.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function Ua(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=or.parseSliceParams(n,s,a);if(or.assertParamsValid(n,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=gR(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=or.isSliceContinous(n.shape,i,l);if(u||!c){let p=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Yv(l):new Kv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),d7(n,i,l,t)}var bF={kernelName:ys,backendName:"webgl",kernelFunc:Ua};var h7=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,_)=>b*_),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=[],d=ce({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Lt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=ce({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Ua({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},_F={kernelName:sa,backendName:"webgl",kernelFunc:h7};function g7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=zx(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var wF={kernelName:jl,backendName:"webgl",kernelFunc:g7};var x7="return float(a != b);",Zv=it({opSnippet:x7,dtype:"bool"}),kF={kernelName:bi,backendName:"webgl",kernelFunc:Zv};function ja(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return jt({inputs:{x:n.complexTensorInfos.real},backend:t})}var vF={kernelName:cu,backendName:"webgl",kernelFunc:ja};var y7="return float(int(x));";function CF(r,e){let t=new uo(r.shape,y7),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function Jv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return jt({inputs:{x:n},backend:t});let a=gt(n.shape),i=Jv({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=co({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=ja({inputs:{input:n},backend:t}),i=Jv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=jt({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return CF(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=Zv({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var IF={kernelName:Eo,backendName:"webgl",kernelFunc:Jv};var NF="return ceil(x);",b7=ve({opSnippet:NF,packedOpSnippet:NF,cpuKernelImpl:J$}),SF={kernelName:Zo,backendName:"webgl",kernelFunc:b7};var Qv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var eC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function _7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;U().getBool("WEBGL_PACK_CLIP")?i=new eC(n.shape):i=new Qv(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var TF={kernelName:Ao,backendName:"webgl",kernelFunc:_7};var tC=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function EF(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function w7(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new tC(o.shape),a=[EF(o,n.complexTensorInfos.real),EF(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var AF={kernelName:ia,backendName:"webgl",kernelFunc:w7};var rC=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h= ${l[h-1]}) { return getChannel( getT${h}(${Kx(i,u,g)}), vec2(${Kx(c,u,g)})); }`}let f=l.length,d=l[l.length-1];m+=` return getChannel( getT${f}(${Kx(i,u,d)}), vec2(${Kx(c,u,d)}));`,this.userCode=` float getValue(${i.map(h=>"int "+h)}) { ${m} } void main() { ${s} coords = getOutputCoords(); vec4 result = vec4(getValue(${a}), 0., 0., 0.); ${a[n-1]} = ${a[n-1]} + 1; if (${a[n-1]} < ${o[n-1]}) { result.g = getValue(${a}); } ${a[n-2]} = ${a[n-2]} + 1; if (${a[n-2]} < ${o[n-2]}) { result.a = getValue(${a}); } ${a[n-1]} = ${a[n-1]} - 1; if (${a[n-2]} < ${o[n-2]} && ${a[n-1]} < ${o[n-1]}) { result.b = getValue(${a}); } setOutput(result); } `}};function Kx(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function mc(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return jt({inputs:{x:n.complexTensorInfos.imag},backend:t})}var DF={kernelName:ou,backendName:"webgl",kernelFunc:mc};function fc(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>ja({inputs:{input:d},backend:t})),c=r.map(d=>mc({inputs:{input:d},backend:t})),p=fc(u,e,t),m=fc(c,e,t),f=co({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=$F(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=Q$(p,c,o,m),d=N.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>U().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=fc(r.slice(0,u),e,t),p=fc(r.slice(u),e,t),m=fc([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new oC(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=$F(r,e,t),a=new rC(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=ce({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function $F(r,e,t){let o=N.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>ce({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function nC(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=N.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return jt({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return N.assertParamsConsistent(l,s),fc(i,s,t)}var RF={kernelName:cs,backendName:"webgl",kernelFunc:nC};var ph=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,_=g?3:1,w="",v="";o&&(n?w=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${o} }`:s?w=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${o} }`:w=` float activation(float x) { ${o} } `,v="result = activation(result);");let $=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${w} const ivec2 strides = ivec2(${l}, ${u}); const ivec2 pads = ivec2(${a}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${_}]; ivec2 xRCCorner = ivec2(coords[${x}], coords[${b}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${m}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC++) { int xC = xCCorner + wC * ${p}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${d}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${g}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${h===1}) { if (${g}) { dotProd += getX(batch, xR, xC, ${d}) * getW(wR, wC, ${d}, d2); } else { dotProd += getX(batch, ${d}, xR, xC) * getW(wR, wC, ${d}, d2); } } else if (${h===2}) { vec2 wValues = vec2( getW(wR, wC, ${d}, d2), getW(wR, wC, ${d} + 1, d2) ); if (${g}) { vec2 xValues = vec2( getX(batch, xR, xC, ${d}), getX(batch, xR, xC, ${d} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${d}, xR, xC), getX(batch, ${d} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${h===3}) { vec3 wValues = vec3( getW(wR, wC, ${d}, d2), getW(wR, wC, ${d} + 1, d2), getW(wR, wC, ${d} + 2, d2) ); if (${g}) { vec3 xValues = vec3( getX(batch, xR, xC, ${d}), getX(batch, xR, xC, ${d} + 1), getX(batch, xR, xC, ${d} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${d}, xR, xC), getX(batch, ${d} + 1, xR, xC), getX(batch, ${d} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${$} ${v} setOutput(result); } `}},sC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${s}, ${a}, ${i}); const ivec3 pads = ivec3(${t}, ${o}, ${n}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${p}; wF++) { int xF = xFCorner + wF * ${l}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${m}; wR++) { int xR = xRCorner + wR * ${u}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC++) { int xC = xCCorner + wC * ${c}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${d}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${h===1}) { dotProd += getX(batch, xF, xR, xC, ${d}) * getW(wF, wR, wC, ${d}, d2); } else if (${h===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${d}), getX(batch, xF, xR, xC, ${d} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${d}, d2), getW(wF, wR, wC, ${d} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${h===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${d}), getX(batch, xF, xR, xC, ${d} + 1), getX(batch, xF, xR, xC, ${d} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${d}, d2), getW(wF, wR, wC, ${d} + 1, d2), getW(wF, wR, wC, ${d} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}};var iC=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=Mt(),x=m==="channelsLast",b=x?0:1,_=x?1:2,w="";for(let v=0;v<=1;v++)for(let $=0;$<=1;$++)w+=` blockIndex = rc.y + ${$}; pos = rc.x + ${v}; if(blockIndex < ${e[1]} && pos < ${e[0]}) { offsetY = int(blockIndex / (${u})) * ${i} - ${d}; d0 = offsetY + ${p} * (pos / ${h}); if(d0 < ${t[b]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.); d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.)); if(d1 < ${t[_]} && d1 >= 0) { ch = int(mod(float(pos), ${s}.)); if (${x}) { innerDims = vec2(d1, ch); result[${v*2+$}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${v*2+$}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${w} ${g.output} = result; } `}};function Xx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>zv,_=l[2]%2!=0&&!!u.isPacked;if(b||!U().getBool("WEBGL_LAZILY_UNPACK")||!U().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let w=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=ce({inputs:{x:r},backend:o,attrs:{shape:[1,w,t.inChannels]}}),$=ce({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),A=cc({a:v,b:$,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=ce({inputs:{x:A},backend:o,attrs:{shape:t.outShape}}),x.push(v),x.push($),x.push(A)}else{let w=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),v={dataId:r.dataId,shape:[1,w,t.inChannels],dtype:r.dtype},$=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(lc(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let A=ce({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(A);let R=cc({a:v,b:A,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),M=o.texData.get(R.dataId);y.assert(M.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=$,M.shape=t.outShape,g=jt({inputs:{x:R},backend:o}),g.shape=t.outShape,x.push(R)}for(let w of x)o.disposeIntermediateTensorInfo(w);return g}function Yx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,_=!1,w=[],v=ce({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),$=ce({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});w.push(v),w.push($);let A=new iC(x,v.shape,t),R=o.runWebGLProgram(A,[v],"float32"),M=ce({inputs:{x:R},backend:o,attrs:{shape:[1,x[0],x[1]]}});w.push(R),w.push(M);let V=n!=null,G=s!=null,W=i==="leakyrelu",q=i?El(i,!0):null,Z=new uh(M.shape,$.shape,[1,g,t.outChannels],b,_,V,q,G,W),X=[M,$];if(n&&X.push(n),G&&X.push(s),W){let re=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));X.push(re),w.push(re)}let Y=o.runWebGLProgram(Z,X,"float32"),te=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],K=ce({inputs:{x:Y},backend:o,attrs:{shape:te}});w.push(Y);for(let re of w)o.disposeIntermediateTensorInfo(re);return K}function k7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=Xx({x:n,filter:s,convInfo:m,backend:t});else if(U().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=Yx({x:n,filter:s,convInfo:m,backend:t});else{let h=new ph(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=ce({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var FF={kernelName:Jo,backendName:"webgl",kernelFunc:k7};var aC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${n}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${o} - ${s}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${a}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},lC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=` const ivec2 pads = ivec2(${i}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${p}]; ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${o}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${o} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${a}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},uC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${s}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${o} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${i}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},cC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${l}, ${u}, ${c}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${s}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${o}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${o} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${i}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function v7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new aC(m);return t.runWebGLProgram(f,[n,s],"float32")}var OF={kernelName:ql,backendName:"webgl",kernelFunc:v7};function C7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new lC(m);return t.runWebGLProgram(f,[n,s],"float32")}var PF={kernelName:Qo,backendName:"webgl",kernelFunc:C7};function I7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new sC(u);return t.runWebGLProgram(c,[n,s],"float32")}var MF={kernelName:aa,backendName:"webgl",kernelFunc:I7};function N7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=N.computeConv3DInfo(n.shape,l,a,1,i),c=new uC(u);return t.runWebGLProgram(c,[n,s],"float32")}var LF={kernelName:Kl,backendName:"webgl",kernelFunc:N7};function S7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=N.computeConv3DInfo(l,s.shape,i,1,a),c=new cC(u);return t.runWebGLProgram(c,[n,s],"float32")}var zF={kernelName:Xl,backendName:"webgl",kernelFunc:S7};var T7=Wx+` return cos(x); `,E7=ve({opSnippet:T7}),BF={kernelName:en,backendName:"webgl",kernelFunc:E7};var A7=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,D7=ve({opSnippet:A7}),VF={kernelName:ti,backendName:"webgl",kernelFunc:D7};var pC=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[_,w,v]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=` const float height_ratio = float(${g}); const float width_ratio = float(${_}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${a}) { return; } float height_scale = ${x}; float width_scale = ${w}; float in_y = ${b}; if( in_y < 0.0 || in_y > ${d} ) { setOutput(float(${s})); return; } float in_x = ${v}; if( in_x < 0.0 || in_x > ${h} ) { setOutput(float(${s})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${f} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}};var $7=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new pC(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},GF={kernelName:ri,backendName:"webgl",kernelFunc:$7};var Zx=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${WF(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${Le(n)} coords = getOutputCoords(); int end = ${UF(n,"coords")}; float val = ${s}; int pow2 = int(pow(2.0, index)); if (${i}) { int idx = ${l}; ${UF(n,"coords")} = idx; val += getX(${WF(n,"coords")}); } setOutput(val); } `}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function WF(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function UF(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function R7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=N.getAxesPermutation([s],l),c=n;u!=null&&(c=Lt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=N.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=jt({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new Zx(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new Zx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=N.getUndoAxesPermutation(u),h=Lt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var jF={kernelName:tn,backendName:"webgl",kernelFunc:R7};function F7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=zx(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Z$(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var HF={kernelName:Yl,backendName:"webgl",kernelFunc:F7};var mC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function O7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new mC(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var qF={kernelName:oi,backendName:"webgl",kernelFunc:O7};var mh=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";o&&(n?x=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${o} }`:s?x=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${o} }`:x=` float activation(float x) { ${o} } `,b="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${x} const ivec2 strides = ivec2(${c}, ${p}); const ivec2 pads = ivec2(${l}, ${u}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${g}; int q = d2 - d1 * ${g}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${m}; if (xR < 0 || xR >= ${a}) { continue; } for (int wC = 0; wC < ${h}; wC++) { int xC = xCCorner + wC * ${f}; if (xC < 0 || xC >= ${i}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${_} ${b} setOutput(result); } `}};var fh=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let v=0;v= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { xTexelR${v}C${A}.zw = vec2(0.); } } else { xTexelR${v}C${A} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${i}) { previous.zw = vec2(0.); } xR${v}C${A} = vec4(previous.zw, xTexelR${v}C${A}.xy); } else { xR${v}C${A} = vec4(0, 0, xTexelR${v}C${A}.xy); } `:x+=` if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) { xTexelR${v}C${A} = getX(batch, xR, xC, d1); } else { xTexelR${v}C${A} = vec4(0.); } xR${v}C${A} = xTexelR${v}C${A}; `,A+1= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A+2} = getX(batch, xR, xCOffset, d1); } `,f>1&&(x+=` xCOffset -= 2; if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A} = getX(batch, xR, xCOffset, d1); } else { xTexelR${v}C${A} = vec4(0.); } `),x+=` xR${v}C${A+1} = vec4( xTexelR${v}C${A}.zw, xTexelR${v}C${A+2}.xy); `):x+=` xCOffset = xC + ${R}; if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A+2} = getX(batch, xR, xCOffset, d1); } xR${v}C${A+1} = xTexelR${v}C${A+2}; `}}else A= 0 && xR < ${a}) { `,u%2==1?(x+=` xCOffset = xC + 1 - ${p}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A} = getX(batch, xR, xCOffset, d1); } else { xTexelR${v}C${A} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${i}) { xTexelR${v}C${A+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${v}C${A+2} = vec4(0.); } xR${v}C${A} = vec4( xTexelR${v}C${A}.zw, xTexelR${v}C${A+2}.zw); `,A+1= 0 && xCOffset < ${i}) { final = getX(batch, xR, xCOffset, d1); } xR${v}C${A+1} = vec4(xTexelR${v}C${A+2}.xy, final.xy); `)):(x+=` if(xC >= 0 && xC < ${i}) { xTexelR${v}C${A} = getX(batch, xR, xC, d1); } else { xTexelR${v}C${A} = vec4(0.); } xCOffset = xC + ${p}; if(xCOffset >= 0 && xCOffset < ${i}) { xTexelR${v}C${A+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${v}C${A+2} = vec4(0.); } xR${v}C${A} = vec4( xTexelR${v}C${A}.xy, xTexelR${v}C${A+2}.xy); `,A+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=N.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return U().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new fh(p):m=new mh(p),t.runWebGLProgram(m,[n,s],"float32")}var KF={kernelName:rn,backendName:"webgl",kernelFunc:P7};var fC=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${a} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${n}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${o} - ${s}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},dC=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${o}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${o} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${l}; dm++) { int d2 = d1 * ${l} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function M7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=N.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new fC(p);return t.runWebGLProgram(m,[n,s],"float32")}var XF={kernelName:Zl,backendName:"webgl",kernelFunc:M7};function L7(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new dC(p);return t.runWebGLProgram(m,[n,s],"float32")}var YF={kernelName:Jl,backendName:"webgl",kernelFunc:L7};var hC=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function z7(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=ce({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new hC(s),l=t.runWebGLProgram(i,[a],a.dtype),u=ce({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var ZF={kernelName:Ql,backendName:"webgl",kernelFunc:z7};var gC=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=` const ivec2 strides = ivec2(${s}, ${a}); const ivec2 pads = ivec2(${p}, ${m}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${i}; h++) { int hIn = hBeg + h * ${u}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${l}; w++) { int wIn = wBeg + w * ${c}; if (wIn >= 0 && wIn < ${o}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function B7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new gC(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=ce({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var JF={kernelName:la,backendName:"webgl",kernelFunc:B7};var V7="return (x >= 0.0) ? x : (exp(x) - 1.0);",G7=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,W7=ve({opSnippet:V7,packedOpSnippet:G7}),QF={kernelName:ni,backendName:"webgl",kernelFunc:W7};var U7="return (b >= 1.0) ? a : a * (b + 1.0);",j7=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,H7=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=U().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ws(j7,o.shape,n.shape):new os(U7,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},eO={kernelName:eu,backendName:"webgl",kernelFunc:H7};var q7=` return vec4(equal(a, b)); `,K7="return float(a == b);",X7=it({opSnippet:K7,packedOpSnippet:q7,dtype:"bool"}),tO={kernelName:ii,backendName:"webgl",kernelFunc:X7};var Y7=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${N.ERF_P}; float a1 = ${N.ERF_A1}; float a2 = ${N.ERF_A2}; float a3 = ${N.ERF_A3}; float a4 = ${N.ERF_A4}; float a5 = ${N.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,Z7=ve({opSnippet:Y7}),rO={kernelName:si,backendName:"webgl",kernelFunc:Z7};var oO="return exp(x);",xC=ve({opSnippet:oO,packedOpSnippet:oO,cpuKernelImpl:eR}),nO={kernelName:nn,backendName:"webgl",kernelFunc:xC};function Jx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),ce({inputs:{x:s},backend:o,attrs:{shape:i}})}var sO={kernelName:ps,backendName:"webgl",kernelFunc:Jx};var iO="return exp(x) - 1.0;",J7=ve({opSnippet:iO,packedOpSnippet:iO,cpuKernelImpl:tR}),aO={kernelName:ai,backendName:"webgl",kernelFunc:J7};var Qx=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${s}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${i} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${n}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${n}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${a}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function ey(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=ce({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new Qx("real",l,e),c=new Qx("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=co({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=ce({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function Q7(r){let{inputs:e,backend:t}=r,{input:o}=e;return ey(o,!1,t)}var lO={kernelName:tu,backendName:"webgl",kernelFunc:Q7};var yC=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function dh(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new yC(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var uO={kernelName:ua,backendName:"webgl",kernelFunc:dh};var bC=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}};var cO={kernelName:li,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new bC(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var pO="return floor(x);",eZ=ve({opSnippet:pO,packedOpSnippet:pO,cpuKernelImpl:rR}),mO={kernelName:sn,backendName:"webgl",kernelFunc:eZ};var tZ=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,rZ=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,oZ=it({opSnippet:tZ,packedOpSnippet:rZ,dtype:"int32"}),fO={kernelName:an,backendName:"webgl",kernelFunc:oZ};var _C=class{constructor(e){this.variableNames=["A"];let t=Mt(),[o,n]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}};var wC=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Mt(),[o,n]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}};var dO={kernelName:Oc,backendName:"webgl",kernelFunc:nZ},Xp;function nZ(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&n instanceof ImageBitmap,[u,c]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],p=[c,u],m=[c,u,s];(i||a||l)&&(Xp==null&&(Xp=document.createElement("canvas").getContext("2d")),Xp.canvas.width=u,Xp.canvas.height=c,Xp.drawImage(n,0,0,u,c),n=Xp.canvas);let f=t.makeTensorInfo(p,"int32");t.texData.get(f.dataId).usage=Er.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(f.dataId),n);let d=U().getBool("WEBGL_PACK")?new wC(m):new _C(m),h=t.runWebGLProgram(d,[f],"int32");return t.disposeData(f.dataId),h}function sZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=Xx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(U().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)x=Yx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let w=a!=null,v=i!=null,$=f==="leakyrelu",A=f?El(f,!1):null,R=new ph(g,w,A,v,$),M=[n,s];if(a&&M.push(a),i&&M.push(i),$){let V=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));M.push(V),b.push(V)}x=t.runWebGLProgram(R,M,"float32")}let _=ce({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(w=>t.disposeIntermediateTensorInfo(w)),_}var hO={kernelName:vs,backendName:"webgl",kernelFunc:sZ};function iZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=N.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),x=U().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?El(m,x):null,_=[n,s],w=a!=null,v=i!=null,$=m==="leakyrelu";if(w&&_.push(a),v&&_.push(i),$){let M=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));_.push(M),d.push(M)}let A;x?A=new fh(g,w,b,v,$):A=new mh(g,w,b,v,$);let R=t.runWebGLProgram(A,_,"float32");return d.forEach(M=>t.disposeIntermediateTensorInfo(M)),R}var gO={kernelName:Cs,backendName:"webgl",kernelFunc:iZ};var kC=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=Le(t.length),s=Le(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${n} strides = ${n}(${this.strides}); void main() { ${s} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${a}; } setOutput(getX(flattenIndex, coords[1])); } `}};function aZ(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=N.prepareAndValidate(o,n),p=ce({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=ce({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/u,u]}}),f=new kC(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var xO={kernelName:ui,backendName:"webgl",kernelFunc:aZ};var vC=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Le(this.rank),n=lZ(e,2);this.userCode=` void main() { ${o} resRC = getOutputCoords(); setOutput(getA(${n})); } `}};function lZ(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;nt.disposeIntermediateTensorInfo(v)),t.makeTensorInfo(u.outputShape,w.dtype,w.values)}let h=new vC(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=ce({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var yO={kernelName:ms,backendName:"webgl",kernelFunc:uZ};var cZ="return float(a > b);",pZ=` return vec4(greaterThan(a, b)); `,mZ=it({opSnippet:cZ,packedOpSnippet:pZ,cpuKernelImpl:nR,dtype:"bool"}),bO={kernelName:ci,backendName:"webgl",kernelFunc:mZ};var fZ="return float(a >= b);",dZ=` return vec4(greaterThanEqual(a, b)); `,hZ=it({opSnippet:fZ,packedOpSnippet:dZ,dtype:"bool"}),_O={kernelName:un,backendName:"webgl",kernelFunc:hZ};function gZ(r){let{inputs:e,backend:t}=r,{input:o}=e;return ey(o,!0,t)}var wO={kernelName:ru,backendName:"webgl",kernelFunc:gZ};var xZ="return float(!isnan(x) && !isinf(x));",yZ=ve({opSnippet:xZ,dtype:"bool"}),kO={kernelName:pi,backendName:"webgl",kernelFunc:yZ};var bZ="return float(isinf(x));",_Z=ve({opSnippet:bZ,dtype:"bool"}),vO={kernelName:mi,backendName:"webgl",kernelFunc:_Z};var wZ="return float(isnan(x));",kZ=ve({opSnippet:wZ,dtype:"bool"}),CO={kernelName:fi,backendName:"webgl",kernelFunc:kZ};var vZ="return float(a < b);",CZ=` return vec4(lessThan(a, b)); `,IZ=it({opSnippet:vZ,packedOpSnippet:CZ,cpuKernelImpl:sR,dtype:"bool"}),IO={kernelName:di,backendName:"webgl",kernelFunc:IZ};var NZ="return float(a <= b);",SZ=` return vec4(lessThanEqual(a, b)); `,TZ=it({opSnippet:NZ,packedOpSnippet:SZ,dtype:"bool"}),NO={kernelName:hi,backendName:"webgl",kernelFunc:TZ};function EZ(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=iR(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var SO={kernelName:nu,backendName:"webgl",kernelFunc:EZ};var AZ=`if (x < 0.0) return NAN; return log(x);`,DZ=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,$Z=ve({opSnippet:AZ,packedOpSnippet:DZ,cpuKernelImpl:aR}),TO={kernelName:pn,backendName:"webgl",kernelFunc:$Z};var RZ="return log(1.0 + x);",FZ=ve({opSnippet:RZ}),EO={kernelName:gi,backendName:"webgl",kernelFunc:FZ};var OZ="return float(a >= 1.0 && b >= 1.0);",PZ=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,MZ=it({opSnippet:OZ,packedOpSnippet:PZ,dtype:"bool"}),AO={kernelName:xi,backendName:"webgl",kernelFunc:MZ};var LZ="return float(!(x >= 1.0));",zZ=ve({opSnippet:LZ}),DO={kernelName:Za,backendName:"webgl",kernelFunc:zZ};var BZ="return float(a >= 1.0 || b >= 1.0);",VZ=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,GZ=it({opSnippet:BZ,packedOpSnippet:VZ,dtype:"bool"}),$O={kernelName:Ja,backendName:"webgl",kernelFunc:GZ};var CC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${a}; j <= ${a}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${i}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${l}; setOutput(val); } `}};var IC=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${a}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${a}; j <= ${a}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${l}; setOutput(result); } `}};var WZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=U().getBool("WEBGL_PACK_NORMALIZATION")?new IC(n.shape,s,a,i,l):new CC(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},RO={kernelName:ca,backendName:"webgl",kernelFunc:WZ};var NC=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${n}) * norm + float(${o}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${n}) * float(${s}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${s}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}};var UZ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new NC(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},FO={kernelName:su,backendName:"webgl",kernelFunc:UZ};function OO(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=ce({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=Io(i,r.dtype,"max",o),u=ce({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function SC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let _=t.texData.get(f.dataId).values,w=new Array(i);for(let A=0;A`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:n},backend:t});let p=new Zi(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var LO={kernelName:dn,backendName:"webgl",kernelFunc:KZ};function XZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new pc(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var zO={kernelName:pa,backendName:"webgl",kernelFunc:XZ};var TC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=` const ivec2 pads = ivec2(${i}, ${l}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${s}; wR += ${n}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${a}; wC++) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${a} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},EC=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=` const ivec3 pads = ivec3(${p}, ${m}, ${f}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${l}; wD += ${s}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${u}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${o}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC += ${i}) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${d} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${u} * ${c} + wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function YZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new pc(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new EC(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var BO={kernelName:au,backendName:"webgl",kernelFunc:YZ};function ZZ(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;Yi([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new Zi(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new TC(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var VO={kernelName:iu,backendName:"webgl",kernelFunc:ZZ};function GO(r,e,t,o){let n=new Zi(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new Zi(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var WO={kernelName:lu,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,n,s,u,a),[p,m]=GO(o,i,c,l);return[p,m]}};function UO(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=ce({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=Io(i,"float32","mean",o),u=ce({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var jO={kernelName:hn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let w=a.texData.get(d.dataId).values,v=new Array(i);for(let R=0;Rc[0]+e[p]+c[1]);let n=e.length,s=Le(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=` int start = ${a}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${u}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${u}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${s} start = ${s}(${a}); ${s} end = ${s}(${i}); void main() { ${s} outC = getOutputCoords(); for (int i = 0; i < ${n}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${u}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${u}; } } ${s} coords = outC - start; setOutput(getX(${l})); } `}};var DC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=Le(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Ut("rc",n),u=Ut("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=` ${s} source = rc; if (source < start) { source = start * 2 - source - ${m}; } else if (source >= end) { source = (end - 1) * 2 - source + ${m}; } source -= start; `;f=` ${s} rc = outputLoc; ${d} result[0] = getChannel(getX(${u.join()}), ${p}); ${l[n-1]} += 1; if(${c}) { ${d} result[1] = getChannel(getX(${u.join()}), ${p}); } `}else{let d=` ${s} source = rc; ${s} lt = ${s}(lessThan(source, start)); ${s} gte = ${s}(greaterThanEqual(source, end)); ${s} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${m}) + gte * ((end - 1) * 2 - source + ${m}); source -= start; `;f=` ${s} rc = outputLoc; ${d} result[0] = getChannel(getX(${u.join()}), ${p}); ${l[n-1]} += 1; if(${c}) { ${d} result[1] = getChannel(getX(${u.join()}), ${p}); } rc = outputLoc; ${l[n-2]} += 1; if(${l[n-2]} < ${this.outputShape[n-2]}) { ${d} result[2] = getChannel(getX(${u.join()}), ${p}); ${l[n-1]} += 1; if(${c}) { ${d} result[3] = getChannel(getX(${u.join()}), ${p}); } } `}this.userCode=` const ${s} start = ${s}(${a}); const ${s} end = ${s}(${i}); void main() { ${s} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${f} setOutput(result); } `}};var rJ=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new DC(o.shape,n,s):new AC(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},KO={kernelName:ma,backendName:"webgl",kernelFunc:rJ};var oJ=`if (b == 0.0) return NAN; return mod(a, b);`,nJ=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+Tl+` return result; `,sJ=it({opSnippet:oJ,packedOpSnippet:nJ}),XO={kernelName:yi,backendName:"webgl",kernelFunc:sJ};var $C=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=` uniform float seed; void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var iJ=` if (a == b) { return 1.0; }; return a / b;`,aJ=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,RC=it({opSnippet:iJ,packedOpSnippet:aJ,checkOutOfBounds:!0}),YO={kernelName:on,backendName:"webgl",kernelFunc:RC};var ZO="return a - b;",FC=it({opSnippet:ZO,packedOpSnippet:ZO,supportsComplex:!0,cpuKernelImpl:yR}),JO={kernelName:On,backendName:"webgl",kernelFunc:FC};function OC(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=SC({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,a),u=ce({inputs:{x:i},backend:t,attrs:{shape:l}}),c=FC({inputs:{a:n,b:u},backend:t}),p=xC({inputs:{x:c},backend:t}),m=ch({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=ce({inputs:{x:m},backend:t,attrs:{shape:l}}),d=RC({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var QO={kernelName:Rn,backendName:"webgl",kernelFunc:OC};function lJ(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:OC({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new $C(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var eP={kernelName:uu,backendName:"webgl",kernelFunc:lJ};var tP="return -x;";function uJ(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=mR(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return U().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new Gs(o.shape,tP):n=new uo(o.shape,tP),t.runWebGLProgram(n,[o],o.dtype)}var rP={kernelName:fs,backendName:"webgl",kernelFunc:uJ};var cJ=Sr.nonMaxSuppressionV3Impl;function pJ(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=cJ(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var oP={kernelName:_i,backendName:"webgl",kernelFunc:pJ};var mJ=Sr.nonMaxSuppressionV4Impl;function fJ(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=mJ(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var nP={kernelName:wi,backendName:"webgl",kernelFunc:fJ};var dJ=Sr.nonMaxSuppressionV5Impl;function hJ(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=dJ(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var sP={kernelName:ki,backendName:"webgl",kernelFunc:hJ};var PC=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${n}), float(${o}), float(index == coords.y))); } `}};var gJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=y.sizeFromShape(n.shape),u=new PC(l,s,a,i),c=ce({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=ce({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},iP={kernelName:bn,backendName:"webgl",kernelFunc:gJ};function hh(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=ja({inputs:{input:o},backend:t}),s=hh({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=hh({inputs:{x:a},backend:t}),l=co({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return dh({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var aP={kernelName:ws,backendName:"webgl",kernelFunc:hh};function lP(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=ja({inputs:{input:o},backend:t}),s=lP({inputs:{x:n},backend:t}),a=mc({inputs:{input:o},backend:t}),i=hh({inputs:{x:a},backend:t}),l=co({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return dh({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var uP={kernelName:ds,backendName:"webgl",kernelFunc:lP};function xJ(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return Jx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=Jx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=nC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var cP={kernelName:hs,backendName:"webgl",kernelFunc:xJ};var MC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Le(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=` int start = ${a}; int end = ${i}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${o})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${s} start = ${s}(${a}); ${s} end = ${s}(${i}); void main() { ${s} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${o})); } else { ${s} coords = outC - start; setOutput(getX(${l})); } } `}};var LC=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Le(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Ut("rc",n),u=Ut("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1; if(${c}) { `,n===1?"":`} rc = outputLoc; ${l[n-2]} += 1; if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1; if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new LC(n.shape,s,a):new MC(n.shape,s,a);return t.runWebGLProgram(i,[n],n.dtype)},pP={kernelName:_n,backendName:"webgl",kernelFunc:zC};var yJ=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,bJ=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+Tl+` return result; `,_J=it({opSnippet:yJ,packedOpSnippet:bJ}),mP={kernelName:wn,backendName:"webgl",kernelFunc:_J};function wJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=y.parseAxisParam(s,n.shape),c=u,p=N.getAxesPermutation(c,i),m=n;p!=null&&(m=Lt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=N.getInnerMostAxes(c.length,i),l.push(m)),N.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=fR(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=N.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=ce({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=gu(n.dtype),_=Io(x,b,"prod",t);f=ce({inputs:{x:_},backend:t,attrs:{shape:d}}),l.push(x),l.push(_)}if(a){l.push(f);let d=N.expandShapeToKeepDim(f.shape,u);f=ce({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var fP={kernelName:vi,backendName:"webgl",kernelFunc:wJ};var BC=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=dR(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},dP={kernelName:fa,backendName:"webgl",kernelFunc:BC};var kJ="return 1.0 / x;",vJ=ve({opSnippet:kJ}),hP={kernelName:Ci,backendName:"webgl",kernelFunc:vJ};var CJ=gr+` return (x < 0.0) ? 0.0 : x; `,IJ=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,NJ=ve({opSnippet:CJ,packedOpSnippet:IJ}),gP={kernelName:vn,backendName:"webgl",kernelFunc:NJ};var SJ=gr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,TJ=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,EJ=ve({opSnippet:SJ,packedOpSnippet:TJ}),xP={kernelName:In,backendName:"webgl",kernelFunc:EJ};var VC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/p[0]}, ${c[1]/p[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${l}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${m}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}};var GC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${c[0]/p[0]}, ${c[1]/p[1]}, ${c[1]/p[1]}); const vec3 inputShapeRC = vec3(${i}.0, ${l}.0, ${l}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${m}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${u-1}; bool hasNextRow = coords.z < ${o-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function AJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=U().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new GC(n.shape,l,u,s,a):new VC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var yP={kernelName:Cn,backendName:"webgl",kernelFunc:AJ};var WC=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${p}); const float invHeightScale = float(${m}); const float invWidthScale = float(${f}); const int winHeight = int(${d}); const int winWidth = int(${h}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function DJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new WC(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var bP={kernelName:mu,backendName:"webgl",kernelFunc:DJ};var UC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${c[0]/p[0]}, ${c[1]/p[1]}); const vec2 inputShapeRC = vec2(${i}.0, ${l}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${f}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}};function $J(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new UC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var _P={kernelName:da,backendName:"webgl",kernelFunc:$J};var jC=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${c}); const float widthScale = float(${p}); const float invHeightScale = float(${m}); const float invWidthScale = float(${f}); const int winHeight = int(${d}); const int winWidth = int(${h}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${i}) { continue; } float sourceFracRow = float(${l[0]}) * (float(dyR) / float(${u[0]})); float sourceFracCol = float(${l[1]}) * (float(dyC) / float(${u[1]})); int sourceNearestRow = int(min( float(int(${n}) - 1), ${o} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${s}) - 1), ${o} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function RJ(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new jC(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var wP={kernelName:pu,backendName:"webgl",kernelFunc:RJ};var HC=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=Le(o);this.userCode=` void main() { ${a} coords = getOutputCoords(); setOutput(getX(${s})); } `}};var qC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=Ut("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Le(o);o===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${s}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${i} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${l(n.slice())}; if(${s}){ result.g = ${u(n.slice())}; } if(${a}) { result.b = ${c(n.slice())}; if(${s}) { result.a = ${p(n.slice())}; } } setOutput(result); } `;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((b,_)=>f(_,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function FJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return jt({inputs:{x:n},backend:t});let l=U().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new qC(n.shape,i):new HC(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var kP={kernelName:Nn,backendName:"webgl",kernelFunc:FJ};var KC=class{constructor(e,t,o,n){this.variableNames=["Image"],this.outputShape=[];let s=e[1],a=e[2],i=Math.sin(t).toFixed(3),l=Math.cos(t).toFixed(3);this.outputShape=e;let[u,c]=N.getImageCenter(n,s,a),p=u.toFixed(3),m=c.toFixed(3),f="";typeof o=="number"?f=`float outputValue = ${o.toFixed(2)};`:f=` vec3 fill = vec3(${o.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${p}) * ${l} - (float(y) - ${m}) * ${i}; float coordYFloat = (float(x) - ${p}) * ${i} + (float(y) - ${m}) * ${l}; int coordX = int(round(coordXFloat + ${p})); int coordY = int(round(coordYFloat + ${m})); ${f} if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${s}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}};var vP={kernelName:Ri,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new KC(o.shape,n,s,a);return i.runWebGLProgram(l,[o],o.dtype)}};var OJ=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,PJ=ve({opSnippet:OJ}),CP={kernelName:Sn,backendName:"webgl",kernelFunc:PJ};var MJ="return inversesqrt(x);",LJ=ve({opSnippet:MJ,cpuKernelImpl:hR}),IP={kernelName:Tn,backendName:"webgl",kernelFunc:LJ};var gh=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=` ${l} strides = ${l}(${s}); void main() { ${u} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${p}); flattenedIndex += index * ${d}; } if (flattenedIndex == coords[0]) { sum += ${f}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function zJ(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=ce({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=ce({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new gh(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=ce({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var NP={kernelName:Ii,backendName:"webgl",kernelFunc:zJ};var XC=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c= 1.0) { setOutput(getA(${s})); } else { setOutput(getB(${s})); } } `}};function BJ(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new XC(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],mr(n.dtype,s.dtype))}var SP={kernelName:xs,backendName:"webgl",kernelFunc:BJ};var VJ=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${N.SELU_SCALEALPHA}; float scale = ${N.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,GJ=ve({opSnippet:VJ}),TP={kernelName:Ni,backendName:"webgl",kernelFunc:GJ};var WJ="return 1.0 / (1.0 + exp(-1.0 * x));",UJ=ve({opSnippet:WJ}),EP={kernelName:An,backendName:"webgl",kernelFunc:UJ};var jJ=` if (isnan(x)) { return 0.0; } return sign(x); `,HJ=ve({opSnippet:jJ}),AP={kernelName:Ti,backendName:"webgl",kernelFunc:HJ};var qJ=Wx+` return sin(x); `,KJ=ve({opSnippet:qJ}),DP={kernelName:En,backendName:"webgl",kernelFunc:KJ};var XJ=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,YJ=ve({opSnippet:XJ}),$P={kernelName:Si,backendName:"webgl",kernelFunc:YJ};var ZJ=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,JJ=ve({opSnippet:ZJ}),RP={kernelName:Ei,backendName:"webgl",kernelFunc:JJ};var QJ=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;xt.disposeIntermediateTensorInfo(x)),g},FP={kernelName:ha,backendName:"webgl",kernelFunc:QJ};function e9(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=N.calculateShapes(s,n,i),m=!1,f=new gh(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=ce({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var OP={kernelName:fu,backendName:"webgl",kernelFunc:e9};function t9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Ua({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var PP={kernelName:bs,backendName:"webgl",kernelFunc:t9};var r9="return sqrt(x);",o9=ve({opSnippet:r9}),MP={kernelName:Dn,backendName:"webgl",kernelFunc:o9};var n9="return x * x;",s9=ve({opSnippet:n9}),LP={kernelName:ga,backendName:"webgl",kernelFunc:s9};var zP="return (a - b) * (a - b);",i9=it({opSnippet:zP,packedOpSnippet:zP}),BP={kernelName:Fn,backendName:"webgl",kernelFunc:i9};function a9({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=gr+` return x > 0.0 ? 1.0 : float(${e.alpha}); `,s=new uo(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var VP={kernelName:$o,backendName:"webgl",kernelFunc:a9};var YC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Le(o.length),a=Le(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=` ${s} begin = ${s}(${e}); ${s} strides = ${s}(${t}); void main() { ${a} coords = getOutputCoords(); setOutput(getX(${i})); } `}};function l9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=or.sliceInfo(n.shape,s,a,i,l,u,c,p,m),_=ce({inputs:{x:n},backend:t,attrs:{shape:x}}),w;if(f){let $=Ua({inputs:{x:_},backend:t,attrs:{begin:d,size:g}});w=ce({inputs:{x:$},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo($)}else if(b.some($=>$===0))w=t.makeTensorInfo(b,n.dtype,[]);else if(t.shouldExecuteOnCPU([_])){let R=t.texData.get(_.dataId).values,M=Ce(_.shape,_.dtype,R),V=xR(b,M,h,d);w=t.makeTensorInfo(b,_.dtype,V.values)}else{let A=new YC(d,h,b);w=t.runWebGLProgram(A,[_],_.dtype)}let v=ce({inputs:{x:w},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(_),t.disposeIntermediateTensorInfo(w),v}var GP={kernelName:Ai,backendName:"webgl",kernelFunc:l9};var u9="return tan(x);",c9=ve({opSnippet:u9}),WP={kernelName:Di,backendName:"webgl",kernelFunc:c9};var p9=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,m9=ve({opSnippet:p9}),UP={kernelName:Pn,backendName:"webgl",kernelFunc:m9};var ZC=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;ny.decodeString(m)),c=Ce(n.shape,n.dtype,u),p=bR(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new ZC(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var jP={kernelName:yo,backendName:"webgl",kernelFunc:JC};function d9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=_R(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var HP={kernelName:$i,backendName:"webgl",kernelFunc:d9};function h9(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;Yi(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=wR(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var qP={kernelName:du,backendName:"webgl",kernelFunc:h9};function g9(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;ht.disposeIntermediateTensorInfo(h)),d}var KP={kernelName:_s,backendName:"webgl",kernelFunc:g9};var QC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=` sumValue += dot(values, segFilter); `,f="";s%o>0&&(f=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `);let d="";s%o>0&&(d=` if (inIdx < 0 || inIdx >= ${s}) { return -1.0; } `),this.userCode=` const float initializationValue = ${l}; float getValue(int batch, int inIdx) { ${f} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${d} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${a})) * float(${o})); int currentSeg = int(mod(float(outIdx), float(${a}))); float sumValue = 0.0; for (int i = 0; i < ${c}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${m} } int inIdx = inOffset + ${c}; if (${p===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${m} } else if (${p===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${m} } else if (${p===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${m} } setOutput(${u}); } `}};function x9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=N.getAxesPermutation([u],i),p=n;c!=null&&(p=Lt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=N.getInnerMostAxes(1,i)[0]);let m=N.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=ce({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=gu(n.dtype),g=(w,v,$,A,R)=>{let M=w.shape[0],V=w.shape[1],G=N.segment_util.segOpComputeOptimalWindowSize(V,R),W={windowSize:G,inSize:V,batchSize:M,numSegments:R},q=new QC(W,v),Z=t.compileAndRun(q,[w,$],A);if(l.push(Z),Z.shape[1]===R)return Z;let X=BC({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),Y=JC({inputs:{x:X},backend:t,attrs:{reps:[V/G]}});return l.push(X),l.push(Y),g(Z,v,Y,A,R)},x=g(d,"unsortedSegmentSum",s,h,a),b=ce({inputs:{x},backend:t,attrs:{shape:m}}),_=b;if(c!=null){l.push(b);let w=N.getUndoAxesPermutation(c);_=Lt({inputs:{x:_},backend:t,attrs:{perm:w}})}return l.forEach(w=>t.disposeIntermediateTensorInfo(w)),_}var XP={kernelName:xa,backendName:"webgl",kernelFunc:x9};var y9=[RO,FO,KR,YR,ZR,JR,eF,tF,rF,oF,iF,aF,lF,uF,pF,cF,mF,dF,fF,hF,gF,xF,yF,_F,wF,IF,SF,TF,AF,PR,RF,OF,PF,FF,LF,zF,MF,BF,VF,GF,jF,HF,qF,XF,YF,KF,ZF,JF,QF,eO,tO,rO,nO,sO,aO,lO,uO,cO,mO,fO,dO,hO,gO,xO,yO,bO,_O,OR,wO,DF,kO,vO,CO,MR,IO,NO,SO,EO,TO,AO,DO,$O,PO,zO,LO,BO,VO,WO,MO,jO,HO,qO,KO,XO,eP,GR,rP,oP,nP,sP,kF,iP,uP,cP,pP,mP,LR,fP,dP,vF,YO,hP,xP,gP,UR,yP,bP,_P,wP,kP,vP,CP,IP,NP,SP,TP,EP,AP,DP,$P,bF,QO,RP,FP,OP,PP,MP,LP,BP,VP,GP,JO,HR,WP,UP,jP,HP,qR,qP,KP,XP,aP];for(let r of y9)Qa(r);var YP="3.1.0";var b9={"tfjs-core":n_,"tfjs-backend-cpu":$A,"tfjs-backend-webgl":FR,"tfjs-data":Sx,"tfjs-layers":hl,"tfjs-converter":_x,tfjs:YP};var zt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(zt||(zt={}));var Dl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(Dl||(Dl={}));var ZP;function _9(r){ZP=r.wasm.cwrap(ks,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function w9(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);d=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=Dl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],_=n.shape[0],w=t.makeOutput([_,x,b],n.dtype),v=t.dataIdMap.get(w.dataId).id,$=new Uint8Array(new Int32Array(n.shape).buffer),A=new Uint8Array(new Int32Array(s.shape).buffer);return ZP(m,$,n.shape.length,f,A,s.shape.length,l,u,g,d,h,p||0,v),w}var JP={kernelName:ks,backendName:"wasm",setupFunc:_9,kernelFunc:w9};function At(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var QP=At(us);function _t(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=N.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,_=()=>o(p,g,u.shape.length,m,x,c.shape.length,zt[u.dtype],b);if(e&&u.dtype==="float32")return _(),h;let w=N.getBroadcastDims(u.shape,d),v=N.getBroadcastDims(c.shape,d),$=w.every((R,M)=>R===M),A=v.every((R,M)=>R===M);if($&&A)return _(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var k9=!0,eM=_t(xo,k9);var tM;function v9(r){tM=r.wasm.cwrap(qo,null,["array","number","number","number"])}function C9(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return tM(s,n.length,zt[o.dtype],a),o}var rM={kernelName:qo,backendName:"wasm",setupFunc:v9,kernelFunc:C9};function dc(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var oM={kernelName:Do,backendName:"wasm",kernelFunc:dc};var nM;function I9(r){nM=r.wasm.cwrap(Mn,null,["number","array","number","number","number","array","number"])}function Yp(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=S9(e.x.shape,o.perm),a=!0;for(let d=0;d=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var sM={kernelName:Mn,backendName:"wasm",kernelFunc:Yp,setupFunc:I9};function ns(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=N.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var cM={kernelName:gs,backendName:"wasm",kernelFunc:zr};var pM;function $9(r){pM=r.wasm.cwrap(Yo,null,["number","array","number","number","array","number","number","number","number"])}function R9(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let w=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let v=a?[g,c,m]:[g,m,c],$=i?[x,f,p]:[x,p,f],A=zr({inputs:{x:n},backend:t,attrs:{shape:v}}),R=zr({inputs:{x:s},backend:t,attrs:{shape:$}}),M=t.dataIdMap.get(A.dataId).id,V=t.dataIdMap.get(R.dataId).id,G=a?A.shape[2]:A.shape[1],W=i?R.shape[1]:R.shape[2],q=Math.max(g,x),Z=t.makeOutput([q,G,W],A.dtype),X=t.dataIdMap.get(Z.dataId).id,Y=new Uint8Array(new Int32Array(A.shape).buffer),te=new Uint8Array(new Int32Array(R.shape).buffer);return pM(M,Y,A.shape.length,V,te,R.shape.length,a,i,X),t.disposeData(A.dataId),t.disposeData(R.dataId),Z.shape=w,Z}var mM={kernelName:Yo,backendName:"wasm",setupFunc:$9,kernelFunc:R9};function hc(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var fM={kernelName:Eo,backendName:"wasm",kernelFunc:hc};var dM=At(Zo);var hM;function F9(r){hM=r.wasm.cwrap(Ao,null,["number","number","number","number"])}function O9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return hM(i,s,a,u),l}var gM={kernelName:Ao,backendName:"wasm",setupFunc:F9,kernelFunc:O9};function eI(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=N.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return dc({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(y.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(N.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(_=>{let w=y.sizeFromShape(_.shape.slice(o));return zr({inputs:{x:_},backend:t,attrs:{shape:[-1,w]}})}),d=f.map(_=>({vals:t.readSync(_.dataId),shape:_.shape}));n=N.computeOutShape(f.map(_=>_.shape),1);let h=f[0].shape[0]===1,g=qd(d,n,e[0].dtype,h),x=N.computeOutShape(s.map(_=>_.shape),o);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),a}let l=y.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),c=n;u!==null&&(c=Yp({inputs:{x:n},attrs:{perm:u},backend:t}));let p=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;IM(d,a?1:0,i?1:0,f,h,zt[n.dtype]);let g=m;if(u!==null){let x=N.getUndoAxesPermutation(u);g=Yp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var NM={kernelName:tn,backendName:"wasm",setupFunc:G9,kernelFunc:W9};var SM;function U9(r){SM=r.wasm.cwrap(oi,null,["number","number","number","array","number","array","array","number","number"])}function j9(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),_=new Uint8Array(new Int32Array(d).buffer),w=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),v=e.dataIdMap.get(h.dataId).id;return SM(x,s,a==="NHWC"?1:0,b,n.shape.length-1,_,w,d.length,v),h}var TM={kernelName:oi,backendName:"wasm",setupFunc:U9,kernelFunc:j9};var EM;function H9(r){EM=r.wasm.cwrap(rn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function q9(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=N.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,_=f.padInfo.left,w=f.dilationHeight,v=f.dilationWidth,$=f.strideHeight,A=f.strideWidth,R=f.inChannels,M=f.outChannels,V=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=o.makeOutput(f.outShape,"float32"),W=o.dataIdMap.get(G.dataId).id;return EM(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,x,b,_,V,w,v,$,A,R,M,W),G}var AM={kernelName:rn,backendName:"wasm",setupFunc:H9,kernelFunc:q9};var K9=!1,DM=_t(ii,K9,"bool");var $M=At(nn);function ty(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),zr({inputs:{x:n},backend:o,attrs:{shape:i}})}var RM={kernelName:ps,backendName:"wasm",kernelFunc:ty};function X9(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var FM={kernelName:ua,backendName:"wasm",kernelFunc:X9};var OM;function Y9(r){OM=r.wasm.cwrap(li,null,["number","number","number","number","number","number"])}function Z9(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return OM(s,i,l,u,c,a),n}var PM={kernelName:li,backendName:"wasm",kernelFunc:Z9,setupFunc:Y9};var MM=At(sn);var J9=!1,LM=_t(an,J9);var zM;function Q9(r){zM=r.wasm.cwrap(ln,null,["number","number","number","number","number","number","number"])}function eQ(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return zM(c,p,m,f,d,n,g),h}var BM={kernelName:ln,backendName:"wasm",setupFunc:Q9,kernelFunc:eQ};var VM;function tQ(r){VM=r.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=Dl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,_=h.outChannels,w=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${_})`);w=ae.id}let v=h.filterHeight,$=h.filterWidth,A=h.padInfo.top,R=h.padInfo.right,M=h.padInfo.bottom,V=h.padInfo.left,G=h.dilationHeight,W=h.dilationWidth,q=h.strideHeight,Z=h.strideWidth,X=h.inChannels,Y=h.padInfo.type==="SAME"?1:0,te=h.batchSize,K=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ie=o.makeOutput(h.outShape,"float32"),se=o.dataIdMap.get(ie.dataId).id,pe=i==null?0:o.dataIdMap.get(i.dataId).id;return VM(x,te,K,re,b,v,$,w,A,R,M,V,Y,G,W,q,Z,X,_,g,pe,d||0,se),ie}var GM={kernelName:vs,backendName:"wasm",setupFunc:tQ,kernelFunc:rQ};var WM;function oQ(r){WM=r.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nQ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=Dl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,_=h.outChannels,w=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${_})`);w=ae.id}let v=h.filterHeight,$=h.filterWidth,A=h.padInfo.top,R=h.padInfo.right,M=h.padInfo.bottom,V=h.padInfo.left,G=h.dilationHeight,W=h.dilationWidth,q=h.strideHeight,Z=h.strideWidth,X=h.inChannels,Y=h.padInfo.type==="SAME"?1:0,te=h.batchSize,K=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ie=o.makeOutput(h.outShape,"float32"),se=o.dataIdMap.get(ie.dataId).id,pe=i==null?0:o.dataIdMap.get(i.dataId).id;return WM(x,te,K,re,b,v,$,w,A,R,M,V,Y,G,W,q,Z,X,_,g,pe,d||0,se),ie}var UM={kernelName:Cs,backendName:"wasm",setupFunc:oQ,kernelFunc:nQ};var jM;function sQ(r){jM=r.wasm.cwrap(ui,null,["number","number","number","number","number","number","array","number"])}function iQ(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=rg.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return jM(f,zt[o.dtype],h,a,p,i,g,x),u}var HM={kernelName:ui,backendName:"wasm",setupFunc:sQ,kernelFunc:iQ};var qM;function aQ(r){qM=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function lQ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=zr({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=zr({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(y.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,_=e.dataIdMap.get(m.dataId).id,w=e.dataIdMap.get(d.dataId).id,v=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),$=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return qM(x,zt[n.dtype],v,h,_,u.batchSize,$,w),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var KM={kernelName:ms,backendName:"wasm",setupFunc:aQ,kernelFunc:lQ};var uQ=!1,XM=_t(ci,uQ,"bool");var cQ=!1,YM=_t(un,cQ,"bool");var ZM;function pQ(r){ZM=r.wasm.cwrap(cn,null,["number","number","number"])}function mQ(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;ZM(n,t,a)}return s}var JM={kernelName:cn,backendName:"wasm",setupFunc:pQ,kernelFunc:mQ};var fQ=!1,QM=_t(di,fQ,"bool");var dQ=!1,eL=_t(hi,dQ,"bool");var tL=At(pn);var hQ=!1,rL=_t(xi,hQ,"bool");var oL;function gQ(r){oL=r.wasm.cwrap(mn,null,["number, number, number"])}function xQ(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ns(a,n,e);if(f){let _=e.dataIdMap.get(c.dataId).id;u=c,l=_}let d=u.shape.length;N.assertAxesAreInnerMostDims("max",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;oL(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var nL={kernelName:mn,backendName:"wasm",setupFunc:gQ,kernelFunc:xQ};var yQ=!1,sL=_t(fn,yQ);var iL;function bQ(r){iL=r.wasm.cwrap(dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _Q(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,_=c.strideHeight,w=c.strideWidth,v=c.inChannels,$=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let A=o.makeOutput(c.outShape,"float32"),R=o.dataIdMap.get(A.dataId).id;return iL(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,_,w,v,$,R),A}var aL={kernelName:dn,backendName:"wasm",setupFunc:bQ,kernelFunc:_Q};var lL;function wQ(r){lL=r.wasm.cwrap(hn,null,["number, number, number"])}function kQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ns(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=hc({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let _=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(_.dataId).id;lL(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(_.shape,m);_.shape=w}return u.dtype!=="float32"&&e.disposeData(b.dataId),_}var uL={kernelName:hn,backendName:"wasm",setupFunc:wQ,kernelFunc:kQ};var cL;function vQ(r){cL=r.wasm.cwrap(gn,null,["number, number, number"])}function CQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ns(a,n,e);if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_)}let d=u.shape.length;N.assertAxesAreInnerMostDims("min",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;cL(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var pL={kernelName:gn,backendName:"wasm",setupFunc:vQ,kernelFunc:CQ};var IQ=!1,mL=_t(xn,IQ);var NQ=!0,fL=_t(yn,NQ);var dL=At(fs);function Zp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var hL;function SQ(r){hL=r.wasm.cwrap(_i,"number",["number","number","number","number","number"])}function TQ(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=hL(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Zp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var gL={kernelName:_i,backendName:"wasm",setupFunc:SQ,kernelFunc:TQ};var xL;function EQ(r){xL=r.wasm.cwrap(wi,"number",["number","number","number","number","number","bool"])}function AQ(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=xL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Zp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var yL={kernelName:wi,backendName:"wasm",setupFunc:EQ,kernelFunc:AQ};var bL;function DQ(r){bL=r.wasm.cwrap(ki,"number",["number","number","number","number","number","number"])}function $Q(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=bL(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Zp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var _L={kernelName:ki,backendName:"wasm",setupFunc:DQ,kernelFunc:$Q};var RQ=!1,wL=_t(bi,RQ,"bool");var kL;function FQ(r){kL=r.wasm.cwrap(bn,null,["number","number","number","number","number"])}function OQ(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return kL(p,s,a,i,u),l}var vL={kernelName:bn,backendName:"wasm",setupFunc:FQ,kernelFunc:OQ};function PQ(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var CL={kernelName:ds,backendName:"wasm",kernelFunc:PQ};function MQ(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return ty({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(l=>{y.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=e.map(l=>ty({inputs:{input:l},backend:t,attrs:{dim:n}}));return eI({inputs:i,backend:t,attrs:{axis:n}})}var IL={kernelName:hs,backendName:"wasm",kernelFunc:MQ};var NL;function LQ(r){NL=r.wasm.cwrap(_n,null,["number","array","number","number","array","array","number","number"])}function zQ(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return NL(a,u,e.shape.length,zt[e.dtype],m,f,n,l),i}var SL={kernelName:_n,backendName:"wasm",kernelFunc:zQ,setupFunc:LQ};var BQ=!1,TL=_t(wn,BQ);var EL;function VQ(r){EL=r.wasm.cwrap(kn,null,["number","number","number"])}function GQ(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return EL(s,a,l),i}var AL={kernelName:kn,backendName:"wasm",setupFunc:VQ,kernelFunc:GQ};var DL;function WQ(r){DL=r.wasm.cwrap(vi,null,["number","number","number","number"])}function UQ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ns(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;DL(l,x,zt[b.dtype],_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var $L={kernelName:vi,backendName:"wasm",setupFunc:WQ,kernelFunc:UQ};var jQ=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=Yd(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},RL={kernelName:fa,backendName:"wasm",kernelFunc:jQ};var HQ=!0,FL=_t(on,HQ);var OL=At(vn);var PL=At(In);var ML;function qQ(r){ML=r.wasm.cwrap(Cn,null,["number","number","number","number","number","number","number","number","number","number"])}function KQ(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=hc({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(n.shape)===0)return b;let _=e.dataIdMap.get(b.dataId).id;return ML(x,c,p,m,f,l,u,s?1:0,a?1:0,_),g!=null&&e.disposeData(g.dataId),b}var LL={kernelName:Cn,backendName:"wasm",setupFunc:qQ,kernelFunc:KQ};var zL;function XQ(r){zL=r.wasm.cwrap(Nn,null,["number","array","number","array","number","number"])}function YQ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return dc({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);zL(l,c,a.length,p,n.shape.length,u);let m=zr({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var BL={kernelName:Nn,backendName:"wasm",kernelFunc:YQ,setupFunc:XQ};var VL;function ZQ(r){VL=r.wasm.cwrap(Ri,null,["number","number","number","number","number","number","number","number","array","number","number"])}function JQ(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=N.getImageCenter(i,m,f),x=a===0,b=255,_=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],w=new Uint8Array(new Int32Array(_).buffer);return VL(u,p,m,f,d,s,h,g,w,_.length,c),l}var GL={kernelName:Ri,backendName:"wasm",kernelFunc:JQ,setupFunc:ZQ};var WL=At(Sn);var UL=At(Tn);var jL;function QQ(r){jL=r.wasm.cwrap(Ii,null,["number","number","number","number","number","number","array","number","number"])}function eee(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=og.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return jL(d,g,zt[s.dtype],l,u,c,x,m,b),i}var HL={kernelName:Ii,backendName:"wasm",setupFunc:QQ,kernelFunc:eee};var qL;function tee(r){qL=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ree(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return qL(a,i,l,f,c),u}var KL={kernelName:xs,backendName:"wasm",kernelFunc:ree,setupFunc:tee};var XL;function oee(r){XL=r.wasm.cwrap(An,null,["number","number"])}function nee(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||XL(o,s),n}var YL={kernelName:"Sigmoid",backendName:"wasm",setupFunc:oee,kernelFunc:nee};var ZL=At(En);function gc(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=or.parseSliceParams(e,t,o),i=or.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=or.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=Zd(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)see(l,c[0],m,s,a);else if(f===3)iee(l,c[0],c[1],m,s,a);else if(f===4)aee(l,c[0],c[1],c[2],m,s,a);else{let d=Zd(l,s,a,e.shape,e.dtype);m.set(d)}return u}function see(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u{let m=[...c];m[i]=p;let f=gc({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var tz={kernelName:bs,backendName:"wasm",kernelFunc:cee};var rz=At(Dn);var oz=At(ga);var pee=!0,nz=_t(Fn,pee);var sz;function mee(r){sz=r.wasm.cwrap($o,null,["number","number","number"])}function fee(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return sz(a,n,l),i}var iz={kernelName:$o,backendName:"wasm",setupFunc:mee,kernelFunc:fee};var az;function dee(r){az=r.wasm.cwrap(Ai,null,["number","array","number","array","array","array","array","array","number","number"])}function hee(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=N.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=N.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let x=zr({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:b,end:_,strides:w}=N.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=_,i=w;let v=N.slice_util.maskToAxes(m);v.forEach(G=>{a[G]=s[G]+1,i[G]=1});let $=N.slice_util.computeOutShape(s,a,i),A=$.filter((G,W)=>v.indexOf(W)===-1);if(i.every(G=>G===1)){let G=gc({inputs:{x:n},attrs:{begin:s,size:$},backend:e});e.disposeData(x.dataId);let W=zr({inputs:{x:G},attrs:{shape:A},backend:e});return e.disposeData(G.dataId),W}let M=e.makeOutput(A,"float32");if(!A.some(G=>G===0)){let G=e.dataIdMap.get(x.dataId).id,W=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),q=new Uint8Array(new Int32Array(s).buffer),Z=new Uint8Array(new Int32Array(a).buffer),X=new Uint8Array(new Int32Array(i).buffer),Y=new Uint8Array(new Int32Array(A).buffer),te=new Uint8Array(new Int32Array(y.computeStrides(A)).buffer),K=e.dataIdMap.get(M.dataId).id;az(G,W,x.shape.length,q,Z,X,Y,te,A.length,K)}e.disposeData(x.dataId);let V=zr({inputs:{x:M},attrs:{shape:A},backend:e});return e.disposeData(M.dataId),V}var lz={kernelName:Ai,backendName:"wasm",setupFunc:dee,kernelFunc:hee};var gee=!0,uz=_t(On,gee);var cz;function xee(r){cz=r.wasm.cwrap($n,null,["number, number, number"])}function yee(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=ns(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(b.dataId).id;cz(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(b.shape,m);b.shape=_}return b}var pz={kernelName:$n,backendName:"wasm",setupFunc:xee,kernelFunc:yee};var mz=At(Pn);var fz;function bee(r){fz=r.wasm.cwrap(yo,null,["number","array","number","array","number","number"])}function _ee(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return hz(a,i,o.shape.length,zt[o.dtype],n,s,c,m),[u,p]},gz={kernelName:$i,backendName:"wasm",setupFunc:wee,kernelFunc:kee};function vee(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f({dataId:f,dtype:d,shape:l}))}var xz={kernelName:_s,backendName:"wasm",kernelFunc:vee};function Cee(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var yz={kernelName:ws,backendName:"wasm",kernelFunc:Cee};var Iee=[QP,eM,rM,aM,uM,mM,fM,dM,gM,xM,bM,wM,kM,CM,NM,TM,AM,DM,$M,RM,FM,PM,MM,LM,JP,BM,GM,UM,HM,KM,XM,YM,oM,JM,QM,eL,tL,rL,nL,sL,aL,uL,pL,mL,fL,dL,gL,yL,_L,wL,vL,CL,IL,SL,TL,AL,$L,RL,FL,OL,PL,cM,LL,BL,GL,UL,WL,HL,KL,YL,ZL,JL,ez,tz,rz,oz,nz,iz,lz,uz,pz,mz,dz,gz,sM,xz,yz];for(let r of Iee)Qa(r);var rI=U();rI.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));rI.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(rI.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var aI=Tc(wz());var kz='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var Cz=Tc(vz());var ny=class extends js{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Ya(this,Fo())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(o),l=i*y.bytesPerElement(n),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(n)*y.bytesPerElement(o));return Nee(a.buffer,o)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{let s=this.dataIdNextNumber++;n={id:s},this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function See(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function Iz(r,e,t){if(sy!=null)return sy;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),xh!=null&&xh[o]!=null?xh[o]:t+o}async function Nz(){let[r,e]=await Promise.all([U().getAsync("WASM_HAS_SIMD_SUPPORT"),U().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(l,u)=>{if(l.endsWith(".worker.js")){let c=kz,p=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?Iz(r,e,yh!=null?yh:u):u+l},lI&&(n.instantiateWasm=See(Iz(r,e,yh!=null?yh:"")));let s;e&&r&&sy==null?(s=aI.default(n),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+aI.default.toString()],{type:"text/javascript"})):s=Cz.default(n);let a=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",a,["number"]),dispose:s.cwrap("dispose",a,[])};let i=!1;s.onRuntimeInitialized=()=>{i=!0,bh=!1,t({wasm:s})},s.onAbort=()=>{if(i||bh)return;bh=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})}})}function Nee(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var Tee=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],sy=null,yh=null,xh={},bh=!1,lI=!1;function Eee(r,e=!1){if(ag("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),bh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");sy=r,lI=e}function Aee(r,e=!1){if(bh)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")yh=r;else{xh=r;let t=Tee.filter(o=>xh[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}lI=e}var Dee="3.1.0";var $ee=2;bu("wasm",async()=>{let{wasm:r}=await Nz();return new ny(r)},$ee);export{us as Abs,Ks as Acos,Xs as Acosh,rp as AdadeltaOptimizer,op as AdagradOptimizer,np as AdamOptimizer,sp as AdamaxOptimizer,xo as Add,qo as AddN,Vl as All,Gl as Any,Ko as ArgMax,oa as ArgMin,Ys as Asin,Zs as Asinh,Js as Atan,ei as Atan2,Qs as Atanh,Xo as AvgPool,na as AvgPool3D,Ul as AvgPool3DGrad,Wl as AvgPoolGrad,ny as BackendWasm,Yo as BatchMatMul,sa as BatchToSpaceND,jl as Bincount,Cb as BroadcastTo,tx as Callback,Mg as CallbackList,Eo as Cast,Zo as Ceil,Ao as ClipByValue,Hl as Complex,ia as ComplexAbs,cs as Concat,Jo as Conv2D,ql as Conv2DBackpropFilter,Qo as Conv2DBackpropInput,aa as Conv3D,Kl as Conv3DBackpropFilterV2,Xl as Conv3DBackpropInputV2,en as Cos,ti as Cosh,ri as CropAndResize,tn as Cumsum,zg as CustomCallback,Ya as DataStorage,Yl as DenseBincount,oi as DepthToSpace,rn as DepthwiseConv2dNative,Zl as DepthwiseConv2dNativeBackpropFilter,Jl as DepthwiseConv2dNativeBackpropInput,Ql as Diag,la as Dilation2D,Fc as Dilation2DBackpropFilter,Rc as Dilation2DBackpropInput,wb as ENV,ox as EarlyStopping,ni as Elu,eu as EluGrad,jh as Environment,ii as Equal,si as Erf,nn as Exp,ps as ExpandDims,ai as Expm1,tu as FFT,ua as Fill,li as FlipLeftRight,sn as Floor,an as FloorDiv,Oc as FromPixels,ln as FusedBatchNorm,vs as FusedConv2D,Cs as FusedDepthwiseConv2D,ui as GatherNd,ms as GatherV2,bx as GraphModel,ci as Greater,un as GreaterEqual,Lg as History,ru as IFFT,Do as Identity,ou as Imag,Et as InputSpec,pi as IsFinite,mi as IsInf,fi as IsNan,js as KernelBackend,ca as LRN,su as LRNGrad,If as LayerVariable,vo as LayersModel,cn as LeakyRelu,di as Less,hi as LessEqual,nu as LinSpace,pn as Log,gi as Log1p,Ib as LogSoftmax,xi as LogicalAnd,Za as LogicalNot,Ja as LogicalOr,mn as Max,dn as MaxPool,pa as MaxPool3D,au as MaxPool3DGrad,iu as MaxPoolGrad,lu as MaxPoolWithArgmax,fn as Maximum,hn as Mean,gn as Min,xn as Minimum,ma as MirrorPad,yi as Mod,ip as MomentumOptimizer,uu as Multinomial,yn as Multiply,fs as Neg,_i as NonMaxSuppressionV3,wi as NonMaxSuppressionV4,ki as NonMaxSuppressionV5,bi as NotEqual,MI as OP_SCOPE_SUFFIX,bn as OneHot,ds as OnesLike,Fr as Optimizer,hs as Pack,_n as PadV2,h3 as Pool,wn as Pow,kn as Prelu,vi as Prod,ap as RMSPropOptimizer,ao as RNN,fa as Range,Ab as Rank,cu as Real,on as RealDiv,Ci as Reciprocal,Gt as Reduction,vn as Relu,In as Relu6,gs as Reshape,Cn as ResizeBilinear,mu as ResizeBilinearGrad,da as ResizeNearestNeighbor,pu as ResizeNearestNeighborGrad,Nn as Reverse,Ri as RotateWithOffset,Sn as Round,Tn as Rsqrt,ll as SGDOptimizer,Ii as ScatterNd,xs as Select,Ni as Selu,Hi as Sequential,An as Sigmoid,Ti as Sign,En as Sin,Si as Sinh,ys as Slice,Rn as Softmax,Ei as Softplus,ha as SpaceToBatchND,fu as SparseToDense,bs as SplitV,Dn as Sqrt,ga as Square,Fn as SquaredDifference,$o as Step,Ai as StridedSlice,On as Sub,$n as Sum,Lr as SymbolicTensor,Di as Tan,Pn as Tanh,Ve as Tensor,ct as TensorBuffer,yo as Tile,$i as TopK,Mn as Transpose,du as Unique,_s as Unpack,xa as UnsortedSegmentSum,tl as Variable,ws as ZerosLike,ks as _FusedMatMul,Tt as abs,Nm as acos,Sm as acosh,Q as add,i_ as addN,wu as all,nl as any,sl as argMax,Tm as argMin,Em as asin,Am as asinh,Dm as atan,$m as atan2,Rm as atanh,va as avgPool,Fm as avgPool3d,s_ as backend,N as backend_util,fG as basicLSTMCell,zn as batchNorm,c_ as batchNorm2d,p_ as batchNorm3d,m_ as batchNorm4d,Ca as batchToSpaceND,f_ as bincount,wU as booleanMaskAsync,il as broadcastTo,tg as browser,Ce as buffer,A1 as callbacks,oe as cast,Om as ceil,nr as clipByValue,Ro as clone,bo as complex,Je as concat,d_ as concat1d,h_ as concat2d,g_ as concat3d,x_ as concat4d,lw as constraints,Cu as conv1d,jr as conv2d,Iu as conv2dTranspose,Pm as conv3d,FG as conv3dTranspose,y3 as copyRegisteredKernels,Ia as cos,Nu as cosh,lf as cosineWindow,Su as cumsum,Hr as customGrad,Pk as data,y_ as denseBincount,ag as deprecationWarn,Mm as depthToSpace,Ns as depthwiseConv2d,R1 as deregisterOp,Vc as device_util,GG as diag,Lm as dilation2d,NV as disableDeprecationWarnings,Te as dispose,SV as disposeVariables,de as div,zm as divNoNan,b_ as dot,j_ as dropout,Ss as elu,IV as enableDebugMode,CV as enableProdMode,H_ as enclosingPowerOfTwo,Fo as engine,U as env,_o as equal,Bm as erf,Xt as exp,sr as expandDims,Vm as expm1,Xc as eye,Ra as fft,Na as fill,RV as findBackend,FV as findBackendFactory,Ts as floor,_u as floorDiv,Wn as fused,Bn as gather,U_ as gatherND,rg as gather_util,DV as getBackend,Hh as getGradient,Mc as getKernel,_m as getKernelsForBackend,xW as grad,yW as grads,Qt as greater,to as greaterEqual,zi as ifft,Tu as imag,Rs as image,AU as inTopKAsync,fw as initializers,Qg as input,vr as io,Bu as irfft,__ as isFinite,w_ as isInf,k_ as isNaN,Dt as keep,Sr as kernel_impls,Xw as layers,Sa as leakyRelu,Eu as less,Mo as lessEqual,Z_ as linalg,v_ as linspace,lE as loadGraphModel,x1 as loadLayersModel,Gm as localResponseNormalization,ir as log,Au as log1p,C_ as logSigmoid,Du as logSoftmax,Um as logSumExp,fr as logicalAnd,Ta as logicalNot,$u as logicalOr,T_ as logicalXor,kj as losses,We as matMul,dN as math,ar as max,Ea as maxPool,jm as maxPool3d,E_ as maxPoolWithArgmax,qr as maximum,ht as mean,Hc as memory,Qw as metrics,Li as min,As as minimum,Hm as mirrorPad,qm as mod,h1 as model,ek as models,Yc as moments,CU as movingAverage,O as mul,qW as multiRNNCell,A_ as multinomial,je as neg,uf as nextFrame,Wu as norm,Gn as notEqual,Is as oneHot,Cr as ones,er as onesLike,S as op,JW as outerProduct,$r as pad,t4 as pad1d,o4 as pad2d,s4 as pad3d,a4 as pad4d,D_ as pool,Rr as pow,Da as prelu,Kb as print,Ru as prod,TV as profile,g4 as rand,C4 as randomGamma,dg as randomNormal,Ds as randomUniform,Jc as range,AV as ready,al as real,Xm as reciprocal,bu as registerBackend,y1 as registerCallbackConstructor,Sb as registerGradient,Qa as registerKernel,$1 as registerOp,tk as regularizers,Ir as relu,Ou as relu6,$V as removeBackend,L as reshape,qt as reverse,R4 as reverse1d,O4 as reverse2d,M4 as reverse3d,z4 as reverse4d,Fa as rfft,Ym as round,Pu as rsqrt,le as scalar,W_ as scatterND,og as scatter_util,Mu as selu,Zm as separableConv2d,g1 as sequential,J as serialization,AN as setBackend,OV as setPlatform,Eee as setWasmPath,Aee as setWasmPaths,B_ as setdiff1dAsync,Ur as sigmoid,Jm as sign,wj as signal,Lu as sin,zu as sinh,Fe as slice,Qm as slice1d,hg as slice2d,ef as slice3d,Qc as slice4d,or as slice_util,$a as softmax,Es as softplus,Aa as spaceToBatchND,af as sparseToDense,_j as spectral,lr as split,xt as sqrt,Pe as square,Vu as squaredDifference,wo as squeeze,Bt as stack,$s as step,tf as stridedSlice,ue as sub,ye as sum,gu as sumOutType,rf as tan,Mi as tanh,Dr as tensor,Vt as tensor1d,Bi as tensor2d,Jb as tensor3d,pU as tensor4d,mU as tensor5d,fU as tensor6d,Ln as tensor_util,SN as test_util,B as tidy,Po as tile,EV as time,of as topk,ul as train,Ue as transpose,Gu as truncatedNormal,ep as unique,x3 as unregisterGradient,g3 as unregisterKernel,nf as unsortedSegmentSum,ur as unstack,mr as upcastType,y as util,bW as valueAndGrad,_W as valueAndGrads,V_ as variable,pg as variableGrads,b9 as version,_x as version_converter,n_ as version_core,hl as version_layers,Dee as version_wasm,$t as where,sf as whereAsync,gt as zeros,Ie as zerosLike}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=tfjs.esm.js.map