var faceapi=(()=>{var pQ=Object.create,lg=Object.defineProperty,hQ=Object.getPrototypeOf,fQ=Object.prototype.hasOwnProperty,dQ=Object.getOwnPropertyNames,mQ=Object.getOwnPropertyDescriptor,IE=i=>lg(i,"__esModule",{value:!0}),ug=(i,a)=>()=>(a||(a={exports:{}},i(a.exports,a)),a.exports),mh=(i,a)=>{IE(i);for(var u in a)lg(i,u,{get:a[u],enumerable:!0})},gQ=(i,a,u)=>{if(IE(i),a&&typeof a=="object"||typeof a=="function")for(let h of dQ(a))!fQ.call(i,h)&&h!=="default"&&lg(i,h,{get:()=>a[h],enumerable:!(u=mQ(a,h))||u.enumerable});return i},te=i=>i&&i.__esModule?i:gQ(lg(i!=null?pQ(hQ(i)):{},"default",{value:i,enumerable:!0}),i),DE=ug((_l,EE)=>{"use strict";var yQ=function(){if(typeof self!="undefined")return self;if(typeof window!="undefined")return window;if(typeof As!="undefined")return As;throw new Error("unable to locate global object")},As=yQ();EE.exports=_l=As.fetch;As.fetch&&(_l.default=As.fetch.bind(As));_l.Headers=As.Headers;_l.Request=As.Request;_l.Response=As.Response}),ee=ug((pg,AE)=>{(function(i,a){typeof pg=="object"&&typeof AE!="undefined"?a(pg):typeof define=="function"&&define.amd?define(["exports"],a):(i=i||self,a(i.tf=i.tf||{}))})(pg,function(i){"use strict";let a=1e-7,u=1e-4;class h{constructor(t,e){this.backend=t,this.dataMover=e,this.data=new WeakMap,this.dataIdsCount=0}get(t){return this.data.has(t)||this.dataMover.moveData(this.backend,t),this.data.get(t)}set(t,e){this.dataIdsCount++,this.data.set(t,e)}has(t){return this.data.has(t)}delete(t){return this.dataIdsCount--,this.data.delete(t)}numDataIds(){return this.dataIdsCount}}class d{time(t){return g("time")}read(t){return g("read")}readSync(t){return g("readSync")}numDataIds(){return g("numDataIds")}disposeData(t){return g("disposeData")}write(t,e,r){return g("write")}move(t,e,r,o){return g("move")}memory(){return g("memory")}floatPrecision(){return g("floatPrecision")}epsilon(){return this.floatPrecision()===32?a:u}batchMatMul(t,e,r,o){return g("batchMatMul")}fusedBatchMatMul({a:t,b:e,transposeA:r,transposeB:o,bias:s,activation:c,preluActivationWeights:l}){return g("fusedBatchMatMul")}slice(t,e,r){return g("slice")}stridedSlice(t,e,r,o){return g("stridedSlice")}unstack(t,e){return g("unstack")}reverse(t,e){return g("reverse")}concat(t,e){return g("concat")}neg(t){return g("neg")}add(t,e){return g("add")}addN(t){return g("addN")}subtract(t,e){return g("subtract")}multiply(t,e){return g("multiply")}realDivide(t,e){return g("realDivide")}floorDiv(t,e){return g("floorDiv")}sum(t,e){return g("sum")}prod(t,e){return g("prod")}unsortedSegmentSum(t,e,r){return g("unsortedSegmentSum")}argMin(t,e){return g("argMin")}argMax(t,e){return g("argMax")}equal(t,e){return g("equal")}notEqual(t,e){return g("notEqual")}less(t,e){return g("less")}lessEqual(t,e){return g("lessEqual")}greater(t,e){return g("greater")}greaterEqual(t,e){return g("greaterEqual")}logicalNot(t){return g("logicalNot")}logicalAnd(t,e){return g("logicalAnd")}logicalOr(t,e){return g("logicalOr")}where(t){return g("where")}select(t,e,r){return g("select")}topk(t,e,r){return g("topk")}min(t,e){return g("min")}minimum(t,e){return g("minimum")}mod(t,e){return g("mod")}max(t,e){return g("max")}maximum(t,e){return g("maximum")}all(t,e){return g("all")}any(t,e){return g("any")}squaredDifference(t,e){return g("squaredDifference")}ceil(t){return g("ceil")}floor(t){return g("floor")}round(t){return g("round")}sign(t){return g("sign")}isNaN(t){return g("isNaN")}isInf(t){return g("isInf")}isFinite(t){return g("isFinite")}pow(t,e){return g("pow")}exp(t){return g("exp")}expm1(t){return g("expm1")}softmax(t,e){return g("softmax")}log(t){return g("log")}log1p(t){return g("log1p")}sqrt(t){return g("sqrt")}rsqrt(t){return g("rsqrt")}square(t){return g("square")}reciprocal(t){return g("reciprocal")}relu(t){return g("relu")}relu6(t){return g("relu6")}prelu(t,e){return g("prelu")}elu(t){return g("elu")}eluDer(t,e){return g("eluDer")}selu(t){return g("selu")}int(t){return g("int")}clip(t,e,r){return g("clip")}abs(t){return g("abs")}complexAbs(t){return g("complexAbs")}sigmoid(t){return g("sigmoid")}softplus(t){return g("softplus")}sin(t){return g("sin")}cos(t){return g("cos")}tan(t){return g("tan")}asin(t){return g("asin")}acos(t){return g("acos")}atan(t){return g("atan")}atan2(t,e){return g("atan2")}sinh(t){return g("sinh")}cosh(t){return g("cosh")}tanh(t){return g("tanh")}asinh(t){return g("asinh")}acosh(t){return g("acosh")}atanh(t){return g("atanh")}erf(t){return g("erf")}step(t,e){return g("step")}fusedConv2d({input:t,filter:e,convInfo:r,bias:o,activation:s,preluActivationWeights:c}){return g("fusedConv2d")}conv2d(t,e,r){return g("conv2d")}conv2dDerInput(t,e,r){return g("conv2dDerInput")}conv2dDerFilter(t,e,r){return g("conv2dDerFilter")}fusedDepthwiseConv2D({input:t,filter:e,convInfo:r,bias:o,activation:s,preluActivationWeights:c}){return g("fusedDepthwiseConv2D")}depthwiseConv2D(t,e,r){return g("depthwiseConv2D")}depthwiseConv2DDerInput(t,e,r){return g("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(t,e,r){return g("depthwiseConv2DDerFilter")}conv3d(t,e,r){return g("conv3d")}conv3dDerInput(t,e,r){return g("conv3dDerInput")}conv3dDerFilter(t,e,r){return g("conv3dDerFilter")}maxPool(t,e){return g("maxPool")}maxPoolBackprop(t,e,r,o){return g("maxPoolBackprop")}avgPool(t,e){return g("avgPool")}avgPoolBackprop(t,e,r){return g("avgPoolBackprop")}avgPool3d(t,e){return g("avgPool3d")}avgPool3dBackprop(t,e,r){return g("avgPool3dBackprop")}maxPool3d(t,e){return g("maxPool3d")}maxPool3dBackprop(t,e,r,o){return g("maxPool3dBackprop")}reshape(t,e){return g("reshape")}cast(t,e){return g("cast")}tile(t,e){return g("tile")}pad(t,e,r){return g("pad")}transpose(t,e){return g("transpose")}gather(t,e,r){return g("gather")}gatherND(t,e){return g("gatherND")}scatterND(t,e,r){return g("scatterND")}batchToSpaceND(t,e,r){return g("batchToSpaceND")}spaceToBatchND(t,e,r){return g("spaceToBatchND")}resizeBilinear(t,e,r,o){return g("resizeBilinear")}resizeBilinearBackprop(t,e,r){return g("resizeBilinearBackprop")}resizeNearestNeighbor(t,e,r,o){return g("resizeNearestNeighbor")}resizeNearestNeighborBackprop(t,e,r){return g("resizeNearestNeighborBackprop")}batchNorm(t,e,r,o,s,c){return g("batchNorm")}localResponseNormalization4D(t,e,r,o,s){return g("localResponseNormalization4D")}LRNGrad(t,e,r,o,s,c,l){return g("LRNGrad")}multinomial(t,e,r,o){return g("multinomial")}oneHot(t,e,r,o){return g("oneHot")}cumsum(t,e,r,o){return g("cumsum")}nonMaxSuppression(t,e,r,o,s){return g("nonMaxSuppression")}fft(t){return g("fft")}ifft(t){return g("ifft")}complex(t,e){return g("complex")}real(t){return g("real")}imag(t){return g("imag")}cropAndResize(t,e,r,o,s,c){return g("cropAndResize")}depthToSpace(t,e,r){return g("depthToSpace")}split(t,e,r){return g("split")}sparseToDense(t,e,r,o){return g("sparseToDense")}diag(t){return g("diag")}fill(t,e,r){return g("fill")}onesLike(t){return g("onesLike")}zerosLike(t){return g("zerosLike")}linspace(t,e,r){return g("linspace")}dispose(){return g("dispose")}}function g(n){throw new Error(`'${n}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function x(n){let t=n.length,e=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,e=n[t],n[t]=n[r],n[r]=e}function w(n,t,e){return Math.max(n,Math.min(t,e))}function k(n){return n%2===0?n:n+1}function C(n){let t=0;for(let e=0;ee+` Shapes ${n} and ${t} must match`)}function et(n){_(n!=null,()=>"The input to the tensor constructor must be a non-null value.")}function tt(n,t=[],e=!1){if(t==null&&(t=[]),Array.isArray(n)||gn(n)&&!e)for(let r=0;r0,e){return new Promise((r,o)=>{let s=0,c=()=>{if(n()){r();return}s++;let l=t(s);if(e!=null&&s>=e){o();return}setTimeout(c,l)};c()})}function Ue(n,t){let e=1,r=-1;for(let s=0;s=0)e*=n[s];else if(n[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(n[s]<0)throw Error(`Shapes can not be < 0. Found ${n[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==e)throw Error(`Size(${t}) must match the product of shape ${n}`);return n}if(e===0)throw Error(`Cannot infer the missing size in [${n}] when there are 0 elements`);if(t%e!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${e}`);let o=n.slice();return o[r]=t/e,o}function Vt(n,t){let e=t.length;return n=n==null?t.map((r,o)=>o):[].concat(n),_(n.every(r=>r>=-e&&r`All values in axis param must be in range [-${e}, ${e}) but got axis ${n}`),_(n.every(r=>gt(r)),()=>`All values in axis param must be integers but got axis ${n}`),n.map(r=>r<0?e+r:r)}function ln(n,t){let e=[],r=[],o=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||o?null:Vt(t,n).sort(),c=0;for(let l=0;ll)&&n[l]===1&&(e.push(n[l]),r.push(l)),s[c]<=l&&c++}n[l]!==1&&(e.push(n[l]),r.push(l))}return{newShape:e,keptDims:r}}function Ce(n,t){let e=null;if(n==null||n==="float32")e=new Float32Array(t);else if(n==="int32")e=new Int32Array(t);else if(n==="bool")e=new Uint8Array(t);else throw new Error(`Unknown data type ${n}`);return e}function or(n,t){let e=null;if(n==null||n==="float32")e=new Float32Array(t);else if(n==="int32")e=new Int32Array(t);else if(n==="bool")e=new Uint8Array(t);else if(n==="string")e=new Array(t);else throw new Error(`Unknown data type ${n}`);return e}function ti(n,t){for(let e=0;et+=e.length),t}function us(n){return typeof n=="string"||n instanceof String}function oN(n){return typeof n=="boolean"}function vf(n){return typeof n=="number"}function yc(n){return Array.isArray(n)?yc(n[0]):n instanceof Float32Array?"float32":n instanceof Int32Array||n instanceof Uint8Array?"int32":vf(n)?"float32":us(n)?"string":oN(n)?"bool":"float32"}function ni(n){return!!(n&&n.constructor&&n.call&&n.apply)}function Tf(n,t){for(let e=t;e=0;--r)e[r]=e[r+1]*n[r+1];return e}function sN(n,t,e){let r=new Array;if(t.length===1){let o=t[0];for(let s=0;sl*p);for(let l=0;lr*o);if(e===0)return[];if(e!==t.length)throw new Error(`[${n}] does not match the input size ${t.length}.`);return sN(0,n,t)}function Qb(n,t){let e=bc(n,t);for(let r=0;rr*o,1);if(t==null||t==="float32")return Dr(n,new Float32Array(e));if(t==="int32")return Dr(n,new Int32Array(e));if(t==="bool")return Dr(n,new Uint8Array(e));throw new Error(`Unknown data type ${t}`)}function ex(n){n.forEach(t=>{_(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${n}].`)})}function Yr(n,t,e){if(t===0)return 0;if(t===1)return n[0];let r=n[n.length-1];for(let o=0;o{let[o,s]=r.split(":");this.urlFlags[o]=OP(o,s)})}}}function RP(n){let t={};return n.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(e,...r)=>(PP(t,r[0],r[1]),r.join("="))),t}function PP(n,t,e){n[decodeURIComponent(t)]=decodeURIComponent(e||"")}function OP(n,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${n}.`)}function ct(){return i.ENV}i.ENV=null;function LP(n){i.ENV=n}let nx;function cN(){if(nx==null){let n;if(typeof window!="undefined")n=window;else if(typeof global!="undefined")n=global;else if(typeof process!="undefined")n=process;else if(typeof self!="undefined")n=self;else throw new Error("Could not find a global object");nx=n}return nx}function MP(){let n=cN();return n._tfGlobals==null&&(n._tfGlobals=new Map),n._tfGlobals}function lN(n,t){let e=MP();if(e.has(n))return e.get(n);{let r=t();return e.set(n,r),e.get(n)}}let kf="Abs",au="Acos",cu="Acosh",Zi="Add",rx="AddN",uN="All",pN="Any",ox="ArgMax",sx="ArgMin",lu="Asin",uu="Asinh",pu="Atan",hu="Atanh",Nf="Atan2",fu="AvgPool",_f="AvgPoolBackprop",ix="AvgPool3D",hN="AvgPool3DBackprop",Cf="BatchMatMul",ax="BatchToSpaceND",cx="BroadcastTo",xc="Cast",du="Ceil",mu="ClipByValue",Sf="Complex",gu="Concat",$f="Conv2D",lx="Conv2DBackpropFilter",If="Conv2DBackpropInput",Ef="Conv3D",ux="Conv3DBackpropFilterV2",px="Conv3DBackpropInputV2",wc="Cos",yu="Cosh",hx="Cumsum",fN="CropAndResize",dN="DepthToSpace",Df="DepthwiseConv2dNative",fx="DepthwiseConv2dNativeBackpropFilter",dx="DepthwiseConv2dNativeBackpropInput",mN="Diag",Af="Dilation2D",Ff="Dilation2DBackpropInput",Rf="Dilation2DBackpropFilter",vc="Div",bu="Elu",gN="EluGrad",xu="Erf",yN="Equal",wu="Exp",vu="Expm1",Pf="FFT",mx="Fill",Of="FlipLeftRight",Tu="Floor",gx="FloorDiv",ku="FusedBatchNorm",yx="GatherV2",bN="GatherNd",xN="Greater",bx="GreaterEqual",Nu="Identity",Lf="IFFT",Mf="Imag",_u="IsFinite",Cu="IsInf",Su="IsNan",wN="Less",vN="LessEqual",TN="LinSpace",$u="Log",Iu="Log1p",kN="LogicalAnd",Bf="LogicalNot",NN="LogicalOr",xx="LogSoftmax",wx="LRN",_N="LRNBackprop",Eu="Max",vx="Maximum",Du="MaxPool",zf="MaxPoolBackprop",Tx="MaxPool3D",CN="MaxPool3DBackprop",Wf="MaxPoolWithArgmax",kx="Mean",Nx="Min",_x="Minimum",Au="MirrorPad",Cx="Mod",Tc="Multiply",Sx="Negate",Fu="NotEqual",$x="NonMaxSuppressionV3",Vf="NonMaxSuppressionV4",Gf="NonMaxSuppressionV5",Ix="OnesLike",Ex="OneHot",Uf="PadV2",BP="Pool",Dx="Pow",qf="Prelu",SN="Prod",$N="Range",Hf="Real",Ru="Reciprocal",Pu="Relu",Ou="Reshape",Ax="ResizeNearestNeighbor",IN="ResizeNearestNeighborGrad",Fx="ResizeBilinear",EN="ResizeBilinearGrad",Lu="Relu6",Rx="Reverse",Mu="Round",Bu="Rsqrt",DN="ScatterNd",Px="SelectV2",zu="Selu",jf="Slice",kc="Sin",Wu="Sinh",Vu="Sign",Gu="Sigmoid",Uu="Softplus",qu="Sqrt",Ox="Sum",Kf="SpaceToBatchND",Lx="SplitV",Mx="Softmax",Nc="SquaredDifference",Xf="Square",_c="Sub",AN="SparseToDense",FN="StridedSlice",Cc="Tan",Hu="Tanh",Bx="Tile",RN="TopK",ju="Transpose",Yf="Unique",zx="Unpack",Wx="UnsortedSegmentSum",Vx="ZerosLike",Ku="Step",Jf="FromPixels",Zf="RotateWithOffset",Qf="_FusedMatMul",td="FusedConv2D",ed="FusedDepthwiseConv2D";let Sc=lN("kernelRegistry",()=>new Map),Xu=lN("gradRegistry",()=>new Map);function Gx(n,t){let e=qx(n,t);return Sc.get(e)}function Ux(n){return Xu.get(n)}function nd(n){let t=Sc.entries(),e=[];for(;;){let{done:r,value:o}=t.next();if(r)break;let[s,c]=o,[l]=s.split("_");l===n&&e.push(c)}return e}function rd(n){let{kernelName:t,backendName:e}=n,r=qx(t,e);Sc.has(r)&&console.warn(`The kernel '${t}' for backend '${e}' is already registered`),Sc.set(r,n)}function PN(n){let{kernelName:t}=n;Xu.has(t)&&(ct().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`)),Xu.set(t,n)}function zP(n,t){let e=qx(n,t);if(!Sc.has(e))throw new Error(`The kernel '${n}' for backend '${t}' is not registered`);Sc.delete(e)}function WP(n){if(!Xu.has(n))throw new Error(`The gradient '${n}' for backend is not registered`);Xu.delete(n)}function VP(n,t){let e=nd(n);e.forEach(r=>{let o=Object.assign({},r,{backendName:t});rd(o)})}function qx(n,t){return`${t}_${n}`}function ON(n,t){return t==="string"?od(n):ri([n],t)}function GP(n,t){return n instanceof Float32Array&&t==="float32"||n instanceof Int32Array&&t==="int32"||n instanceof Uint8Array&&t==="bool"}function ri(n,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(n)&&(n=tt(n)),ct().getBool("DEBUG")&&ti(n,t),GP(n,t))return n;if(t==null||t==="float32"||t==="complex64")return new Float32Array(n);if(t==="int32")return new Int32Array(n);if(t==="bool"){let e=new Uint8Array(n.length);for(let r=0;r{o=r()},c=this.backendTimer.time(s);for(let p=0;p{HP(m,f.dtype,t)})}let l={kernelName:t,outputs:o,inputs:e,timeMs:c.then(p=>p.kernelMs),extraInfo:c.then(p=>p.getExtraProfileInfo!=null?p.getExtraProfileInfo():"")};return l}logKernelProfile(t){let{kernelName:e,outputs:r,timeMs:o,inputs:s,extraInfo:c}=t;r.forEach(l=>{Promise.all([l.data(),o,c]).then(p=>{this.logger.logKernelProfile(e,l,p[0],p[1],s,p[2])})})}}function HP(n,t,e){if(t!=="float32")return!1;for(let r=0;r0?N:""} `}}console.log(`%c${p} %c${l} %c${f}D ${y} %c${m} %c${b} %c${c}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}}function KP(n,t,e){let r={},o={};for(let p=0;pr[N.id]=!0),v=!0,o[f.id]=!0;break}if(v)break}}let s={};s[e.id]=!0;let c={};for(let p=n.length-1;p>=0;p--){let f=n[p],m=f.inputs;for(let y=0;y=0;o--){let s=t[o],c=[];if(s.outputs.forEach(p=>{let f=n[p.id];f!=null?c.push(f):c.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let l=s.gradient(c);for(let p in s.inputs){if(!(p in l))throw new Error(`Cannot backprop through input ${p}. Available gradients found: ${Object.keys(l)}.`);let f=e(()=>l[p]());if(f.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${p} must have 'float32' dtype, but has '${f.dtype}'`);let m=s.inputs[p];if(!lt(f.shape,m.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${p}' has shape '${f.shape}', which does not match the shape of the input '${m.shape}'`);if(n[m.id]==null)n[m.id]=f;else{let y=n[m.id];n[m.id]=r(y,f),y.dispose()}}}}let MN=20,Ju=3,Hx=7;function YP(n,t,e,r){let o=Jt(t),s=JP(n,t,e,o),c=t.length,l=sd(n,t,e,o,s),p=["Tensor"];return r&&(p.push(` dtype: ${e}`),p.push(` rank: ${c}`),p.push(` shape: [${t}]`),p.push(" values:")),p.push(l.map(f=>" "+f).join(` `)),p.join(` `)}function JP(n,t,e,r){let o=G(t),s=r[r.length-1],c=new Array(s).fill(0),l=t.length,p=e==="complex64"?Qu(n):n;if(l>1)for(let f=0;fMN){let S=Ju*c,D=Array.from(n.slice(0,S)),I=Array.from(n.slice((l-Ju)*c,l*c));return e==="complex64"&&(D=Qu(D),I=Qu(I)),["["+D.map((P,E)=>Zu(P,o[E],e)).join(", ")+", ..., "+I.map((P,E)=>Zu(P,o[l-Ju+E],e)).join(", ")+"]"]}let N=e==="complex64"?Qu(n):Array.from(n);return["["+N.map((S,D)=>Zu(S,o[D],e)).join(", ")+"]"]}let f=t.slice(1),m=r.slice(1),y=r[0]*c,b=[];if(l>MN){for(let N=0;N`Length of values '${o}' does not match the size inferred by the shape '${this.size}'.`)}if(e==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=r||or(e,this.size),this.strides=Jt(t)}set(t,...e){e.length===0&&(e=[0]),_(e.length===this.rank,()=>`The number of provided coordinates (${e.length}) must match the rank (${this.rank})`);let r=this.locToIndex(e);this.values[r]=t}get(...t){t.length===0&&(t=[0]);let e=0;for(let o of t){if(o<0||o>=this.shape[e]){let s=`Requested out of range element at ${t}. Buffer shape=${this.shape}`;throw new Error(s)}e++}let r=t[t.length-1];for(let o=0;oYu(r))}catch(r){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return t}dataSync(){this.throwIfDisposed();let t=Mo().readSync(this.dataId);if(this.dtype==="string")try{return t.map(e=>Yu(e))}catch(e){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return t}async bytes(){this.throwIfDisposed();let t=await Mo().read(this.dataId);return this.dtype==="string"?t:new Uint8Array(t.buffer)}dispose(){if(this.isDisposed)return;Mo().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(t=!1){return $c.print(this,t)}clone(){return this.throwIfDisposed(),$c.clone(this)}toString(t=!1){let e=this.dataSync();return YP(e,this.shape,this.dtype,t)}cast(t){return this.throwIfDisposed(),$c.cast(this,t)}variable(t=!0,e,r){return this.throwIfDisposed(),Mo().makeVariable(this,t,e,r)}}Object.defineProperty(ot,Symbol.hasInstance,{value:n=>!!n&&n.data!=null&&n.dataSync!=null&&n.throwIfDisposed!=null});class tp extends ot{constructor(t,e,r,o){super(t.shape,t.dtype,t.dataId,o);this.trainable=e,this.name=r}assign(t){if(t.dtype!==this.dtype)throw new Error(`dtype of the new value (${t.dtype}) and previous value (${this.dtype}) must match`);if(!lt(t.shape,this.shape))throw new Error(`shape of the new value (${t.shape}) and previous value (${this.shape}) must match`);Mo().disposeTensor(this),this.dataId=t.dataId,Mo().incRef(this,null)}dispose(){Mo().disposeVariable(this),this.isDisposedInternal=!0}}Object.defineProperty(tp,Symbol.hasInstance,{value:n=>n instanceof ot&&n.assign!=null&&n.assign instanceof Function});(function(n){n.R0="R0",n.R1="R1",n.R2="R2",n.R3="R3",n.R4="R4",n.R5="R5",n.R6="R6"})(i.Rank||(i.Rank={}));var jx;(function(n){n.float32="float32",n.int32="int32",n.bool="int32",n.complex64="complex64"})(jx||(jx={}));var Kx;(function(n){n.float32="float32",n.int32="int32",n.bool="bool",n.complex64="complex64"})(Kx||(Kx={}));var Xx;(function(n){n.float32="float32",n.int32="float32",n.bool="float32",n.complex64="complex64"})(Xx||(Xx={}));var Yx;(function(n){n.float32="complex64",n.int32="complex64",n.bool="complex64",n.complex64="complex64"})(Yx||(Yx={}));let eO={float32:Xx,int32:jx,bool:Kx,complex64:Yx};function Kn(n,t){if(n==="string"||t==="string"){if(n==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${n} with ${t}`)}return eO[n][t]}function id(n){return Kn(n,"int32")}function Je(n,t){if(n.dtype===t.dtype)return[n,t];let e=Kn(n.dtype,t.dtype);return[n.cast(e),t.cast(e)]}function WN(n,t){_(n.dtype===t.dtype,()=>`The dtypes of the first(${n.dtype}) and second(${t.dtype}) input must match`)}function ad(n,t){return t.some(e=>e.id===n.id)}function ps(n){let t=[],e=new Set;return VN(n,t,e),t}function VN(n,t,e){if(n==null)return;if(n instanceof ot){t.push(n);return}if(!nO(n))return;let r=n;for(let o in r){let s=r[o];e.has(s)||(e.add(s),VN(s,t,e))}}function nO(n){return Array.isArray(n)||typeof n=="object"}var rO=Object.freeze({__proto__:null,makeTypesMatch:Je,assertTypesMatch:WN,isTensorInList:ad,getTensorsInContainer:ps});class GN{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(let t in this.registeredVariables)this.registeredVariables[t].dispose()}}class Ic{constructor(t){this.ENV=t,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new GN}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let t=this.getSortedBackends();for(let e=0;e{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(t){let e=nd(t);e.forEach(r=>{r.disposeFunc!=null&&r.disposeFunc(this.registry[t])})}initializeBackend(t){let e=this.registryFactory[t];if(e==null)throw new Error(`Cannot initialize backend ${t}, no registration found.`);try{let r=e.factory();if(r&&!(r instanceof d)&&typeof r.then=="function"){let o=++this.pendingBackendInitId,s=r.then(c=>o(othis.registryFactory[e].priority-this.registryFactory[t].priority)}initializeBackendsAndReturnBest(){let t=this.getSortedBackends();for(let e=0;ethis.startScope(r),()=>this.endScope(o),()=>(o=e(),o instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),o))}scopedRun(t,e,r){t();try{let o=r();return e(),o}catch(o){throw e(),o}}nextTensorId(){return Ic.nextTensorId++}nextVariableId(){return Ic.nextVariableId++}clone(t){let e=this.makeTensorFromDataId(t.dataId,t.shape,t.dtype),r={x:t},o=c=>({x:()=>{let l="float32",p={x:c},f={dtype:l};return X.runKernelFunc(m=>m.cast(c,l),p,null,xc,f)}}),s=[];return this.addTapeNode(this.state.activeScope.name,r,[e],o,s,{}),e}runKernel(t,e,r,o,s){let c=null,l=null;return this.runKernelFunc(c,e,l,t,r,o,s)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(t,e,r){let o=this.backend.numDataIds(),s=0;r.forEach(p=>{s+=p.dtype==="complex64"?3:1});let c=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],l=o-e-s-c;if(l>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${l} data ids) after running '${t}'`)}runKernelFunc(t,e,r,o,s,c,l){let p,f=[],m=this.isTapeOn();o==null&&(o=this.state.activeScope!=null?this.state.activeScope.name:"");let y=this.state.numBytes,b=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let v,T=Gx(o,this.backendName),N;if(T!=null)v=()=>{let D=this.backend.numDataIds();N=T.kernelFunc({inputs:e,attrs:s,backend:this.backend});let I=Array.isArray(N)?N:[N];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(o,D,I);let P=I.map(({dataId:E,shape:L,dtype:B})=>this.makeTensorFromDataId(E,L,B));if(m){let E=this.getTensorsForGradient(o,e,P);if(E==null){l==null&&(l=[]);let L=P.filter((B,q)=>l[q]);E=(c||[]).slice().concat(L)}f=this.saveTensorsForBackwardMode(E)}return P};else{let D=I=>{if(!m)return;f=I.map(P=>this.keep(this.clone(P)))};v=()=>{let I=this.backend.numDataIds();N=this.tidy(()=>t(this.backend,D));let P=Array.isArray(N)?N:[N];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(o,I,P),P}}let S;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?p=v():(S=this.profiler.profileKernel(o,e,()=>v()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(S),p=S.outputs)}),m&&this.addTapeNode(o,e,p,r,f,s),this.state.profiling&&this.state.activeProfile.kernels.push({name:o,bytesAdded:this.state.numBytes-y,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-b,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(e).map(D=>e[D]!=null?e[D].shape:null),outputShapes:p.map(D=>D.shape),kernelTimeMs:S.timeMs,extraInfo:S.extraInfo}),Array.isArray(N)?p:p[0]}saveTensorsForBackwardMode(t){let e=t.map(r=>this.keep(this.clone(r)));return e}getTensorsForGradient(t,e,r){let o=Ux(t);if(o!=null){let s=o.inputsToSave||[],c=o.outputsToSave||[],l;o.saveAllInputs?(_(Array.isArray(e),()=>"saveAllInputs is true, expected inputs to be an array."),l=Object.keys(e).map(f=>e[f])):l=s.map(f=>e[f]);let p=r.filter((f,m)=>c[m]);return l.concat(p)}return null}makeTensor(t,e,r,o){if(t==null)throw new Error("Values passed to engine.makeTensor() are null");r=r||"float32",o=o||this.backend;let s=t;r==="string"&&us(t[0])&&(s=t.map(p=>od(p)));let c=o.write(s,e,r),l=new ot(e,r,c,this.nextTensorId());if(this.incRef(l,o),r==="string"){let p=this.state.tensorInfo.get(c),f=rN(s);this.state.numBytes+=f-p.bytes,p.bytes=f}return l}makeTensorFromDataId(t,e,r,o){r=r||"float32";let s=new ot(e,r,t,this.nextTensorId());return this.incRef(s,o),s}makeVariable(t,e=!0,r,o){r=r||this.nextVariableId().toString(),o!=null&&o!==t.dtype&&(t=t.cast(o));let s=new tp(t,e,r,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}incRef(t,e){let r=this.state.tensorInfo.has(t.dataId)?this.state.tensorInfo.get(t.dataId).refCount:0;if(this.state.numTensors++,t.dtype==="string"&&this.state.numStringTensors++,r===0){this.state.numDataBuffers++;let o=0;t.dtype!=="complex64"&&t.dtype!=="string"&&(o=t.size*Zb(t.dtype)),this.state.tensorInfo.set(t.dataId,{backend:e||this.backend,dtype:t.dtype,shape:t.shape,bytes:o,refCount:0}),this.state.numBytes+=o}this.state.tensorInfo.get(t.dataId).refCount++,t instanceof tp||this.track(t)}disposeTensor(t){if(!this.state.tensorInfo.has(t.dataId))return;this.state.numTensors--,t.dtype==="string"&&this.state.numStringTensors--;let e=this.state.tensorInfo.get(t.dataId),r=e.refCount;r<=1?(t.dtype!=="complex64"&&(this.state.numBytes-=e.bytes),this.state.numDataBuffers--,e.backend.disposeData(t.dataId),this.state.tensorInfo.delete(t.dataId)):this.state.tensorInfo.get(t.dataId).refCount--}disposeVariables(){for(let t in this.state.registeredVariables){let e=this.state.registeredVariables[t];this.disposeVariable(e)}}disposeVariable(t){this.disposeTensor(t),this.state.registeredVariables[t.name]!=null&&delete this.state.registeredVariables[t.name]}memory(){let t=this.backend.memory();return t.numTensors=this.state.numTensors,t.numDataBuffers=this.state.numDataBuffers,t.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(t.unreliable=!0,t.reasons==null&&(t.reasons=[]),t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),t}async profile(t){this.state.profiling=!0;let e=this.state.numBytes,r=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await t(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(o=>o.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-e,this.state.activeProfile.newTensors=this.state.numTensors-r;for(let o of this.state.activeProfile.kernels)o.kernelTimeMs=await o.kernelTimeMs,o.extraInfo=await o.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(t,e,r,o,s,c){let l={id:this.state.nextTapeNodeId++,kernelName:t,inputs:e,outputs:r,saved:s},p=Ux(t);p!=null&&(o=p.gradFunc),o!=null&&(l.gradient=f=>(f=f.map((m,y)=>{if(m==null){let b=r[y],v=bc(b.size,b.dtype);return this.makeTensor(v,b.shape,b.dtype)}return m}),o(f.length>1?f:f[0],s,c))),this.state.activeTape.push(l)}keep(t){return t.kept=!0,t}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(t){let e={track:[],name:"unnamed scope",id:this.state.nextScopeId++};t&&(e.name=t),this.state.scopeStack.push(e),this.state.activeScope=e}endScope(t){let e=ps(t),r=new Set(e.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===o.id&&this.track(s)})}gradients(t,e,r,o=!1){if(_(e.length>0,()=>"gradients() received an empty list of xs."),r!=null&&r.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${r.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",t));_(s instanceof ot,()=>"The result y returned by f() must be a tensor.");let c=KP(this.state.activeTape,e,s);if(!o&&c.length===0&&e.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let l={};l[s.id]=r==null?oO(s.shape):r,XP(l,c,f=>this.tidy(f),sO);let p=e.map(f=>l[f.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(f=>{for(let m of f.saved)m.dispose()}),this.state.activeTape=null),{value:s,grads:p}})}customGrad(t){return _(ni(t),()=>"The f passed in customGrad(f) must be a function."),(...e)=>{_(e.every(s=>s instanceof ot),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let r,o={};return e.forEach((s,c)=>{o[c]=s}),this.runKernelFunc((s,c)=>(r=t(...e,c),_(r.value instanceof ot,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),_(ni(r.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),r.value),o,(s,c)=>{let l=r.gradFunc(s,c),p=Array.isArray(l)?l:[l];_(p.length===e.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),_(p.every(m=>m instanceof ot),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let f={};return p.forEach((m,y)=>{f[y]=()=>m}),f})}}readSync(t){let e=this.state.tensorInfo.get(t);return e.backend.readSync(t)}read(t){let e=this.state.tensorInfo.get(t);return e.backend.read(t)}async time(t){let e=sr(),r=await this.backend.time(t);return r.wallMs=sr()-e,r}track(t){return this.state.activeScope!=null&&(t.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(t)),t}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new GN;for(let t in this.registry)this.disposeRegisteredKernels(t),this.registry[t].dispose(),delete this.registry[t];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}}Ic.nextTensorId=0,Ic.nextVariableId=0;function oO(n){let t=Qb(G(n),"float32");return X.makeTensor(t,n,"float32")}function UN(){let n=cN();if(n._tfengine==null){let t=new aN(n);n._tfengine=new Ic(t)}return LP(n._tfengine.ENV),ZP(()=>n._tfengine),n._tfengine}let X=UN();function sO(n,t){let e={a:n,b:t};return X.runKernelFunc((r,o)=>{let s=r.add(n,t);return o([n,t]),s},e,null,Zi)}function iO(){return typeof navigator!="undefined"&&navigator!=null}function qN(){if(iO()){let n=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(n)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(n.substr(0,4))}return!1}function Jx(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var aO=Object.freeze({__proto__:null,isMobile:qN,isBrowser:Jx});let hs=ct();hs.registerFlag("DEBUG",()=>!1,n=>{n&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")}),hs.registerFlag("IS_BROWSER",()=>Jx()),hs.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined"),hs.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor)),hs.registerFlag("PROD",()=>!1),hs.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>hs.getBool("DEBUG")),hs.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0),hs.registerFlag("IS_TEST",()=>!1);function Bo(n,t){let e=n;if(gn(n))return t==="string"?[]:[n.length];if(!Array.isArray(n))return[];let r=[];for(;Array.isArray(e)||gn(e)&&t!=="string";)r.push(e.length),e=e[0];return Array.isArray(n)&&ct().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&HN(n,r,[]),r}function HN(n,t,e){if(e=e||[],!Array.isArray(n)&&!gn(n)){_(t.length===0,()=>`Element arr[${e.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}_(t.length>0,()=>`Element arr[${e.join("][")}] should be a primitive, but is an array of ${n.length} elements`),_(n.length===t[0],()=>`Element arr[${e.join("][")}] should have ${t[0]} elements, but has ${n.length} elements`);let r=t.slice(1);for(let o=0;o=0&&(o=r),jN(r,o,t,e),n==null||!gn(n)&&!Array.isArray(n)&&typeof n!="number"&&typeof n!="boolean"&&typeof n!="string"){let p=n==null?"null":n.constructor.name;throw new Error(`Argument '${t}' passed to '${e}' must be a Tensor or TensorLike, but got '${p}'`)}let s=Bo(n,o);!gn(n)&&!Array.isArray(n)&&(n=[n]);let c=!0,l=o!=="string"?ri(n,o):tt(n,[],c);return X.makeTensor(l,s,o)}function ep(n,t,e,r="numeric"){if(!Array.isArray(n))throw new Error(`Argument ${t} passed to ${e} must be a \`Tensor[]\` or \`TensorLike[]\``);let o=n;return o.map((s,c)=>M(s,`${t}[${c}]`,e),r)}let KN="__op";function j(n){let t=Object.keys(n);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let e=t[0],r=n[e];e.endsWith("_")&&(e=e.substring(0,e.length-1)),e=e+KN;let o=(...s)=>{X.startScope(e);try{let c=r(...s);return Ji(c)&&console.error("Cannot return a Promise inside of tidy."),X.endScope(c),c}catch(c){throw X.endScope(null),c}};return Object.defineProperty(o,"name",{value:e,configurable:!0}),o}function cO(n,t){let e=M(n,"real","complex"),r=M(t,"imag","complex");W(e.shape,r.shape,`real and imag shapes, ${e.shape} and ${r.shape}, must match in call to tf.complex().`);let o=c=>c.complex(e,r),s={real:e,imag:r};return X.runKernelFunc(o,s,null,Sf)}let fs=j({complex_:cO});function oi(n,t,e,r){if(r==null&&(r=yc(n)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!gn(n)&&!Array.isArray(n)&&typeof n!="number"&&typeof n!="boolean"&&typeof n!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){ex(t);let o=G(t),s=G(e);_(o===s,()=>`Based on the provided shape, [${t}], the tensor should have ${o} values but has ${s}`);for(let c=0;c`Error creating a new Tensor. Inferred shape (${e}) does not match the provided shape (${t}). `)}}return!gn(n)&&!Array.isArray(n)&&(n=[n]),t=t||e,n=r!=="string"?ri(n,r):tt(n,[],!0),X.makeTensor(n,t,r)}function un(n,t,e){let r=Bo(n,e);return oi(n,t,r,e)}let Zx={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};let cd=4;async function Qx(n,t){let e=[],r=[],o=Array.isArray(n)?n.map(c=>c.name):Object.keys(n);for(let c=0;c{let b=await p.bytes(),v=b.reduce((S,D)=>S+D.length,0)+cd*b.length,T=new Uint8Array(v),N=0;for(let S=0;S{if(t+=s.byteLength,e.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),o=0;return e.forEach(s=>{r.set(new Uint8Array(s.buffer),o),o+=s.byteLength}),r.buffer}let tw=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function XN(n){return tw?Buffer.byteLength(n):new Blob([n]).size}function uO(n){if(tw)return Buffer.from(n).toString("base64");let t=new Uint8Array(n),e="";for(let r=0,o=t.length;r{t+=o.byteLength});let e=new Uint8Array(t),r=0;return n.forEach(o=>{e.set(new Uint8Array(o),r),r+=o.byteLength}),e.buffer}function YN(n){let t="/";for(n=n.trim();n.endsWith(t);)n=n.slice(0,n.length-1);let e=n.split(t);return e[e.length-1]}function np(n){if(n.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:n.modelTopology==null?0:XN(JSON.stringify(n.modelTopology)),weightSpecsBytes:n.weightSpecs==null?0:XN(JSON.stringify(n.weightSpecs)),weightDataBytes:n.weightData==null?0:n.weightData.byteLength}}function hO(){let n=e=>{let r=e<<13,o=0;for(;(r&8388608)===0;)o-=8388608,r<<=1;return r&=~8388608,o+=947912704,r|o},t=new Uint32Array(2048);t[0]=0;for(let e=1;e<1024;e++)t[e]=n(e);for(let e=1024;e<2048;e++)t[e]=939524096+(e-1024<<13);return t}function fO(){let n=new Uint32Array(64);n[0]=0,n[31]=1199570944,n[32]=2147483648,n[63]=3347054592;for(let t=1;t<31;t++)n[t]=t<<23;for(let t=33;t<63;t++)n[t]=2147483648+(t-32<<23);return n}function dO(){let n=new Uint32Array(64);for(let t=0;t<64;t++)n[t]=1024;return n[0]=n[32]=0,n}function mO(){let n=hO(),t=fO(),e=dO();return r=>{let o=new ArrayBuffer(4*r.length),s=new Uint32Array(o);for(let c=0;c>10]+(l&1023)]+t[l>>10];s[c]=p}return new Float32Array(o)}}class Ze{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ze.instance==null&&(Ze.instance=new Ze),Ze.instance}static registerSaveRouter(t){Ze.getInstance().saveRouters.push(t)}static registerLoadRouter(t){Ze.getInstance().loadRouters.push(t)}static getSaveHandlers(t){return Ze.getHandlers(t,"save")}static getLoadHandlers(t,e){return Ze.getHandlers(t,"load",e)}static getHandlers(t,e,r){let o=[],s=e==="load"?Ze.getInstance().loadRouters:Ze.getInstance().saveRouters;return s.forEach(c=>{let l=c(t,r);l!==null&&o.push(l)}),o}}let gO=n=>Ze.registerSaveRouter(n),yO=n=>Ze.registerLoadRouter(n),ew=n=>Ze.getSaveHandlers(n),nw=(n,t)=>Ze.getLoadHandlers(n,t);let pd="tensorflowjs",rw=1,Qi="models_store",si="model_info_store";async function hot(){let n=ow();return new Promise((t,e)=>{let r=n.deleteDatabase(pd);r.onsuccess=()=>t(),r.onerror=o=>e(o)})}function ow(){if(!ct().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let n=typeof window=="undefined"?self:window,t=n.indexedDB||n.mozIndexedDB||n.webkitIndexedDB||n.msIndexedDB||n.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function sw(n){let t=n.result;t.createObjectStore(Qi,{keyPath:"modelPath"}),t.createObjectStore(si,{keyPath:"modelPath"})}class ta{constructor(t){if(this.indexedDB=ow(),t==null||!t)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=t}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,t)}async load(){return this.databaseAction(this.modelPath)}databaseAction(t,e){return new Promise((r,o)=>{let s=this.indexedDB.open(pd,rw);s.onupgradeneeded=()=>sw(s),s.onsuccess=()=>{let c=s.result;if(e==null){let l=c.transaction(Qi,"readonly"),p=l.objectStore(Qi),f=p.get(this.modelPath);f.onsuccess=()=>{if(f.result==null)return c.close(),o(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));r(f.result.modelArtifacts)},f.onerror=m=>(c.close(),o(f.error)),l.oncomplete=()=>c.close()}else{let l=np(e),p=c.transaction(si,"readwrite"),f=p.objectStore(si),m=f.put({modelPath:this.modelPath,modelArtifactsInfo:l}),y;m.onsuccess=()=>{y=c.transaction(Qi,"readwrite");let b=y.objectStore(Qi),v=b.put({modelPath:this.modelPath,modelArtifacts:e,modelArtifactsInfo:l});v.onsuccess=()=>r({modelArtifactsInfo:l}),v.onerror=T=>{f=p.objectStore(si);let N=f.delete(this.modelPath);N.onsuccess=()=>(c.close(),o(v.error)),N.onerror=S=>(c.close(),o(v.error))}},m.onerror=b=>(c.close(),o(m.error)),p.oncomplete=()=>{y==null?c.close():y.oncomplete=()=>c.close()}}},s.onerror=c=>o(s.error)})}}ta.URL_SCHEME="indexeddb://";let JN=n=>ct().getBool("IS_BROWSER")&&(!Array.isArray(n)&&n.startsWith(ta.URL_SCHEME))?bO(n.slice(ta.URL_SCHEME.length)):null;Ze.registerSaveRouter(JN),Ze.registerLoadRouter(JN);function bO(n){return new ta(n)}function xO(n){return n.startsWith(ta.URL_SCHEME)?n.slice(ta.URL_SCHEME.length):n}class wO{constructor(){this.indexedDB=ow()}async listModels(){return new Promise((t,e)=>{let r=this.indexedDB.open(pd,rw);r.onupgradeneeded=()=>sw(r),r.onsuccess=()=>{let o=r.result,s=o.transaction(si,"readonly"),c=s.objectStore(si),l=c.getAll();l.onsuccess=()=>{let p={};for(let f of l.result)p[f.modelPath]=f.modelArtifactsInfo;t(p)},l.onerror=p=>(o.close(),e(l.error)),s.oncomplete=()=>o.close()},r.onerror=o=>e(r.error)})}async removeModel(t){return t=xO(t),new Promise((e,r)=>{let o=this.indexedDB.open(pd,rw);o.onupgradeneeded=()=>sw(o),o.onsuccess=()=>{let s=o.result,c=s.transaction(si,"readwrite"),l=c.objectStore(si),p=l.get(t),f;p.onsuccess=()=>{if(p.result==null)return s.close(),r(new Error(`Cannot find model with path '${t}' in IndexedDB.`));{let m=l.delete(t),y=()=>{f=s.transaction(Qi,"readwrite");let b=f.objectStore(Qi),v=b.delete(t);v.onsuccess=()=>e(p.result.modelArtifactsInfo),v.onerror=T=>r(p.error)};m.onsuccess=y,m.onerror=b=>(y(),s.close(),r(p.error))}},p.onerror=m=>(s.close(),r(p.error)),c.oncomplete=()=>{f==null?s.close():f.oncomplete=()=>s.close()}},o.onerror=s=>r(o.error)})}}let zo="/",ea="tensorflowjs_models",ZN="info",vO="model_topology",TO="weight_specs",kO="weight_data",NO="model_metadata";function fot(){if(!ct().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("purgeLocalStorageModels() cannot proceed because local storage is unavailable in the current environment.");let n=window.localStorage,t=[];for(let e=0;eo.length){n.removeItem(r);let s=t_(r);t.indexOf(s)===-1&&t.push(s)}}return t}function QN(n){return{info:[ea,n,ZN].join(zo),topology:[ea,n,vO].join(zo),weightSpecs:[ea,n,TO].join(zo),weightData:[ea,n,kO].join(zo),modelMetadata:[ea,n,NO].join(zo)}}function t_(n){let t=n.split(zo);if(t.length<3)throw new Error(`Invalid key format: ${n}`);return t.slice(1,t.length-1).join(zo)}function _O(n){return n.startsWith(na.URL_SCHEME)?n.slice(na.URL_SCHEME.length):n}class na{constructor(t){if(!ct().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,t==null||!t)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=t,this.keys=QN(this.modelPath)}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let e=JSON.stringify(t.modelTopology),r=JSON.stringify(t.weightSpecs),o=np(t);try{return this.LS.setItem(this.keys.info,JSON.stringify(o)),this.LS.setItem(this.keys.topology,e),this.LS.setItem(this.keys.weightSpecs,r),this.LS.setItem(this.keys.weightData,uO(t.weightData)),this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,userDefinedMetadata:t.userDefinedMetadata})),{modelArtifactsInfo:o}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${o.modelTopologyBytes}, weightSpecsBytes=${o.weightSpecsBytes}, weightDataBytes=${o.weightDataBytes}.`)}}}async load(){let t=JSON.parse(this.LS.getItem(this.keys.info));if(t==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(t.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let e={},r=JSON.parse(this.LS.getItem(this.keys.topology));if(r==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);e.modelTopology=r;let o=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(o==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);e.weightSpecs=o;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let l=JSON.parse(s);e.format=l.format,e.generatedBy=l.generatedBy,e.convertedBy=l.convertedBy,e.userDefinedMetadata=l.userDefinedMetadata}let c=this.LS.getItem(this.keys.weightData);if(c==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return e.weightData=pO(c),e}}na.URL_SCHEME="localstorage://";let e_=n=>ct().getBool("IS_BROWSER")&&(!Array.isArray(n)&&n.startsWith(na.URL_SCHEME))?CO(n.slice(na.URL_SCHEME.length)):null;Ze.registerSaveRouter(e_),Ze.registerLoadRouter(e_);function CO(n){return new na(n)}class SO{constructor(){_(ct().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),_(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let t={},e=ea+zo,r=zo+ZN;for(let o=0;o"scheme must not be undefined or null."),t.endsWith(Ec)&&(t=t.slice(0,t.indexOf(Ec))),_(t.length>0,()=>"scheme must not be an empty string.");let r=br.getInstance();_(r.managers[t]==null,()=>`A model store manager is already registered for scheme '${t}'.`),r.managers[t]=e}static getManager(t){let e=this.getInstance().managers[t];if(e==null)throw new Error(`Cannot find model manager for scheme '${t}'`);return e}static getSchemes(){return Object.keys(this.getInstance().managers)}}function hd(n){if(n.indexOf(Ec)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${br.getSchemes().join(",")}`);return{scheme:n.split(Ec)[0],path:n.split(Ec)[1]}}async function n_(n,t,e=!1){_(n!==t,()=>`Old path and new path are the same: '${n}'`);let r=Ze.getLoadHandlers(n);_(r.length>0,()=>`Copying failed because no load handler is found for source URL ${n}.`),_(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${n}.`);let o=r[0],s=Ze.getSaveHandlers(t);_(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),_(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let c=s[0],l=hd(n).scheme,p=hd(n).path,f=l===hd(n).scheme,m=await o.load();e&&f&&await br.getManager(l).removeModel(p);let y=await c.save(m);return e&&!f&&await br.getManager(l).removeModel(p),y.modelArtifactsInfo}async function $O(){let n=br.getSchemes(),t={};for(let e of n){let r=await br.getManager(e).listModels();for(let o in r){let s=e+Ec+o;t[s]=r[o]}}return t}async function IO(n){let t=hd(n),e=br.getManager(t.scheme);return e.removeModel(t.path)}async function EO(n,t){let e=!1;return n_(n,t,e)}async function DO(n,t){let e=!0;return n_(n,t,e)}class AO{fetch(t,e){return fetch(t,e)}now(){return performance.now()}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${e}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(t)}decode(t,e){return new TextDecoder(e).decode(t)}}if(ct().get("IS_BROWSER")){ct().setPlatform("browser",new AO);try{br.registerManager(na.URL_SCHEME,new SO)}catch(n){}try{br.registerManager(ta.URL_SCHEME,new wO)}catch(n){}}let FO={importFetch:()=>DE()},Dc;function dot(){Dc=null}function mot(n){Dc=n}function got(){return Dc}class RO{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(t,e){return ct().global.fetch!=null?ct().global.fetch(t,e):(Dc==null&&(Dc=FO.importFetch()),Dc(t,e))}now(){let t=process.hrtime();return t[0]*1e3+t[1]/1e6}encode(t,e){if(e!=="utf-8"&&e!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${e}`);return this.textEncoder.encode(t)}decode(t,e){return t.length===0?"":new this.util.TextDecoder(e).decode(t)}}ct().get("IS_NODE")&&ct().setPlatform("node",new RO);function Se(n,t="float32",e){return t=t||"float32",ex(n),new hn(n,t,e)}function PO(n,t){let e=M(n,"x","cast");if(!ei(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&e.dtype!=="string"||t!=="string"&&e.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:e},o={dtype:t};return X.runKernelFunc(s=>s.cast(e,t),r,null,xc,o)}let $t=j({cast_:PO});function OO(n){let t=M(n,"x","clone",null),e=()=>X.makeTensorFromDataId(t.dataId,t.shape,t.dtype),r={x:t};return X.runKernelFunc(e,r,null,Nu)}let ii=j({clone_:OO});function r_(n,t=!1){console.log(n.toString(t))}UN();let LO={buffer:Se,cast:$t,clone:ii,print:r_};QP(LO);let MO="model",BO=".json",zO=".weights.bin";function o_(n){return new Promise(t=>setTimeout(t)).then(n)}class ra{constructor(t){if(!ct().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");t.startsWith(ra.URL_SCHEME)&&(t=t.slice(ra.URL_SCHEME.length)),(t==null||t.length===0)&&(t=MO),this.modelTopologyFileName=t+BO,this.weightDataFileName=t+zO}async save(t){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let e=window.URL.createObjectURL(new Blob([t.weightData],{type:"application/octet-stream"}));if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let r=[{paths:["./"+this.weightDataFileName],weights:t.weightSpecs}],o={modelTopology:t.modelTopology,format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,weightsManifest:r},s=window.URL.createObjectURL(new Blob([JSON.stringify(o)],{type:"application/json"})),c=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(c.download=this.modelTopologyFileName,c.href=s,await o_(()=>c.dispatchEvent(new MouseEvent("click"))),t.weightData!=null){let l=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;l.download=this.weightDataFileName,l.href=e,await o_(()=>l.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:np(t)}}}}ra.URL_SCHEME="downloads://";class WO{constructor(t){if(t==null||t.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${t}`);this.files=t}async load(){let t=this.files[0],e=this.files.slice(1);return new Promise((r,o)=>{let s=new FileReader;s.onload=c=>{let l=JSON.parse(c.target.result),p=l.modelTopology;if(p==null){o(new Error(`modelTopology field is missing from file ${t.name}`));return}e.length===0&&r({modelTopology:p});let f=l.weightsManifest;if(f==null){o(new Error(`weightManifest field is missing from file ${t.name}`));return}let m;try{m=this.checkManifestAndWeightFiles(f,e)}catch(T){o(T);return}let y=[],b=[],v=[];f.forEach(T=>{T.paths.forEach(N=>{b.push(N),v.push(null)}),y.push(...T.weights)}),f.forEach(T=>{T.paths.forEach(N=>{let S=new FileReader;S.onload=D=>{let I=D.target.result,P=b.indexOf(N);v[P]=I,v.indexOf(null)===-1&&r({modelTopology:p,weightSpecs:y,weightData:ud(v),format:l.format,generatedBy:l.generatedBy,convertedBy:l.convertedBy,userDefinedMetadata:l.userDefinedMetadata})},S.onerror=D=>o(`Failed to weights data from file of path '${N}'.`),S.readAsArrayBuffer(m[N])})})},s.onerror=c=>o(`Failed to read model topology and weights manifest JSON from file '${t.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(t)})}checkManifestAndWeightFiles(t,e){let r=[],o=e.map(c=>YN(c.name)),s={};for(let c of t)c.paths.forEach(l=>{let p=YN(l);if(r.indexOf(p)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${p}'`);if(r.push(p),o.indexOf(p)===-1)throw new Error(`Weight file with basename '${p}' is not provided.`);s[l]=e[o.indexOf(p)]});if(r.length!==e.length)throw new Error(`Mismatch in the number of files in weights manifest (${r.length}) and the number of weight files provided (${e.length}).`);return s}}let VO=n=>ct().getBool("IS_BROWSER")&&(!Array.isArray(n)&&n.startsWith(ra.URL_SCHEME))?GO(n.slice(ra.URL_SCHEME.length)):null;Ze.registerSaveRouter(VO);function GO(n="model"){return new ra(n)}function UO(n){return new WO(n)}function s_(n,t,e,r){c(n),e=e==null?0:e,r=r==null?1:r,l(e,r);let o=0,s=p=>(p.then(f=>{let m=e+ ++o/n.length*(r-e);return t(m),f}),p);function c(p){_(p!=null&&Array.isArray(p)&&p.length>0,()=>"promises must be a none empty array")}function l(p,f){_(p>=0&&p<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${p}`),_(f>=0&&f<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${f}`),_(f>=p,()=>`startFraction must be no more than endFraction, but got startFraction ${p} and endFraction ${f}`)}return Promise.all(n.map(s))}async function i_(n,t){t==null&&(t={});let e=t.fetchFunc==null?ct().platform.fetch:t.fetchFunc,r=n.map(y=>e(y,t.requestInit,{isBinary:!0})),o=0,s=.5,c=t.onProgress==null?await Promise.all(r):await s_(r,t.onProgress,o,s),l=c.map(y=>y.arrayBuffer()),p=.5,f=1,m=t.onProgress==null?await Promise.all(l):await s_(l,t.onProgress,p,f);return m}async function a_(n,t="",e,r){let o=c=>i_(c,{requestInit:r}),s=c_(o);return s(n,t,e)}function c_(n){return async(t,e="",r)=>{let o=t.map(()=>!1),s={},c=r!=null?r.map(()=>!1):[],l=[];if(t.forEach((v,T)=>{let N=0;v.weights.forEach(S=>{let D="quantization"in S?S.quantization.dtype:S.dtype,I=Zx[D]*G(S.shape),P=()=>{o[T]=!0,s[T]==null&&(s[T]=[]),s[T].push({manifestEntry:S,groupOffset:N,sizeBytes:I})};r!=null?r.forEach((E,L)=>{E===S.name&&(P(),c[L]=!0)}):P(),l.push(S.name),N+=I})}),!c.every(v=>v)){let v=r.filter((T,N)=>!c[N]);throw new Error(`Could not find weights in manifest with names: ${v.join(", ")}. Manifest JSON has weights with names: ${l.join(", ")}.`)}let p=o.reduce((v,T,N)=>(T&&v.push(N),v),[]),f=[];p.forEach(v=>{t[v].paths.forEach(T=>{let N=e+(e.endsWith("/")?"":"/")+T;f.push(N)})});let m=await n(f),y={},b=0;return p.forEach(v=>{let T=t[v].paths.length,N=0;for(let E=0;E{let L=S.slice(E.groupOffset,E.groupOffset+E.sizeBytes),B=ld(L,[E.manifestEntry]);for(let q in B)y[q]=B[q]}),b+=T}),y}}let qO="application/octet-stream",HO="application/json";class iw{constructor(t,e){if(this.DEFAULT_METHOD="POST",e==null&&(e={}),this.weightPathPrefix=e.weightPathPrefix,this.onProgress=e.onProgress,this.weightUrlConverter=e.weightUrlConverter,e.fetchFunc!=null?(_(typeof e.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=e.fetchFunc):this.fetch=ct().platform.fetch,_(t!=null&&t.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(t)&&_(t.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${t.length}).`),this.path=t,e.requestInit!=null&&e.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=e.requestInit||{}}async save(t){if(t.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let e=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);e.body=new FormData;let r=[{paths:["./model.weights.bin"],weights:t.weightSpecs}],o={modelTopology:t.modelTopology,format:t.format,generatedBy:t.generatedBy,convertedBy:t.convertedBy,userDefinedMetadata:t.userDefinedMetadata,weightsManifest:r};e.body.append("model.json",new Blob([JSON.stringify(o)],{type:HO}),"model.json"),t.weightData!=null&&e.body.append("model.weights.bin",new Blob([t.weightData],{type:qO}),"model.weights.bin");let s=await this.fetch(this.path,e);if(s.ok)return{modelArtifactsInfo:np(t),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let t=await this.fetch(this.path,this.requestInit);if(!t.ok)throw new Error(`Request to ${this.path} failed with status code ${t.status}. Please verify this URL points to the model JSON of the model to load.`);let e;try{e=await t.json()}catch(v){let T=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?T+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":T+=" Please make sure the server is serving valid JSON for this request.",new Error(T)}let r=e.modelTopology,o=e.weightsManifest,s=e.generatedBy,c=e.convertedBy,l=e.format,p=e.userDefinedMetadata;if(r==null&&o==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let f,m;if(o!=null){let v=await this.loadWeights(o);[f,m]=v}let y={modelTopology:r,weightSpecs:f,weightData:m,userDefinedMetadata:p,generatedBy:s,convertedBy:c,format:l},b=e.modelInitializer;return b&&(y.modelInitializer=b),y}async loadWeights(t){let e=Array.isArray(this.path)?this.path[1]:this.path,[r,o]=jO(e),s=this.weightPathPrefix||r,c=[];for(let m of t)c.push(...m.weights);let l=[],p=[];for(let m of t)for(let y of m.paths)this.weightUrlConverter!=null?p.push(this.weightUrlConverter(y)):l.push(s+y+o);this.weightUrlConverter&&l.push(...await Promise.all(p));let f=await i_(l,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[c,ud(f)]}}iw.URL_SCHEME_REGEX=/^https?:\/\//;function jO(n){let t=n.lastIndexOf("/"),e=n.lastIndexOf("?"),r=n.substring(0,t),o=e>t?n.substring(e):"";return[r+"/",o]}function aw(n){return n.match(iw.URL_SCHEME_REGEX)!=null}let l_=(n,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let e=!0;if(Array.isArray(n)?e=n.every(r=>aw(r)):e=aw(n),e)return cw(n,t)}return null};Ze.registerSaveRouter(l_),Ze.registerLoadRouter(l_);function cw(n,t){return new iw(n,t)}function fd(n,t){return cw(n,t)}class lw{constructor(t){this.modelArtifacts=t}async load(){return this.modelArtifacts}}class KO{constructor(t){this.saveHandler=t}async save(t){return this.saveHandler(t)}}function XO(n,t,e,r){if(arguments.length===1){let o=n.modelTopology!=null||n.weightSpecs!=null;return o?new lw(n):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lw({modelTopology:n}))}else return console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new lw({modelTopology:n,weightSpecs:t,weightData:e,trainingConfig:r})}function YO(n){return new KO(n)}var JO=Object.freeze({__proto__:null,browserFiles:UO,browserHTTPRequest:fd,concatenateArrayBuffers:ud,decodeWeights:ld,encodeWeights:Qx,fromMemory:XO,getLoadHandlers:nw,getModelArtifactsInfoForJSON:np,getSaveHandlers:ew,http:cw,isHTTPScheme:aw,loadWeights:a_,registerLoadRouter:yO,registerSaveRouter:gO,weightsLoaderFactory:c_,withSaveHandler:YO,copyModel:EO,listModels:$O,moveModel:DO,removeModel:IO});function ZO(n,t){let e=M(n,"x","reshape",null),r={x:e},o={shape:t},s=(c,l)=>(t=Ue(t,e.size),_(e.size===G(t),()=>"new shape and old shape must have the same number of elements."),l([e]),c.reshape(e,t));return X.runKernelFunc(s,r,null,Ou,o)}let Q=j({reshape_:ZO});function QO(n,t,e=!1,r=!1){let o=M(n,"a","matMul"),s=M(t,"b","matMul");[o,s]=Je(o,s);let c=(f,m)=>{m([o,s]);let y=e?o.shape[o.rank-2]:o.shape[o.rank-1],b=r?s.shape[s.rank-1]:s.shape[s.rank-2],v=e?o.shape[o.rank-1]:o.shape[o.rank-2],T=r?s.shape[s.rank-2]:s.shape[s.rank-1],N=o.shape.slice(0,-2),S=s.shape.slice(0,-2),D=G(N),I=G(S),P=D===I||D===1||I===1;_(o.rank>=2&&s.rank>=2&&P,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${N}) and (${S}).`),_(y===b,()=>`Error in matMul: inner shapes (${y}) and (${b}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${e} and transposeB=${r} must match.`);let E=D>I?N:S,L=E.concat([v,T]),B=e?Q(o,[D,y,v]):Q(o,[D,v,y]),q=r?Q(s,[I,T,b]):Q(s,[I,b,T]),H=f.batchMatMul(B,q,e,r);return Q(H,L)},l={a:o,b:s},p={transposeA:e,transposeB:r};return X.runKernelFunc(c,l,null,Cf,p)}let ge=j({matMul_:QO});function tL(n,t,e=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o=M(n,"indices","oneHot","int32"),s=[...o.shape,t],c=(f,m)=>(m([o]),Q(f.oneHot(Q(o,[o.size]),t,e,r),s)),l={indices:o},p={depth:t,onValue:e,offValue:r};return X.runKernelFunc(c,l,null,Ex,p)}let oa=j({oneHot_:tL});function eL(n,t){let e=M(n,"x","transpose");if(t==null&&(t=e.shape.map((s,c)=>c).reverse()),_(e.rank===t.length,()=>`Error in transpose: rank of input ${e.rank} must match length of perm ${t}.`),t.forEach(s=>{_(s>=0&&s`All entries in 'perm' must be between 0 and ${e.rank-1} but got ${t}`)}),e.rank<=1)return e.clone();let r={x:e},o={perm:t};return X.runKernelFunc(s=>s.transpose(e,t),r,null,ju,o)}let Kt=j({transpose_:eL});function nL(n,t,e){let r=M(n,"labels","confusionMatrix"),o=M(t,"predictions","confusionMatrix");_(e==null||e>0&&Number.isInteger(e),()=>`If provided, numClasses must be a positive integer, but got ${e}`),_(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),_(o.rank===1,()=>`Expected the rank of predictions to be 1, but got ${o.rank}`),_(r.shape[0]===o.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${o.shape[0]}. Labels and predictions should have the same number of elements.`),_(e>0&&Number.isInteger(e),()=>`numClasses is required to be a positive integer, but got ${e}`);let s=oa($t(r,"int32"),e),c=oa($t(o,"int32"),e),l=Kt(s),p=ge(l,c);return $t(p,"int32")}let rL=j({confusionMatrix_:nL});var oL=Object.freeze({__proto__:null,confusionMatrix:rL});function u_(n,t,e){if(et(n),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Bo(n,e);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return oi(n,t,r,e)}let Ac;function sL(n,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(n==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let e=!1,r=!1,o=!1,s=!1,c=!1;if(n.data instanceof Uint8Array)e=!0;else if(typeof ImageData!="undefined"&&n instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement)o=!0;else if(typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement)s=!0;else if(n.getContext!=null)c=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${n.constructor.name}`);if(o){let v=2;if(o&&n.readyState element.")}let l=Gx(Jf,X.backendName);if(l!=null){let v={pixels:n},T={numChannels:t};return X.runKernel(Jf,v,T)}let[p,f]=o?[n.videoWidth,n.videoHeight]:[n.width,n.height],m;c?m=n.getContext("2d").getImageData(0,0,p,f).data:r||e?m=n.data:(s||o)&&(Ac==null&&(Ac=document.createElement("canvas").getContext("2d")),Ac.canvas.width=p,Ac.canvas.height=f,Ac.drawImage(n,0,0,p,f),m=Ac.getImageData(0,0,p,f).data);let y;if(t===4)y=new Int32Array(m);else{let v=p*f;y=new Int32Array(v*t);for(let T=0;T4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(e.dtype!=="float32"&&e.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${e.dtype}. Please use float32 or int32 tensors.`);let c=await e.data(),l=e.dtype==="float32"?255:1,p=new Uint8ClampedArray(o*r*4);for(let f=0;f1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${v}.`)}else if(e.dtype==="int32"&&(v<0||v>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${v}.`);s===1?(m[0]=v*l,m[1]=v*l,m[2]=v*l):m[b]=v*l}let y=f*4;p[y+0]=Math.round(m[0]),p[y+1]=Math.round(m[1]),p[y+2]=Math.round(m[2]),p[y+3]=Math.round(m[3])}if(t!=null){t.width=o,t.height=r;let f=t.getContext("2d"),m=new ImageData(p,o,r);f.putImageData(m,0,0)}return e!==n&&e.dispose(),p}let p_=j({fromPixels_:sL});var aL=Object.freeze({__proto__:null,toPixels:iL,fromPixels:p_});function dd(n,t){if(n.rank<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n.rank}.`);if(t.rank<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[t.rank-1]>n.rank)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[t.rank-1]} vs. ${n.rank}`);if(n.size===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${n.shape}.`);let e=t.shape,r=e[e.length-1],o=1;for(let f=0;ff/l),1].slice(0,r);return[c,o,l,p]}var cL=Object.freeze({__proto__:null,prepareAndValidate:dd});function uw(n,t,e){let r=t.rank>1?t.shape[t.rank-1]:1,o=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${e.shape}, indices.shape: ${t.shape}, shape: ${n}, sliceDim: ${r}, and batchDim: ${o}.`;if(e.rank1?t.shape[r-1]:1,s=e.length,c=1;for(let y=o;y`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),_(r===e.length,()=>`Error in slice${r}D: Length of size ${e} must match the rank of the array (${r}).`);for(let o=0;o`Error in slice${r}D: begin[${o}] + size[${o}] (${t[o]+e[o]}) would overflow input.shape[${o}] (${n.shape[o]})`)}function md(n){let t=[],e=0;for(;n>0;)n&1&&t.push(e),n/=2,e++;return t}function gd(n,t,e){let r=[];for(let o=0;o0){let v=t[0],T=e+1;m=g_(c,v,T,r,n),y=y_(l,v,T,o,n),b=h_(s,v,T,n)}else for(let v=0;v-1)s[l]=0;else{let p=f_(t,e,l),f=r[p];n&1<-1)s[l]=Number.MAX_SAFE_INTEGER;else{let p=f_(t,e,l),f=r[p];n&1<0?c=Number.MIN_SAFE_INTEGER:c=Number.MAX_SAFE_INTEGER);let p=r[o];return c<0&&(c+=p),c=w(0,c,p-1),c}function w_(n,t,e,r,o,s){let c=t[o],l=e[o]||1;(n&1<0?c=Number.MAX_SAFE_INTEGER:c=Number.MIN_SAFE_INTEGER);let p=r[o];return c<0&&(c+=p),l>0?c=w(0,c,p):c=w(-1,c,p-1),c}function fw(n,t,e){let r=e.length;for(let o=0;o1){r=o;break}for(let o=r+1;o0||e[o]!==n[o])return!1;return!0}function dw(n,t){let e=n.length>0?n[n.length-1]:1;for(let r=0;r{_(c!==-1,()=>"slice() does not support negative begin indexing.")});let s;return e==null?s=new Array(o).fill(-1):typeof e=="number"?s=[e,...new Array(o-1).fill(-1)]:e.lengthc>=0?c:(_(c===-1,()=>`Negative size values should be exactly -1 but got ${c} for the slice() size at index ${l}.`),n.shape[l]-r[l])),[r,s]}var v_=Object.freeze({__proto__:null,assertParamsValid:hw,maskToAxes:md,computeOutShape:gd,stridesWithElidedDims:h_,getNormalizedAxes:m_,startIndicesWithElidedDims:g_,stopIndicesWithElidedDims:y_,stridesForAxis:b_,startForAxis:x_,stopForAxis:w_,isSliceContinous:fw,computeFlatOffset:dw,parseSliceParams:yd});class sa{getClassName(){return this.constructor.className}static fromConfig(t,e){return new t(e)}}class Ar{constructor(){this.classNameMap={}}static getMap(){return Ar.instance==null&&(Ar.instance=new Ar),Ar.instance}static register(t){Ar.getMap().classNameMap[t.className]=[t,t.fromConfig]}}function vt(n){_(n.className!=null,()=>"Class being registered does not have the static className property defined."),_(typeof n.className=="string",()=>"className is required to be a string, but got type "+typeof n.className),_(n.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ar.register(n)}var uL=Object.freeze({__proto__:null,Serializable:sa,SerializationMap:Ar,registerClass:vt});let pL=.001,T_=.1;function hL(n,t,e){return e==null&&(e=bd()),mw(n,t,(r,o)=>yw(r,o,e))}function bd(){return X.backend.floatPrecision()===32?pL:T_}function mw(n,t,e){let r=!0;if((gn(n)||gn(t))&&(r=!1),gn(n)&&gn(t)&&(r=!0),r){let c=n.constructor.name,l=t.constructor.name;if(c!==l)throw new Error(`Arrays are of different type. Actual: ${c}. Expected: ${l}`)}if(Array.isArray(n)&&Array.isArray(t)){let c=Bo(n),l=Bo(t);if(!lt(c,l))throw new Error(`Arrays have different shapes. Actual: [${c}]. Expected: [${l}]`)}let o=gn(n)?n:tt(n),s=gn(t)?t:tt(t);if(o.length!==s.length)throw new Error(`Arrays have different lengths actual: ${o.length} vs expected: ${s.length}. Actual: ${o}. Expected: ${s}.`);for(let c=0;ct.fail(),()=>t())}function dL(n,t){let e=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return us(n)||us(n[0])||us(t)||us(t[0])?mw(n,e,(r,o)=>r==o):mw(n,t,(r,o)=>yw(r,o,0))}function gw(n,t,e){if(e==null&&(e=bd()),!yw(n,t,e))throw new Error(`Numbers differ: actual === ${n}, expected === ${t}`)}function yw(n,t,e){return!isFinite(n)&&!isFinite(t)?!0:!(isNaN(n)||isNaN(t)||Math.abs(n-t)>e)}function mL(n,t,e){for(let r=0;re)throw new Error(`Value out of range:${n[r]} low: ${t}, high: ${e}`)}function gL(n,t){expect(new Float32Array(n)).toEqual(new Float32Array(t))}var yL=Object.freeze({__proto__:null,TEST_EPSILON_FLOAT16:T_,expectArraysClose:hL,testEpsilon:bd,expectPromiseToFail:fL,expectArraysEqual:dL,expectNumbersClose:gw,expectValuesInRange:mL,expectArrayBuffersEqual:gL});let k_="2.7.0";function bL(){ct().set("PROD",!0)}function xL(){ct().set("DEBUG",!0)}function wL(){ct().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function yn(n){ct().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(n+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}tO(yn);function vL(){X.disposeVariables()}function ds(){return X}function xd(){return X.memory()}function TL(n){return X.profile(n)}function rt(n,t){return X.tidy(n,t)}function Xt(n){let t=ps(n);t.forEach(e=>e.dispose())}function Sn(n){return X.keep(n)}function kL(n){return X.time(n)}function N_(n){return X.setBackend(n)}function NL(){return X.ready()}function _L(){return X.backendName}function CL(n){X.removeBackend(n)}function SL(n){return X.findBackend(n)}function $L(n){return X.findBackendFactory(n)}function bw(n,t,e=1){return X.registerBackend(n,t,e)}function __(){return X.backend}function IL(n,t){ct().setPlatform(n,t)}function EL(n,t){let e=M(n,"a","add"),r=M(t,"b","add");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.add(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,Zi)}let Tt=j({add_:EL});function DL(n,t){let e=M(n,"a","floorDiv"),r=M(t,"b","floorDiv");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.floorDiv(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,gx)}let wd=j({floorDiv_:DL});function AL(n,t){let e=M(n,"a","div"),r=M(t,"b","div");if([e,r]=Je(e,r),e.dtype==="int32"&&r.dtype==="int32")return wd(e,r);let o=(l,p)=>{let f=l.realDivide(e,r);return p([e,r]),f},s={a:e,b:r},c={};return X.runKernelFunc(o,s,null,vc,c)}let Bt=j({div_:AL});function FL(n,t){let e=M(n,"a","mul"),r=M(t,"b","mul");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.multiply(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,Tc)}let nt=j({mul_:FL});function RL(n){let t=M(n,"x","abs"),e={x:t};return X.runKernelFunc((r,o)=>(o([t]),t.dtype==="complex64"?r.complexAbs(t):r.abs(t)),e,null,kf)}let bn=j({abs_:RL});function PL(n){let t=M(n,"x","acos"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.acos(t);return o([t]),s},e,null,au)}let xw=j({acos_:PL});function OL(n){let t=M(n,"x","acosh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.acosh(t);return o([t]),s},e,null,cu)}let ww=j({acosh_:OL});function LL(n){_(Array.isArray(n),()=>"The argument passed to tf.addN() must be a list of tensors"),_(n.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${n.length}`);let t=n.map((s,c)=>M(s,`tensors${c}`,"addN")),e=t[0];t.forEach(s=>{if(s.dtype!==e.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!lt(s.shape,e.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=(s,c)=>{let l=s.addN(t);return c(t),l},o=t;return X.runKernelFunc(r,o,null,rx)}let C_=j({addN_:LL});function vw(n,t){for(let e=0;en[s]);return[e,o]}function Pn(n,t){let e=t.map(r=>1);return S_(n,e,t)}function ir(n,t,e){_(vw(t,e),()=>`${n} supports only inner-most axes for now. Got axes ${t} and rank-${e} input.`)}function ar(n,t){if(vw(n,t))return null;let e=[];for(let r=0;re.push(r)),e}function rp(n){return n.map((t,e)=>[e,t]).sort((t,e)=>t[1]-e[1]).map(t=>t[0])}function xr(n,t){let e=[];for(let r=t-n;r{let p=Vt(t,r.shape),f=p,m=ar(f,r.rank);m!=null&&(r=Kt(r,m),f=xr(f.length,r.rank));let y=l.all(r,f);if(e){let b=Pn(y.shape,p);return Q(y,b)}return y},s={x:r},c={axis:t,keepDims:e};return X.runKernelFunc(o,s,null,uN,c)}let vd=j({all_:ML});function BL(n,t=null,e=!1){let r=M(n,"x","any","bool"),o=l=>{let p=Vt(t,r.shape),f=p,m=ar(f,r.rank);m!=null&&(r=Kt(r,m),f=xr(f.length,r.rank));let y=l.any(r,f);if(e){let b=Pn(y.shape,p);return Q(y,b)}return y},s={x:r},c={axis:t,keepDims:e};return X.runKernelFunc(o,s,null,pN,c)}let op=j({any_:BL});function zL(n,t=0){let e=M(n,"x","argMax"),r=(c,l)=>{l([e]);let p=Vt(t,e.shape),f=ar(p,e.rank);return f!=null&&(e=Kt(e,f),p=xr(p.length,e.rank)),c.argMax(e,p[0])},o={x:e},s={axis:t};return X.runKernelFunc(r,o,null,ox,s)}let sp=j({argMax_:zL});function WL(n,t=0){let e=M(n,"x","argMin"),r=(c,l)=>{l([e]),t==null&&(t=0);let p=Vt(t,e.shape),f=ar(p,e.rank);return f!=null&&(e=Kt(e,f),p=xr(p.length,e.rank)),c.argMin(e,p[0])},o={x:e},s={axis:t};return X.runKernelFunc(r,o,null,sx,s)}let Tw=j({argMin_:WL});function VL(n){let t=M(n,"x","asin"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.asin(t);return o([t]),s},e,null,lu)}let kw=j({asin_:VL});function GL(n){let t=M(n,"x","asinh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.asinh(t);return o([t]),s},e,null,uu)}let Nw=j({asinh_:GL});function UL(n){let t=M(n,"x","atan"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.atan(t);return o([t]),s},e,null,pu)}let _w=j({atan_:UL});function qL(n,t){let e=M(n,"a","atan2"),r=M(t,"b","atan2");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.atan2(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,Nf)}let Cw=j({atan2_:qL});function HL(n){let t=M(n,"x","atanh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.atanh(t);return o([t]),s},e,null,hu)}let Sw=j({atanh_:HL});function Td(n,t,e,r,o="NHWC",s){let c=n[3],l=[...t,c],p=li(o);return Un(n,l,e,s,r,null,null,p)}function Xn(n,t,e,r,o,s,c="channelsLast"){let[l,p]=kd(t),f;if(c==="channelsLast")f=[l,p,n[3],n[3]];else if(c==="channelsFirst")f=[l,p,n[1],n[1]];else throw new Error(`Unknown dataFormat ${c}`);return Un(n,f,e,r,o,s,!1,c)}function ip(n,t,e,r,o,s,c="NDHWC"){let[l,p,f]=Iw(t),m,y;if(c==="NDHWC")y="channelsLast",m=[l,p,f,n[4],n[4]];else if(c==="NCDHW")y="channelsFirst",m=[l,p,f,n[1],n[1]];else throw new Error(`Unknown dataFormat ${c}`);return ai(n,m,e,r,o,!1,y,s)}function Un(n,t,e,r,o,s,c=!1,l="channelsLast"){let[p,f,m,y]=[-1,-1,-1,-1];if(l==="channelsLast")[p,f,m,y]=n;else if(l==="channelsFirst")[p,y,f,m]=n;else throw new Error(`Unknown dataFormat ${l}`);let[b,v,,T]=t,[N,S]=kd(e),[D,I]=kd(r),P=Rc(b,D),E=Rc(v,I),{padInfo:L,outHeight:B,outWidth:q}=XL(o,f,m,N,S,P,E,s,l),H=c?T*y:T,Z;return l==="channelsFirst"?Z=[p,H,B,q]:l==="channelsLast"&&(Z=[p,B,q,H]),{batchSize:p,dataFormat:l,inHeight:f,inWidth:m,inChannels:y,outHeight:B,outWidth:q,outChannels:H,padInfo:L,strideHeight:N,strideWidth:S,filterHeight:b,filterWidth:v,effectiveFilterHeight:P,effectiveFilterWidth:E,dilationHeight:D,dilationWidth:I,inShape:n,outShape:Z,filterShape:t}}function ai(n,t,e,r,o,s=!1,c="channelsLast",l){let[p,f,m,y,b]=[-1,-1,-1,-1,-1];if(c==="channelsLast")[p,f,m,y,b]=n;else if(c==="channelsFirst")[p,b,f,m,y]=n;else throw new Error(`Unknown dataFormat ${c}`);let[v,T,N,,S]=t,[D,I,P]=Iw(e),[E,L,B]=Iw(r),q=Rc(v,E),H=Rc(T,L),Z=Rc(N,B),{padInfo:J,outDepth:it,outHeight:pt,outWidth:ht}=YL(o,f,m,y,D,I,P,q,H,Z,l),dt=s?S*b:S,ft;return c==="channelsFirst"?ft=[p,dt,it,pt,ht]:c==="channelsLast"&&(ft=[p,it,pt,ht,dt]),{batchSize:p,dataFormat:c,inDepth:f,inHeight:m,inWidth:y,inChannels:b,outDepth:it,outHeight:pt,outWidth:ht,outChannels:dt,padInfo:J,strideDepth:D,strideHeight:I,strideWidth:P,filterDepth:v,filterHeight:T,filterWidth:N,effectiveFilterDepth:q,effectiveFilterHeight:H,effectiveFilterWidth:Z,dilationDepth:E,dilationHeight:L,dilationWidth:B,inShape:n,outShape:ft,filterShape:t}}function jL(n,t,e,r,o){r==null&&(r=$w(n,t,e));let s=n[0],c=n[1],l=ia((s-t+2*r)/e+1,o);_(gt(l),()=>`The output # of rows (${l}) must be an integer. Change the stride and/or zero pad parameters`);let p=ia((c-t+2*r)/e+1,o);return _(gt(p),()=>`The output # of columns (${p}) must be an integer. Change the stride and/or zero pad parameters`),[l,p]}function KL(n,t,e,r,o,s){o==null&&(o=$w(n,t,r));let c=n[0],l=n[1],p=n[2],f=ia((c-t+2*o)/r+1,s);_(gt(f),()=>`The output # of depths (${f}) must be an integer. Change the stride and/or zero pad parameters`);let m=ia((l-t+2*o)/r+1,s);_(gt(m),()=>`The output # of rows (${m}) must be an integer. Change the stride and/or zero pad parameters`);let y=ia((p-t+2*o)/r+1,s);return _(gt(y),()=>`The output # of columns (${y}) must be an integer. Change the stride and/or zero pad parameters`),[f,m,y,e]}function $w(n,t,e,r=1){let o=Rc(t,r);return Math.floor((n[0]*(e-1)-e+o)/2)}function kd(n){return typeof n=="number"?[n,n,n]:n.length===2?[n[0],n[1],1]:n}function Iw(n){return typeof n=="number"?[n,n,n]:n}function Rc(n,t){return t<=1?n:n+(n-1)*(t-1)}function XL(n,t,e,r,o,s,c,l,p){let f,m,y;if(typeof n=="number"){let b=n===0?"VALID":"NUMBER";f={top:n,bottom:n,left:n,right:n,type:b};let v=jL([t,e],s,r,n,l);m=v[0],y=v[1]}else if(n==="same"){m=Math.ceil(t/r),y=Math.ceil(e/o);let b=Math.max(0,(m-1)*r+s-t),v=Math.max(0,(y-1)*o+c-e),T=Math.floor(b/2),N=b-T,S=Math.floor(v/2),D=v-S;f={top:T,bottom:N,left:S,right:D,type:"SAME"}}else if(n==="valid")f={top:0,bottom:0,left:0,right:0,type:"VALID"},m=Math.ceil((t-s+1)/r),y=Math.ceil((e-c+1)/o);else if(typeof n=="object"){let b=p==="channelsLast"?n[1][0]:n[2][0],v=p==="channelsLast"?n[1][1]:n[2][1],T=p==="channelsLast"?n[2][0]:n[3][0],N=p==="channelsLast"?n[2][1]:n[3][1],S=b===0&&v===0&&T===0&&N===0?"VALID":"EXPLICIT";f={top:b,bottom:v,left:T,right:N,type:S},m=ia((t-s+b+v)/r+1,l),y=ia((e-c+T+N)/o+1,l)}else throw Error(`Unknown padding parameter: ${n}`);return{padInfo:f,outHeight:m,outWidth:y}}function YL(n,t,e,r,o,s,c,l,p,f,m){let y,b,v,T;if(typeof n=="number"){let N=n===0?"VALID":"NUMBER";y={top:n,bottom:n,left:n,right:n,front:n,back:n,type:N};let S=KL([t,e,r,1],l,1,o,n,m);b=S[0],v=S[1],T=S[2]}else if(n==="same"){b=Math.ceil(t/o),v=Math.ceil(e/s),T=Math.ceil(r/c);let N=(b-1)*o+l-t,S=(v-1)*s+p-e,D=(T-1)*c+f-r,I=Math.floor(N/2),P=N-I,E=Math.floor(S/2),L=S-E,B=Math.floor(D/2),q=D-B;y={top:E,bottom:L,left:B,right:q,front:I,back:P,type:"SAME"}}else if(n==="valid")y={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},b=Math.ceil((t-l+1)/o),v=Math.ceil((e-p+1)/s),T=Math.ceil((r-f+1)/c);else throw Error(`Unknown padding parameter: ${n}`);return{padInfo:y,outDepth:b,outHeight:v,outWidth:T}}function ia(n,t){if(!t)return n;switch(t){case"round":return Math.round(n);case"ceil":return Math.ceil(n);case"floor":return Math.floor(n);default:throw new Error(`Unknown roundingMode ${t}`)}}function ci(n){let[t,e,r]=kd(n);return t===1&&e===1&&r===1}function fn(n,t){return ci(n)||ci(t)}function li(n){if(n==="NHWC")return"channelsLast";if(n==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${n}`)}function JL(n,t,e,r,o){let s=M(n,"x","avgPool","float32"),c=1;_(fn(e,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${c}'`);let l=s,p=!1;s.rank===3&&(p=!0,l=Q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(l.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${l.rank}.`),o!=null&&_(gt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let f=(v,T)=>{let N=Xn(l.shape,t,e,1,r,o);return T([l]),N.filterWidth===1&&N.filterHeight===1&<(N.inShape,N.outShape)?l.clone():v.avgPool(l,N)},m={x:l},y={filterSize:t,strides:e,pad:r,dimRoundingMode:o},b=X.runKernelFunc(f,m,null,fu,y);return b=$t(b,s.dtype),p?Q(b,[b.shape[1],b.shape[2],b.shape[3]]):b}let ap=j({avgPool_:JL});function ZL(n,t,e,r,o,s="NDHWC",c){c==null?c=[1,1,1]:yn("dilations is deprecated, this field will be gone in v3.0.0.");let l=M(n,"x","avgPool3d","float32"),p=l,f=!1;l.rank===4&&(f=!0,p=Q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(p.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${p.rank}.`),_(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(fn(e,c),()=>`Error in avgPool3d: Either strides or dilations must be 1. Got strides ${e} and dilations '${c}'`),o!=null&&_(gt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let m=(T,N)=>{c==null&&(c=[1,1,1]);let S=ip(p.shape,t,e,c,r,o,s);return N([p]),T.avgPool3d(p,S)},y={x:p},b={filterSize:t,strides:e,pad:r,dimRoundingMode:o,dataFormat:s,dilations:c},v=X.runKernelFunc(m,y,null,ix,b);return v=$t(v,p.dtype),f?Q(v,[v.shape[1],v.shape[2],v.shape[3],v.shape[4]]):v}let Ew=j({avgPool3d_:ZL});function Nd(n,t){let e=n[0].length;n.forEach((o,s)=>{_(o.length===e,()=>`Error in concat${e}D: rank of tensors[${s}] must be the same as the rank of the rest (${e})`)}),_(t>=0&&t`Error in concat${e}D: axis must be between 0 and ${e-1}.`);let r=n[0];n.forEach((o,s)=>{for(let c=0;c`Error in concat${e}D: Shape of tensors[${s}] (${o}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function ms(n,t){let e=n[0].slice();for(let r=1;r=1,()=>"Pass at least one tensor to concat");let e=ep(n,"tensors","concat");e[0].dtype==="complex64"&&e.forEach(c=>{if(c.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${c.dtype}. `)});let r=(c,l)=>{let p=Vt(t,e[0].shape)[0],f=ms(e.map(b=>b.shape),p);if(G(f)===0)return un([],f);if(e=e.filter(b=>b.size>0),e.length===1)return e[0];let m=e.map(b=>b.shape);Nd(m,p);let y=c.concat(e,p);return l(e),y},o=e,s={axis:t};return X.runKernelFunc(r,o,null,gu,s)}let Qe=j({concat_:QL});function tM(n){let t=M(n,"x","sigmoid"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.sigmoid(t);return o([s]),s},e,null,Gu)}let Wo=j({sigmoid_:tM});function eM(n,t,e){let r=M(n,"x","slice");if(r.rank===0)throw new Error("Slicing scalar is not possible");let o=(l,p)=>{let[f,m]=yd(r,t,e);return hw(r,f,m),p([r]),l.slice(r,f,m)},s={x:r},c={begin:t,size:e};return X.runKernelFunc(o,s,null,jf,c)}let ce=j({slice_:eM});function nM(n){let t=M(n,"x","tanh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.tanh(t);return o([s]),s},e,null,Hu)}let Pc=j({tanh_:nM});function rM(n,t,e,r,o,s){let c=M(n,"forgetBias","basicLSTMCell"),l=M(t,"lstmKernel","basicLSTMCell"),p=M(e,"lstmBias","basicLSTMCell"),f=M(r,"data","basicLSTMCell"),m=M(o,"c","basicLSTMCell"),y=M(s,"h","basicLSTMCell"),b=Qe([f,y],1),v=ge(b,l),T=Tt(v,p),N=T.shape[0],S=T.shape[1]/4,D=[N,S],I=ce(T,[0,0],D),P=ce(T,[0,S],D),E=ce(T,[0,S*2],D),L=ce(T,[0,S*3],D),B=Tt(nt(Wo(I),Pc(P)),nt(m,Wo(Tt(c,E)))),q=nt(Pc(B),Wo(L));return[B,q]}let oM=j({basicLSTMCell_:rM});function sM(n,t,e){let r=M(n,"x","batchToSpaceND"),o=t.reduce((p,f)=>p*f);_(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),_(e.length===t.length,()=>`crops.length is ${e.length} but should be equal to blockShape.length ${t.length}`),_(r.shape[0]%o===0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${o}`);let s=p=>p.batchToSpaceND(r,t,e),c={x:r},l={blockShape:t,crops:e};return X.runKernelFunc(s,c,null,ax,l)}let cp=j({batchToSpaceND_:sM});function iM(n){let t;return n.rank===0||n.rank===1?t=Q(n,[1,1,1,n.size]):n.rank===2?t=Q(n,[1,1,n.shape[0],n.shape[1]]):n.rank===3?t=Q(n,[1,n.shape[0],n.shape[1],n.shape[2]]):t=n,t}function aM(n,t,e,r,o,s){s==null&&(s=.001);let c=M(n,"x","batchNorm"),l=M(t,"mean","batchNorm"),p=M(e,"variance","batchNorm"),f;o!=null&&(f=M(o,"scale","batchNorm"));let m;r!=null&&(m=M(r,"offset","batchNorm")),_(l.rank===p.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(m==null||l.rank===m.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(f==null||l.rank===f.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let y=iM(c),b=(S,D)=>(D([y,l,p,f]),S.batchNorm(y,_d(l),_d(p),_d(m),_d(f),s)),v={x:y,scale:f,offset:m,mean:l,variance:p},T={varianceEpsilon:s},N=X.runKernelFunc(b,v,null,ku,T);return Q(N,c.shape)}function _d(n){return n==null?null:n.rank===0?Q(n,[n.size]):n.rank===1?n:n.rank===2?Q(n,[1,1,n.shape[0],n.shape[1]]):n.rank===3?Q(n,[1,n.shape[0],n.shape[1],n.shape[2]]):n}let aa=j({batchNorm_:aM});function cM(n,t,e,r,o,s){let c=M(n,"x","batchNorm"),l=M(t,"mean","batchNorm"),p=M(e,"variance","batchNorm"),f;o!=null&&(f=M(o,"scale","batchNorm"));let m;return r!=null&&(m=M(r,"offset","batchNorm")),_(c.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${c.rank}.`),_(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${l.rank}.`),_(p.rank===2||p.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${p.rank}.`),f!=null&&_(f.rank===2||f.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${f.rank}.`),m!=null&&_(m.rank===2||m.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${m.rank}.`),aa(c,l,p,m,f,s)}let $_=j({batchNorm2d_:cM});function lM(n,t,e,r,o,s){let c=M(n,"x","batchNorm"),l=M(t,"mean","batchNorm"),p=M(e,"variance","batchNorm"),f;o!=null&&(f=M(o,"scale","batchNorm"));let m;return r!=null&&(m=M(r,"offset","batchNorm")),_(c.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${c.rank}.`),_(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${l.rank}.`),_(p.rank===3||p.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${p.rank}.`),f!=null&&_(f.rank===3||f.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${f.rank}.`),m!=null&&_(m.rank===3||m.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${m.rank}.`),aa(c,l,p,m,f,s)}let I_=j({batchNorm3d_:lM});function uM(n,t,e,r,o,s){let c=M(n,"x","batchNorm"),l=M(t,"mean","batchNorm"),p=M(e,"variance","batchNorm"),f;o!=null&&(f=M(o,"scale","batchNorm"));let m;return r!=null&&(m=M(r,"offset","batchNorm")),_(c.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${c.rank}.`),_(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${l.rank}.`),_(p.rank===4||p.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${p.rank}.`),f!=null&&_(f.rank===4||f.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${f.rank}.`),m!=null&&_(m.rank===4||m.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${m.rank}.`),aa(c,l,p,m,f,s)}let E_=j({batchNorm4d_:uM});function pM(n,t){let e=M(n,"broadcastTo","x"),r=e.shape;if(t.some(m=>!(m>0)||m%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthe.rank){let m=e.shape.slice();for(;m.length=0;m--)if(o[m]===t[m])s[m]=1;else if(e.shape[m]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);let c=s.map((m,y)=>m>1?y:-1).filter(m=>m>=0);if(c.length===0)return ii(e);let l=m=>m.tile(e,s),p={x:e},f={shape:t,inputShape:o};return X.runKernelFunc(l,p,null,cx,f)}let lp=j({broadcastTo_:pM});function hM(n){let t=M(n,"x","ceil"),e={x:t};return X.runKernelFunc(r=>r.ceil(t),e,null,du)}let Dw=j({ceil_:hM});function fM(n,t,e){let r=M(n,"x","clipByValue");_(t<=e,()=>`Error in clip: min (${t}) must be less than or equal to max (${e}).`);let o={x:r},s={clipValueMin:t,clipValueMax:e};return X.runKernelFunc((c,l)=>{let p=c.clip(r,t,e);return l([r]),p},o,null,mu,s)}let cr=j({clipByValue_:fM});function dM(n){return Qe(n,0)}let D_=j({concat1d_:dM});function mM(n,t){return Qe(n,t)}let A_=j({concat2d_:mM});function gM(n,t){return Qe(n,t)}let F_=j({concat3d_:gM});function yM(n,t){return Qe(n,t)}let R_=j({concat4d_:yM});function bM(n,t,e,r,o="NHWC",s=[1,1],c){let l=M(n,"x","conv2d"),p=M(t,"filter","conv2d"),f=l,m=!1;l.rank===3&&(m=!0,f=Q(l,[1,l.shape[0],l.shape[1],l.shape[2]])),_(f.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${f.rank}.`),_(p.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${p.rank}.`),c!=null&&_(gt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${c} but got pad ${r}.`);let y=o==="NHWC"?f.shape[3]:f.shape[1];_(y===p.shape[2],()=>`Error in conv2d: depth of input (${y}) must match input depth for filter ${p.shape[2]}.`),_(fn(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let b=(S,D)=>{let I=li(o),P=Un(f.shape,p.shape,e,s,r,c,!1,I),E=S.conv2d(f,p,P);return D([f,p]),E},v={x:f,filter:p},T={strides:e,pad:r,dataFormat:o,dilations:s,dimRoundingMode:c},N=X.runKernelFunc(b,v,null,$f,T);return m?Q(N,[N.shape[1],N.shape[2],N.shape[3]]):N}let gs=j({conv2d_:bM});function xM(n,t,e,r,o="NWC",s=1,c){let l=M(n,"x","conv1d"),p=M(t,"filter","conv1d"),f=l,m=!1;l.rank===2&&(m=!0,f=Q(l,[1,l.shape[0],l.shape[1]])),_(f.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${f.rank}.`),_(p.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${p.rank}.`),c!=null&&_(gt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${c} but got pad ${r}.`),_(f.shape[2]===p.shape[1],()=>`Error in conv1d: depth of input (${f.shape[2]}) must match input depth for filter ${p.shape[1]}.`),_(fn(e,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${e} and dilation '${s}'`),_(o==="NWC",()=>`Error in conv1d: got dataFormat of ${o} but only NWC is currently supported.`);let y=Q(p,[1,p.shape[0],p.shape[1],p.shape[2]]),b=Q(f,[f.shape[0],1,f.shape[1],f.shape[2]]),v=[1,e],T=[1,s],N="NHWC",S=gs(b,y,v,r,N,T,c);return m?Q(S,[S.shape[2],S.shape[3]]):Q(S,[S.shape[0],S.shape[2],S.shape[3]])}let Cd=j({conv1d_:xM});function wM(n,t,e,r,o,s="NHWC",c){_(n.length===t.rank,()=>`Length of inShape (${n.length}) and rank of dy (${t.rank}) must match`);let l=n,p=t,f=!1;t.rank===3&&(f=!0,p=Q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),l=[1,n[0],n[1],n[2]]),_(l.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${l.length}.`),_(p.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${p.rank}`),_(e.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${e.rank}`);let m=s==="NHWC"?l[3]:l[1],y=s==="NHWC"?p.shape[3]:p.shape[1];_(m===e.shape[2],()=>`Error in conv2dDerInput: depth of input (${m}) must match input depth for filter ${e.shape[2]}.`),_(y===e.shape[3],()=>`Error in conv2dDerInput: depth of output (${y}) must match output depth for filter ${e.shape[3]}.`),c!=null&&_(gt(o),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${c} but got pad ${o}.`);let b=(S,D)=>{let I=1,P=li(s),E=Un(l,e.shape,r,I,o,c,!1,P),L=S.conv2dDerInput(p,e,E);return D([p,e]),L},v={dy:p,filter:e},T={strides:r,pad:o,dataFormat:s,dimRoundingMode:c,inputShape:l},N=X.runKernelFunc(b,v,null,If,T);return f?Q(N,[N.shape[1],N.shape[2],N.shape[3]]):N}let Aw=j({conv2DBackpropInput_:wM});function vM(n,t,e,r,o,s){let c=M(n,"x","conv2dTranspose"),l=M(t,"filter","conv2dTranspose");return Aw(e,c,l,r,o,"NHWC",s)}let Sd=j({conv2dTranspose_:vM});function TM(n,t,e,r,o="NDHWC",s=[1,1,1]){let c=M(n,"x","conv3d"),l=M(t,"filter","conv3d"),p=c,f=!1;c.rank===4&&(f=!0,p=Q(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),_(p.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${p.rank}.`),_(l.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${l.rank}.`),_(p.shape[4]===l.shape[3],()=>`Error in conv3d: depth of input (${p.shape[4]}) must match input depth for filter ${l.shape[3]}.`),_(fn(e,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o==="NDHWC",()=>`Error in conv3d: got dataFormat of ${o} but only NDHWC is currently supported.`);let m=(T,N)=>{let S=ai(p.shape,l.shape,e,s,r),D=T.conv3d(p,l,S);return N([p,l]),D},y={x:p,filter:l},b={strides:e,pad:r,dataFormat:o,dilations:s},v=X.runKernelFunc(m,y,null,Ef,b);return f?Q(v,[v.shape[1],v.shape[2],v.shape[3],v.shape[4]]):v}let Fw=j({conv3d_:TM});function kM(n,t,e,r,o){_(n.length===t.rank,()=>`Length of inShape (${n.length}) and rank of dy (${t.rank}) must match`);let s=n,c=t,l=!1;t.rank===4&&(l=!0,c=Q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,n[0],n[1],n[2],n[3]]);let p=s[4],f=c.shape[4];_(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),_(c.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${c.rank}`),_(e.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${e.rank}`),_(p===e.shape[3],()=>`Error in conv3dDerInput: depth of input (${p}) must match input depth for filter ${e.shape[3]}.`),_(f===e.shape[4],()=>`Error in conv3dDerInput: depth of output (${f}) must match output depth for filter ${e.shape[4]}.`);let m=T=>{let N=1,S=ai(s,e.shape,r,N,o);return T.conv3dDerInput(c,e,S)},y={dy:c,filter:e},b={pad:o,strides:r,inputShape:s},v=X.runKernelFunc(m,y,null,px,b);return l?Q(v,[v.shape[1],v.shape[2],v.shape[3],v.shape[4]]):v}let P_=j({conv3DBackpropInput_:kM});function NM(n,t,e,r,o){let s=M(n,"x","conv3dTranspose"),c=M(t,"filter","conv3dTranspose");return P_(e,s,c,r,o)}let _M=j({conv3dTranspose_:NM});function CM(n){let t=M(n,"x","cos"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.cos(t);return o([t]),s},e,null,wc)}let up=j({cos_:CM});function SM(n){let t=M(n,"x","cosh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.cosh(t);return o([t]),s},e,null,yu)}let $d=j({cosh_:SM});function $M(n,t=0,e=!1,r=!1){let o=M(n,"x","cumsum"),s=(p,f)=>{let m=ar([t],o.rank),y=o;m!=null&&(y=Kt(o,m));let b=xr(1,o.rank)[0],v=p.cumsum(y,b,e,r);if(f([o]),m!=null){let T=rp(m);v=Kt(v,T)}return v},c={x:o},l={axis:t,exclusive:e,reverse:r};return X.runKernelFunc(s,c,null,hx,l)}let Id=j({cumsum_:$M});function IM(n,t,e="NHWC"){let r=M(n,"x","depthToSpace"),o=e==="NHWC"?r.shape[1]:r.shape[2],s=e==="NHWC"?r.shape[2]:r.shape[3],c=e==="NHWC"?r.shape[3]:r.shape[1];_(o*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${o} and ${t} for depthToSpace with input shape ${r.shape}`),_(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),_(c%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${c} for depthToSpace with input shape ${r.shape}`);let l=m=>m.depthToSpace(r,t,e),p={x:r},f={blockSize:t,dataFormat:e};return X.runKernelFunc(l,p,null,dN,f)}let Rw=j({depthToSpace_:IM});function EM(n,t,e,r,o="NHWC",s=[1,1],c){let l=M(n,"x","depthwiseConv2d"),p=M(t,"filter","depthwiseConv2d"),f=l,m=!1;l.rank===3&&(m=!0,f=Q(l,[1,l.shape[0],l.shape[1],l.shape[2]])),_(f.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),_(p.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),_(f.shape[3]===p.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),c!=null&&_(gt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${c} but got pad ${r}.`);let y=(N,S)=>{s==null&&(s=[1,1]),_(fn(e,s),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`);let D=Un(f.shape,p.shape,e,s,r,c,!0),I=N.depthwiseConv2D(f,p,D);return S([f,p]),I},b={x:f,filter:p},v={strides:e,pad:r,dataFormat:o,dilations:s,dimRoundingMode:c},T=X.runKernelFunc(y,b,null,Df,v);return m?Q(T,[T.shape[1],T.shape[2],T.shape[3]]):T}let ca=j({depthwiseConv2d_:EM});function DM(n){let t=M(n,"x","diag"),e=o=>{let s=Q(t,[t.size]),c=o.diag(s),l=[...n.shape,...n.shape];return Q(c,l)},r={x:t};return X.runKernelFunc(e,r,null,mN)}let AM=j({diag_:DM});function FM(n,t,e,r,o=[1,1],s="NHWC"){let c=M(n,"x","dilation2d"),l=M(t,"filter","dilation2d");_(c.rank===3||c.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${c.rank}.`),_(l.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${l.rank}.`),_(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let p=c,f=!1;c.rank===3&&(p=Q(c,[1,c.shape[0],c.shape[1],c.shape[2]]),f=!0);let m={x:p,filter:l},y={strides:e,pad:r,dilations:o},b=X.runKernel(Af,m,y);return f?Q(b,[b.shape[1],b.shape[2],b.shape[3]]):b}let Pw=j({dilation2d_:FM});function la(n,t){let e=n.length,r=[];for(let o=0;o1&&c===1&&r.unshift(s)}return r}function xn(n,t){let e=[];for(let r=0;r1)&&e.unshift(s)}return e}function le(n,t){let e=[],r=Math.max(n.length,t.length);for(let o=0;oc.equal(e,r),s={a:e,b:r};return X.runKernelFunc(o,s,null,yN)}let ho=j({equal_:RM});function PM(n,t,e){let r=M(t,"a","where"),o=M(e,"b","where"),s=M(n,"condition","where","bool"),c=le(r.shape,o.shape),l=lp(r,c),p=lp(o,c);s.rank===1&&_(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&W(s.shape,p.shape,"Error in where: ");let f=(y,b)=>{let v=y.select(s,l,p);return b([s]),v},m={condition:s,t:l,e:p};return X.runKernelFunc(f,m,null,Px)}let Yn=j({where_:PM});function OM(n){let t=M(n,"x","zerosLike"),e={x:t};return X.runKernelFunc(r=>r.zerosLike(t),e,null,Vx)}let re=j({zerosLike_:OM});function LM(n,t){let e=M(n,"a","div"),r=M(t,"b","div");[e,r]=Je(e,r);let o=Bt(e,r),s=re(o),c=ho(r,s);return Yn(c,s,o)}let Ow=j({divNoNan_:LM});function MM(n,t){let e=M(n,"t1","dot"),r=M(t,"t2","dot");_((e.rank===1||e.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${e.rank} and ${r.rank}.`);let o=e.rank===1?e.size:e.shape[1],s=r.rank===1?r.size:r.shape[0];if(_(o===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${o} and ${s}.`),e.rank===1&&r.rank===1){let c=Q(e,[1,-1]),l=Q(r,[-1,1]),p=ge(c,l);return Q(p,[])}else if(e.rank===1&&r.rank===2){let c=Q(e,[1,-1]),l=Q(r,[r.shape[0],r.shape[1]]),p=ge(c,l);return Q(p,[p.size])}else if(e.rank===2&&r.rank===1){let c=Q(r,[-1,1]),l=ge(e,c);return Q(l,[l.size])}else{let c=Q(r,[r.shape[0],r.shape[1]]),l=ge(e,c);return l}}let O_=j({dot_:MM});function BM(n){let t=M(n,"x","elu"),e=(o,s)=>{let c=o.elu(t);return s([c]),c},r={x:t};return X.runKernelFunc(e,r,null,bu)}let Oc=j({elu_:BM});function zM(n){let t=M(n,"x","erf");_(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=$t(t,"float32"));let e={x:t};return X.runKernelFunc((r,o)=>{let s=r.erf(t);return o([t]),s},e,null,xu)}let Lw=j({erf_:zM});function WM(n){let t=M(n,"x","exp"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.exp(t);return o([s]),s},e,null,wu)}let Fr=j({exp_:WM});function VM(n,t=0){let e=null,r=M(n,"x","expandDims",e);_(t<=r.rank,()=>"Axis must be <= rank of the tensor");let o=r.shape.slice();return t<0&&(_(-(r.rank+1)<=t,()=>`Axis must be in the interval [${-(r.rank+1)}, ${r.rank}]`),t=r.rank+t+1),o.splice(t,0,1),Q(r,o)}let lr=j({expandDims_:VM});function GM(n){let t=M(n,"x","expm1"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.expm1(t);return o([t]),s},e,null,vu)}let Mw=j({expm1_:GM});function UM(n,t){let e=null,r=M(n,"x","tile",e);_(r.rank===t.length,()=>`Error in transpose: rank of input ${r.rank} must match length of reps ${t}.`);let o=(p,f)=>{let m=p.tile(r,t);return f([r]),m},s=[r],c={x:r},l={reps:t};return X.runKernelFunc(o,c,null,Bx,l,s)}let ui=j({tile_:UM});function qM(n,t,e,r="float32"){t==null&&(t=n);let o=Se([n,t],r),s=n<=t?n:t;for(let l=0;lo.fill(n,t,e),{},null,mx,r)}function HM(n){let t=M(n,"x","floor"),e={x:t};return X.runKernelFunc(r=>r.floor(t),e,null,Tu)}let Mc=j({floor_:HM});let Bw=30;function pp(n){return n<=Bw?n:Tf(n,Math.floor(Math.sqrt(n)))}function jM(n,t){let e=!1,r;for(n<=Bw?(r=n,e=!0):r=Tf(n,Math.floor(Math.sqrt(n)));!e;)r>t||r===n?e=!0:r=Tf(n,r+1);return r}function KM(n,t,e){let r=[],o=n.length;for(let s=0;s{let m=Vt(e,r.shape)[0],y=L_(r,o,m),b=p.gather(r,Q(o,[o.size]),m);return f([r,o]),Q(b,y.outputShape)};return X.runKernelFunc(l,s,null,yx,c)}let Bc=j({gather_:YM});function JM(n,t){let e=M(n,"a","greater"),r=M(t,"b","greater");[e,r]=Je(e,r),le(e.shape,r.shape);let o=c=>c.greater(e,r),s={a:e,b:r};return X.runKernelFunc(o,s,null,xN)}let Rr=j({greater_:JM});function ZM(n,t){let e=M(n,"a","greaterEqual"),r=M(t,"b","greaterEqual");[e,r]=Je(e,r),le(e.shape,r.shape);let o=(c,l)=>{let p=c.greaterEqual(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,bx)}let ys=j({greaterEqual_:ZM});function QM(n){let t=M(n,"input","imag"),e=o=>o.imag(t),r={input:t};return X.runKernelFunc(e,r,null,Mf)}let hp=j({imag_:QM});function tB(n){let t=M(n,"x","isFinite"),e={x:t};return X.runKernelFunc(r=>r.isFinite(t),e,null,_u)}let M_=j({isFinite_:tB});function eB(n){let t=M(n,"x","isInf"),e={x:t};return X.runKernelFunc(r=>r.isInf(t),e,null,Cu)}let B_=j({isInf_:eB});function nB(n){let t=M(n,"x","isNaN"),e={x:t};return X.runKernelFunc(r=>r.isNaN(t),e,null,Su)}let z_=j({isNaN_:nB});function rB(n,t){let e=M(n,"a","maximum"),r=M(t,"b","maximum");[e,r]=Je(e,r),e.dtype==="bool"&&(e=$t(e,"int32"),r=$t(r,"int32")),le(e.shape,r.shape);let o=(c,l)=>{let p=c.maximum(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,vx)}let Jr=j({maximum_:rB});function Et(n,t){if((gn(n)&&t!=="string"||Array.isArray(n))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&gn(n)&&!(n instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");let e=[],r=[];return oi(n,e,r,t)}function oB(n,t=.2){let e=M(n,"x","leakyRelu");return Jr(nt(Et(t),e),e)}let Dd=j({leakyRelu_:oB});function sB(n,t){let e=M(n,"a","less"),r=M(t,"b","less");[e,r]=Je(e,r),le(e.shape,r.shape);let o=c=>c.less(e,r),s={a:e,b:r};return X.runKernelFunc(o,s,null,wN)}let fp=j({less_:sB});function iB(n,t){let e=M(n,"a","lessEqual"),r=M(t,"b","lessEqual");[e,r]=Je(e,r),le(e.shape,r.shape);let o=(c,l)=>{let p=c.lessEqual(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,vN)}let pi=j({lessEqual_:iB});function W_(n,t,e){if(e<=0)throw new Error("The number of values should be positive.");let r={start:n,stop:t,num:e};return X.runKernelFunc(o=>o.linspace(n,t,e),{},null,TN,r)}function aB(n,t=5,e=1,r=1,o=.5){let s=M(n,"x","localResponseNormalization");_(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${s.rank}.`),_(gt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let c=s,l=!1;s.rank===3&&(l=!0,c=Q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let p=(b,v)=>{let T=b.localResponseNormalization4D(c,t,e,r,o);return v([c,T]),T},f={x:c},m={depthRadius:t,bias:e,alpha:r,beta:o},y=X.runKernelFunc(p,f,null,wx,m);return l?Q(y,[y.shape[1],y.shape[2],y.shape[3]]):y}let zw=j({localResponseNormalization_:aB});function cB(n){let t=M(n,"x","log"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.log(t);return o([t]),s},e,null,$u)}let wr=j({log_:cB});function lB(n){let t=M(n,"x","log1p"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.log1p(t);return o([t]),s},e,null,Iu)}let Ad=j({log1p_:lB});function uB(n){return _(ni(n),()=>"The f passed in grad(f) must be a function"),(t,e)=>{let r=M(t,"x","tf.grad",null),o=e!=null?M(e,"dy","tf.grad"):null;return X.tidy(()=>{let{value:s,grads:c}=X.gradients(()=>n(r),[r],o);return o!=null&&W(s.shape,o.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Fd(c),c[0]})}}function pB(n){return _(ni(n),()=>"The f passed in grads(f) must be a function"),(t,e)=>{_(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=ep(t,"args","tf.grads",null),o=e!=null?M(e,"dy","tf.grads"):null;return X.tidy(()=>{let{value:s,grads:c}=X.gradients(()=>n(...r),r,o);return o!=null&&W(s.shape,o.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(c),c})}}function hB(n){return _(ni(n),()=>"The f passed in valueAndGrad(f) must be a function"),(t,e)=>{_(t instanceof ot,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),_(e==null||e instanceof ot,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:o}=X.gradients(()=>n(t),[t],e);return Fd(r),{grad:r[0],value:o}}}function fB(n){return _(ni(n),()=>"The f passed in valueAndGrads(f) must be a function"),(t,e)=>{_(Array.isArray(t)&&t.every(o=>o instanceof ot),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),_(e==null||e instanceof ot,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=X.gradients(()=>n(...t),t,e);return e!=null&&W(r.value.shape,e.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Fd(r.grads),r}}function Ww(n,t){_(ni(n),()=>"The f passed in variableGrads(f) must be a function"),_(t==null||Array.isArray(t)&&t.every(f=>f instanceof tp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let e=t!=null;if(!e){t=[];for(let f in X.registeredVariables)t.push(X.registeredVariables[f])}let r=e?t.filter(f=>!f.trainable):null,o=t.length;t=t.filter(f=>f.trainable),_(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${o} variables is trainable.`);let s=!0,{value:c,grads:l}=X.gradients(n,t,null,s);_(l.some(f=>f!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),_(c.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${c.rank} tensor`);let p={};return t.forEach((f,m)=>{l[m]!=null&&(p[f.name]=l[m])}),r!=null&&r.forEach(f=>p[f.name]=null),{value:c,grads:p}}function Vo(n){return X.customGrad(n)}function Fd(n){let t=n.filter(e=>e==null).length;if(t>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function dB(n){let t=M(n,"x","neg"),e={x:t};return X.runKernelFunc(r=>r.neg(t),e,null,Sx)}let tn=j({neg_:dB});function mB(n){let t=M(n,"x","softplus"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.softplus(t);return o([t]),s},e,null,Uu)}let zc=j({softplus_:mB});function gB(n){let t=M(n,"x","logSigmoid"),e=Vo(r=>{let o=tn(zc(tn(r))),s=c=>{let l=nt(c,Wo(tn(r)));return l};return{value:o,gradFunc:s}});return e(t)}let V_=j({logSigmoid_:gB});function yB(n,t=null,e=!1){let r=M(n,"x","max"),o=(l,p)=>{let f=Vt(t,r.shape),m=f,y=ar(m,r.rank),b=r;y!=null&&(b=Kt(r,y),m=xr(m.length,b.rank));let v=l.max(b,m);y!=null&&b.dispose();let T=v;if(e){let N=Pn(T.shape,Vt(t,r.shape));T=Q(T,N),v.dispose()}return p([r,T]),T},s={x:r},c={reductionIndices:t,keepDims:e};return X.runKernelFunc(o,s,null,Eu,c)}let ur=j({max_:yB});function bB(n,t){let e=M(n,"a","sub"),r=M(t,"b","sub");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.subtract(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,_c)}let Dt=j({sub_:bB});function xB(n,t=null,e=!1){let r=M(n,"x","sum");r.dtype==="bool"&&(r=$t(r,"int32"));let o=(l,p)=>{p([r]);let f=Vt(t,r.shape),m=ar(f,r.rank),y=f,b=r;m!=null&&(b=Kt(r,m),y=xr(y.length,r.rank));let v=l.sum(b,y);if(e){let T=Pn(v.shape,f);v=Q(v,T)}return v},s={x:r},c={axis:t,keepDims:e};return X.runKernelFunc(o,s,null,Ox,c)}let zt=j({sum_:xB});function wB(n,t=-1){let e=M(n,"logits","logSoftmax");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and axis was ${t}`);let r=(c,l)=>{let p=!0,f=ur(n,t,!0),m=Dt(n,f),y=Dt($t(m,"float32"),wr(zt(Fr(m),t,p)));return l([y]),y},o={logits:e},s={axis:t};return X.runKernelFunc(r,o,null,xx,s)}let Rd=j({logSoftmax_:wB});function vB(n,t=null,e=!1){let r=M(n,"x","logSumExp"),o=Vt(t,r.shape),s=ur(r,o,!0),c=Dt(r,s),l=Fr(c),p=zt(l,o),f=wr(p),m=Tt(Q(s,f.shape),f);if(e){let y=Pn(m.shape,o);return Q(m,y)}return m}let Vw=j({logSumExp_:vB});function TB(n,t){let e=M(n,"a","logicalAnd","bool"),r=M(t,"b","logicalAnd","bool");le(e.shape,r.shape);let o={a:e,b:r};return X.runKernelFunc(s=>s.logicalAnd(e,r),o,null,kN)}let Zr=j({logicalAnd_:TB});function kB(n){let t=M(n,"x","logicalNot","bool"),e={x:t};return X.runKernelFunc(r=>r.logicalNot(t),e,null,Bf)}let dp=j({logicalNot_:kB});function NB(n,t){let e=M(n,"a","logicalOr","bool"),r=M(t,"b","logicalOr","bool");le(e.shape,r.shape);let o={a:e,b:r};return X.runKernelFunc(s=>s.logicalOr(e,r),o,null,NN)}let Pd=j({logicalOr_:NB});function _B(n,t){let e=M(n,"a","logicalXor","bool"),r=M(t,"b","logicalXor","bool");return le(e.shape,r.shape),Zr(Pd(n,t),dp(Zr(n,t)))}let G_=j({logicalXor_:_B});function CB(n,t,e,r,o){let s=M(n,"x","maxPool"),c=1,l=s,p=!1;s.rank===3&&(p=!0,l=Q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(l.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${l.rank}.`),_(fn(e,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${e} and dilations '${c}'`),o!=null&&_(gt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let f=(v,T)=>{let N=Xn(l.shape,t,e,1,r,o),S;return N.filterWidth===1&&N.filterHeight===1&<(N.inShape,N.outShape)?S=l.clone():S=v.maxPool(l,N),T([l,S]),S},m={x:l},y={filterSize:t,strides:e,pad:r,dimRoundingMode:o},b=X.runKernelFunc(f,m,null,Du,y);return p?Q(b,[b.shape[1],b.shape[2],b.shape[3]]):b}let mp=j({maxPool_:CB});function SB(n,t=[1,1,1],e,r,o,s="NDHWC",c){c==null?c=[1,1,1]:yn("dilations is deprecated, this field will be gone in v3.0.0.");let l=M(n,"x","maxPool3d"),p=l,f=!1;l.rank===4&&(f=!0,p=Q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),_(p.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${p.rank}.`),_(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),_(fn(e,c),()=>`Error in maxPool3d: Either strides or dilations must be 1. Got strides ${e} and dilations '${c}'`),o!=null&&_(gt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let m=(T,N)=>{c==null&&(c=[1,1,1]);let S=ip(p.shape,t,e,c,r,o,s),D=T.maxPool3d(p,S);return N([p,D]),D},y={x:p},b={filterSize:t,strides:e,pad:r,dimRoundingMode:o,dataFormat:s,dilations:c},v=X.runKernelFunc(m,y,null,Tx,b);return f?Q(v,[v.shape[1],v.shape[2],v.shape[3],v.shape[4]]):v}let Gw=j({maxPool3d_:SB});function $B(n,t,e,r,o=!1){let s=M(n,"x","maxPoolWithArgmax"),c={x:s},l={filterSize:t,strides:e,pad:r,includeBatchInIndex:o},p=X.runKernel(Wf,c,l);return{result:p[0],indexes:p[1]}}let U_=j({maxPoolWithArgmax_:$B});function xe(n,t="float32"){if(t==="complex64"){let r=xe(n,"float32"),o=xe(n,"float32");return fs(r,o)}let e=bc(G(n),t);return X.makeTensor(e,n,t)}function fo(n,t="float32"){if(t==="complex64"){let r=fo(n,"float32"),o=xe(n,"float32");return fs(r,o)}let e=Qb(G(n),t);return X.makeTensor(e,n,t)}function IB(n,t=null,e=!1){let r=M(n,"x","mean"),o=Vt(t,r.shape),s=Rn(r.shape,o),c=s[1],l=G(c),p={x:r},f={axis:t,keepDims:e},m=()=>{let b=Et(l),v=b.dtype===r.dtype?r:$t(r,b.dtype),T=Bt(v,b);return zt(T,t,e)},y=Vo(b=>{let v=X.runKernelFunc(m,p,null,kx,f),T=N=>{let S=b.shape.slice();o.forEach(P=>{S[P]=1});let D=Q(N,S),I=Bt(nt(D,fo(b.shape,"float32")),l);return I};return{value:v,gradFunc:T}});return y(r)}let en=j({mean_:IB});function EB(n,t=null,e=!1){let r=M(n,"x","min"),o=(l,p)=>{let f=Vt(t,r.shape),m=f,y=ar(m,r.rank),b=r;y!=null&&(b=Kt(r,y),m=xr(m.length,r.rank));let v=l.min(b,m);y!=null&&b.dispose();let T=v;if(e){let N=Pn(T.shape,f);T=Q(v,N),v.dispose()}return p([r,T]),T},s={x:r},c={axis:t,keepDims:e};return X.runKernelFunc(o,s,null,Nx,c)}let Wc=j({min_:EB});function DB(n,t){let e=M(n,"a","minimum"),r=M(t,"b","minimum");[e,r]=Je(e,r),e.dtype==="bool"&&(e=$t(e,"int32"),r=$t(r,"int32")),le(e.shape,r.shape);let o=(c,l)=>{let p=c.minimum(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,_x)}let ua=j({minimum_:DB});function AB(n,t,e){_(e==="reflect"||e==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${e}.`);let r=M(n,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");_(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let o=e==="reflect"?1:0;for(let l=0;l"Invalid number of paddings. Must be length of 2 each."),_(t[l][0]>=0&&t[l][0]<=r.shape[l]-o&&t[l][1]>=0&&t[l][1]<=r.shape[l]-o,()=>`Padding in dimension ${l} cannot be greater than or equal to ${r.shape[l]-o} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:e},c={x:r};return X.runKernel(Au,c,s)}let Uw=j({mirrorPad_:AB});function FB(n,t){let e=M(n,"a","mod"),r=M(t,"b","mod");[e,r]=Je(e,r);let o=(c,l)=>{let p=c.mod(e,r);return l([e,r]),p},s={a:e,b:r};return X.runKernelFunc(o,s,null,Cx)}let Od=j({mod_:FB});function RB(n){let t=M(n,"x","square"),e={},r=[t],o=[];return X.runKernelFunc((s,c)=>(c([t]),s.square(t)),{x:t},null,"Square",e,r,o)}let Ae=j({square_:RB});function PB(n,t=null,e=!1){n=M(n,"x","moments");let r=Vt(t,n.shape),o=en(n,r,e),s=o.shape;e||(s=Pn(o.shape,r));let c=Ae(Dt($t(n,"float32"),Q(o,s))),l=en(c,r,e);return{mean:o,variance:l}}let Ld=j({moments_:PB});function OB(n,t,e,r){let o=M(t,"data","multiRNNCell"),s=ep(e,"c","multiRNNCell"),c=ep(r,"h","multiRNNCell"),l=o,p=[];for(let y=0;y2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${c}`);e=e||Math.random();let l=c===1?Q(o,[1,-1]):o,p=X.runKernelFunc(f=>f.multinomial(l,r,t,e),{logits2D:l});return c===1?Q(p,[p.size]):p}let q_=j({multinomial_:MB});function BB(n,t){let e=M(n,"a","notEqual"),r=M(t,"b","notEqual");[e,r]=Je(e,r),le(e.shape,r.shape);let o=c=>c.notEqual(e,r),s={a:e,b:r};return X.runKernelFunc(o,s,null,Fu)}let hi=j({notEqual_:BB});function zB(n){let t=M(n,"input","real"),e=o=>o.real(t),r={input:t};return X.runKernelFunc(e,r,null,Hf)}let Vc=j({real_:zB});function WB(n){let t=M(n,"x","onesLike"),e=(o,s)=>{if(t.dtype==="complex64"){let c=qn(Vc(t)),l=re(hp(t));return fs(c,l)}return o.onesLike(t)},r={x:t};return X.runKernelFunc(e,r,null,Ix)}let qn=j({onesLike_:WB});function VB(n,t){let e=M(n,"v1","outerProduct"),r=M(t,"v2","outerProduct");_(e.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${e.rank} and ${r.rank}.`);let o=Q(e,[-1,1]),s=Q(r,[1,-1]);return ge(o,s)}let GB=j({outerProduct_:VB});function UB(n,t,e=0){let r=M(n,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let o=(l,p)=>(p([r]),l.pad(r,t,e)),s={paddings:t,constantValue:e},c={x:r};return X.runKernelFunc(o,c,null,Uf,s)}let Go=j({pad_:UB});function qB(n,t,e=0){return _(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Go(n,[t],e)}let HB=j({pad1d_:qB});function jB(n,t,e=0){return _(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Go(n,t,e)}let KB=j({pad2d_:jB});function XB(n,t,e=0){return _(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Go(n,t,e)}let YB=j({pad3d_:XB});function JB(n,t,e=0){return _(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Go(n,t,e)}let ZB=j({pad4d_:JB});function QB(n,t,e){let r=M(n,"x","spaceToBatchND");_(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),_(e.length===t.length,()=>`paddings.shape[0] ${e.length} must be equal to [blockShape] ${t.length}`),_(r.shape.reduce((l,p,f)=>f>0&&f<=t.length?l&&(p+e[f-1][0]+e[f-1][1])%t[f-1]===0:l,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${e.toString()} must be divisible by blockShapes ${t.toString()}`);let o=l=>l.spaceToBatchND(r,t,e),s={x:r},c={blockShape:t,paddings:e};return X.runKernelFunc(o,s,null,Kf,c)}let gp=j({spaceToBatchND_:QB});function t3(n,t,e,r,o,s){o==null&&(o=[1,1]),s==null&&(s=1),r===0&&(r="valid");let c=M(n,"x","maxPool"),l=c,p=!1;c.rank===3&&(p=!0,l=Q(c,[1,c.shape[0],c.shape[1],c.shape[2]])),_(fn(s,o),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${o}'`);let f=Xn(l.shape,t,s,o,r),m=[f.dilationHeight,f.dilationWidth],y;r==="same"?y=n3([f.filterHeight,f.filterWidth],m):y=[[0,0],[0,0]];let b=m[0]===1&&m[1]===1,[v,T]=e3([f.inHeight,f.inWidth],m,y),N=b?r:"valid",S=b?l:gp(l,m,v),D=e==="avg"?()=>ap(S,t,s,N):()=>mp(S,t,s,N),I=D(),P=b?I:cp(I,m,T);return p?Q(P,[P.shape[1],P.shape[2],P.shape[3]]):P}function e3(n,t,e){let r=e.map(m=>m[0]),o=e.map(m=>m[1]),s=n.concat(r,o),c=t.map((m,y)=>(m-s[y]%m)%m),l=o.map((m,y)=>m+c[y]),p=t.map((m,y)=>[r[y],l[y]]),f=t.map((m,y)=>[0,c[y]]);return[p,f]}function n3(n,t){let e=n.map((c,l)=>c+(c-1)*(t[l]-1)),r=e.map(c=>c-1),o=r.map(c=>Math.floor(c/2)),s=r.map((c,l)=>c-o[l]);return r.map((c,l)=>[o[l],s[l]])}let H_=j({pool_:t3});function r3(n,t){let e=M(n,"base","pow"),r=M(t,"exp","pow");[e,r]=Je(e,r);let o={a:e,b:r},s=(c,l)=>{let p=c.pow(e,r);return l([e,r,p]),p};return X.runKernelFunc(s,o,null,Dx)}let mo=j({pow_:r3});function o3(n,t){let e=M(n,"x","prelu"),r=M(t,"alpha","prelu"),o=(c,l)=>{let p=c.prelu(e,r);return l([e,r]),p},s={x:e,alpha:r};return X.runKernelFunc(o,s,null,qf)}let yp=j({prelu_:o3});function s3(n,t=null,e=!1){let r=M(n,"x","prod");r.dtype==="bool"&&(r=$t(r,"int32"));let o=l=>{let p=Vt(t,r.shape),f=ar(p,r.rank),m=p,y=r;f!=null&&(y=Kt(r,f),m=xr(m.length,r.rank));let b=l.prod(y,m);if(e){let v=Pn(b.shape,p);b=Q(b,v)}return b},s={x:r},c={axis:t,keepDims:e};return X.runKernelFunc(o,s,null,SN,c)}let Md=j({prod_:s3});function i3(n,t,e){let r=G(n),o=null;if(e==null||e==="float32")o=new Float32Array(r);else if(e==="int32")o=new Int32Array(r);else if(e==="bool")o=new Uint8Array(r);else throw new Error(`Unknown data type ${e}`);for(let s=0;s>>0,b-=p,b*=p,p=b>>>0,b-=p,p+=b*4294967296}return(p>>>0)*23283064365386963e-26};return f}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.alea=c})(Gc,n,!1)}),l3=pa(function(n){(function(t,e,r){function o(l){var p=this,f="";p.x=0,p.y=0,p.z=0,p.w=0,p.next=function(){var y=p.x^p.x<<11;return p.x=p.y,p.y=p.z,p.z=p.w,p.w^=p.w>>>19^y^y>>>8},l===(l|0)?p.x=l:f+=l;for(var m=0;m>>0)/4294967296};return y.double=function(){do var b=f.next()>>>11,v=(f.next()>>>0)/4294967296,T=(b+v)/(1<<21);while(T===0);return T},y.int32=f.next,y.quick=y,m&&(typeof m=="object"&&s(m,f),y.state=function(){return s(f,{})}),y}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.xor128=c})(Gc,n,!1)}),u3=pa(function(n){(function(t,e,r){function o(l){var p=this,f="";p.next=function(){var y=p.x^p.x>>>2;return p.x=p.y,p.y=p.z,p.z=p.w,p.w=p.v,(p.d=p.d+362437|0)+(p.v=p.v^p.v<<4^(y^y<<1))|0},p.x=0,p.y=0,p.z=0,p.w=0,p.v=0,l===(l|0)?p.x=l:f+=l;for(var m=0;m>>4),p.next()}function s(l,p){return p.x=l.x,p.y=l.y,p.z=l.z,p.w=l.w,p.v=l.v,p.d=l.d,p}function c(l,p){var f=new o(l),m=p&&p.state,y=function(){return(f.next()>>>0)/4294967296};return y.double=function(){do var b=f.next()>>>11,v=(f.next()>>>0)/4294967296,T=(b+v)/(1<<21);while(T===0);return T},y.int32=f.next,y.quick=y,m&&(typeof m=="object"&&s(m,f),y.state=function(){return s(f,{})}),y}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.xorwow=c})(Gc,n,!1)}),p3=pa(function(n){(function(t,e,r){function o(l){var p=this;p.next=function(){var m=p.x,y=p.i,b,v,T;return b=m[y],b^=b>>>7,v=b^b<<24,b=m[y+1&7],v^=b^b>>>10,b=m[y+3&7],v^=b^b>>>3,b=m[y+4&7],v^=b^b<<7,b=m[y+7&7],b=b^b<<13,v^=b^b<<9,m[y]=v,p.i=y+1&7,v};function f(m,y){var b,v,T=[];if(y===(y|0))v=T[0]=y;else for(y=""+y,b=0;b0;--b)m.next()}f(p,l)}function s(l,p){return p.x=l.x.slice(),p.i=l.i,p}function c(l,p){l==null&&(l=+new Date);var f=new o(l),m=p&&p.state,y=function(){return(f.next()>>>0)/4294967296};return y.double=function(){do var b=f.next()>>>11,v=(f.next()>>>0)/4294967296,T=(b+v)/(1<<21);while(T===0);return T},y.int32=f.next,y.quick=y,m&&(m.x&&s(m,f),y.state=function(){return s(f,{})}),y}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.xorshift7=c})(Gc,n,!1)}),h3=pa(function(n){(function(t,e,r){function o(l){var p=this;p.next=function(){var m=p.w,y=p.X,b=p.i,v,T;return p.w=m=m+1640531527|0,T=y[b+34&127],v=y[b=b+1&127],T^=T<<13,v^=v<<17,T^=T>>>15,v^=v>>>12,T=y[b]=T^v,p.i=b,T+(m^m>>>16)|0};function f(m,y){var b,v,T,N,S,D=[],I=128;for(y===(y|0)?(v=y,y=null):(y=y+"\0",v=0,I=Math.max(I,y.length)),T=0,N=-32;N>>15,v^=v<<4,v^=v>>>13,N>=0&&(S=S+1640531527|0,b=D[N&127]^=v+S,T=b==0?T+1:0);for(T>=128&&(D[(y&&y.length||0)&127]=-1),T=127,N=4*128;N>0;--N)v=D[T+34&127],b=D[T=T+1&127],v^=v<<13,b^=b<<17,v^=v>>>15,b^=b>>>12,D[T]=v^b;m.w=S,m.X=D,m.i=T}f(p,l)}function s(l,p){return p.i=l.i,p.w=l.w,p.X=l.X.slice(),p}function c(l,p){l==null&&(l=+new Date);var f=new o(l),m=p&&p.state,y=function(){return(f.next()>>>0)/4294967296};return y.double=function(){do var b=f.next()>>>11,v=(f.next()>>>0)/4294967296,T=(b+v)/(1<<21);while(T===0);return T},y.int32=f.next,y.quick=y,m&&(m.X&&s(m,f),y.state=function(){return s(f,{})}),y}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.xor4096=c})(Gc,n,!1)}),f3=pa(function(n){(function(t,e,r){function o(l){var p=this,f="";p.next=function(){var y=p.b,b=p.c,v=p.d,T=p.a;return y=y<<25^y>>>7^b,b=b-v|0,v=v<<24^v>>>8^T,T=T-y|0,p.b=y=y<<20^y>>>12^b,p.c=b=b-v|0,p.d=v<<16^b>>>16^T,p.a=T-y|0},p.a=0,p.b=0,p.c=2654435769|0,p.d=1367130551,l===Math.floor(l)?(p.a=l/4294967296|0,p.b=l|0):f+=l;for(var m=0;m>>0)/4294967296};return y.double=function(){do var b=f.next()>>>11,v=(f.next()>>>0)/4294967296,T=(b+v)/(1<<21);while(T===0);return T},y.int32=f.next,y.quick=y,m&&(typeof m=="object"&&s(m,f),y.state=function(){return s(f,{})}),y}e&&e.exports?e.exports=c:r&&r.amd?r(function(){return c}):this.tychei=c})(Gc,n,!1)}),ha=pa(function(n){(function(t,e){var r=this,o=256,s=6,c=52,l="random",p=e.pow(o,s),f=e.pow(2,c),m=f*2,y=o-1,b;function v(E,L,B){var q=[];L=L==!0?{entropy:!0}:L||{};var H=D(S(L.entropy?[E,P(t)]:E==null?I():E,3),q),Z=new T(q),J=function(){for(var it=Z.g(s),pt=p,ht=0;it=m;)it/=2,pt/=2,ht>>>=1;return(it+ht)/pt};return J.int32=function(){return Z.g(4)|0},J.quick=function(){return Z.g(4)/4294967296},J.double=J,D(P(Z.S),t),(L.pass||B||function(it,pt,ht,dt){return dt&&(dt.S&&N(dt,Z),it.state=function(){return N(Z,{})}),ht?(e[l]=it,pt):it})(J,H,"global"in L?L.global:this==e,L.state)}e["seed"+l]=v;function T(E){var L,B=E.length,q=this,H=0,Z=q.i=q.j=0,J=q.S=[];for(B||(E=[B++]);H=1||c===0);let l=Math.sqrt(-2*Math.log(c)/c);t=this.mean+this.stdDev*o*l,e=this.mean+this.stdDev*s*l,(!this.truncated||this.isValidTruncated(t))&&(r=!0)}return(!this.truncated||this.isValidTruncated(e))&&(this.nextVal=this.convertValue(e)),this.convertValue(t)}convertValue(t){return this.dtype==null||this.dtype==="float32"?t:Math.round(t)}isValidTruncated(t){return t<=this.upper&&t>=this.lower}}class m3{constructor(t,e,r,o){this.alpha=t,this.beta=1/e,this.dtype=r;let s=o||Math.random();this.randu=Uc(s.toString()),this.randn=new qw(0,1,r,!1,this.randu()),t<1?this.d=t+2/3:this.d=t-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let t,e,r,o,s,c;for(;;){do o=this.randn.nextValue(),c=1+this.c*o;while(c<=0);if(c*=c*c,t=o*o,e=1-.331*t*t,r=.5*t+this.d*(1-c+Math.log(c)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=t,this.range=e-t,this.dtype=r,o==null&&(o=Math.random()),typeof o=="number"&&(o=o.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${t} - ${e} <= 1 and dtype is not float`);this.random=Uc(o)}convertValue(t){return this.canReturnFloat()?t:Math.round(t)}nextValue(){return this.convertValue(this.min+this.range*this.random())}}function wot(n){let t=n.length,e=x3(n),r=b3(n),o=t/6*(Math.pow(e,2)+.25*Math.pow(r-3,2)),s=5.991;if(o>s)throw new Error(`Invalid p-value for JB: ${o}`)}function vot(n,t,e,r){r==null&&(r=bd());let o=Hw(n);gw(o,t,r),gw(y3(n,o),e,r)}function Hw(n){let t=0;for(let e=0;e{let c=n===t,l=n1;if(c||l||p)return xe([0],r);let f=Math.abs(Math.ceil((t-n)/e)),m=bc(f,r);t{let s=r.reciprocal(t);return o([t]),s},e,null,Ru)}let Kw=j({reciprocal_:N3});function _3(n){let t=M(n,"x","relu"),e=(o,s)=>(s([t]),t.dtype==="bool"?$t(t,"int32"):o.relu(t)),r={x:t};return X.runKernelFunc(e,r,null,Pu)}let Uo=j({relu_:_3});function C3(n){let t=M(n,"x","relu6"),e=(o,s)=>(s([t]),t.dtype==="bool"?$t(t,"int32"):o.relu6(t)),r={x:t};return X.runKernelFunc(e,r,null,Lu)}let Xw=j({relu6_:C3});function S3(n,t){let e=M(n,"x","reverse"),r=c=>{let l=Vt(t,e.shape);if(e.rank===0)return ii(e);let p=c.reverse(e,l);return Q(p,e.shape)},o={x:e},s={dims:t};return X.runKernelFunc(r,o,null,Rx,s)}let Pr=j({reverse_:S3});function $3(n){let t=M(n,"x","reverse");return _(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Pr(t,0)}let I3=j({reverse1d_:$3});function E3(n,t){let e=M(n,"x","reverse");return _(e.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${e.rank}.`),Pr(e,t)}let D3=j({reverse2d_:E3});function A3(n,t){let e=M(n,"x","reverse");return _(e.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${e.rank}.`),Pr(e,t)}let F3=j({reverse3d_:A3});function R3(n,t){let e=M(n,"x","reverse");return _(e.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${e.rank}.`),Pr(e,t)}let P3=j({reverse4d_:R3});function O3(n){let t=M(n,"x","round"),e={x:t};return X.runKernelFunc(r=>r.round(t),e,null,Mu)}let Yw=j({round_:O3});function L3(n){let t=M(n,"x","rsqrt"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.rsqrt(t);return o([t]),s},e,null,Bu)}let Bd=j({rsqrt_:L3});function M3(n){let t=M(n,"x","selu"),e=(o,s)=>{let c=o.selu(t);return s([t]),c},r={x:t};return X.runKernelFunc(e,r,null,zu)}let zd=j({selu_:M3});function B3(n,t,e,r,o,s=[1,1],c="NHWC"){let l=M(n,"x","separableConv2d"),p=M(t,"depthwiseFilter","separableConv2d"),f=M(e,"pointwiseFilter","separableConv2d"),m=l,y=!1;if(l.rank===3&&(y=!0,m=Q(l,[1,l.shape[0],l.shape[1],l.shape[2]])),c==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");_(m.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${m.rank}.`),_(p.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${p.rank}.`),_(f.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${p.rank}.`),_(f.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${f.shape[0]}.`),_(f.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${f.shape[1]}.`);let b=p.shape[2],v=p.shape[3];_(f.shape[2]===b*v,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${b*v}, but got ${f.shape[2]}.`);let T=ca(m,p,r,o,c,s),N=1,S=gs(T,f,N,"valid",c);return y?Q(S,[S.shape[1],S.shape[2],S.shape[3]]):S}let Jw=j({separableConv2d_:B3});async function z3(n,t){let e=M(n,"x","setdiff1d"),r=M(t,"y","setdiff1d");_(e.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${e.dtype}) and y (${r.dtype}).`),_(e.rank===1,()=>`x should be 1D tensor, but got x (${e.shape}).`),_(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let o=await e.data(),s=await r.data(),c=new Set(s),l=0;for(let m=0;mr.sign(t),e,null,Vu)}let Zw=j({sign_:W3});function V3(n){let t=M(n,"x","sin"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.sin(t);return o([t]),s},e,null,kc)}let Wd=j({sin_:V3});function G3(n){let t=M(n,"x","sinh"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.sinh(t);return o([t]),s},e,null,Wu)}let Vd=j({sinh_:G3});function U3(n,t,e){let r=M(n,"x","slice1d");return _(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),ce(r,[t],[e])}let Gd=j({slice1d_:U3});function q3(n,t,e){let r=M(n,"x","slice2d");return _(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),ce(r,t,e)}let Qw=j({slice2d_:q3});function H3(n,t,e){let r=M(n,"x","slice3d");return _(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),ce(r,t,e)}let Ud=j({slice3d_:H3});function j3(n,t,e){let r=M(n,"x","slice4d");return _(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),ce(r,t,e)}let xp=j({slice4d_:j3});function K3(n,t=-1){let e=M(n,"logits","softmax","float32");if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${e.rank} and dim was ${t}`);let r={logits:e},o={dim:t};return X.runKernelFunc((s,c)=>{let l=s.softmax(e,t);return c([l]),l},r,null,Mx,o)}let da=j({softmax_:K3});function X3(n){_(n.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${n.dtype}.`);let t={input:n};return X.runKernelFunc(e=>{let r=n.shape[n.shape.length-1],o=n.size/r,s=n.as2D(o,r),c=e.fft(s);return c.reshape(n.shape)},t,null,Pf)}let wp=j({fft_:X3});function Y3(n){_(n.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${n.dtype}.`);let t={input:n};return X.runKernelFunc(e=>{let r=n.shape[n.shape.length-1],o=n.size/r,s=Q(n,[o,r]),c=e.ifft(s);return Q(c,n.shape)},t,null,Lf)}let qc=j({ifft_:Y3});function J3(n){let t=n.shape[n.shape.length-1],e=n.size/t,r;if(t<=2){let o=Q(n,[e,t]);r=qc(o)}else{let o=[e,2*(t-1)],s=Q(Vc(n),[e,t]),c=Q(hp(n),[e,t]),l=Pr(ce(s,[0,1],[e,t-2]),1),p=nt(Pr(ce(c,[0,1],[e,t-2]),1),Et(-1)),f=Qe([s,l],1),m=Qe([c,p],1),y=Q(fs(f,m),[o[0],o[1]]);r=qc(y)}if(r=Vc(r),n.rank===3&&n.shape[0]!==0){let o=r,s=n.shape[0];r=Q(r,[s,r.shape[0]/s,r.shape[1]]),o.dispose()}return r}let qd=j({irfft_:J3});function K_(n,t,e=0){let r=[];if(typeof t=="number")_(n.shape[e]%t===0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(n.shape[e]/t);else{let o=t.reduce((c,l)=>(l===-1&&(c+=1),c),0);_(o<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let c=t.reduce((l,p)=>p>0?l+p:l);t[s]=n.shape[e]-c}_(n.shape[e]===t.reduce((c,l)=>c+l),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}function Z3(n,t,e=0){let r=M(n,"x","split"),o=(l,p)=>{let f=Vt(e,r.shape)[0],m=K_(r,t,f);return l.split(r,m,f)},s={x:r},c={numOrSizeSplits:t,axis:e};return X.runKernelFunc(o,s,null,Lx,c)}let Tr=j({split_:Z3});function Q3(n,t){_(n.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${n.dtype}`);let e=n.shape[n.shape.length-1],r=n.size/e,o;if(t!=null&&t0),N=n.shape.map(S=>S);N[n.shape.length-1]=t,o=ce(n,T,N),e=t}else if(t!=null&&t>e){let T=n.shape.map(N=>N);T[n.shape.length-1]=t-e,o=Qe([n,xe(T)],n.shape.length-1),e=t}else o=n;let s=re(o),c=Q(fs(o,s),[r,e]),l=wp(c),p=Math.floor(e/2)+1,f=Vc(l),m=hp(l),y=Tr(f,[p,e-p],f.shape.length-1),b=Tr(m,[p,e-p],m.shape.length-1),v=o.shape.slice();return v[o.shape.length-1]=p,Q(fs(y[0],b[0]),v)}let vp=j({rfft_:Q3});function tz(n){let t=M(n,"x","sqrt"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.sqrt(t);return o([t]),s},e,null,qu)}let On=j({sqrt_:tz});function ez(n,t){let e=M(n,"a","squaredDifference"),r=M(t,"b","squaredDifference");[e,r]=Je(e,r),le(e.shape,r.shape);let o=(l,p)=>{let f=l.squaredDifference(e,r);return p([e,r]),f},s={a:e,b:r},c={};return X.runKernelFunc(o,s,null,Nc,c)}let Tp=j({squaredDifference_:ez});function nz(n,t){let e=M(n,"x","squeeze");return Q(e,ln(e.shape,t).newShape)}let fi=j({squeeze_:nz});function rz(n,t=0){let e=ep(n,"tensors","stack");if(_(e.length>=1,()=>"Pass at least one tensor to tf.stack"),e.length===1)return lr(e[0],t);let r=e[0].rank,o=e[0].shape,s=e[0].dtype;_(t<=r,()=>"Axis must be <= rank of the tensor"),e.forEach(l=>{W(o,l.shape,"All tensors passed to stack must have matching shapes"),_(s===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let c=e.map(l=>lr(l,t));return Qe(c,t)}let pr=j({stack_:rz});function oz(n,t=0){let e=M(n,"x","step"),r={x:e},o={alpha:t};return X.runKernelFunc(s=>s.step(e,t),r,null,Ku,o)}let Hc=j({step_:oz});function sz(n,t,e,r,o=0,s=0,c=0,l=0,p=0){let f=M(n,"x","stridedSlice"),m=v=>{r==null&&(r=new Array(t.length));let T=md(c);if(T.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&l!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let N=f.rank-t.length,S=md(l),D=f.shape.slice();S.forEach(J=>{t[J]=0,e[J]=1,D.splice(J,0,1)}),f=Q(f,D);let{begin:I,end:P,strides:E}=m_(f.shape,T,N,t,e,r,o,s,c);t=I,e=P,r=E;let L=md(p);L.forEach(J=>{e[J]=t[J]+1,r[J]=1});let B=gd(t,e,r),q=B.filter((J,it)=>L.indexOf(it)===-1),H=r.every(J=>J===1);if(H)return Q(ce(f,t,B),q);let Z=v.stridedSlice(f,t,e,r);return Q(Z,q)},y={x:f},b={begin:t,end:e,strides:r,beginMask:o,endMask:s,ellipsisMask:c,newAxisMask:l,shrinkAxisMask:p};return X.runKernelFunc(m,y,null,FN,b)}let tv=j({stridedSlice_:sz});function iz(n){let t=M(n,"x","tan"),e={x:t};return X.runKernelFunc((r,o)=>{let s=r.tan(t);return o([t]),s},e,null,Cc)}let ev=j({tan_:iz});function di(n,t,e){if(et(n),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Bo(n,e);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return oi(n,t,r,e)}function jc(n,t,e){if(et(n),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Bo(n,e);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return oi(n,t,r,e)}function az(n,t,e){if(et(n),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Bo(n,e);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return oi(n,t,r,e)}function cz(n,t,e){if(et(n),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Bo(n,e);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,oi(n,t,r,e)}function lz(n,t=1,e=!0){let r=M(n,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let o=r.shape[r.shape.length-1];if(t>o)throw new Error(`'k' passed to topk() must be <= the last dimension (${o}) but got ${t}`);let s={x:r},c={k:t,sorted:e},[l,p]=X.runKernelFunc(f=>f.topk(r,t,e),s,null,RN,c);return{values:l,indices:p}}let nv=j({topk_:lz});function uz(n,t=0,e=1,r,o){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new qw(t,e,r,!0,o),c=Se(n,r);for(let l=0;l0,()=>"The input tensor must be at least 1D");let r={x:e},o={axis:t},[s,c]=X.runKernel(Yf,r,o);return{values:s,indices:c}}let Hd=j({unique_:pz});function hz(n,t,e){let r=M(n,"x","unsortedSegmentSum"),o=M(t,"segmentIds","unsortedSegmentSum","int32");_(gt(e),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:o},c={numSegments:e},l=(p,f)=>{let m=p.unsortedSegmentSum(r,o,e);return f([o]),m};return X.runKernelFunc(l,s,null,Wx,c)}let rv=j({unsortedSegmentSum_:hz});function fz(n,t=0){let e=M(n,"x","unstack");_(t>=-e.shape.length&&t`Axis = ${t} is not in [-${e.shape.length}, ${e.shape.length})`),t<0&&(t+=e.shape.length);let r={value:e},o={axis:t},s=c=>c.unstack(e,t);return X.runKernelFunc(s,r,null,zx,o)}let go=j({unstack_:fz});function X_(n,t=!0,e,r){return X.makeVariable(n,t,e,r)}function jd(n,t){let e=[];for(let s=0;s0,()=>"mask cannot be scalar"),W(l.slice(s,s+c),o.shape,"mask's shape must match the first K dimensions of tensor's shape,");let p=1;for(let N=s;N"Shape mismatch in v and x");let p=Et(1),f=Dt(p,l),m=nt(Dt(c,s),f);if(o){_(r!=null,()=>"When using zeroDebias: true, step is required.");let y=M(r,"step","movingAverage");m=Bt(m,Dt(p,mo(l,y)))}return Tt(s,m)}let Rz=j({movingAverage_:Fz});function Pz(n,t,e){let r=M(n,"indices","scatterND","int32"),o=M(t,"updates","scatterND");pw(o,r,e);let s=p=>p.scatterND(r,o,e),c={indices:r,updates:o},l={shape:e};return X.runKernelFunc(s,c,null,DN,l)}let hC=j({scatterND_:Pz});function Oz(n,t,e,r){if(n.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${n.dtype}.`);if(n.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${n.shape}.`);let o=n.rank>0?n.shape[0]:1,s=n.rank>1?n.shape[1]:1;if(e.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${e.length}, should be: ${s}.`);let c=t.size;if(!(t.rank===0||t.rank===1&&c===o))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${o}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function Lz(n,t,e,r=0){let o=M(n,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),c=M(r,"defaultValue","sparseToDense",s.dtype);Oz(o,s,e,c);let l={sparseIndices:o,sparseValues:s,defaultValue:c},p={outputShape:e};return X.runKernelFunc(f=>f.sparseToDense(o,s,e,c),l,null,AN,p)}let sv=j({sparseToDense_:Lz});function Mz(n,t){let e=M(t,"indices","gatherND","int32"),r=M(n,"x","gatherND"),o=c=>c.gatherND(r,e),s={params:r,indices:e};return X.runKernelFunc(o,s,null,bN)}let fC=j({gatherND_:Mz});function Bz(n,t){if(t==null)return n.shape.slice();if(lt(n.shape,t))return t;if(n.shape.length===t.length){let e=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${o.dtype} tensor instead.`),_(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return n instanceof ot?o.clone():o;let s=Bz(o,e),c=1-t,l=Bt(Mc(Tt(fa(s,0,1,"float32",r),c)),c);return nt(o,l)}let dC=j({dropout_:zz});function mC(n){return Math.floor(Math.pow(2,Math.ceil(Math.log(n)/Math.log(2))))}function iv(n,t,e){let r=1-n%2,o=new Float32Array(n);for(let s=0;s1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),_(r.rank-1===o.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${o.rank}`),W(r.shape.slice(0,r.shape.length-1),o.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];_(e>0&&e<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${e}`);let c=await r.data(),l=await o.data(),[p,f]=[c.length/s,s],m=Ce("bool",p);for(let y=0;yS.value-N.value),m[y]=0;for(let N=0;N`Error in conv2dDerFilter: input must be rank 4, but got shape ${l.shape}.`),_(p.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${p.shape}.`),_(e.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${e}.`);let f=s==="NHWC"?l.shape[3]:l.shape[1],m=s==="NHWC"?p.shape[3]:p.shape[1];_(f===e[2],()=>`Error in conv2dDerFilter: depth of input ${f}) must match input depth in filter (${e[2]}.`),_(m===e[3],()=>`Error in conv2dDerFilter: depth of dy (${m}) must match output depth for filter (${e[3]}).`),c!=null&&_(gt(o),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${c} but got pad ${o}.`);let y=T=>{let N=1,S=li(s),D=Un(l.shape,e,r,N,o,c,!1,S);return T.conv2dDerFilter(l,p,D)},b={x:l,dy:p},v={strides:r,pad:o,dataFormat:s,dimRoundingMode:c,filterShape:e};return X.runKernelFunc(y,b,null,lx,v)}let av=j({conv2DBackpropFilter_:Gz});function Xd(n,t,e){if(e==null||e==="linear")return n;if(e==="relu")return nt(n,Hc(t));throw new Error(`Cannot compute gradient for fused activation ${e}.`)}function Yd(n,t){let e=t,r=xn(n.shape,t.shape);return r.length>0&&(e=zt(e,r)),Q(e,n.shape)}function Jd(n,t,e){if(t==="linear")return n;if(t==="relu")return Uo(n);if(t==="elu")return Oc(n);if(t==="relu6")return Xw(n);if(t==="prelu")return yp(n,e);throw new Error(`Unknown fused activation ${t}.`)}let Zd=(n,t)=>{let e=n>0;return!e||t==="linear"};function Uz({x:n,filter:t,strides:e,pad:r,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:c,bias:l,activation:p="linear",preluActivationWeights:f}){if(p=p||"linear",Zd(X.state.gradientDepth,p)===!1){let L=gs(n,t,e,r,o,s,c);return l!=null&&(L=Tt(L,l)),Jd(L,p,f)}let m=M(n,"x","conv2d"),y=M(t,"filter","conv2d"),b=m,v=!1;m.rank===3&&(v=!0,b=Q(m,[1,m.shape[0],m.shape[1],m.shape[2]])),_(b.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${b.rank}.`),_(y.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${y.rank}.`),c!=null&&_(gt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${c} but got pad ${r}.`),_(b.shape[3]===y.shape[2],()=>`Error in conv2d: depth of input (${b.shape[3]}) must match input depth for filter ${y.shape[2]}.`),_(fn(e,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),_(o==="NHWC",()=>`Error in conv2d: got dataFormat of ${o} but only NHWC is currently supported.`);let T=Un(b.shape,y.shape,e,s,r,c),N;l!=null&&(N=M(l,"bias","fused conv2d"),[N]=Je(N,m),le(T.outShape,N.shape));let S;f!=null&&(S=M(f,"prelu weights","fused conv2d"));let D=(L,B)=>{let[q,H,Z,J]=B,it=Xd(L,Z,p);_(ci(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let pt=Aw(H.shape,it,q,e,r),ht=av(H,it,q.shape,e,r),dt=[pt,ht];if(J!=null){let ft=Yd(J,it);dt.push(ft)}return dt},I=L=>{let B=L.fusedConv2d({input:b,filter:y,convInfo:T,bias:N,activation:p,preluActivationWeights:S});return B},P={x:b,filter:y,bias:N,preluActivationWeights:S},E={strides:e,pad:r,dataFormat:o,dilations:s,dimRoundingMode:c,activation:p};if(l==null){let L=Vo((B,q,H)=>{let Z=X.runKernelFunc(I,P,null,td,E);return H([q,B,Z]),v&&(Z=Q(Z,[Z.shape[1],Z.shape[2],Z.shape[3]])),{value:Z,gradFunc:D}});return L(b,y)}else{let L=Vo((B,q,H,Z)=>{let J=X.runKernelFunc(I,P,null,td,E);return Z([q,B,J,H]),v&&(J=Q(J,[J.shape[1],J.shape[2],J.shape[3]])),{value:J,gradFunc:D}});return L(b,y,N)}}let cv=j({fusedConv2d_:Uz});function qz(n,t,e,r,o,s=[1,1],c){let l=n;n.rank===3&&(l=Q(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let p=t;p.rank===3&&(p=Q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let f=b=>{let v=Un(n.shape,e,r,s,o,c,!0);return b.depthwiseConv2DDerFilter(l,p,v)},m={x:l,dy:p},y={strides:r,pad:o,dimRoundingMode:c,dilations:s,filterShape:e};return X.runKernelFunc(f,m,null,fx,y)}let gC=j({depthwiseConv2dNativeBackpropFilter_:qz});function Hz(n,t,e,r,o,s=[1,1],c){let l=t,p=!1;t.rank===3&&(p=!0,l=Q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let f=v=>{let T=Un(n,e.shape,r,s,o,c,!0);return v.depthwiseConv2DDerInput(l,e,T)},m={dy:l,filter:e},y={strides:r,pad:o,dimRoundingMode:c,dilations:s,inputShape:n},b=X.runKernelFunc(f,m,null,dx,y);return p?Q(b,[b.shape[1],b.shape[2],b.shape[3]]):b}let yC=j({depthwiseConv2dNativeBackpropInput_:Hz});function jz({x:n,filter:t,strides:e,pad:r,dataFormat:o="NHWC",dilations:s=[1,1],dimRoundingMode:c,bias:l,activation:p="linear",preluActivationWeights:f}){if(Zd(X.state.gradientDepth,p)===!1){let L=ca(n,t,e,r,o,s,c);return l!=null&&(L=Tt(L,l)),Jd(L,p,f)}let m=M(n,"x","depthwiseConv2d"),y=M(t,"filter","depthwiseConv2d"),b=m,v=!1;m.rank===3&&(v=!0,b=Q(m,[1,m.shape[0],m.shape[1],m.shape[2]])),_(b.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${b.rank}.`),_(y.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${y.rank}.`),_(b.shape[3]===y.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${b.shape[3]}) must match the inChannels dimension in filter ${y.shape[2]}.`),s==null&&(s=[1,1]),_(fn(e,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${e} and dilations '${s}'`),c!=null&&_(gt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${c} but got pad ${r}.`);let T=Un(b.shape,y.shape,e,s,r,c,!0),N;l!=null&&(N=M(l,"bias","fused conv2d"),[N]=Je(N,m),le(T.outShape,N.shape));let S;f!=null&&(S=M(f,"prelu weights","fused depthwiseConv2d"));let D=(L,B)=>{_(ci(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[q,H,Z,J]=B,it=Xd(L,Z,p),pt=yC(H.shape,it,q,e,r,s,c),ht=gC(H,it,q.shape,e,r,s,c);if(J!=null){let dt=Yd(N,it);return[pt,ht,dt]}return[pt,ht]},I=L=>{let B=L.fusedDepthwiseConv2D({input:b,filter:y,convInfo:T,bias:N,activation:p,preluActivationWeights:S});return B},P={x:b,filter:y,bias:N,preluActivationWeights:S},E={strides:e,pad:r,dataFormat:o,dilations:s,dimRoundingMode:c,activation:p};if(l==null){let L=Vo((B,q,H)=>{let Z=X.runKernelFunc(I,P,null,ed,E);return H([q,B,Z]),v&&(Z=Q(Z,[Z.shape[1],Z.shape[2],Z.shape[3]])),{value:Z,gradFunc:D}});return L(b,y)}else{let L=Vo((B,q,H,Z)=>{let J=X.runKernelFunc(I,P,null,ed,E);return Z([q,B,J,H]),v&&(J=Q(J,[J.shape[1],J.shape[2],J.shape[3]])),{value:J,gradFunc:D}});return L(b,y,N)}}let bC=j({fusedDepthwiseConv2d_:jz});function Kz({a:n,b:t,transposeA:e=!1,transposeB:r=!1,bias:o,activation:s="linear",preluActivationWeights:c}){if(Zd(X.state.gradientDepth,s)===!1){let J=ge(n,t,e,r);return o!=null&&(J=Tt(J,o)),Jd(J,s,c)}let l=M(n,"a","fused matMul"),p=M(t,"b","fused matMul");[l,p]=Je(l,p);let f=e?l.shape[l.rank-2]:l.shape[l.rank-1],m=r?p.shape[p.rank-1]:p.shape[p.rank-2],y=e?l.shape[l.rank-1]:l.shape[l.rank-2],b=r?p.shape[p.rank-2]:p.shape[p.rank-1],v=l.shape.slice(0,-2),T=p.shape.slice(0,-2),N=G(v),S=G(T);_(l.rank>=2&&p.rank>=2&&l.rank===p.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${p.rank}.`),_(lt(v,T),()=>`Error in fused matMul: outer dimensions (${v}) and (${T}) of Tensors with shapes ${l.shape} and ${p.shape} must match.`),_(f===m,()=>`Error in fused matMul: inner shapes (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${p.shape} and transposeA=${e} and transposeB=${r} must match.`);let D=l.shape.slice(0,-2).concat([y,b]),I=e?Q(l,[N,f,y]):Q(l,[N,y,f]),P=r?Q(p,[S,b,m]):Q(p,[S,m,b]),E;o!=null&&(E=M(o,"bias","fused matMul"),[E]=Je(E,l),le(D,E.shape));let L;c!=null&&(L=M(c,"prelu weights","fused matMul"));let B=(J,it)=>{let[pt,ht,dt,ft]=it,ut=Xd(Q(J,dt.shape),dt,s),bt,yt;if(!e&&!r?(bt=ge(ut,ht,!1,!0),yt=ge(pt,ut,!0,!1)):!e&&r?(bt=ge(ut,ht,!1,!1),yt=ge(ut,pt,!0,!1)):e&&!r?(bt=ge(ht,ut,!1,!0),yt=ge(pt,ut,!1,!1)):(bt=ge(ht,ut,!0,!0),yt=ge(ut,pt,!0,!0)),o!=null){let xt=Yd(ft,ut);return[bt,yt,xt]}else return[bt,yt]},q=J=>{let it=J.fusedBatchMatMul({a:I,b:P,transposeA:e,transposeB:r,bias:E,activation:s,preluActivationWeights:L});return it},H={a:I,b:P,bias:E,preluActivationWeights:L},Z={transposeA:e,transposeB:r,activation:s};if(o==null){let J=Vo((it,pt,ht)=>{let dt=X.runKernelFunc(q,H,null,Qf,Z);return ht([it,pt,dt]),{value:Q(dt,D),gradFunc:B}});return J(I,P)}else{let J=Vo((it,pt,ht,dt)=>{let ft=X.runKernelFunc(q,H,null,Qf,Z);return dt([it,pt,ft,ht]),{value:Q(ft,D),gradFunc:B}});return J(I,P,E)}}let Qd=j({fusedMatMul_:Kz});var Xz=Object.freeze({__proto__:null,conv2d:cv,depthwiseConv2d:bC,matMul:Qd});function Yz(n){return iv(n,.54,.46)}let Jz=j({hammingWindow_:Yz});function Zz(n){return iv(n,.5,.5)}let xC=j({hannWindow_:Zz});function Qz(n,t,e,r=!1,o=0){let s=0,c=[];for(;s+t<=n.size;)c.push(ce(n,s,t)),s+=e;if(r)for(;s`Error in cropAndResize: image must be rank 4,but got rank ${c.rank}.`),_(l.rank===2&&l.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${f},4] but had shape ${l.shape}.`),_(p.rank===1&&p.shape[0]===f,()=>`Error in cropAndResize: boxInd must be have size [${f}] but had shape ${l.shape}.`),_(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),_(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),_(o==="bilinear"||o==="nearest",()=>`method must be bilinear or nearest, but was ${o}`);let m=T=>T.cropAndResize(c,l,p,r,o,s),y={image:c,boxes:l,boxInd:p},b={method:o,extrapolationValue:s,cropSize:r},v=X.runKernelFunc(m,y,null,fN,b);return v}let rW=j({cropAndResize_:nW});function oW(n){let t=M(n,"image","flipLeftRight","float32");_(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let e={image:t},r=X.runKernel(Of,e,{});return r}let sW=j({flipLeftRight_:oW});function iW(n,t,e=0,r=.5){let o=M(n,"image","rotateWithOffset","float32");_(o.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${o.rank}.`);let s={image:o},c={radians:t,fillValue:e,center:r},l=X.runKernel(Zf,s,c);return l}let aW=j({rotateWithOffset_:iW});function Kc(n,t,e,r,o,s){r==null&&(r=.5),o==null&&(o=Number.NEGATIVE_INFINITY),s==null&&(s=0);let c=n.shape[0];return e=Math.min(e,c),_(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),_(n.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${n.rank}'`),_(n.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${n.shape[1]}`),_(t.rank===1,()=>"scores must be a 1D tensor"),_(t.shape[0]===c,()=>`scores has incompatible shape with boxes. Expected ${c}, but was ${t.shape[0]}`),_(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:e,iouThreshold:r,scoreThreshold:o,softNmsSigma:s}}function cW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY){let s=M(n,"boxes","nonMaxSuppression"),c=M(t,"scores","nonMaxSuppression"),l=Kc(s,c,e,r,o);e=l.maxOutputSize,r=l.iouThreshold,o=l.scoreThreshold;let p={maxOutputSize:e,iouThreshold:r,scoreThreshold:o};return X.runKernelFunc(f=>f.nonMaxSuppression(s,c,e,r,o),{boxes:s,scores:c},null,$x,p)}let lW=j({nonMaxSuppression_:cW});function uW(n,t,e){let r=pW(n,t,e),o=r<0?-(r+1):r;n.splice(o,0,t)}function pW(n,t,e){return fW(n,t,e||hW)}function hW(n,t){return n>t?1:n>>1);let l=e(t,n[s]);l>0?r=s+1:(o=s,c=!l)}return c?r:-r-1}function tm(n,t,e,r,o){return lv(n,t,e,r,o,0).selectedIndices}function em(n,t,e,r,o,s){return lv(n,t,e,r,o,0,!1,s,!0)}function nm(n,t,e,r,o,s){return lv(n,t,e,r,o,s,!0)}function lv(n,t,e,r,o,s,c=!1,l=!1,p=!1){let f=[];for(let S=0;So&&f.push({score:t[S],boxIndex:S,suppressBeginIndex:0});f.sort(vC);let m=s>0?-.5/s:0,y=[],b=[];for(;y.length0;){let S=f.pop(),{score:D,boxIndex:I,suppressBeginIndex:P}=S;if(D=P;--L){let B=dW(n,I,y[L]);if(B>=r){E=!0;break}if(S.score=S.score*mW(r,m,B),S.score<=o)break}S.suppressBeginIndex=y.length,E||(S.score===D?(y.push(I),b.push(S.score)):S.score>o&&uW(f,S,vC))}let v=y.length,T=e-v;l&&T>0&&(y.push(...new Array(T).fill(0)),b.push(...new Array(T).fill(0)));let N={selectedIndices:vr(y,"int32")};return c&&(N.selectedScores=vr(b,"float32")),p&&(N.validOutputs=Et(v,"int32")),N}function dW(n,t,e){let r=n.subarray(t*4,t*4+4),o=n.subarray(e*4,e*4+4),s=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),l=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),f=Math.min(o[0],o[2]),m=Math.min(o[1],o[3]),y=Math.max(o[0],o[2]),b=Math.max(o[1],o[3]),v=(l-s)*(p-c),T=(y-f)*(b-m);if(v<=0||T<=0)return 0;let N=Math.max(s,f),S=Math.max(c,m),D=Math.min(l,y),I=Math.min(p,b),P=Math.max(D-N,0)*Math.max(I-S,0);return P/(v+T-P)}function mW(n,t,e){let r=Math.exp(t*e*e);return e<=n?r:0}function vC(n,t){return n.score-t.score||n.score===t.score&&t.boxIndex-n.boxIndex}async function gW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY){let s=M(n,"boxes","nonMaxSuppressionAsync"),c=M(t,"scores","nonMaxSuppressionAsync"),l=Kc(s,c,e,r,o);e=l.maxOutputSize,r=l.iouThreshold,o=l.scoreThreshold;let p=await Promise.all([s.data(),c.data()]),f=p[0],m=p[1],y=tm(f,m,e,r,o);return s!==n&&s.dispose(),c!==t&&c.dispose(),y}let yW=gW;function bW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY,s=0){let c=M(n,"boxes","nonMaxSuppression"),l=M(t,"scores","nonMaxSuppression"),p=Kc(c,l,e,r,o,s);e=p.maxOutputSize,r=p.iouThreshold,o=p.scoreThreshold,s=p.softNmsSigma;let f={boxes:c,scores:l},m={maxOutputSize:e,iouThreshold:r,scoreThreshold:o,softNmsSigma:s},y=X.runKernel(Gf,f,m);return{selectedIndices:y[0],selectedScores:y[1]}}let xW=j({nonMaxSuppressionWithScore_:bW});async function wW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY,s=0){let c=M(n,"boxes","nonMaxSuppressionAsync"),l=M(t,"scores","nonMaxSuppressionAsync"),p=Kc(c,l,e,r,o,s);e=p.maxOutputSize,r=p.iouThreshold,o=p.scoreThreshold,s=p.softNmsSigma;let f=await Promise.all([c.data(),l.data()]),m=f[0],y=f[1],b=nm(m,y,e,r,o,s);return c!==n&&c.dispose(),l!==t&&l.dispose(),b}let vW=wW;function TW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY,s=!1){let c=M(n,"boxes","nonMaxSuppression"),l=M(t,"scores","nonMaxSuppression"),p=Kc(c,l,e,r,o,null),f=p.maxOutputSize,m=p.iouThreshold,y=p.scoreThreshold,b={boxes:c,scores:l},v={maxOutputSize:f,iouThreshold:m,scoreThreshold:y,padToMaxOutputSize:s},T=X.runKernel(Vf,b,v);return{selectedIndices:T[0],validOutputs:T[1]}}let kW=j({nonMaxSuppressionPadded_:TW});async function NW(n,t,e,r=.5,o=Number.NEGATIVE_INFINITY,s=!1){let c=M(n,"boxes","nonMaxSuppressionAsync"),l=M(t,"scores","nonMaxSuppressionAsync"),p=Kc(c,l,e,r,o,null),f=p.maxOutputSize,m=p.iouThreshold,y=p.scoreThreshold,[b,v]=await Promise.all([c.data(),l.data()]),T=em(b,v,f,m,y,s);return c!==n&&c.dispose(),l!==t&&l.dispose(),T}let _W=NW;function CW(n,t,e=!1){let r=M(n,"images","resizeBilinear");_(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),_(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`);let o=r,s=!1;r.rank===3&&(s=!0,o=Q(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[c,l]=t,p=(b,v)=>(v([o]),b.resizeBilinear(o,c,l,e)),f={images:o},m={alignCorners:e,size:t},y=X.runKernelFunc(p,f,null,Fx,m);return s?Q(y,[y.shape[1],y.shape[2],y.shape[3]]):y}let TC=j({resizeBilinear_:CW});function SW(n,t,e=!1){let r=M(n,"images","resizeNearestNeighbor");_(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),_(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),_(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let o=r,s=!1;r.rank===3&&(s=!0,o=Q(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[c,l]=t,p={images:o},f={alignCorners:e,size:t},m=(b,v)=>(v([o]),b.resizeNearestNeighbor(o,c,l,e)),y=X.runKernelFunc(m,p,null,Ax,f);return s?Q(y,[y.shape[1],y.shape[2],y.shape[3]]):y}let kC=j({resizeNearestNeighbor_:SW});function $W(n,t,e){_(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),_(e%1===0,()=>`bandPart(): numUpper must be an integer, got ${e}.`);let r=M(n,"a","bandPart");_(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let o=r.shape,[s,c]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(e<=c))throw new Error(`bandPart(): numUpper (${e}) must not be greater than the number of columns (${c}).`);t<0&&(t=s),e<0&&(e=c);let l=Q(bp(0,s,1,"int32"),[-1,1]),p=bp(0,c,1,"int32"),f=Dt(l,p),m=Zr(pi(f,Et(+t,"int32")),ys(f,Et(-e,"int32"))),y=xe([s,c],r.dtype);return Q(pr(go(Q(r,[-1,s,c])).map(b=>Yn(m,b,y))),o)}let IW=j({bandPart_:$W});function EW(n){let t;if(Array.isArray(n)){t=!1,_(n!=null&&n.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let o=n[0].shape[0];for(let s=1;s`Gram-Schmidt: Non-unique lengths found in the input vectors: (${n[s].shape[0]} vs. ${o})`)}else t=!0,n=Tr(n,n.shape[0],0).map(o=>fi(o,[0]));_(n.length<=n[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${n.length}) exceeds number of dimensions (${n[0].shape[0]}).`);let e=[],r=n;for(let o=0;o{let s=r[o];if(o>0)for(let c=0;c=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${n.rank}`),n.rank===2)return NC(n,t);{let e=n.shape.slice(0,n.shape.length-2).reduce((p,f)=>p*f),r=go(Q(n,[e,n.shape[n.shape.length-2],n.shape[n.shape.length-1]]),0),o=[],s=[];r.forEach(p=>{let[f,m]=NC(p,t);o.push(f),s.push(m)});let c=Q(pr(o,0),n.shape),l=Q(pr(s,0),n.shape);return[c,l]}}function NC(n,t=!1){return X.tidy(()=>{_(n.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${n.shape.length}D Tensor.`);let e=n.shape[0],r=n.shape[1],o=Ed(e),s=ii(n),c=di([[1]],[1,1]),l=ii(c),p=e>=r?r:e;for(let f=0;f{let v=ce(s,[f,f],[e-f,1]),T=Kd(v),N=ce(s,[f,f],[1,1]),S=Yn(Rr(N,0),di([[-1]]),di([[1]])),D=Dt(N,nt(S,T)),I=Bt(v,D);I.shape[0]===1?l=ii(c):l=Qe([c,ce(I,[1,0],[I.shape[0]-1,I.shape[1]])],0);let P=tn(Bt(ge(S,D),T)),E=ce(s,[f,0],[e-f,r]),L=nt(P,l),B=Kt(l);if(f===0)s=Dt(E,ge(L,ge(B,E)));else{let Z=Dt(E,ge(L,ge(B,E)));s=Qe([ce(s,[0,0],[f,r]),Z],0)}let q=Kt(L),H=ce(o,[0,f],[e,o.shape[1]-f]);if(f===0)o=Dt(H,ge(ge(H,l),q));else{let Z=Dt(H,ge(ge(H,l),q));o=Qe([ce(o,[0,0],[e,f]),Z],1)}return[l,s,o]}),Xt([m,y,b])}return!t&&e>r&&(o=ce(o,[0,0],[e,r]),s=ce(s,[0,0],[r,r])),[o,s]})}let FW=j({qr_:AW});(function(n){n[n.NONE=0]="NONE",n[n.MEAN=1]="MEAN",n[n.SUM=2]="SUM",n[n.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(i.Reduction||(i.Reduction={}));function RW(n,t,e=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let r=M(n,"losses","computeWeightedLoss"),o=null;t!=null&&(o=M(t,"weights","computeWeightedLoss"));let s=o==null?r:nt(r,o);if(e===i.Reduction.NONE)return s;if(e===i.Reduction.SUM)return zt(s);if(e===i.Reduction.MEAN){if(o==null)return en(s);{let c=r.size/o.size,l=Bt(zt(s),zt(o));return c>1?Bt(l,Et(c)):l}}if(e===i.Reduction.SUM_BY_NONZERO_WEIGHTS){if(o==null)return Bt(zt(s),Et(r.size));{let c=nt(o,fo(r.shape)),l=$t(zt(hi(c,Et(0))),"float32");return Bt(zt(s),l)}}throw Error(`Unknown reduction: ${e}`)}let bs=j({computeWeightedLoss_:RW});function PW(n,t,e,r=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=M(n,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),c=null;e!=null&&(c=M(e,"weights","absoluteDifference")),W(o.shape,s.shape,"Error in absoluteDifference: ");let l=bn(Dt(o,s));return bs(l,c,r)}let OW=j({absoluteDifference_:PW});function LW(n,t,e,r,o=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let s=M(n,"labels","cosineDistance"),c=M(t,"predictions","cosineDistance"),l=null;r!=null&&(l=M(r,"weights","cosineDistance")),W(s.shape,c.shape,"Error in cosineDistance: ");let p=Et(1),f=Dt(p,zt(nt(s,c),e,!0));return bs(f,l,o)}let MW=j({cosineDistance_:LW});function BW(n,t,e,r=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=M(n,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),c=null;e!=null&&(c=M(e,"weights","hingeLoss")),W(o.shape,s.shape,"Error in hingeLoss: ");let l=Et(1);o=Dt(nt(Et(2),o),l);let p=Uo(Dt(l,nt(o,s)));return bs(p,c,r)}let zW=j({hingeLoss_:BW});function WW(n,t,e,r=1,o=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let s=M(n,"labels","huberLoss"),c=M(t,"predictions","huberLoss"),l=null;e!=null&&(l=M(e,"weights","huberLoss")),W(s.shape,c.shape,"Error in huberLoss: ");let p=Et(r),f=bn(Dt(c,s)),m=ua(f,p),y=Dt(f,m),b=Tt(nt(Et(.5),Ae(m)),nt(p,y));return bs(b,l,o)}let VW=j({huberLoss_:WW});function GW(n,t,e,r=1e-7,o=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let s=M(n,"labels","logLoss"),c=M(t,"predictions","logLoss"),l=null;e!=null&&(l=M(e,"weights","logLoss")),W(s.shape,c.shape,"Error in logLoss: ");let p=Et(1),f=Et(r),m=tn(nt(s,wr(Tt(c,f)))),y=nt(Dt(p,s),wr(Tt(Dt(p,c),f))),b=Dt(m,y);return bs(b,l,o)}let UW=j({logLoss_:GW});function qW(n,t,e,r=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let o=M(n,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),c=null;e!=null&&(c=M(e,"weights","meanSquaredError")),W(o.shape,s.shape,"Error in meanSquaredError: ");let l=Tp(o,s);return bs(l,c,r)}let HW=j({meanSquaredError_:qW});function jW(n,t){let e=M(n,"labels","sigmoidCrossEntropyWithLogits"),r=M(t,"logits","sigmoidCrossEntropyWithLogits");W(e.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let o=Uo(r),s=nt(r,e),c=Ad(Fr(tn(bn(r))));return Tt(Dt(o,s),c)}function KW(n,t,e,r=0,o=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let s=M(n,"multiClassLabels","sigmoidCrossEntropy"),c=M(t,"logits","sigmoidCrossEntropy"),l=null;if(e!=null&&(l=M(e,"weights","sigmoidCrossEntropy")),W(s.shape,c.shape,"Error in sigmoidCrossEntropy: "),r>0){let f=Et(r),m=Et(1),y=Et(.5);s=Tt(nt(s,Dt(m,f)),nt(y,f))}let p=jW(s,c);return bs(p,l,o)}let XW=j({sigmoidCrossEntropy_:KW});function YW(n,t,e=-1){if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${e}`);let r=Vo((o,s,c)=>{let l=!0,p=Vw(s,[e],l),f=Dt($t(s,"float32"),p);c([o,f]);let m=tn(nt(f,o)),y=zt(m,[e]),b=(v,T)=>{let[N,S]=T,D=Pn(v.shape,[e]);return[nt(Q(v,D),Dt($t(N,"float32"),Fr(S))),nt(Q(v,D),Dt(Fr(S),$t(N,"float32")))]};return{value:y,gradFunc:b}});return r(n,t)}function JW(n,t,e,r=0,o=i.Reduction.SUM_BY_NONZERO_WEIGHTS){let s=M(n,"onehotLabels","softmaxCrossEntropy"),c=M(t,"logits","softmaxCrossEntropy"),l=null;if(e!=null&&(l=M(e,"weights","softmaxCrossEntropy")),W(s.shape,c.shape,"Error in softmaxCrossEntropy: "),r>0){let f=Et(r),m=Et(1),y=Et(s.shape[1]);s=Tt(nt(s,Dt(m,f)),Bt(f,y))}let p=YW(s,c);return bs(p,l,o)}let ZW=j({softmaxCrossEntropy_:JW});let QW={fft:wp,ifft:qc,rfft:vp,irfft:qd},t4={hammingWindow:Jz,hannWindow:xC,frame:wC,stft:eW},mi={flipLeftRight:sW,resizeNearestNeighbor:kC,resizeBilinear:TC,rotateWithOffset:aW,cropAndResize:rW,nonMaxSuppression:lW,nonMaxSuppressionAsync:yW,nonMaxSuppressionWithScore:xW,nonMaxSuppressionWithScoreAsync:vW,nonMaxSuppressionPadded:kW,nonMaxSuppressionPaddedAsync:_W},_C={bandPart:IW,gramSchmidt:DW,qr:FW},e4={absoluteDifference:OW,computeWeightedLoss:bs,cosineDistance:MW,hingeLoss:zW,huberLoss:VW,logLoss:UW,meanSquaredError:HW,sigmoidCrossEntropy:XW,softmaxCrossEntropy:ZW};class xs extends sa{minimize(t,e=!1,r){let{value:o,grads:s}=this.computeGradients(t,r);if(r!=null){let c=r.map(l=>({name:l.name,tensor:s[l.name]}));this.applyGradients(c)}else this.applyGradients(s);return Xt(s),e?o:(o.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(t,e){return Ww(t,e)}dispose(){this.iterations_!=null&&Xt(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Et(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(t){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(t){return this.iterations_=(await t[0].tensor.data())[0],t.slice(1)}}Object.defineProperty(xs,Symbol.hasInstance,{value:n=>n.minimize!=null&&n.computeGradients!=null&&n.applyGradients!=null});class Np extends xs{constructor(t,e,r=null){super();this.learningRate=t,this.rho=e,this.epsilon=r,this.accumulatedGrads=[],this.accumulatedUpdates=[],r==null&&(this.epsilon=X.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);e.forEach((r,o)=>{let s=X.registeredVariables[r],c=!1;this.accumulatedGrads[o]==null&&(this.accumulatedGrads[o]={originalName:`${r}/accum_grad`,variable:rt(()=>re(s).variable(c))}),this.accumulatedUpdates[o]==null&&(this.accumulatedUpdates[o]={originalName:`${r}/accum_var`,variable:rt(()=>re(s).variable(c))});let l=Array.isArray(t)?t[o].tensor:t[r];if(l==null)return;let p=this.accumulatedGrads[o].variable,f=this.accumulatedUpdates[o].variable;rt(()=>{let m=Tt(nt(p,this.rho),nt(Ae(l),1-this.rho)),y=nt(Bt(On(Tt(f,this.epsilon)),On(Tt(p,this.epsilon))),l),b=Tt(nt(f,this.rho),nt(Ae(y),1-this.rho));p.assign(m),f.assign(b);let v=Tt(nt(y,-this.learningRate),s);s.assign(v)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Xt(this.accumulatedGrads.map(t=>t.variable)),Xt(this.accumulatedUpdates.map(t=>t.variable)))}async getWeights(){let t=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=t.length/2,r=!1;this.accumulatedGrads=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(r)})),this.accumulatedUpdates=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.rho,e.epsilon)}}Np.className="Adadelta",vt(Np);class _p extends xs{constructor(t,e=.1){super();this.learningRate=t,this.initialAccumulatorValue=e,this.accumulatedGrads=[]}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);e.forEach((r,o)=>{let s=X.registeredVariables[r];if(this.accumulatedGrads[o]==null){let p=!1;this.accumulatedGrads[o]={originalName:`${r}/accumulator`,variable:rt(()=>Lc(s.shape,this.initialAccumulatorValue).variable(p))}}let c=Array.isArray(t)?t[o].tensor:t[r];if(c==null)return;let l=this.accumulatedGrads[o].variable;rt(()=>{let p=Tt(l,Ae(c));l.assign(p);let f=Tt(nt(Bt(c,On(Tt(p,X.backend.epsilon()))),-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Xt(this.accumulatedGrads.map(t=>t.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulatedGrads=t.map(r=>({originalName:r.name,variable:r.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(t,e){return new t(e.learningRate,e.initialAccumulatorValue)}}_p.className="Adagrad",vt(_p);class Cp extends xs{constructor(t,e,r,o=null){super();this.learningRate=t,this.beta1=e,this.beta2=r,this.epsilon=o,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],rt(()=>{this.accBeta1=Et(e).variable(),this.accBeta2=Et(r).variable()}),o==null&&(this.epsilon=X.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);rt(()=>{let r=Dt(1,this.accBeta1),o=Dt(1,this.accBeta2);e.forEach((s,c)=>{let l=X.registeredVariables[s],p=!1;this.accumulatedFirstMoment[c]==null&&(this.accumulatedFirstMoment[c]={originalName:`${s}/m`,variable:rt(()=>re(l).variable(p))}),this.accumulatedSecondMoment[c]==null&&(this.accumulatedSecondMoment[c]={originalName:`${s}/v`,variable:rt(()=>re(l).variable(p))});let f=Array.isArray(t)?t[c].tensor:t[s];if(f==null)return;let m=this.accumulatedFirstMoment[c].variable,y=this.accumulatedSecondMoment[c].variable,b=Tt(nt(m,this.beta1),nt(f,1-this.beta1)),v=Tt(nt(y,this.beta2),nt(Ae(f),1-this.beta2)),T=Bt(b,r),N=Bt(v,o);m.assign(b),y.assign(v);let S=Tt(nt(Bt(T,Tt(On(N),this.epsilon)),-this.learningRate),l);l.assign(S)}),this.accBeta1.assign(nt(this.accBeta1,this.beta1)),this.accBeta2.assign(nt(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Xt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedSecondMoment!=null&&Xt(this.accumulatedSecondMoment.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t),rt(()=>{this.accBeta1.assign(mo(this.beta1,this.iterations_+1)),this.accBeta2.assign(mo(this.beta2,this.iterations_+1))});let e=t.length/2,r=!1;this.accumulatedFirstMoment=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(r)})),this.accumulatedSecondMoment=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(r)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon)}}Cp.className="Adam",vt(Cp);class Sp extends xs{constructor(t,e,r,o=null,s=0){super();this.learningRate=t,this.beta1=e,this.beta2=r,this.epsilon=o,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],rt(()=>{this.iteration=Et(0).variable(),this.accBeta1=Et(e).variable()}),o==null&&(this.epsilon=X.backend.epsilon())}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);rt(()=>{let r=Dt(1,this.accBeta1),o=Bt(-this.learningRate,Tt(nt(this.iteration,this.decay),1));e.forEach((s,c)=>{let l=X.registeredVariables[s],p=!1;this.accumulatedFirstMoment[c]==null&&(this.accumulatedFirstMoment[c]={originalName:`${s}/m`,variable:re(l).variable(p)}),this.accumulatedWeightedInfNorm[c]==null&&(this.accumulatedWeightedInfNorm[c]={originalName:`${s}/v`,variable:re(l).variable(p)});let f=Array.isArray(t)?t[c].tensor:t[s];if(f==null)return;let m=this.accumulatedFirstMoment[c].variable,y=this.accumulatedWeightedInfNorm[c].variable,b=Tt(nt(m,this.beta1),nt(f,1-this.beta1)),v=nt(y,this.beta2),T=bn(f),N=Jr(v,T);m.assign(b),y.assign(N);let S=Tt(nt(Bt(o,r),Bt(b,Tt(N,this.epsilon))),l);l.assign(S)}),this.iteration.assign(Tt(this.iteration,1)),this.accBeta1.assign(nt(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Xt(this.accumulatedFirstMoment.map(t=>t.variable)),this.accumulatedWeightedInfNorm!=null&&Xt(this.accumulatedWeightedInfNorm.map(t=>t.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(t){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(t,e){return new t(e.learningRate,e.beta1,e.beta2,e.epsilon,e.decay)}}Sp.className="Adamax",vt(Sp);class Xc extends xs{constructor(t){super();this.learningRate=t,this.setLearningRate(t)}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);e.forEach((r,o)=>{let s=Array.isArray(t)?t[o].tensor:t[r];if(s==null)return;let c=X.registeredVariables[r];rt(()=>{let l=Tt(nt(this.c,s),c);c.assign(l)})}),this.incrementIterations()}setLearningRate(t){this.learningRate=t,this.c!=null&&this.c.dispose(),this.c=Sn(Et(-t))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(t){if(t=await this.extractIterations(t),t.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(t,e){return new t(e.learningRate)}}Xc.className="SGD",vt(Xc);class $p extends Xc{constructor(t,e,r=!1){super(t);this.learningRate=t,this.momentum=e,this.useNesterov=r,this.accumulations=[],this.m=Et(this.momentum)}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);e.forEach((r,o)=>{let s=X.registeredVariables[r];if(this.accumulations[o]==null){let p=!1;this.accumulations[o]={originalName:`${r}/momentum`,variable:rt(()=>re(s).variable(p))}}let c=this.accumulations[o].variable,l=Array.isArray(t)?t[o].tensor:t[r];if(l==null)return;rt(()=>{let p,f=Tt(nt(this.m,c),l);this.useNesterov?p=Tt(nt(this.c,Tt(l,nt(f,this.m))),s):p=Tt(nt(this.c,f),s),c.assign(f),s.assign(p)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Xt(this.accumulations.map(t=>t.variable))}setMomentum(t){this.momentum=t}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=!1;this.accumulations=t.map(r=>({originalName:r.name,variable:r.tensor.variable(e)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(t,e){return new t(e.learningRate,e.momentum,e.useNesterov)}}$p.className="Momentum",vt($p);class Ip extends xs{constructor(t,e=.9,r=0,o=null,s=!1){super();if(this.learningRate=t,this.decay=e,this.momentum=r,this.epsilon=o,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,o==null&&(this.epsilon=X.backend.epsilon()),t==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(t){let e=Array.isArray(t)?t.map(r=>r.name):Object.keys(t);e.forEach((r,o)=>{let s=X.registeredVariables[r],c=!1;this.accumulatedMeanSquares[o]==null&&(this.accumulatedMeanSquares[o]={originalName:`${r}/rms`,variable:rt(()=>re(s).variable(c))}),this.accumulatedMoments[o]==null&&(this.accumulatedMoments[o]={originalName:`${r}/momentum`,variable:rt(()=>re(s).variable(c))}),this.accumulatedMeanGrads[o]==null&&this.centered&&(this.accumulatedMeanGrads[o]={originalName:`${r}/mg`,variable:rt(()=>re(s).variable(c))});let l=Array.isArray(t)?t[o].tensor:t[r];if(l==null)return;let p=this.accumulatedMeanSquares[o].variable,f=this.accumulatedMoments[o].variable;rt(()=>{let m=Tt(nt(p,this.decay),nt(Ae(l),1-this.decay));if(this.centered){let y=this.accumulatedMeanGrads[o].variable,b=Tt(nt(y,this.decay),nt(l,1-this.decay)),v=Bt(nt(l,this.learningRate),On(Dt(m,Tt(Ae(b),this.epsilon)))),T=Tt(nt(f,this.momentum),v);p.assign(m),y.assign(b),f.assign(T);let N=Dt(s,T);s.assign(N)}else{let y=Tt(nt(p,this.decay),nt(Ae(l),1-this.decay)),b=Tt(nt(f,this.momentum),Bt(nt(l,this.learningRate),On(Tt(y,this.epsilon))));p.assign(y),f.assign(b);let v=Dt(s,b);s.assign(v)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Xt(this.accumulatedMeanSquares.map(t=>t.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Xt(this.accumulatedMeanGrads.map(t=>t.variable)),this.accumulatedMoments!=null&&Xt(this.accumulatedMoments.map(t=>t.variable))}async getWeights(){let t=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&t.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(t.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(t){t=await this.extractIterations(t);let e=this.centered?t.length/3:t.length/2,r=!1;this.accumulatedMeanSquares=t.slice(0,e).map(o=>({originalName:o.name,variable:o.tensor.variable(r)})),this.accumulatedMoments=t.slice(e,e*2).map(o=>({originalName:o.name,variable:o.tensor.variable(r)})),this.centered&&(this.accumulatedMeanGrads=t.slice(e*2,e*3).map(o=>({originalName:o.name,variable:o.tensor.variable(r)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(t,e){return new t(e.learningRate,e.decay,e.momentum,e.epsilon,e.centered)}}Ip.className="RMSProp",vt(Ip);class ma{static sgd(t){return new Xc(t)}static momentum(t,e,r=!1){return new $p(t,e,r)}static rmsprop(t,e=.9,r=0,o=null,s=!1){return new Ip(t,e,r,o,s)}static adam(t=.001,e=.9,r=.999,o=null){return new Cp(t,e,r,o)}static adadelta(t=.001,e=.95,r=null){return new Np(t,e,r)}static adamax(t=.002,e=.9,r=.999,o=null,s=0){return new Sp(t,e,r,o,s)}static adagrad(t,e=.1){return new _p(t,e)}}let ga={sgd:ma.sgd,momentum:ma.momentum,adadelta:ma.adadelta,adagrad:ma.adagrad,rmsprop:ma.rmsprop,adamax:ma.adamax,adam:ma.adam};let n4=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:n=>n())();function rm(){return new Promise(n=>n4(()=>n()))}function uv(n,t,e){let r=e*(typeof n=="number"?n:n[0]),o=t*(typeof n=="number"?n:n[1]);return[r,o]}function Ep(n,t,e,r=!0){let o=[];if(r)o=o.concat(t.slice(0)),o.push(n[0]/e),o=o.concat(n.slice(1));else{o=o.concat(n[0]);let s=t.length;for(let c=0;c=t*2+1||c%2===1?s.push(c):o.push(c);r.push(...o),r.push(0),r.push(...s)}return r}function Ap(n,t,e,r=!0){let o=[];r?o.push(n[0]/e):o.push(n[0]*e);for(let s=1;s{let c=[...o];c[e]=s;let l=ce(n,r,c);return r[e]+=s,l})}function kv(n,t){let e=new Array(n.rank);for(let o=0;oP.value-I.value);let N=y*r,S=p.subarray(N,N+r),D=f.subarray(N,N+r);for(let I=0;I{let[e]=t;return{x:()=>nt(n,Hc($t(e,"float32"),-1))}}};let a4={kernelName:au,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>{let r=Ae($t(e,"float32")),o=On(Dt(Et(1),r));return tn(Bt(n,o))}}}};let c4={kernelName:cu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>{let r=On(Dt(Ae($t(e,"float32")),1));return Bt(n,r)}}}};let l4={kernelName:Zi,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=n,p=xn(e.shape,o);return p.length>0&&(l=zt(l,p)),Q(l,e.shape)},c=()=>{let l=n,p=xn(r.shape,o);return p.length>0&&(l=zt(l,p)),Q(l,r.shape)};return{a:s,b:c}}};let u4={kernelName:rx,saveAllInputs:!0,gradFunc:(n,t)=>{let e={};return t.forEach((r,o)=>{e[o]=()=>n.clone()}),e}};let p4={kernelName:ox,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>re(e)}}};let h4={kernelName:sx,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>re(e)}}};let f4={kernelName:lu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,On(Dt(Et(1),Ae($t(e,"float32")))))}}};let d4={kernelName:uu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>{let r=On(Tt(Et(1),Ae($t(e,"float32"))));return Bt(n,r)}}}};let m4={kernelName:Nf,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=Tt(Ae(e),Ae(r)),p=nt(n,Bt(r,l)),f=xn(e.shape,o);return f.length>0&&(p=zt(p,f)),Q(p,e.shape)},c=()=>{let l=Tt(Ae(e),Ae(r)),p=tn(nt(n,Bt(e,l))),f=xn(r.shape,o);return f.length>0&&(p=zt(p,f)),Q(p,r.shape)};return{a:s,b:c}}};let g4={kernelName:pu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,Tt(Ae($t(e,"float32")),1))}}};let y4={kernelName:hu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,Dt(Et(1),Ae($t(e,"float32"))))}}};function b4(n,t,e,r,o=[1,1,1],s,c){let l=M(n,"dy","avgPool3dBackprop"),p=M(t,"input","avgPool3dBackprop"),f=l,m=p,y=!1;p.rank===4&&(y=!0,f=Q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=Q(p,[1,p.shape[0],p.shape[1],p.shape[2],p.shape[3]])),_(f.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${f.rank}.`),_(m.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${m.rank}.`),_(fn(r,o),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'`),c!=null&&_(gt(s),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${c} but got pad ${s}.`);let b=S=>{let D=ip(m.shape,e,r,o,s,c);return S.avgPool3dBackprop(f,m,D)},v={dy:f,input:m},T={filterSize:e,strides:r,dilations:o,pad:s,dimRoundingMode:c},N=X.runKernelFunc(b,v,null,hN,T);return y?Q(N,[N.shape[1],N.shape[2],N.shape[3],N.shape[4]]):N}let x4=j({avgPool3dBackprop_:b4});let w4={kernelName:ix,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{filterSize:o,strides:s,dilations:c,pad:l,dimRoundingMode:p}=e,f=c==null?[1,1,1]:c;return{x:()=>x4(n,r,o,s,f,l,p)}}};function v4(n,t,e,r,o){let s=M(n,"dy","avgPoolBackprop"),c=M(t,"input","avgPoolBackprop");_(c.rank===s.rank,()=>`Rank of input (${c.rank}) does not match rank of dy (${s.rank})`);let l=c,p=s,f=!1;c.rank===3&&(f=!0,l=Q(c,[1,c.shape[0],c.shape[1],c.shape[2]]),p=Q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),_(p.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${p.rank}.`),_(l.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${l.rank}.`);let m=T=>{let N=Xn(l.shape,e,r,1,o);return T.avgPoolBackprop(p,l,N)},y={dy:p,input:l},b={filterSize:e,strides:r,pad:o},v=X.runKernelFunc(m,y,null,_f,b);return f?Q(v,[v.shape[1],v.shape[2],v.shape[3]]):v}let T4=j({avgPoolBackprop_:v4});let k4={kernelName:fu,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{filterSize:o,strides:s,pad:c}=e;return{x:()=>T4(n,r,o,s,c)}}};let N4={kernelName:Cf,inputsToSave:["a","b"],gradFunc:(n,t,e)=>{let[r,o]=t,{transposeA:s,transposeB:c}=e;return!s&&!c?{a:()=>ge(n,o,!1,!0),b:()=>ge(r,n,!0,!1)}:!s&&c?{a:()=>ge(n,o,!1,!1),b:()=>ge(n,r,!0,!1)}:s&&!c?{a:()=>ge(o,n,!1,!0),b:()=>ge(r,n,!1,!1)}:{a:()=>ge(o,n,!0,!0),b:()=>ge(n,r,!0,!0)}}};let _4={kernelName:ax,gradFunc:(n,t,e)=>{let{blockShape:r,crops:o}=e;return{x:()=>gp(n,r,o)}}};let C4={kernelName:cx,gradFunc:(n,t,e)=>{let r=e,o=r.inputShape,s=r.shape,c=Array.from(s);for(let p=o.length-1;p>=0;p--)if(o[p]===s[p])c[p]=1;else if(o[p]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${s}].`);let l=[];for(let p=0;p1&&l.push(p);return{x:()=>zt(n,l,!0)}}};let S4={kernelName:xc,gradFunc:n=>({x:()=>n.clone()})};let $4={kernelName:du,gradFunc:n=>({x:()=>re(n)})};let I4={kernelName:mu,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{clipValueMin:o,clipValueMax:s}=e;return{x:()=>Yn(Zr(ys(r,o),pi(r,s)),n,re(n))}}};let E4={kernelName:gu,saveAllInputs:!0,gradFunc:(n,t,e)=>{let r=t.map(p=>p.shape),{axis:o}=e,s=Vt(o,t[0].shape)[0],c=r.map(p=>p[s]),l=Tr(n,c,s);return l.map(p=>()=>p)}};let D4={kernelName:$f,inputsToSave:["x","filter"],gradFunc:(n,t,e)=>{let[r,o]=t,{dilations:s,strides:c,pad:l,dataFormat:p}=e;return _(ci(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Aw(r.shape,n,o,c,l,p),filter:()=>av(r,n,o.shape,c,l,p)}}};let A4={kernelName:If,inputsToSave:["dy","filter"],gradFunc:(n,t,e)=>{let[r,o]=t,{strides:s,pad:c,dataFormat:l,dimRoundingMode:p}=e;return{dy:()=>gs(n,o,s,c,l,1,p),filter:()=>av(n,r,o.shape,s,c,l,p)}}};function F4(n,t,e,r,o){let s=n;n.rank===4&&(s=Q(n,[1,n.shape[0],n.shape[1],n.shape[2],n.shape[3]]));let c=t;c.rank===4&&(c=Q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),_(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),_(c.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${c.shape}.`),_(e.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${e}.`),_(s.shape[4]===e[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${e[3]}.`),_(c.shape[4]===e[4],()=>`Error in conv3dDerFilter: depth of dy (${c.shape[4]}) must match output depth for filter (${e[4]}).`);let l=m=>{let y=1,b=ai(s.shape,e,r,y,o);return m.conv3dDerFilter(s,c,b)},p={x:s,dy:c},f={strides:r,pad:o,filterShape:e};return X.runKernelFunc(l,p,null,ux,f)}let R4=j({conv3DBackpropFilter_:F4});let P4={kernelName:Ef,inputsToSave:["x","filter"],gradFunc:(n,t,e)=>{let{dilations:r,strides:o,pad:s}=e;_(ci(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[c,l]=t;return{x:()=>P_(c.shape,n,l,o,s),filter:()=>R4(c,n,l.shape,o,s)}}};let O4={kernelName:wc,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(tn(Wd($t(e,"float32"))),n)}}};let L4={kernelName:yu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(Vd($t(e,"float32")),n)}}};let M4={kernelName:hx,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{axis:o,exclusive:s,reverse:c}=e;return{x:()=>{let l=ar([o],r.rank),p=Id(n,o,s,!c);return l!=null&&(p=Kt(p,l)),p}}}};let B4={kernelName:Df,inputsToSave:["x","filter"],gradFunc:(n,t,e)=>{let{dilations:r,strides:o,pad:s,dimRoundingMode:c}=e,l=r==null?[1,1]:r;_(ci(l),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${l}'`);let[p,f]=t;return _(p.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${p.rank}.`),_(f.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${f.rank}.`),_(p.shape[3]===f.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${f.shape[2]}.`),_(fn(o,l),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'.`),c!=null&&_(gt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${c} but got pad ${s}.`),{x:()=>yC(p.shape,n,f,o,s,r,c),filter:()=>gC(p,n,f.shape,o,s,r,c)}}};let z4={kernelName:Af,inputsToSave:["x","filter"],gradFunc:(n,t,e)=>{let[r,o]=t,s={x:r,filter:o,dy:n},c={x:r,filter:o,dy:n};return{x:()=>X.runKernel(Ff,s,e),filter:()=>X.runKernel(Rf,c,e)}}};let W4={kernelName:vc,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=Bt(n,$t(r,"float32")),p=xn(e.shape,o);return p.length>0?Q(zt(l,p),e.shape):l},c=()=>{let l=nt(n,$t(e,"float32")),p=xn(r.shape,o);p.length>0&&(l=Q(zt(l,p),r.shape));let f=Ae(r);return tn(Bt(l,$t(f,"float32")))};return{a:s,b:c}}};let V4={kernelName:bu,outputsToSave:[!0],gradFunc:(n,t)=>{let[e]=t,r=s=>s.eluDer(n,e),o={dy:n,y:e};return{x:()=>X.runKernelFunc(r,o,null,gN)}}};let G4={kernelName:xu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t,r=nt(Fr(tn(Ae(e))),2/Math.sqrt(Math.PI));return{x:()=>nt(n,r)}}};let U4={kernelName:wu,outputsToSave:[!0],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,e)}}};let q4={kernelName:vu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,Fr(e))}}};let H4={kernelName:Tu,gradFunc:n=>({x:()=>re(n)})};let j4={kernelName:gx,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=Bt(n,$t(r,"float32")),p=xn(e.shape,o);return p.length>0?Q(zt(l,p),e.shape):l},c=()=>{let l=nt(n,$t(e,"float32")),p=xn(r.shape,o);p.length>0&&(l=Q(zt(l,p),r.shape));let f=Ae(r);return tn(Bt(l,$t(f,"float32")))};return{a:s,b:c}}};let K4={kernelName:ku,inputsToSave:["x","mean","variance","scale"],gradFunc:(n,t,e)=>{let{varianceEpsilon:r}=e,[o,s,c,l]=t,p=l==null?Et(1):l,f=xn(s.shape,o.shape),m=[];if(s.rank===1){for(let E=0;Es.rank===1?Q(nt(nt(n,ui(Q(v,[1,1,1,s.shape[0]]),m)),p),o.shape):Q(nt(nt(n,v),p),o.shape),S=()=>{let E=nt(nt(v,Et(-1)),b);return s.rank===1&&(E=zt(E,f)),Q(E,s.shape)},D=()=>{let E=nt(nt(T,y),b);return s.rank===1&&(E=zt(E,f)),Q(E,s.shape)},I=()=>{let E=nt(y,v),L=nt(n,E);return s.rank===1&&(L=zt(L,f)),Q(L,s.shape)},P=()=>{let E=n;return s.rank===1&&(E=zt(E,f)),Q(E,s.shape)};return{x:N,mean:S,variance:D,scale:I,offset:P}}};let X4={kernelName:yx,inputsToSave:["x","indices"],gradFunc:(n,t,e)=>{let[r,o]=t,{axis:s}=e,c=Vt(s,r.shape)[0],l=()=>{let p=r.shape,f=o.size,m=p.slice(0,c),y=m.length,b=p.slice(s,p.length).slice(1),v=b.length,T=FC(0,y),N=FC(y+1,y+1+v),S=RC([m,[f],b]),D=Q(n,S),I=Q(o,[f]),P=RC([[y],T,N]),E=Kt(D,P),L=rv(E,I,r.shape[c]),B=rp(P);return L=Kt(L,B),L};return{x:l,indices:()=>o}}};function FC(n,t){let e=[];for(let r=n;r{let[e,r]=t;return{a:()=>re(e),b:()=>re(r)}}};let J4={kernelName:Nu,gradFunc:n=>({x:()=>$t(n,"float32")})};let Z4={kernelName:_u,gradFunc:n=>({x:()=>re(n)})};let Q4={kernelName:Cu,gradFunc:n=>({x:()=>re(n)})};let tV={kernelName:Su,gradFunc:n=>({x:()=>re(n)})};let eV={kernelName:Iu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,Tt(e,1))}}};let nV={kernelName:$u,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,$t(e,"float32"))}}};let rV={kernelName:xx,inputsToSave:[],outputsToSave:[!0],gradFunc:(n,t,e)=>{let[r]=t,{axis:o}=e;return{logits:()=>{let s=!0,c=Fr(r);return Dt(n,nt(zt(n,o,s),c))}}}};function oV(n,t,e,r=5,o=1,s=1,c=.5){let l=m=>m.LRNGrad(e,n,t,r,o,s,c),p={x:n,y:t,dy:e},f={depthRadius:r,bias:o,alpha:s,beta:c};return X.runKernelFunc(l,p,null,_N,f)}let sV=j({localResponseNormalizationBackprop_:oV});let iV={kernelName:wx,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(n,t,e)=>{let[r,o]=t,{depthRadius:s,bias:c,alpha:l,beta:p}=e;return{x:()=>sV(r,o,n,s,c,l,p)}}};function PC(n,t,e,r){return t.rank{let o=nt(n,$t(ho(e,t),n.dtype));return o}}}let OC={kernelName:Eu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(n,t,e)=>{let r=e,{reductionIndices:o}=r,s=t[0],c=t[1],l=Vt(o,s.shape),p=PC(n,c,s,l);return{x:()=>p.x()}}};let aV={kernelName:vx,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=()=>nt(n,$t(ys(e,r),"float32")),s=()=>nt(n,$t(fp(e,r),"float32"));return{a:o,b:s}}};function cV(n,t,e,r,o,s=[1,1,1],c,l){let p=M(n,"dy","maxPool3dBackprop"),f=M(t,"input","maxPool3dBackprop"),m=M(e,"output","maxPool3dBackprop"),y=p,b=f,v=m,T=!1;f.rank===4&&(T=!0,y=Q(p,[1,p.shape[0],p.shape[1],p.shape[2],p.shape[3]]),b=Q(f,[1,f.shape[0],f.shape[1],f.shape[2],f.shape[3]]),v=Q(m,[1,m.shape[0],m.shape[1],m.shape[2],m.shape[3]])),_(y.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${y.rank}.`),_(b.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${b.rank}.`),_(v.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${v.rank}.`),_(fn(o,s),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${o} and dilations '${s}'`),l!=null&&_(gt(c),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${l} but got pad ${c}.`);let N=P=>{let E=ip(b.shape,r,o,s,c,l);return P.maxPool3dBackprop(y,b,v,E)},S={dy:y,input:b,output:v},D={filterSize:r,strides:o,dilations:s,pad:c,dimRoundingMode:l},I=X.runKernelFunc(N,S,null,CN,D);return T?Q(I,[I.shape[1],I.shape[2],I.shape[3],I.shape[4]]):I}let lV=j({maxPool3dBackprop_:cV});let uV={kernelName:Tx,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(n,t,e)=>{let[r,o]=t,{filterSize:s,strides:c,dilations:l,pad:p,dimRoundingMode:f}=e,m=l==null?[1,1,1]:l;return{x:()=>lV(n,r,o,s,c,m,p,f)}}};function pV(n,t,e,r,o,s,c){let l=M(n,"dy","maxPoolBackprop"),p=M(t,"input","maxPoolBackprop"),f=M(e,"output","maxPoolBackprop");_(p.rank===l.rank,()=>`Rank of input (${p.rank}) does not match rank of dy (${l.rank})`),_(l.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${l.rank}.`),_(p.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${p.rank}.`),c!=null&&_(gt(s),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${c} but got pad ${s}.`);let m=v=>{let T=Xn(p.shape,r,o,1,s,c);return v.maxPoolBackprop(l,p,f,T)},y={dy:l,input:p,output:f},b={filterSize:r,strides:o,pad:s,dimRoundingMode:c};return X.runKernelFunc(m,y,null,zf,b)}let hV=j({maxPoolBackprop_:pV});let fV={kernelName:Du,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(n,t,e)=>{let[r,o]=t,{filterSize:s,strides:c,pad:l}=e;return{x:()=>hV(n,r,o,s,c,l)}}};let dV={kernelName:Nx,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(n,t,e)=>{let r=e,{axis:o}=r,[s,c]=t,l=Vt(o,s.shape),p=PC(n,c,s,l);return{x:()=>p.x()}}};let mV={kernelName:_x,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=()=>nt(n,$t(pi(e,r),"float32")),s=()=>nt(n,$t(Rr(e,r),"float32"));return{a:o,b:s}}};let gV={kernelName:Au,inputsToSave:["x"],gradFunc:(n,t,e)=>{let r=t[0],{paddings:o}=e,s=o.map(c=>c[0]);return{x:()=>ce(n,s,r.shape)}}};let yV={kernelName:Cx,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=xn(e.shape,o);return l.length>0?Q(zt(n,l),e.shape):n},c=()=>{let l=nt(n,tn(Mc(Bt(e,r)))),p=xn(r.shape,o);return p.length>0?Q(zt(l,p),r.shape):l};return{a:s,b:c}}};let bV={kernelName:Tc,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=nt(n,$t(r,"float32")),p=xn(e.shape,o);return p.length>0?Q(zt(l,p),e.shape):l},c=()=>{let l=nt(n,$t(e,"float32")),p=xn(r.shape,o);return p.length>0?Q(zt(l,p),r.shape):l};return{a:s,b:c}}};let xV={kernelName:Sx,gradFunc:n=>({x:()=>tn(n)})};let wV={kernelName:Ex,inputsToSave:["indices"],gradFunc:(n,t)=>{let e=t[0];return{indices:()=>xe(e.shape,"float32")}}};let vV={kernelName:Ix,gradFunc:n=>({x:()=>re(n)})};let LC={kernelName:Uf,inputsToSave:["x"],gradFunc:(n,t,e)=>{let r=t[0],{paddings:o}=e,s=o.map(c=>c[0]);return{x:()=>ce(n,s,r.shape)}}};let TV={kernelName:Dx,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(n,t)=>{let[e,r,o]=t,s=e,c=r,l=le(s.shape,c.shape),p=()=>{let m=$t(c,"float32"),y=nt(n,nt(m,mo(s,Dt(m,Et(1))))),b=xn(s.shape,l);return b.length>0&&(y=zt(y,b)),Q(y,s.shape)},f=()=>{let m=Rr(s,0),y=Yn(m,wr(s),re(s)),b=nt(n,nt(o,y)),v=xn(c.shape,l);return v.length>0&&(b=zt(b,v)),Q(b,c.shape)};return{a:p,b:f}}};let kV={kernelName:qf,inputsToSave:["x","alpha"],gradFunc:(n,t)=>{let[e,r]=t,o=Rr(e,0);return{x:()=>Yn(o,n,nt(n,r)),alpha:()=>{let s=Yn(o,re(n),nt(n,e)),c=xn(r.shape,n.shape);return c.length>0&&(s=zt(s,c)),Q(s,r.shape)}}}};let NV={kernelName:Ru,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,tn(Ae(e)))}}};let _V={kernelName:Lu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t,r=nt(pi(e,6),Hc(e));return{x:()=>nt(n,$t(r,"float32"))}}};let CV={kernelName:Pu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,$t(Hc(e),"float32"))}}};let SV={kernelName:Ou,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Q(n,e.shape)}}};let $V={kernelName:Fx,inputsToSave:["images"],gradFunc:(n,t,e)=>{let[r]=t,o=l=>{let{alignCorners:p}=e;return l.resizeBilinearBackprop(n,r,p)},s={images:r},c=()=>X.runKernelFunc(o,s,null,EN,e);return{images:c}}};let IV={kernelName:Ax,inputsToSave:["images"],gradFunc:(n,t,e)=>{let[r]=t,o=l=>{let{alignCorners:p}=e;return l.resizeNearestNeighborBackprop(n,r,p)},s={images:r},c=()=>X.runKernelFunc(o,s,null,IN,e);return{images:c}}};let EV={kernelName:Rx,gradFunc:(n,t,e)=>{let{dims:r}=e,o=Vt(r,n.shape);return{x:()=>Pr(n,o)}}};let DV={kernelName:Mu,gradFunc:n=>({x:()=>re(n)})};let AV={kernelName:Bu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>tn(Bt(n,nt(mo(e,1.5),2)))}}};let FV={kernelName:Px,inputsToSave:["condition"],gradFunc:(n,t)=>{let[e]=t;return{condition:()=>$t(re(e),"float32"),t:()=>nt(n,$t(e,n.dtype)),e:()=>nt(n,$t(dp(e),n.dtype))}}};let RV={kernelName:zu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>{let r=Rr(e,Et(0)),o=Et(om),s=Et(sm),c=nt(n,s),l=nt(nt(n,o),Fr($t(e,"float32")));return Yn(r,c,l)}}}};let PV={kernelName:Gu,outputsToSave:[!0],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,nt(e,Dt(Et(1),e)))}}};let OV={kernelName:Vu,gradFunc:n=>({x:()=>re(n)})};let LV={kernelName:kc,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(up($t(e,"float32")),n)}}};let MV={kernelName:Wu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt($d($t(e,"float32")),n)}}};let BV={kernelName:jf,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{begin:o,size:s}=e,c=r.shape,[l,p]=yd(r,o,s),f=[];for(let m=0;mGo(n,f)}}};let zV={kernelName:Mx,outputsToSave:[!0],gradFunc:(n,t,e)=>{let[r]=t,{dim:o}=e,s=!0,c=nt(n,r);return{logits:()=>Dt(c,nt(zt(c,[o],s),r))}}};let WV={kernelName:Uu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,Wo(e))}}};let MC={kernelName:Kf,gradFunc:(n,t,e)=>{let{blockShape:r,paddings:o}=e;return{x:()=>cp(n,r,o)}}};let BC={kernelName:Lx,gradFunc:(n,t,e)=>{let{axis:r}=e;return{x:()=>Qe(n,r)}}};let VV={kernelName:qu,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,nt(On($t(e,"float32")),2))}}};let GV={kernelName:Xf,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(n,nt($t(e,"float32"),2))}}};let UV={kernelName:Nc,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=Et(2),s=()=>nt(n,nt(o,Dt(e,r))),c=()=>nt(n,nt(o,Dt(r,e)));return{a:s,b:c}}};let qV={kernelName:Ku,gradFunc:n=>({x:()=>re(n)})};let HV={kernelName:_c,inputsToSave:["a","b"],gradFunc:(n,t)=>{let[e,r]=t,o=le(e.shape,r.shape),s=()=>{let l=n,p=xn(e.shape,o);return p.length>0&&(l=zt(l,p)),Q(l,e.shape)},c=()=>{let l=n,p=xn(r.shape,o);return p.length>0&&(l=zt(l,p)),Q(tn(l),r.shape)};return{a:s,b:c}}};let jV={kernelName:Ox,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,o=r.shape.slice(),{axis:s}=e,c=Vt(s,r.shape);c.forEach(f=>{o[f]=1});let l=Q(n,o),p=nt(l,fo(r.shape,"float32"));return{x:()=>p}}};let KV={kernelName:Cc,inputsToSave:["x"],gradFunc:(n,t)=>{let[e]=t;return{x:()=>Bt(n,Ae(up(e)))}}};let XV={kernelName:Hu,outputsToSave:[!0],gradFunc:(n,t)=>{let[e]=t;return{x:()=>nt(Dt(Et(1),Ae(e)),n)}}};let YV={kernelName:Bx,inputsToSave:["x"],gradFunc:(n,t,e)=>{let[r]=t,{reps:o}=e,s=()=>{let c=re(r);if(r.rank===1)for(let l=0;l{let r=e,{perm:o}=r,s=rp(o);return{x:()=>Kt(n,s)}}};let ZV={kernelName:zx,gradFunc:(n,t,e)=>{let r=e,{axis:o}=r;return{value:()=>pr(n,o)}}};let QV={kernelName:Wx,inputsToSave:["segmentIds"],gradFunc:(n,t)=>{let[e]=t,r=()=>tG(n,e);return{x:r}}};function tG(n,t){let e=Jr(t,re(t)),r=Bc(n,e),o=ys(t,Et(0,"int32")),s=r.rank-o.rank;for(let l=0;l({x:()=>re(n)})};let nG=[i4,a4,c4,l4,u4,p4,h4,f4,d4,m4,g4,y4,w4,k4,N4,_4,C4,S4,$4,I4,E4,A4,D4,P4,O4,L4,M4,B4,z4,W4,V4,G4,U4,q4,j4,H4,K4,X4,Y4,J4,Z4,Q4,tV,eV,nV,rV,iV,OC,OC,aV,uV,fV,dV,mV,gV,yV,bV,xV,wV,vV,LC,LC,TV,kV,NV,_V,CV,SV,$V,IV,EV,DV,AV,FV,RV,PV,OV,LV,MV,BV,zV,WV,MC,MC,BC,BC,VV,UV,GV,qV,HV,jV,KV,XV,YV,JV,ZV,QV,eG];for(let n of nG)PN(n);ot.prototype.abs=function(){return this.throwIfDisposed(),bn(this)};ot.prototype.acos=function(){return this.throwIfDisposed(),xw(this)};ot.prototype.acosh=function(){return this.throwIfDisposed(),ww(this)};ot.prototype.addStrict=function(n){return this.throwIfDisposed(),nC(this,n)};ot.prototype.add=function(n){return this.throwIfDisposed(),Tt(this,n)};ot.prototype.all=function(n,t){return this.throwIfDisposed(),vd(this,n,t)};ot.prototype.any=function(n,t){return this.throwIfDisposed(),op(this,n,t)};ot.prototype.argMax=function(n){return this.throwIfDisposed(),sp(this,n)};ot.prototype.argMin=function(n){return this.throwIfDisposed(),Tw(this,n)};ot.prototype.asScalar=function(){return this.throwIfDisposed(),_(this.size===1,()=>"The array must have only 1 element."),Q(this,[])};ot.prototype.asType=function(n){return this.throwIfDisposed(),$t(this,n)};ot.prototype.as1D=function(){return this.throwIfDisposed(),Q(this,[this.size])};ot.prototype.as2D=function(n,t){return this.throwIfDisposed(),Q(this,[n,t])};ot.prototype.as3D=function(n,t,e){return this.throwIfDisposed(),Q(this,[n,t,e])};ot.prototype.as4D=function(n,t,e,r){return this.throwIfDisposed(),Q(this,[n,t,e,r])};ot.prototype.as5D=function(n,t,e,r,o){return this.throwIfDisposed(),Q(this,[n,t,e,r,o])};ot.prototype.asin=function(){return this.throwIfDisposed(),kw(this)};ot.prototype.asinh=function(){return this.throwIfDisposed(),Nw(this)};ot.prototype.atan=function(){return this.throwIfDisposed(),_w(this)};ot.prototype.atan2=function(n){return this.throwIfDisposed(),Cw(this,n)};ot.prototype.atanh=function(){return this.throwIfDisposed(),Sw(this)};ot.prototype.avgPool=function(n,t,e,r){return this.throwIfDisposed(),ap(this,n,t,e,r)};ot.prototype.batchToSpaceND=function(n,t){return this.throwIfDisposed(),cp(this,n,t)};ot.prototype.batchNorm=function(n,t,e,r,o){return this.throwIfDisposed(),aa(this,n,t,e,r,o)};ot.prototype.broadcastTo=function(n){return this.throwIfDisposed(),lp(this,n)};ot.prototype.cast=function(n){return this.throwIfDisposed(),$t(this,n)};ot.prototype.ceil=function(){return this.throwIfDisposed(),Dw(this)};ot.prototype.clipByValue=function(n,t){return this.throwIfDisposed(),cr(this,n,t)};ot.prototype.concat=function(n,t){return this.throwIfDisposed(),n instanceof ot&&(n=[n]),Qe([this,...n],t)};ot.prototype.conv1d=function(n,t,e,r,o,s){return this.throwIfDisposed(),Cd(this,n,t,e,r,o,s)};ot.prototype.conv2dTranspose=function(n,t,e,r,o){return this.throwIfDisposed(),Sd(this,n,t,e,r,o)};ot.prototype.conv2d=function(n,t,e,r,o,s){return this.throwIfDisposed(),gs(this,n,t,e,r,o,s)};ot.prototype.cos=function(){return this.throwIfDisposed(),up(this)};ot.prototype.cosh=function(){return this.throwIfDisposed(),$d(this)};ot.prototype.cumsum=function(n,t,e){return this.throwIfDisposed(),Id(this,n,t,e)};ot.prototype.depthToSpace=function(n,t){return this.throwIfDisposed(),Rw(this,n,t)};ot.prototype.depthwiseConv2D=function(n,t,e,r,o,s){return yn("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),ca(this,n,t,e,r,o,s)};ot.prototype.depthwiseConv2d=function(n,t,e,r,o,s){return this.throwIfDisposed(),ca(this,n,t,e,r,o,s)};ot.prototype.dilation2d=function(n,t,e,r,o){return this.throwIfDisposed(),Pw(this,n,t,e,r,o)};ot.prototype.divNoNan=function(n){return this.throwIfDisposed(),Ow(this,n)};ot.prototype.divStrict=function(n){return this.throwIfDisposed(),rC(this,n)};ot.prototype.div=function(n){return this.throwIfDisposed(),Bt(this,n)};ot.prototype.dot=function(n){return this.throwIfDisposed(),O_(this,n)};ot.prototype.elu=function(){return this.throwIfDisposed(),Oc(this)};ot.prototype.equalStrict=function(n){return this.throwIfDisposed(),Y_(this,n)};ot.prototype.equal=function(n){return this.throwIfDisposed(),ho(this,n)};ot.prototype.erf=function(){return this.throwIfDisposed(),Lw(this)};ot.prototype.exp=function(){return this.throwIfDisposed(),Fr(this)};ot.prototype.expandDims=function(n){return this.throwIfDisposed(),lr(this,n)};ot.prototype.expm1=function(){return this.throwIfDisposed(),Mw(this)};ot.prototype.fft=function(){return this.throwIfDisposed(),wp(this)};ot.prototype.flatten=function(){return this.throwIfDisposed(),Q(this,[this.size])};ot.prototype.floor=function(){return this.throwIfDisposed(),Mc(this)};ot.prototype.floorDiv=function(n){return this.throwIfDisposed(),wd(this,n)};ot.prototype.gather=function(n,t){return this.throwIfDisposed(),Bc(this,n,t)};ot.prototype.greaterEqualStrict=function(n){return this.throwIfDisposed(),J_(this,n)};ot.prototype.greaterEqual=function(n){return this.throwIfDisposed(),ys(this,n)};ot.prototype.greaterStrict=function(n){return this.throwIfDisposed(),Z_(this,n)};ot.prototype.greater=function(n){return this.throwIfDisposed(),Rr(this,n)};ot.prototype.ifft=function(){return this.throwIfDisposed(),qc(this)};ot.prototype.irfft=function(){return this.throwIfDisposed(),qd(this)};ot.prototype.isFinite=function(){return this.throwIfDisposed(),M_(this)};ot.prototype.isInf=function(){return this.throwIfDisposed(),B_(this)};ot.prototype.isNaN=function(){return this.throwIfDisposed(),z_(this)};ot.prototype.leakyRelu=function(n){return this.throwIfDisposed(),Dd(this,n)};ot.prototype.lessEqualStrict=function(n){return this.throwIfDisposed(),Q_(this,n)};ot.prototype.lessEqual=function(n){return this.throwIfDisposed(),pi(this,n)};ot.prototype.lessStrict=function(n){return this.throwIfDisposed(),tC(this,n)};ot.prototype.less=function(n){return this.throwIfDisposed(),fp(this,n)};ot.prototype.localResponseNormalization=function(n,t,e,r){return this.throwIfDisposed(),zw(this,n,t,e,r)};ot.prototype.logSigmoid=function(){return this.throwIfDisposed(),V_(this)};ot.prototype.logSoftmax=function(n){return this.throwIfDisposed(),Rd(this,n)};ot.prototype.logSumExp=function(n,t){return this.throwIfDisposed(),Vw(this,n,t)};ot.prototype.log=function(){return this.throwIfDisposed(),wr(this)};ot.prototype.log1p=function(){return this.throwIfDisposed(),Ad(this)};ot.prototype.logicalAnd=function(n){return this.throwIfDisposed(),Zr(this,n)};ot.prototype.logicalNot=function(){return this.throwIfDisposed(),dp(this)};ot.prototype.logicalOr=function(n){return this.throwIfDisposed(),Pd(this,n)};ot.prototype.logicalXor=function(n){return this.throwIfDisposed(),G_(this,n)};ot.prototype.matMul=function(n,t,e){return this.throwIfDisposed(),ge(this,n,t,e)};ot.prototype.maxPool=function(n,t,e,r){return this.throwIfDisposed(),mp(this,n,t,e,r)};ot.prototype.max=function(n,t){return this.throwIfDisposed(),ur(this,n,t)};ot.prototype.maximumStrict=function(n){return this.throwIfDisposed(),oC(this,n)};ot.prototype.maximum=function(n){return this.throwIfDisposed(),Jr(this,n)};ot.prototype.mean=function(n,t){return this.throwIfDisposed(),en(this,n,t)};ot.prototype.min=function(n,t){return this.throwIfDisposed(),Wc(this,n,t)};ot.prototype.minimumStrict=function(n){return this.throwIfDisposed(),sC(this,n)};ot.prototype.minimum=function(n){return this.throwIfDisposed(),ua(this,n)};ot.prototype.mirrorPad=function(n,t){return this.throwIfDisposed(),Uw(this,n,t)};ot.prototype.modStrict=function(n){return this.throwIfDisposed(),iC(this,n)};ot.prototype.mod=function(n){return this.throwIfDisposed(),Od(this,n)};ot.prototype.mulStrict=function(n){return this.throwIfDisposed(),aC(this,n)};ot.prototype.mul=function(n){return this.throwIfDisposed(),nt(this,n)};ot.prototype.neg=function(){return this.throwIfDisposed(),tn(this)};ot.prototype.norm=function(n,t,e){return this.throwIfDisposed(),Kd(this,n,t,e)};ot.prototype.notEqualStrict=function(n){return this.throwIfDisposed(),eC(this,n)};ot.prototype.notEqual=function(n){return this.throwIfDisposed(),hi(this,n)};ot.prototype.oneHot=function(n,t=1,e=0){return this.throwIfDisposed(),oa(this,n,t,e)};ot.prototype.onesLike=function(){return this.throwIfDisposed(),qn(this)};ot.prototype.pad=function(n,t){return this.throwIfDisposed(),Go(this,n,t)};ot.prototype.pool=function(n,t,e,r,o){return this.throwIfDisposed(),H_(this,n,t,e,r,o)};ot.prototype.powStrict=function(n){return this.throwIfDisposed(),cC(this,n)};ot.prototype.pow=function(n){return this.throwIfDisposed(),mo(this,n)};ot.prototype.prelu=function(n){return this.throwIfDisposed(),yp(this,n)};ot.prototype.prod=function(n,t){return this.throwIfDisposed(),Md(this,n,t)};ot.prototype.reciprocal=function(){return this.throwIfDisposed(),Kw(this)};ot.prototype.relu=function(){return this.throwIfDisposed(),Uo(this)};ot.prototype.relu6=function(){return this.throwIfDisposed(),Xw(this)};ot.prototype.reshapeAs=function(n){return this.throwIfDisposed(),Q(this,n.shape)};ot.prototype.reshape=function(n){return this.throwIfDisposed(),Q(this,n)};ot.prototype.resizeBilinear=function(n,t){return this.throwIfDisposed(),TC(this,n,t)};ot.prototype.resizeNearestNeighbor=function(n,t){return this.throwIfDisposed(),kC(this,n,t)};ot.prototype.reverse=function(n){return this.throwIfDisposed(),Pr(this,n)};ot.prototype.rfft=function(){return this.throwIfDisposed(),vp(this)};ot.prototype.round=function(){return this.throwIfDisposed(),Yw(this)};ot.prototype.rsqrt=function(){return this.throwIfDisposed(),Bd(this)};ot.prototype.selu=function(){return this.throwIfDisposed(),zd(this)};ot.prototype.separableConv2d=function(n,t,e,r,o,s){return this.throwIfDisposed(),Jw(this,n,t,e,r,o,s)};ot.prototype.sigmoid=function(){return this.throwIfDisposed(),Wo(this)};ot.prototype.sign=function(){return this.throwIfDisposed(),Zw(this)};ot.prototype.sin=function(){return this.throwIfDisposed(),Wd(this)};ot.prototype.sinh=function(){return this.throwIfDisposed(),Vd(this)};ot.prototype.slice=function(n,t){return this.throwIfDisposed(),ce(this,n,t)};ot.prototype.softmax=function(n){return this.throwIfDisposed(),da(this,n)};ot.prototype.softplus=function(){return this.throwIfDisposed(),zc(this)};ot.prototype.spaceToBatchND=function(n,t){return this.throwIfDisposed(),gp(this,n,t)};ot.prototype.split=function(n,t){return this.throwIfDisposed(),Tr(this,n,t)};ot.prototype.sqrt=function(){return this.throwIfDisposed(),On(this)};ot.prototype.square=function(){return this.throwIfDisposed(),Ae(this)};ot.prototype.squaredDifference=function(n){return this.throwIfDisposed(),Tp(this,n)};ot.prototype.squaredDifferenceStrict=function(n){return this.throwIfDisposed(),lC(this,n)};ot.prototype.squeeze=function(n){return this.throwIfDisposed(),fi(this,n)};ot.prototype.stack=function(n,t){this.throwIfDisposed();let e=n instanceof ot?[this,n]:[this,...n];return pr(e,t)};ot.prototype.step=function(n){return this.throwIfDisposed(),Hc(this,n)};ot.prototype.stridedSlice=function(n,t,e,r,o,s,c,l){return this.throwIfDisposed(),tv(this,n,t,e,r,o,s,c,l)};ot.prototype.subStrict=function(n){return this.throwIfDisposed(),uC(this,n)};ot.prototype.sub=function(n){return this.throwIfDisposed(),Dt(this,n)};ot.prototype.sum=function(n,t){return this.throwIfDisposed(),zt(this,n,t)};ot.prototype.tan=function(){return this.throwIfDisposed(),ev(this)};ot.prototype.tanh=function(){return this.throwIfDisposed(),Pc(this)};ot.prototype.tile=function(n){return this.throwIfDisposed(),ui(this,n)};ot.prototype.toBool=function(){return this.throwIfDisposed(),$t(this,"bool")};ot.prototype.toFloat=function(){return this.throwIfDisposed(),$t(this,"float32")};ot.prototype.toInt=function(){return this.throwIfDisposed(),$t(this,"int32")};ot.prototype.topk=function(n,t){return this.throwIfDisposed(),nv(this,n,t)};ot.prototype.transpose=function(n){return this.throwIfDisposed(),Kt(this,n)};ot.prototype.unique=function(n){return this.throwIfDisposed(),Hd(this,n)};ot.prototype.unsortedSegmentSum=function(n,t){return this.throwIfDisposed(),rv(this,n,t)};ot.prototype.unstack=function(n){return this.throwIfDisposed(),go(this,n)};ot.prototype.where=function(n,t){return this.throwIfDisposed(),Yn(n,this,t)};ot.prototype.zerosLike=function(){return this.throwIfDisposed(),re(this)};let im;function wn(){return im==null&&(im=__().epsilon()),im}function Tot(n){im=n}function yo(){return"channelsLast"}class qo extends Error{constructor(t){super(t);Object.setPrototypeOf(this,qo.prototype)}}class Qr extends Error{constructor(t){super(t);Object.setPrototypeOf(this,Qr.prototype)}}class Y extends Error{constructor(t){super(t);Object.setPrototypeOf(this,Y.prototype)}}class Ut extends Error{constructor(t){super(t);Object.setPrototypeOf(this,Ut.prototype)}}class _v extends Error{constructor(t){super(t);Object.setPrototypeOf(this,_v.prototype)}}class zC extends Error{constructor(t){super(t);Object.setPrototypeOf(this,zC.prototype)}}function ya(n,t){if(Array.isArray(n)){let e=[];for(let r=0;re.toUpperCase())}let to={};function Cv(n){if(n==null)return null;let t={};return t.className=n.getClassName(),t.config=n.getConfig(),t}function Sv(n){if(n==null||typeof n!="object")return;if(Array.isArray(n))n.forEach(t=>Sv(t));else{let t=Object.keys(n);for(let e of t){let r=n[e];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?n[e]=r.value:Sv(r))}}}function Fp(n,t={},e={},r="object",o=!1){if(typeof n=="string"){let s=n,c;if(s in e)c=e[s];else if(s in to)c=to[s];else if(c=t[s],c==null)throw new Y(`Unknown ${r}: ${n}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return c}else{let s=n;if(s.className==null||s.config==null)throw new Y(`${r}: Improper config format: ${JSON.stringify(s)}. 'className' and 'config' must set.`);let c=s.className,l,p;if(c in e?[l,p]=e[c]:c in to?[l,p]=to.className:c in t&&([l,p]=t[c]),l==null)throw new Y(`Unknown ${r}: ${c}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(p!=null){let f={};for(let v of Object.keys(to))f[v]=to[v];for(let v of Object.keys(e))f[v]=e[v];let m=s.config;m.customObjects=f;let y=Object.assign({},to);for(let v of Object.keys(e))to[v]=e[v];Sv(s.config);let b=p(l,s.config,e,o);return to=Object.assign({},y),b}else{let f=Object.assign({},to);for(let y of Object.keys(e))to[y]=e[y];let m=new l(s.config);return to=Object.assign({},f),m}}}function rG(n,t){return nt?1:0}function am(n,t){return-1*rG(n,t)}function Not(n){switch(n){case"float32":return"float32";default:throw new Y(`Invalid dtype: ${n}`)}}function _ot(n,t){if(n==null||t==null)return n===t;if(n.length!==t.length)return!1;for(let e=0;e=0),Or(r>=e),Array.isArray(n)&&n.length>=e&&n.length<=r&&n.every(o=>typeof o===t)}function $n(n,t){Array.isArray(n)?(_(n.length>0,()=>`${t} is unexpectedly an empty array.`),n.forEach((e,r)=>$n(e,`element ${r+1} of ${t}`))):_(Number.isInteger(n)&&n>0,()=>`Expected ${t} to be a positive integer, but got ${VC(n)}.`)}function VC(n){return n===null?"null":Array.isArray(n)?"["+n.map(t=>VC(t)).join(",")+"]":typeof n=="string"?`"${n}"`:`${n}`}function sG(n,t){let e=sr(),r,o=(...s)=>{let c=sr();return c-e0,"arrayOfValues is empty");for(let t of n)Or(Array.isArray(t),"one of the values is not an array"),Or(t.length>0,"one of the values is empty");return n.reduce((t,e)=>t.length===0?e.map(r=>[r]):e.map(r=>t.map(o=>[...o,r])).reduce((r,o)=>r.concat(o),[]),[])}function Iv(n,t){return rt(()=>On(zt(nt(n,n),t,!0)))}class Rp extends sa{getConfig(){return{}}}class Ev extends Rp{constructor(t){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return rt(()=>{let e=Iv(t,this.axis),r=cr(e,0,this.maxValue);return nt(t,Bt(r,Tt(wn(),e)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}}Ev.className="MaxNorm",vt(Ev);class Dv extends Rp{constructor(t){super();this.defaultAxis=0,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return rt(()=>Bt(t,Tt(wn(),Iv(t,this.axis))))}getConfig(){return{axis:this.axis}}}Dv.className="UnitNorm",vt(Dv);class Av extends Rp{apply(t){return Uo(t)}}Av.className="NonNeg",vt(Av);class Fv extends Rp{constructor(t){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=t.minValue!=null?t.minValue:this.defaultMinValue,this.maxValue=t.maxValue!=null?t.maxValue:this.defaultMaxValue,this.rate=t.rate!=null?t.rate:this.defaultRate,this.axis=t.axis!=null?t.axis:this.defaultAxis}apply(t){return rt(()=>{let e=Iv(t,this.axis),r=Tt(nt(this.rate,cr(e,this.minValue,this.maxValue)),nt(1-this.rate,e));return nt(t,Bt(r,Tt(wn(),e)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}}Fv.className="MinMaxNorm",vt(Fv);let UC={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function vn(n){return Cv(n)}function qC(n,t={}){return Fp(n,Ar.getMap().classNameMap,t,"constraint")}function Tn(n){if(n==null)return null;if(typeof n=="string"){let t=n in UC?UC[n]:n,e={className:t,config:{}};return qC(e)}else return n instanceof Rp?n:qC(n)}function iG(n){return new Ev(n)}function aG(n){return new Dv(n)}function cG(){return new Av}function lG(n){return new Fv(n)}var uG=Object.freeze({__proto__:null,maxNorm:iG,unitNorm:aG,nonNeg:cG,minMaxNorm:lG});let pG=["channelsFirst","channelsLast"],hG=["valid","same","causal"],fG=["max","avg"],dG=["sum","mul","concat","ave"],Sot=["temporal"];let Zc=new Map;function nn(n){Jc(pG,"DataFormat",n)}function Lr(n){Jc(hG,"PaddingMode",n)}function HC(n){Jc(fG,"PoolMode",n)}let Pp=[],jC="/";function xa(n,t){Pp.push(n);try{let e=t();return Pp.pop(),e}catch(e){throw Pp.pop(),e}}function mG(){return Pp.length===0?"":Pp.join(jC)+jC}function KC(n){if(!YC(n))throw new Error("Not a valid tensor name: '"+n+"'");return mG()+n}function XC(n){if(!YC(n))throw new Error("Not a valid tensor name: '"+n+"'");Zc.has(n)||Zc.set(n,0);let t=Zc.get(n);if(Zc.set(n,Zc.get(n)+1),t>0){let e=`${n}_${t}`;return Zc.set(e,1),e}else return n}let gG=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function YC(n){return!!n.match(gG)}function yG(n){return n===parseInt(n.toString(),10)}function yi(n,t,e){t==null&&(t=0),e==null&&(e=n.length);let r=1;for(let o=t;oo-s),e=Math.floor((t.length-1)/2),r=Math.ceil((t.length-1)/2);return e===r?t[e]:(t[e]+t[r])/2}function bo(n,t){if(t0?t.reduce((e,r)=>e*r):1}function Op(n,t){return n.asType(t)}function Lp(n,t=-1){let e=n.shape.slice();return t<0&&(t=e.length+t+1),e.splice(t,0,1),n.reshape(e)}function wG(n,t){return rt(()=>{if(n.shape.length!==2)throw new Y(`repeat() expects a rank-2 tensor, but received a rank-${n.shape.length} tensor.`);let e=Lp(n,1);return Ov(e,[1,t,1])})}function vG(n){let t=[yi(n.shape)];return n.reshape(t)}function TG(n){if(n.rank<=1)throw new Y(`batchFlatten requires a minimum rank of 2. Got rank: ${n.rank}.`);let t=[n.shape[0],yi(n.shape,1)];return n.reshape(t)}function wa(n,t,e){return rt(()=>{switch(n.rank){case 1:return Gd(n,t,e);case 2:return Qw(n,[t,0],[e,n.shape[1]]);case 3:return Ud(n,[t,0,0],[e,n.shape[1],n.shape[2]]);case 4:return xp(n,[t,0,0,0],[e,n.shape[1],n.shape[2],n.shape[3]]);case 5:return ce(n,[t,0,0,0,0],[e,n.shape[1],n.shape[2],n.shape[3],n.shape[4]]);case 6:return ce(n,[t,0,0,0,0,0],[e,n.shape[1],n.shape[2],n.shape[3],n.shape[4],n.shape[5]]);default:throw new Y(`sliceAlongFirstAxis() received an unsupported tensor rank: ${n.rank}`)}})}function Rv(n,t,e){return rt(()=>{switch(n.rank){case 1:return Gd(n,t,e);case 2:return Qw(n,[0,t],[n.shape[0],e]);case 3:return Ud(n,[0,0,t],[n.shape[0],n.shape[1],e]);case 4:return xp(n,[0,0,0,t],[n.shape[0],n.shape[1],n.shape[2],e]);default:throw new Y(`sliceAlongLastAxis() received an unsupported tensor rank: ${n.rank}`)}})}function lm(n,t,e,r){return rt(()=>{switch(n.rank){case 1:return Gd(n,t,e);case 2:switch(r){case 1:return wa(n,t,e);case 2:return Rv(n,t,e);default:throw new Y(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return wa(n,t,e);case 2:return Ud(n,[0,t,0],[n.shape[0],e,n.shape[2]]);case 3:return Rv(n,t,e);default:throw new Y(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return wa(n,t,e);case 2:return xp(n,[0,t,0,0],[n.shape[0],e,n.shape[2],n.shape[3]]);case 3:return xp(n,[0,0,t,0],[n.shape[0],n.shape[1],e,n.shape[3]]);case 4:return Rv(n,t,e);default:throw new Y(`The axis is not within the rank of the tensor ${r}`)}default:throw new Y(`sliceAlongLastAxis() received an unsupported tensor rank: ${n.rank}`)}})}function Pv(n,t=-1){let e;return t<0&&(e=n[0].rank,e!==0?t=e:t=0),t===n[0].rank&&(t=-1),Qe(n,t)}function ZC(n,t){switch(n.rank){case 1:return D_([n,t]);case 2:return A_([n,t],0);case 3:return F_([n,t],0);case 4:return R_([n,t],0);default:throw new Y(`concatAlongFirstAxis() received an unsupported tensor rank: ${n.rank}`)}}function Ov(n,t){if(Array.isArray(t)||(t=[t]),n.rank!==t.length)throw new Y(`The length of input n (${t.length}) does not match the number of dimensions in input x (${n.rank})`);return ui(n,t)}function um(n,t=0,e=1,r,o){return jw(n,t,e,r,o)}function Ho(n,t,e,r){if(n.rank<2||t.rank<2)throw new Ut(`dot requires both inputs to be rank >= 2 but got x shape = ${n.shape} and y shape = ${t.shape}`);if(t.rank>=3){let o=n.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(o!==s)throw new Ut(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${n.shape} and y shape = ${t.shape}`)}if(n.rank===2&&t.rank===2){let o=!1,s=!1;return Qd({a:n,b:t,transposeA:o,transposeB:s,bias:r?Lv(n.rank,r,yo()):null,activation:e})}else{let o=n.shape.slice(),s=o.pop();n=n.reshape([-1,s]);let c=t.shape.slice(),l=c.pop(),p=c.pop(),f=[...c,l],m=Array.from({length:t.rank},(T,N)=>N===0?t.rank-2:N<=t.rank-2?N-1:N);t=t.transpose(m).reshape([p,-1]);let y=[...o,...f],b=!1,v=!1;return Qd({a:n,b:t,transposeA:b,transposeB:v,bias:r?Lv(n.rank,r,yo()):null,activation:e}).reshape(y)}}function Rot(n){return rt(()=>{let t=re(n),e=qn(n);return Yn(ho(n,t),t,Yn(Rr(n,re(n)),e,nt(-1,e)))})}function Pot(n,t){return rt(()=>{if(n.rank!==1)throw new Error("Only 1D one-hot tensors are supported in the deeplearn backend, at present.");return n=n.toInt(),oa(n,t).toFloat()})}function QC(n,t,e){return rt(()=>(Array.isArray(t)?t=vr(t,"int32"):t=t.toInt(),Bc(n,t,e)))}function Mp(n){return nt(n,n)}function Oot(n,t){return rt(()=>{if(typeof t=="number"&&(t=Et(Math.round(t),"int32")),t.dtype!=="int32")throw new Ut(`Non-int32 dtype (${t.dtype}) is not supported by pow() yet`);return mo(n,t)})}function Lv(n,t,e){let r=t.shape;if(t.rank!==1&&t.rank!==n)throw new Y(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${n}`);if(n===5){if(e==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(e==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(n===4){if(e==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(e==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(n===3){if(e==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(e==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(n<3)return t;throw new Y(`Unsupported input rank by biasAdd: ${t.rank}`)}function jo(n,t,e){return rt(()=>(e==null&&(e=yo()),nn(e),n.add(Lv(n.rank,t,e))))}function kG(n,t=1){if(t!==1)throw new Ut(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Oc(n)}function NG(n){return rt(()=>Bt(n,bn(n).add(1)))}function tS(n,t,e,r){return rt(()=>dC(n,t,e,r))}function _G(n){return rt(()=>{let t=Tt(.5,nt(.2,n));return cr(t,0,1)})}function Bp(n,t,e=!1){return e?n():t()}let CG=["fanIn","fanOut","fanAvg"],SG=["normal","uniform","truncatedNormal"],Lot=["Zeros","Ones","Constant","RandomNormal","RandomUniform","TruncatedNormal","VarianceScaling","Orthogonal","Identity"];function $G(n){Jc(CG,"FanMode",n)}function IG(n){Jc(SG,"Distribution",n)}class eo extends sa{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}}class Mv extends eo{apply(t,e){return xe(t,e)}}Mv.className="Zeros",vt(Mv);class pm extends eo{apply(t,e){return fo(t,e)}}pm.className="Ones",vt(pm);class Bv extends eo{constructor(t){super();if(typeof t!="object")throw new Y(`Expected argument of type ConstantConfig but got ${t}`);if(t.value===void 0)throw new Y(`config must have value set but got ${t}`);this.value=t.value}apply(t,e){return rt(()=>nt(Et(this.value),fo(t,e)))}getConfig(){return{value:this.value}}}Bv.className="Constant",vt(Bv);class zv extends eo{constructor(t){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=t.minval||this.DEFAULT_MINVAL,this.maxval=t.maxval||this.DEFAULT_MAXVAL,this.seed=t.seed}apply(t,e){return fa(t,this.minval,this.maxval,e)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}}zv.className="RandomUniform",vt(zv);class Wv extends eo{constructor(t){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Ut(`randomNormal does not support dType ${e}.`);return um(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Wv.className="RandomNormal",vt(Wv);class Vv extends eo{constructor(t){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=t.mean||this.DEFAULT_MEAN,this.stddev=t.stddev||this.DEFAULT_STDDEV,this.seed=t.seed}apply(t,e){if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Ut(`truncatedNormal does not support dType ${e}.`);return kp(t,this.mean,this.stddev,e,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}}Vv.className="TruncatedNormal",vt(Vv);class Gv extends eo{constructor(t){super();this.gain=t.gain!=null?t.gain:1}apply(t,e){return rt(()=>{if(t.length!==2||t[0]!==t[1])throw new Y("Identity matrix initializer can only be used for 2D square matrices.");return nt(this.gain,Ed(t[0]))})}getConfig(){return{gain:this.gain}}}Gv.className="Identity",vt(Gv);function EG(n,t="channelsLast"){let e,r;if(nn(t),n.length===2)e=n[0],r=n[1];else if([3,4,5].indexOf(n.length)!==-1){if(t==="channelsFirst"){let o=yi(n,2);e=n[1]*o,r=n[0]*o}else if(t==="channelsLast"){let o=yi(n,0,n.length-2);e=n[n.length-2]*o,r=n[n.length-1]*o}}else{let o=yi(n);e=Math.sqrt(o),r=Math.sqrt(o)}return[e,r]}class fr extends eo{constructor(t){super();if(t.scale<0)throw new Y(`scale must be a positive float. Got: ${t.scale}`);this.scale=t.scale==null?1:t.scale,this.mode=t.mode==null?"fanIn":t.mode,$G(this.mode),this.distribution=t.distribution==null?"normal":t.distribution,IG(this.distribution),this.seed=t.seed}apply(t,e){let r=EG(t),o=r[0],s=r[1],c=this.scale;if(this.mode==="fanIn"?c/=Math.max(1,o):this.mode==="fanOut"?c/=Math.max(1,s):c/=Math.max(1,(o+s)/2),this.distribution==="normal"){let l=Math.sqrt(c);if(e=e||"float32",e!=="float32"&&e!=="int32")throw new Ut(`${this.getClassName()} does not support dType ${e}.`);return kp(t,0,l,e,this.seed)}else{let l=Math.sqrt(3*c);return fa(t,-l,l,e)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}}fr.className="VarianceScaling",vt(fr);class hm extends fr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return fr.className}}hm.className="GlorotUniform",vt(hm);class fm extends fr{constructor(t){super({scale:1,mode:"fanAvg",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return fr.className}}fm.className="GlorotNormal",vt(fm);class dm extends fr{constructor(t){super({scale:2,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return fr.className}}dm.className="HeNormal",vt(dm);class mm extends fr{constructor(t){super({scale:2,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return fr.className}}mm.className="HeUniform",vt(mm);class gm extends fr{constructor(t){super({scale:1,mode:"fanIn",distribution:"normal",seed:t==null?null:t.seed})}getClassName(){return fr.className}}gm.className="LeCunNormal",vt(gm);class ym extends fr{constructor(t){super({scale:1,mode:"fanIn",distribution:"uniform",seed:t==null?null:t.seed})}getClassName(){return fr.className}}ym.className="LeCunNormal",vt(ym);class Uv extends eo{constructor(t){super();if(this.DEFAULT_GAIN=1,this.gain=t.gain==null?this.DEFAULT_GAIN:t.gain,this.seed=t.seed,this.seed!=null)throw new Ut("Random seed is not implemented for Orthogonal Initializer yet.")}apply(t,e){return rt(()=>{if(t.length<2)throw new Ut("Shape must be at least 2D.");t[0]*t[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${t[0]*t[1]}) elements: Slowness may result.`);let r=t[0]>t[1]?[t[1],t[0]]:t,o=um(r,0,1,"float32"),s=_C.gramSchmidt(o);return t[0]>t[1]&&(s=s.transpose()),nt(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}}Uv.className="Orthogonal",vt(Uv);let eS={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function nS(n,t={}){return Fp(n,Ar.getMap().classNameMap,t,"initializer")}function rn(n){return Cv(n)}function je(n){if(typeof n=="string"){let t=n in eS?eS[n]:n;if(t==="GlorotNormal")return new fm;if(t==="GlorotUniform")return new hm;if(t==="HeNormal")return new dm;if(t==="HeUniform")return new mm;if(t==="LeCunNormal")return new gm;if(t==="LeCunUniform")return new ym;{let e={};return e.className=t,e.config={},nS(e)}}else return n instanceof eo?n:nS(n)}function DG(){return new Mv}function AG(){return new pm}function FG(n){return new Bv(n)}function RG(n){return new zv(n)}function PG(n){return new Wv(n)}function OG(n){return new Vv(n)}function LG(n){return new Gv(n)}function MG(n){return new fr(n)}function BG(n){return new hm(n)}function zG(n){return new fm(n)}function WG(n){return new dm(n)}function VG(n){return new mm(n)}function GG(n){return new gm(n)}function UG(n){return new ym(n)}function qG(n){return new Uv(n)}var HG=Object.freeze({__proto__:null,zeros:DG,ones:AG,constant:FG,randomUniform:RG,randomNormal:PG,truncatedNormal:OG,identity:LG,varianceScaling:MG,glorotUniform:BG,glorotNormal:zG,heNormal:WG,heUniform:VG,leCunNormal:GG,leCunUniform:UG,orthogonal:qG});let jG=0;function rS(){return jG++}let bm={};function xm(n=""){return n in bm||(bm[n]=0),bm[n]+=1,n+bm[n].toString()}function qv(n){return Array.isArray(n)&&Array.isArray(n[0])}function wm(n){return n.length===0?[]:Array.isArray(n[0])?n:[n]}function Qt(n){let t;if(Array.isArray(n)){if(n.length!==1)throw new Y(`Expected Tensor length to be 1; got ${n.length}`);t=n[0]}else t=n;return t}function Re(n){if(Array.isArray(n)&&Array.isArray(n[0])){if(n.length===1)return n=n,n[0];throw new Y(`Expected exactly 1 Shape; got ${n.length}`)}else return n}function vm(n){let t=0;for(let e of n)e.shape.length===0?t+=1:t+=e.shape.reduce((r,o)=>r*o);return t}let oS="Variable";class xo{constructor(t,e="float32",r=oS,o=!0,s=null){this.dtype=e==null?"float32":e,this.shape=t.shape,this.id=rS(),r=r==null?oS:r,this.originalName=KC(r),this.name=XC(this.originalName),this.trainable_=o,this.constraint=s,this.val=X_(t,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(t){return this.assertNotDisposed(),KG(this.val,t),this.val.id!==t.id&&(this.val.assign(t),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(t){this.trainable_=t,this.val.trainable=t}}function KG(n,t){if(n.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(n.shape)+" vs. "+JSON.stringify(t.shape))}function Mot(n,t,e,r){return new xo(n,t,e,!0,r)}function Bot(n,t,e){return new xo(xe(n),t,e)}function zot(n,t,e){return new xo(re(n),t,e)}function Wot(n,t,e){let r=fo(n);return new xo(r,t,e)}function Vot(n,t,e){let r=qn(n);return new xo(r,t,e)}function Got(n,t,e){return new xo(Ed(n),t,e)}function Uot(n,t,e,r,o,s="randomUniform"){return new xo(fa(n,t,e,r),r,s)}function qot(n,t=0,e=1,r,o,s="truncatedNormal"){if(r=r||"float32",r!=="float32"&&r!=="int32")throw new Ut(`randomNormal does not support dType ${r}.`);return new xo(kp(n,t,e,r,o),r,s)}function Hot(n,t=0,e=1,r,o,s="randomNormal"){if(r=r||"float32",r!=="float32"&&r!=="int32")throw new Ut(`randomNormalVariable does not support dType ${r}.`);return new xo(jw(n,t,e,r,o),r,s)}function jot(n,t){return n.write(t)}function Kot(n,t){return n.write(Tt(n.read(),t))}function Xot(n,t){return n.write(Dt(n.read(),t))}function Hv(n){return n.map(t=>t.read())}function jv(n){n.forEach(t=>{let e=t[0];e.write(t[1])})}function Yot(n,t){let e=t.map(o=>o.read()),r=Ww(n,e);return t.map(o=>r.grads[o.name])}class In{constructor(t){this.dtype=t.dtype,this.shape=t.shape,t.shape!=null?this.ndim=t.shape.length:this.ndim=t.ndim,this.maxNDim=t.maxNDim,this.minNDim=t.minNDim,this.axes=t.axes||{}}}class wo{constructor(t,e,r,o,s,c,l){this.dtype=t,this.shape=e,this.sourceLayer=r,this.inputs=o,this.callArgs=s,this.outputTensorIndex=l,this.id=rS(),c!=null&&(this.originalName=KC(c),this.name=XC(this.originalName)),this.rank=e.length}}let XG=0;class Tm{constructor(t,e){this.callArgs=e,this.id=XG++,this.outboundLayer=t.outboundLayer,this.inboundLayers=t.inboundLayers,this.nodeIndices=t.nodeIndices,this.tensorIndices=t.tensorIndices,this.inputTensors=t.inputTensors,this.outputTensors=t.outputTensors,this.inputMasks=t.inputMasks,this.outputMasks=t.outputMasks,this.inputShapes=t.inputShapes,this.outputShapes=t.outputShapes;for(let r of t.inboundLayers)r!=null&&r.outboundNodes.push(this);t.outboundLayer.inboundNodes.push(this)}getConfig(){let t=[];for(let e of this.inboundLayers)e!=null?t.push(e.name):t.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:t,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}}let YG=0;class ye extends sa{constructor(t={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=YG++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let e=t.name;if(!e){let r=this.getClassName();e=vs(r)+"_"+xm(r)}if(this.name=e,this.trainable_=t.trainable==null?!0:t.trainable,t.inputShape!=null||t.batchInputShape!=null){let r;if(t.batchInputShape!=null)r=t.batchInputShape;else if(t.inputShape!=null){let s=null;t.batchSize!=null&&(s=t.batchSize),r=[s].concat(t.inputShape)}this.batchInputShape=r;let o=t.dtype;o==null&&(o=t.inputDType),o==null&&(o="float32"),this.dtype=o}t.weights!=null?this.initialWeights=t.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(t,e){return t.name+"_ib-"+e.toString()}getNodeAtIndex(t,e){if(this.inboundNodes.length===0)throw new Qr(`The layer has never been called and thus has no defined ${e}.`);if(this.inboundNodes.length<=t)throw new Y(`Asked to get ${e} at node ${t}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[t]}getInputAt(t){return hr(this.getNodeAtIndex(t,"input").inputTensors)}getOutputAt(t){return hr(this.getNodeAtIndex(t,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new qo(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new qo(`Layer ${this.name} is not connected, no input to return.`);return hr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new qo(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new qo(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return hr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(t=>t())}get updates(){return this._updates}get built(){return this._built}set built(t){this._built=t}get trainable(){return this.trainable_}set trainable(t){this._trainableWeights.forEach(e=>e.trainable=t),this.trainable_=t}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(t=>t.trainable):[]}set trainableWeights(t){this._trainableWeights=t}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(t=>!t.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(t){this._nonTrainableWeights=t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(t){if(t=We(t),this.inputSpec==null||this.inputSpec.length===0)return;let e=We(this.inputSpec);if(t.length!==e.length)throw new Y(`Layer ${this.name} expects ${e.length} inputs, but it received ${t.length} input tensors. Input received: ${t}`);for(let r=0;rs.maxNDim)throw new Y(`Input ${r} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${c}`);if(s.minNDim!=null&&c=0?l[f]:l[l.length+f];if(m!=null&&[m,null].indexOf(y)===-1)throw new Y(`Input ${r} is incompatible with layer ${this.name}: expected axis ${f} of input shape to have value ${m} but got shape ${l}.`)}}if(s.shape!=null)for(let l=0;l{if(!this.built){this.assertInputCompatibility(t);let c=[];for(let l of We(t))c.push(l.shape);this.build(hr(c)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(t),s){let c=this.call(t,e),l=We(c),p=[];for(let f of l)r.indexOf(f)!==-1&&(f=f.clone()),p.push(f);if(c=hr(p),this.activityRegularizer!=null)throw new Ut("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return c}else{let c=JG(t),l=this.computeOutputShape(c),p,f=ZG(t);if(this.warnOnIncompatibleInputShape(Array.isArray(t)?c[0]:c),l!=null&&l.length>0&&Array.isArray(l[0])?p=l.map((m,y)=>new wo(f,m,this,We(t),e,this.name,y)):p=new wo(f,l,this,We(t),e,this.name),this.addInboundNode(t,p,null,null,c,l,e),this._refCount++,this.activityRegularizer!=null)throw new Ut("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return p}})}warnOnIncompatibleInputShape(t){if(this.batchInputShape==null)return;if(t.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(t)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let e=!1;this.batchInputShape.forEach((r,o)=>{r!=null&&t[o]!=null&&t[o]!==r&&(e=!0)}),e&&console.warn(`The shape of the input tensor (${JSON.stringify(t)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new qo(`The layer ${this.name} has never been called and thus has no defined output shape.`);let t=[];for(let e of this.inboundNodes){let r=JSON.stringify(e.outputShapes);t.indexOf(r)===-1&&t.push(r)}if(t.length===1){let e=this.inboundNodes[0].outputShapes;return Array.isArray(e)&&Array.isArray(e[0])&&e.length===1?e[0]:e}else throw new qo(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Qr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return vm(this.weights)}build(t){this.built=!0}getWeights(t=!1){return Hv(t?this.trainableWeights:this.weights)}setWeights(t){rt(()=>{let e=this.weights;if(e.length!==t.length)throw new Y(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${t.length}, but the layer was expecting ${e.length} weights. Provided weights: ${t}...`);if(e.length===0)return;let r=[],o=Hv(e);for(let s=0;ss.apply(f.read())),c==null&&(c=!0),c?this._trainableWeights.push(f):this._nonTrainableWeights.push(f),f}setFastWeightInitDuringBuild(t){this.fastWeightInitDuringBuild=t}addLoss(t){if(t==null||Array.isArray(t)&&t.length===0)return;t=We(t),this._losses!==void 0&&this._losses!==null&&this.losses.push(...t)}computeOutputShape(t){return t}computeMask(t,e){if(!this.supportsMasking){if(e!=null)if(Array.isArray(e))e.forEach(r=>{if(r!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return e}addInboundNode(t,e,r,o,s,c,l=null){let p=We(t);e=We(e),r=We(r),o=We(o),s=wm(s),c=wm(c);let f=[],m=[],y=[];for(let b of p)f.push(b.sourceLayer),m.push(b.nodeIndex),y.push(b.tensorIndex);new Tm({outboundLayer:this,inboundLayers:f,nodeIndices:m,tensorIndices:y,inputTensors:p,outputTensors:e,inputMasks:r,outputMasks:o,inputShapes:s,outputShapes:c},l);for(let b=0;bt.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let t=0;return--this._refCount===0&&(t=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:t}}}function JG(n){n=We(n);let t=[];for(let e of n)t.push(e.shape);return hr(t)}function ZG(n){return"float32"}function sS(n,t,e){if((t==null||e!=null&&e>0)&&(t=n.sourceLayer,e=n.nodeIndex),t.inboundNodes.length===0)return[n];{let r=t.inboundNodes[e];if(r.inboundLayers.length===0)return r.inputTensors;{let o=[];for(let s=0;s0){let o=await Promise.all(t);for(let s=0;sTt(this.totals[o],nt(s,r)));this.totals[o]=l,c!=null&&c.dispose()}}}async onEpochEnd(t,e){if(e!=null)for(let r of this.params.metrics){if(this.totals[r]==null)continue;typeof this.totals[r]=="number"?e[r]=this.totals[r]/this.seen:rt(()=>{let o=nt(Bt(1,this.seen),this.totals[r]);e[r]=o,this.totals[r].dispose(),Sn(e[r])})}}}class uS extends el{async onTrainBegin(t){this.epoch=[],this.history={}}async onEpochEnd(t,e){e==null&&(e={}),this.epoch.push(t);for(let r in e)this.history[r]==null&&(this.history[r]=[]),this.history[r].push(e[r])}async syncData(){let t=[],e=[],r=[];for(let s in this.history){let c=this.history[s];for(let l=0;lnew pS(r,t))}class Mr{constructor(){}static registerCallbackConstructor(t,e){_(t>=0&&Number.isInteger(t),()=>`Verbosity level is expected to be an integer >= 0, but got ${t}`),Mr.checkForDuplicate(e),Mr.constructors[t]==null&&(Mr.constructors[t]=[]),Mr.constructors[t].push(e)}static checkForDuplicate(t){for(let e in Mr.constructors){let r=Mr.constructors[+e];r.forEach(o=>{if(o===t)throw new Y("Duplicate callback constructor.")})}}static clear(){Mr.constructors={}}static createCallbacks(t){let e=[];for(let r in Mr.constructors){let o=+r;t>=o&&e.push(...Mr.constructors[o])}return e.map(r=>new r)}}Mr.constructors={};function fS(n,t,e,r,o,s,c,l,p){let f=new uS,m=[new tU,...Mr.createCallbacks(t)];n!=null&&m.push(...n),m.push(f);let y=new lS(m);return y.setParams({epochs:e,initialEpoch:r,samples:o,steps:s,batchSize:c,verbose:t,doValidation:l,metrics:p}),{callbackList:y,history:f}}function vo(n,t={},e=!1){return Fp(n,Ar.getMap().classNameMap,t,"layer",e)}function km(n,t){return rt(()=>{n.dtype!=="float32"&&(n=n.asType("float32"));let e=zt(Mp(n),t,!0),r=Lc(e.shape,wn()),o=On(Jr(e,r));return Bt(n,o)})}function Ts(n,t){return rt(()=>en(Mp(Dt(t,n)),-1))}function nl(n,t){return rt(()=>en(bn(Dt(t,n)),-1))}function wi(n,t){return rt(()=>{let e=Dt(n,t),r=cr(bn(n),wn(),Number.MAX_VALUE),o=bn(Bt(e,r));return nt(100,en(o,-1))})}function Kv(n,t){return rt(()=>{let e=cr(t,wn(),Number.MAX_VALUE),r=wr(Tt(1,e)),o=cr(n,wn(),Number.MAX_VALUE),s=wr(Tt(1,o));return en(Mp(Dt(r,s)),-1)})}function eU(n,t){return rt(()=>{let e=Jr(0,Dt(1,nt(n,t)));return en(Mp(e),-1)})}function nU(n,t){return rt(()=>{let e=Jr(0,Dt(1,nt(n,t)));return en(e,-1)})}function rU(n,t){return rt(()=>{let e=zt(nt(n,t),-1),r=ur(nt(Dt(1,n),t),-1);return Jr(0,Tt(1,Dt(r,e)))})}function oU(n,t){return rt(()=>{let e=Math.log(2),r=Dt(t,n),o=Dt(Tt(r,zc(nt(-2,r))),e);return en(o,-1)})}function zp(n,t,e=!1){return rt(()=>{if(e)t=da(t);else{let r=zt(t,t.shape.length-1,!0);t=Bt(t,r)}return t=cr(t,wn(),1-wn()),tn(zt(nt(n.toFloat(),wr(t)),t.shape.length-1))})}function Nm(n,t,e=!1){return rt(()=>{let r=Mc(vG(n)).toInt();t=cr(t,wn(),1-wn());let o=t.shape,s=oa(r,o[o.length-1]).reshape(o);return zp(s,t,e)})}function sU(n,t){if(!lt(n.shape,t.shape))throw new Y(`logits and labels must have the same shape, but got shapes ${JSON.stringify(n.shape)} and ${JSON.stringify(t.shape)}`);return rt(()=>{let e=t.relu(),r=t.abs().neg();return e.sub(t.mul(n)).add(r.exp().log1p())})}function _m(n,t){return rt(()=>{let e;return e=cr(t,wn(),1-wn()),e=wr(Bt(e,Dt(1,e))),en(sU(n,e),-1)})}function Xv(n,t){return rt(()=>{let e=cr(n,wn(),1),r=cr(t,wn(),1);return zt(nt(n,wr(Bt(e,r))),-1)})}function iU(n,t){return rt(()=>{let e=wr(Tt(wn(),t));return en(Dt(t,nt(n,e)),-1)})}function Cm(n,t){return rt(()=>{let e=km(n,-1),r=km(t,-1),o=nt(e,r);return tn(zt(o,-1))})}let Jot=Ts,Zot=Ts,Qot=nl,tst=nl,est=wi,nst=wi,rst=Kv,ost=Kv,sst=Xv,ist=Xv,ast=Cm,Sm={meanSquaredError:Ts,meanAbsoluteError:nl,meanAbsolutePercentageError:wi,meanSquaredLogarithmicError:Kv,squaredHinge:eU,hinge:nU,categoricalHinge:rU,logcosh:oU,categoricalCrossentropy:zp,sparseCategoricalCrossentropy:Nm,binaryCrossentropy:_m,kullbackLeiblerDivergence:Xv,poisson:iU,cosineProximity:Cm};function Yv(n){if(typeof n=="string"){if(n in Sm)return Sm[n];let t=`Unknown loss ${n}`;throw n.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${n}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new Y(t)}else return n}function Jv(n,t){return rt(()=>{let e=nt(.5,qn(t)),r=Op(Rr(t,e),n.dtype);return en(ho(n,r),-1)})}function Zv(n,t){return rt(()=>Op(ho(sp(n,-1),sp(t,-1)),"float32"))}function dS(n,t){return rt(()=>Zr(n.equal(1),t.equal(1)).sum().cast("float32"))}function aU(n,t){return rt(()=>Zr(n.equal(1),t.equal(0)).sum().cast("float32"))}function cU(n,t){return rt(()=>Zr(n.equal(0),t.equal(1)).sum().cast("float32"))}function mS(n,t){return rt(()=>{let e=dS(n,t),r=cU(n,t),o=e.add(r);return Yn(Rr(o,0),e.div(o),0).cast("float32")})}function lU(n,t){return rt(()=>{let e=dS(n,t),r=aU(n,t),o=e.add(r);return Yn(Rr(o,0),e.div(o),0).cast("float32")})}function gS(n,t){return _m(n,t)}function yS(n,t){return n.rank===t.rank&&(n=n.squeeze([n.rank-1])),t=t.argMax(-1),t.dtype!==n.dtype&&(t=t.asType(n.dtype)),ho(n,t).asType("float32")}function cst(n,t){throw new Ut}function lst(n,t){throw new Ut}let uU=Ts,pU=Ts,hU=nl,fU=nl,dU=wi,mU=wi,Qv=zp,gU=Cm,bS=Nm,$m={binaryAccuracy:Jv,categoricalAccuracy:Zv,precision:mS,categoricalCrossentropy:Qv,sparseCategoricalCrossentropy:bS,mse:uU,MSE:pU,mae:hU,MAE:fU,mape:dU,MAPE:mU,cosine:gU};function yU(n){if(typeof n=="string"&&n in $m)return $m[n];if(typeof n!="string"&&n!=null)return n;throw new Y(`Unknown metric ${n}`)}function Im(n){if(Or(n!==null,`Unknown LossOrMetricFn ${n}`),typeof n=="string")return n;{let t;for(let e of Object.keys(Sm))if(Sm[e]===n){t=e;break}if(t!==void 0)return t;for(let e of Object.keys($m))if($m[e]===n){t=e;break}return t!==void 0?t:n.name}}function bU(n){let t={Adagrad:()=>ga.adagrad(.01),Adadelta:()=>ga.adadelta(1,.95,wn()),Adam:()=>ga.adam(.001,.9,.999,wn()),Adamax:()=>ga.adamax(.002,.9,.999,wn(),0),RMSProp:()=>ga.rmsprop(.001,.9,0,wn()),SGD:()=>ga.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,n in t)return t[n]();throw new Y(`Unknown Optimizer ${n}`)}let xS=1*1024*1024;function wS(n,t,e=!1){if(n==null||typeof n!="object"||Object.getPrototypeOf(n)!==Object.prototype||!t0(n))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(e){let r=JSON.stringify(n);r.length>xS&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${xS}.`)}}function t0(n){if(n===null)return!0;if(typeof n=="object")if(Object.getPrototypeOf(n)===Object.prototype){let t=Object.keys(n);for(let e of t){if(typeof e!="string")return!1;if(!t0(n[e]))return!1}return!0}else if(Array.isArray(n)){for(let t of n)if(!t0(t))return!1;return!0}else return!1;else{let t=typeof n;return t==="string"||t==="number"||t==="boolean"}}function xU(n,t,e,r=console.log){let o=vU(n),s=["Layer (type)","Output shape","Param #"];o?(t=t||65,e=e||[.45,.85,1]):(t=t||98,e=e||[.33,.55,.67,1]),e[e.length-1]<=1&&(e=e.map(m=>Math.floor(t*m)));let c;if(!o){s.push("Receives inputs"),c=[];for(let m in n.nodesByDepth)c.push(...n.nodesByDepth[m])}r("_".repeat(t)),Em(s,e,r),r("=".repeat(t));let l=n.layers;for(let m=0;m1||o.length===1&&o[0].inboundLayers.length>1){t=!1;break}r.push(...o)}if(t)for(let o of n.layers){let s=!1;for(let c of o.inboundNodes)if(r.indexOf(c)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Em(n,t,e=console.log){let r="";for(let o=0;o0&&(r=r.slice(0,r.length-1)+" "),r+=n[o],r=r.slice(0,t[o]),r+=" ".repeat(t[o]-r.length);e(r)}function TU(n,t,e){let r;try{r=JSON.stringify(n.outputShape)}catch(l){r="multiple"}let o=n.name,s=n.getClassName(),c=[`${o} (${s})`,r,n.countParams().toString()];Em(c,t,e)}function kU(n,t,e,r){let o;try{o=JSON.stringify(n.outputShape)}catch(m){o="multiple"}let s=[];for(let m of n.inboundNodes){if(e!=null&&e.length>0&&e.indexOf(m)===-1)continue;for(let y=0;yT.name),p=[],f=t.names();for(let T of l)f.indexOf(T)!==-1?p.push(t.getValue(T)):p.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let m=l.join(",")+"|"+t.names().join(","),y,b;if(n0[m]==null){let T=_U(c,t);y=T.sorted,b=T.recipientCounts,n0[m]=y,TS[m]=b}y=n0[m],b={},o||Object.assign(b,TS[m]);let v=new vi(t);for(let T=0;Tr.maxNumTensors&&(r.maxNumTensors=Z),Z0,()=>"Expected at least one fetch, got none");let e=[],r={};if(n.length===1){let o=kS(n[0],t);e=o.sorted,r=o.recipientMap}else{let o=new Set;for(let s of n){let{sorted:c,recipientMap:l}=kS(s,t);for(let p of c)o.has(p.name)||(e.push(p),o.add(p.name));for(let p in l)r[p]==null&&(r[p]=new Set),l[p].forEach(f=>r[p].add(f))}}return{sorted:e,recipientCounts:CU(r)}}function CU(n){let t={};for(let e in n)t[e]=n[e].size;return t}function kS(n,t){let e=new Set,r=[],o={};for(let l of t.names())e.add(l);let s=[],c=[];for(s.push(n);s.length>0;){let l=s[s.length-1];if(e.has(l.name)){s.pop();continue}let p=c[c.length-1]===s.length-1;if(l.inputs.length===0||p)s.pop(),r.push(l),e.add(l.name),p&&c.pop();else{c.push(s.length-1);for(let f of l.inputs){if(o[f.name]==null&&(o[f.name]=new Set),o[f.name].add(l.name),e.has(f.name))continue;s.push(f)}}}return{sorted:r,recipientMap:o}}function SU(n){let t;if(n.sourceLayer.inboundNodes.length===1)t=n.sourceLayer.output;else{let e=null;for(let r=0;rI.name)}`);gi(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(I=>I.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let I of this.outputs){let P=I.sourceLayer,E=I.nodeIndex,L=I.tensorIndex;this.outputLayers.push(P),this.outputLayersNodeIndices.push(E),this.outputLayersTensorIndices.push(L)}for(let I of this.inputs){let P=I.sourceLayer,E=I.nodeIndex,L=I.tensorIndex;Or(E===0,"input layer has >1 nodes"),Or(L===0,"input layer has >1 tensors"),this.inputLayers.push(P),this.inputLayersNodeIndices.push(E),this.inputLayersTensorIndices.push(L)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let I=0;II.shape),this.internalOutputShapes=this.outputs.map(I=>I.shape);let e={},r={},o={},s={},c={},l=[],p=(I,P,E,L,B,q)=>{(L==null||B==null||q==null)&&(L=I.sourceLayer,B=I.nodeIndex,q=I.tensorIndex);let H=L.inboundNodes[B];if(E.indexOf(H)!==-1)throw new Qr(`The tensor ${I.name} at layer "${L.name}" is part of a cycle.`);if(P.indexOf(H)!==-1)return;this.containerNodes.add(To.nodeKey(L,B)),L.id in c||(c[L.id]=Object.keys(c).length),E.indexOf(H)===-1&&E.push(H);let Z=H.inboundLayers.length;for(let J=0;J=0;)E.splice(E.indexOf(H),1);l.push(H)},f=[],m=[];for(let I of this.outputs)p(I,f,m);let y=l.slice().reverse();for(let I of y){r[I.id]=I,I.id in e||(e[I.id]=0);let P=e[I.id],E=o[I.outboundLayer.id]==null?0:o[I.outboundLayer.id];P=Math.max(P,E),o[I.outboundLayer.id]=P,s[I.outboundLayer.id]=I.outboundLayer,e[I.id]=P;for(let L=0;LparseInt(I,10)).sort(am);this.layers=[];for(let I of T){let P=v[I];P.sort((E,L)=>{let B=c[E.id],q=c[L.id];return Bq?1:0});for(let E of P)E instanceof To&&this.internalContainerRefs.push(E),this.layers.push(E)}this.layersByDepth=v,T=Object.keys(b).map(I=>parseInt(I,10)).sort(am);let N=this.inputs.slice(),S=[];for(let I of T)for(let P of b[I]){let E=P.outboundLayer;if(E!=null){for(let L of P.inputTensors)if(N.indexOf(L)===-1)throw new Qr(`Graph disconnected: cannot obtain value for tensor ${L} at layer "${E.name}". The following previous layers were accessed without issue: ${S}`);for(let L of P.outputTensors)N.push(L);S.push(E.name)}}this.nodesByDepth=b;let D=this.layers.map(I=>I.name);for(let I of D){let P=D.filter(E=>E===I).length;if(P!==1)throw new Qr(`The name "${I}" is used ${P} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(D))}this.outboundNodes=[],this.inboundNodes=[],new Tm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(I=>null),outputMasks:this.outputs.map(I=>null),inputShapes:this.inputs.map(I=>I.shape),outputShapes:this.outputs.map(I=>I.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let t={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let e of this.layers)t.numDisposedVariables+=e.dispose().numDisposedVariables;for(let e of this.internalContainerRefs)t.numDisposedVariables+=e.dispose().numDisposedVariables}return t.refCountAfterDispose=this._refCount,t}get trainable(){return this.trainable_}set trainable(t){this.layers.forEach(e=>{e._trainableWeights.forEach(r=>r.trainable=t)}),this.trainable_=t}get trainableWeights(){if(this._trainableWeights.length>0)throw new Y("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let t=[];for(let e of this.layers)t=t.concat(e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.layers)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let r of this.layers)e.push(...r.trainableWeights);return e.concat(t)}return t}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(t,e=!0){let r={},o=0;for(let c of this.layers)for(let l of c.weights){if(r[l.originalName]!=null)throw new Y(`Duplicate weight name: ${l.originalName}`);r[l.originalName]=l,o++}let s=[];for(let c in t){let l=c;if(r[c]==null){let p=c.split("/"),f=p.slice(0,-2).concat([p[p.length-1]]);l=f.join("/")}if(r[l]!=null)s.push([r[l],t[c]]);else if(e)throw new Y(`Provided weight data has no target variable: ${c}`);delete r[l]}if(e){let c=[];for(let l in r)c.push(l);if(c.length>0)throw new Y(`${c.length} of ${o} weights are not set: ${c}`)}jv(s)}updatedConfig(){let t=this.getConfig(),e={};return e.className=this.getClassName(),e.config=t,e.kerasVersion=`tfjs-layers ${Dm}`,e.backend="TensorFlow.js",e}toJSON(t,e=!0){let r=e0(this.updatedConfig());return e?JSON.stringify(r):r}call(t,e){return rt(()=>{t=We(t);let r=new vi;for(let o=0;o{t=We(t);let r;return e==null?r=ya(null,t.length):r=We(e),this.runInternalGraph(t,r)[1]})}computeOutputShape(t){let e=wm(t);if(e.length!==this.inputLayers.length)throw new Y(`Invalid inputShape argument ${t}: model has ${this.inputLayers.length} tensor inputs.`);let r={};for(let l=0;lparseInt(l,10)).sort(am);if(o.length>1)for(let l of o){let p=this.nodesByDepth[l];for(let f of p){let m=f.outboundLayer;if(this.inputLayers.map(N=>N.id).indexOf(m.id)!==-1)continue;let y=[];for(let N=0;NparseInt(p,10)).sort(am);for(let p of o){let f=this.nodesByDepth[p];for(let m of f){let y=m.outboundLayer,b=m.inputTensors,v=m.outputTensors,T=new Array;for(let N of b)N.id in r&&T.push(r[N.id]);if(T.length===b.length){let N={},S,D,I,P;if(m.callArgs!=null&&(N=m.callArgs),T.length===1){let[E,L]=T[0];N.mask==null&&(N.mask=L),I=We(y.call(E,N)),P=We(y.computeMask(E,L)),S=[E],D=[L]}else S=T.map(E=>E[0]),D=T.map(E=>E[1]),N.mask==null&&(N.mask=D),I=We(y.call(S,N)),P=We(y.computeMask(S,D));if(y.activityRegularizer)throw new Ut("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let E=0;E{let t=[];for(let e of this.layers)for(let r=0;r0){let N=[];for(let S=0;S0&&S.apply(hr(I),P)}function f(S){let D=S.name,I=vo(S,e.customObjects!=null?e.customObjects:{});I.setFastWeightInitDuringBuild(o),s[D]=I;let P=S.inboundNodes;P.forEach(E=>{if(!(E instanceof Array))throw new Y(`Corrupted configuration, expected array for nodeData: ${E}`);l(I,E)})}let m=e.name,y=e.layers;for(let S of y)f(S);for(;!oG(c);)for(let S of y){let D=s[S.name];if(D.name in c){let I=c[D.name];delete c[D.name];for(let P of I)p(D,P)}}let b=[],v=[],T=e.inputLayers;for(let S of T){let D=S[0],I=S[1],P=S[2];Or(D in s);let E=s[D],L=E.inboundNodes[I].outputTensors;b.push(L[P])}let N=e.outputLayers;for(let S of N){let D=S[0],I=S[1],P=S[2];Or(D in s);let E=s[D],L=E.inboundNodes[I].outputTensors;v.push(L[P])}return new t({inputs:b,outputs:v,name:m})}get stateful(){if(this._stateful)throw new Y("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let t of this.layers)if(t.stateful)return!0;return!1}resetStates(){rt(()=>{this.layers.forEach(t=>{t.stateful&&t.resetStates()})})}}function NS(n,t,e){let r=t.length;if(n==null||Array.isArray(n)&&n.length===0)return t.map(o=>null);if(r===1)return Array.isArray(n)&&n.length===1?n:typeof n=="object"&&t[0]in n?[n[t[0]]]:[n];if(Array.isArray(n)){if(n.length!==r)throw new Error(`Provided ${e} is an array of ${n.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return n}else if(typeof n=="object"&&Object.keys(n).length>0&&typeof n[Object.keys(n)[0]]=="object"){let o=[];return t.forEach(s=>{s in n?o.push(n[s]):o.push(null)}),o}else throw new Error(`The model has multiple (${r}) outputs, so ${e} must be either an array with ${r} elements or an object with ${t} keys. Provided ${e} not understood: ${JSON.stringify(n)}`)}function _S(n,t){return NS(n,t,"classWeight")}function ust(n,t){return NS(n,t,"sampleWeight")}async function CS(n,t,e,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(e!=null){let o=rt(()=>{if(n.shape.length===1)return n.clone();if(n.shape.length===2)if(n.shape[1]>1){let l=1;return n.argMax(l)}else{if(n.shape[1]===1)return n.reshape([n.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${n.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${n.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await o.data());Xt(o);let c=[];return s.forEach(l=>{if(e[l]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${l} exists in the data but not in classWeight`);c.push(e[l])}),vr(c,"float32")}else return null}function $U(n,t){return nt(n,t)}let IU=32;function SS(n,t){let e,r,o=t;e=o.xs,r=o.ys,_(e!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=$S("input",n.inputNames,e),c=$S("output",n.outputNames,r),l=s[0].shape[0];_(s.length===n.inputs.length,()=>`LayersModel has ${n.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(n.inputNames)})`),_(c.length===n.outputs.length,()=>`LayersModel has ${n.outputs.length} outputs, but the dataset provides ${c.length} outputs. (Expected output keys: ${JSON.stringify(n.outputNames)})`);for(let p=0;p`Batch size mismatch: input ${n.inputNames[p]} has ${s[p].shape[0]}; expected ${l} based on input ${n.inputNames[0]}.`);for(let p=0;p`Batch size mismatch: output ${n.outputNames[p]} has ${c[p].shape[0]}; expected ${l} based on input ${n.inputNames[0]}.`);return{xs:s,ys:c}}function $S(n,t,e){if(e instanceof ot)return[e];if(Array.isArray(e))return _(e.length===t.length,()=>`Received an array of ${e.length} Tensors, but expected ${t.length} to match the ${n} keys ${t}.`),e;{let r=[];for(let o of t){if(e[o]==null)throw new Y(`The feature data generated by the dataset lacks the required ${n} key '${o}'.`);r.push(e[o])}return r}}function EU(n){if(n.length===3)throw new Ut("Validation with sample weights is not implemented yet.");return{xs:n[0],ys:n[1]}}async function DU(n,t,e){let r=e.batchesPerEpoch!=null;if(_(n.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),_(e!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),_(e.epochs!=null&&e.epochs>0&&Number.isInteger(e.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${e.epochs}`),_(!r||e.batchesPerEpoch>0&&Number.isInteger(e.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${e.batchesPerEpoch}`),_(e.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),n.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");n.isTraining=!0;try{let o=e.validationData!=null,s,c;if(o)if(IS(e.validationData))_(e.validationBatches==null||e.validationBatches>0&&Number.isInteger(e.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${e.validationBatches}`);else{let S=EU(e.validationData);s=S.xs,c=S.ys}let l=n.makeTrainFunction(),p=n.getDedupedMetricsNames(),f;o?f=p.slice().concat(p.map(S=>"val_"+S)):f=p.slice();let m=hS(e.callbacks,e.yieldEvery),y=e.verbose==null?1:e.verbose,{callbackList:b,history:v}=fS(m,y,e.epochs,null,null,AU(t,e),null,o,f);b.setModel(n),n.history=v,await b.onTrainBegin(),n.stopTraining_=!1;let T=e.initialEpoch==null?0:e.initialEpoch,N=await t.iterator();for(;T=e.batchesPerEpoch:P.done){if(o){let E;IS(e.validationData)?E=We(await n.evaluateDataset(e.validationData,{batches:e.validationBatches})):E=We(n.evaluate(s,c,{batchSize:e.validationBatchSize==null?IU:e.validationBatchSize,verbose:0}));for(let L=0;L0)throw new Ut("Verbose mode is not implemented yet.");_(!r||e.batches>0&&Number.isInteger(e.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(e.batches)}`);let c=FU(t)?t:await t.iterator(),l=0,p=0;for(;r?p{if(f.value){let{xs:m,ys:y}=SS(n,f.value),b=m.concat(y),v=rt(()=>o(b));if(Xt(b),p===0)for(let N=0;NTt(s[N],nt(T,S))),p>0&&Xt(D)}Xt(v),l+=T,++p}return s}),f.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${e.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let f=0;f0&&Number.isInteger(n),()=>`batchSize is required to be a positive integer, but got ${n}`)}function Gp(n,t,e){return n==null?[null]:Array.isArray(n)?n.map(r=>wa(r,t,e-t)):wa(n,t,e-t)}function o0(n,t){return rt(()=>n==null?null:Array.isArray(n)?n.map(e=>o0(e,t)):QC(n,t.dtype==="int32"?t:t.toInt()))}function s0(n,t){let e=[],r=0,o=null;for(;r=n&&(o=n),e.push([r,o]),r=o;return e}async function PU(n,t,e,r,o,s,c,l,p,f,m,y,b,v,T){o==null&&(o=32),s==null&&(s=1),m==null&&(m=!0),b==null&&(b=0);let N=!1;if(p!=null&&f!=null&&(N=!0),T!=null&&(N=!0,v==null))throw new Y("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let S=n.checkNumSamples(e,o,v,"steps_per_epoch"),D;S!=null&&(D=bo(0,S)),c==null&&(c=1);let{callbackList:I,history:P}=fS(l,c,s,b,S,v,o,N,y);I.setModel(n),n.history=P,await I.onTrainBegin(),n.stopTraining_=!1;for(let E=b;E{let J=q[H][0],it=q[H][1],pt=wa(B,J,it-J);Z.batch=H,Z.size=it-J;let ht=o0(e,pt),dt=t(ht);for(let ft=0;ft0){if(T=!0,r.validationData.length===2)c=r.validationData[0],l=r.validationData[1];else throw r.validationData.length===3?new Ut("validationData including sample weights is not supported yet."):new Y(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let q=!0,H=await n.standardizeUserData(c,l,null,null,q,y);p=H[0],f=H[1],N=p.concat(f)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){T=!0;let q=Math.floor(o[0].shape[0]*(1-r.validationSplit)),H=o[0].shape[0];p=Gp(o,q,H),o=Gp(o,0,q),f=Gp(s,q,H),s=Gp(s,0,q),N=p.concat(f)}else r.validationSteps!=null&&(T=!0);let S=o.concat(s).concat(m);n.checkTrainableWeightsConsistency();let D=n.makeTrainFunction(),I=n.getDedupedMetricsNames(),P,E;T?(n.makeTestFunction(),P=n.testFunction,E=I.slice().concat(I.map(q=>"val_"+q))):(P=null,N=[],E=I.slice());let L=hS(r.callbacks,r.yieldEvery),B=await PU(n,D,S,I,y,r.epochs,r.verbose,L,P,N,r.shuffle,E,r.initialEpoch,null,null);return B}finally{n.isTraining=!1,va(o,t),va(s,e),va(p,c),va(f,l),m!=null&&Xt(m)}}function ES(n){let t=[];n instanceof ot&&(n=[n]);for(let e=0;ee.push(o.id));else if(t!=null)for(let o in t){let s=t[o];e.push(s.id)}let r=[];if(n instanceof ot)e.indexOf(n.id)===-1&&r.push(n);else if(Array.isArray(n))n.forEach(o=>{e.indexOf(o.id)===-1&&r.push(o)});else if(n!=null)for(let o in n){let s=n[o];e.indexOf(s.id)===-1&&r.push(s)}r.forEach(o=>{o.isDisposed||o.dispose()})}function LU(n){return n instanceof ot}function i0(n){return Array.isArray(n)}function DS(n){return!LU(n)&&!i0(n)}function AS(n,t,e,r=!0,o=""){if(t==null||t.length===0){if(n!=null){let c=!1;if(i0(n)&&n.length>0)c=!0;else if(DS(n)){for(let l in n)if(n.hasOwnProperty(l)){c=!0;break}}else c=!0;if(c)throw new Y(`Error when checking model ${o} expected no data, but got ${n}`)}return[]}if(n==null)return t.map(c=>null);let s;if(DS(n)){n=n,s=[];for(let c of t){if(n[c]==null)throw new Y(`No data provided for "${c}". Need data for each key in: ${t}`);s.push(n[c])}}else if(i0(n)){if(n=n,n.length!==t.length)throw new Y(`Error when checking model ${o}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${n}`);s=n}else{if(n=n,t.length>1)throw new Y(`The model ${o} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${n.shape}`);s=[n]}if(s=ES(s),e!=null)for(let c=0;c=0&&f!==m)throw new Y(`Error when checking ${o}: expected ${t[c]} to have shape [${e[c]}], but got array with shape [${l.shape}].`)}}return s}function MU(n,t,e){let r=gi(n.map(s=>s.shape[0]));r.sort();let o=gi(t.map(s=>s.shape[0]));if(o.sort(),r.length>1)throw new Y(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(n.map(s=>s.shape))}`);if(o.length>1)throw new Y(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&o.length>0&&!lt(r,o))throw new Y(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${o[0]} target sample(s).`)}function BU(n,t,e){let r=[Ts,_m,zp];for(let o=0;o1)throw new Y(`The model expects ${t.length} ${o} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(n.shape)}.`);s=[n]}if(e!=null)for(let c=0;c[]);let e;if(typeof n=="string"||typeof n=="function")e=[n];else if(Array.isArray(n)||typeof n=="object")e=n;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${n}`);if(Array.isArray(e))return t.map(r=>e);{let r=[];for(let o of t){let s=e.hasOwnProperty(o)?e[o]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}let WU="layers-model";class ks extends To{constructor(t){super(t);this.isTraining=!1}summary(t,e,r=console.log){if(!this.built)throw new Y("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");xU(this,t,e,r)}compile(t){if(t.loss==null&&(t.loss=[]),this.loss=t.loss,typeof t.optimizer=="string")this.optimizer_=bU(t.optimizer),this.isOptimizerOwned=!0;else{if(!(t.optimizer instanceof xs))throw new Y("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=t.optimizer,this.isOptimizerOwned=!1}let e=[];if(!Array.isArray(t.loss)&&typeof t.loss!="string"&&typeof t.loss!="function"){t.loss=t.loss;for(let c in t.loss)if(this.outputNames.indexOf(c)===-1)throw new Y(`Unknown entry in loss dictionary: "${c}". Only expected the following keys: ${this.outputNames}`);for(let c of this.outputNames)t.loss[c]==null&&console.warn(`Output "${c}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${c} during training`),e.push(Yv(t.loss[c]))}else if(Array.isArray(t.loss)){if(t.loss.length!==this.outputs.length)throw new Y(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${t.loss}.`);let c=t.loss;e=c.map(l=>Yv(l))}else{let c=Yv(t.loss);this.outputs.forEach(l=>{e.push(c)})}this.lossFunctions=e,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let c=0;c{for(let c=0;c1&&(this.metricsTensors.push([l,c]),this.metricsNames.push(this.outputNames[c]+"_loss"))}});let o=zU(t.metrics,this.outputNames),s=(c,l,p)=>{this.outputNames.length>1&&(l=this.outputNames[c]+"_"+l),this.metricsNames.push(l),this.metricsTensors.push([p,c])};xa("metric",()=>{for(let c=0;c{let m="",y,b,v;for(let T of f){if(typeof T=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(T)!==-1){let S=this.internalOutputShapes[c];S[S.length-1]===1||this.lossFunctions[c]===_m?["accuracy","acc"].indexOf(T)!==-1?b=Jv:["crossentropy","ce"].indexOf(T)!==-1&&(b=gS):this.lossFunctions[c]===Nm?["accuracy","acc"].indexOf(T)!==-1?b=yS:["crossentropy","ce"].indexOf(T)!==-1&&(b=bS):["accuracy","acc"].indexOf(T)!==-1?b=Zv:["crossentropy","ce"].indexOf(T)!==-1&&(b=Qv);let D;["accuracy","acc"].indexOf(T)!==-1?D="acc":["crossentropy","ce"].indexOf(T)!==-1&&(D="ce"),v=b,y=m+D}else{let S=yU(T);v=S,y=m+Im(T)}let N;xa(y,()=>{N=v}),s(c,y,N)}};p(l)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){if(this.collectedTrainableWeights==null)return;this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(t,e,r={}){let o=r.batchSize==null?32:r.batchSize;r0(o);let s=!0,c=this.standardizeUserDataXY(t,e,s,o);try{let l=c[0].concat(c[1]);this.makeTestFunction();let p=this.testFunction,f=this.testLoop(p,l,o,r.verbose,r.steps);return hr(f)}finally{va(c[0],t),va(c[1],e)}}async evaluateDataset(t,e){return this.makeTestFunction(),RU(this,t,e)}checkNumSamples(t,e,r,o="steps"){let s;if(r!=null){if(s=null,e!=null)throw new Y(`If ${o} is set, batchSize must be null or undefined.Got batchSize = ${e}`)}else if(t!=null)Array.isArray(t)?s=t[0].shape[0]:s=t.shape[0];else throw new Y(`Either the input data should have a defined shape, or ${o} shoud be specified.`);return s}execute(t,e){if(Array.isArray(e)&&e.length===0)throw new Y("`outputs` is an empty Array, which is not allowed.");let r=Array.isArray(e),o=r?e:[e],s=this.retrieveSymbolicTensors(o),c=new vi;if(t instanceof ot&&(t=[t]),Array.isArray(t)){if(t.length!==this.inputs.length)throw new Y(`The number of inputs provided (${t.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let p=0;pl.name);for(let l=0;l0){let o=[];throw e.forEach((s,c)=>{s==null&&o.push(t[c])}),new Y(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(o)}`)}return e}predictLoop(t,e=32,r=!1){return rt(()=>{let o=this.checkNumSamples(t);if(r)throw new Ut("Verbose predictLoop() is not implemented yet.");let s=s0(o,e),c=this.outputs.map(l=>[]);for(let l=0;l{let f=s[l][0],m=s[l][1],y=Gp(t,f,m),b=[];if(Array.isArray(y))for(let T=0;Tc[m].push(f))}return hr(c.map(l=>Qe(l,0)))})}predict(t,e={}){let r=ES(t);FS(r,this.inputNames,this.feedInputShapes,!1);try{let o=e.batchSize==null?32:e.batchSize;return r0(o),this.predictLoop(r,o)}finally{va(r,t)}}predictOnBatch(t){FS(t,this.inputNames,this.feedInputShapes,!0);let e=(Array.isArray(t)?t[0]:t).shape[0];return this.predictLoop(t,e)}standardizeUserDataXY(t,e,r=!0,o){if(this.optimizer_==null)throw new Qr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let c=0;c0&&t[0].shape[0]%o!==0)throw new Y(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${o}. Found: ${t[0].shape[0]} sample(s).`);return[t,e]}async standardizeUserData(t,e,r,o,s=!0,c){let[l,p]=this.standardizeUserDataXY(t,e,s,c);if(r!=null)throw new Error("sample weight is not supported yet.");let f=null;if(o!=null){let m=_S(o,this.outputNames);f=[];for(let y=0;y{let c=this.checkNumSamples(e,r,s,"steps"),l=[];if(o>0)throw new Ut("Verbose mode is not implemented yet.");if(s!=null)throw new Ut("steps mode in testLoop() is not implemented yet");{let p=s0(c,r),f=vr(bo(0,c));for(let m=0;m1){let c=WC(t.slice(0,r),o);s+=`_${c}`}e.push(s)}return e}makeTrainFunction(){return t=>{let e=[],r=t.slice(0,this.inputs.length),o=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=t.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),c=[],l=()=>{let y=[];for(let N=0;N1&&N{T=Tt(T,N)}),T},p=this.collectedTrainableWeights.map(y=>y.read()),f=!0,m=this.optimizer_.minimize(l,f,p);return[m].concat(c)}}makeTestFunction(){this.testFunction=t=>rt(()=>{let e=[],r,o=t.slice(0,this.inputs.length),s=t.slice(this.inputs.length,this.inputs.length+this.outputs.length),c=[];for(let f=0;fvs(e))}else{let e=Object.keys(this.loss);t={};let r=this.loss;for(let o of e)if(typeof r[o]=="string")t[o]=vs(r[o]);else throw new Error("Serialization of non-string loss is not supported.")}return t}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[vs(Im(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(t=>vs(Im(t)));{let t={};for(let e in this.metrics)t[e]=vs(Im(this.metrics[e]));return t}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(t){if(t.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(t.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(t.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let e=Wp(t.optimizer_config),r=vo(e),o;if(typeof t.loss=="string")o=ba(t.loss);else if(Array.isArray(t.loss))o=t.loss.map(c=>ba(c));else if(t.loss!=null){o={};for(let c in t.loss)o[c]=ba(t.loss[c])}let s;if(Array.isArray(t.metrics))s=t.metrics.map(c=>ba(c));else if(t.metrics!=null){s={};for(let c in t.metrics)s[c]=ba(t.metrics[c])}this.compile({loss:o,metrics:s,optimizer:r})}async save(t,e){if(typeof t=="string"){let f=ew(t);if(f.length===0)throw new Y(`Cannot find any save handlers for URL '${t}'`);if(f.length>1)throw new Y(`Found more than one (${f.length}) save handlers for URL '${t}'`);t=f[0]}if(t.save==null)throw new Y("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let r=await Qx(this.getNamedWeights(e)),o=!1,s=null,c=this.toJSON(s,o),l={modelTopology:c,format:WU,generatedBy:`TensorFlow.js tfjs-layers v${Dm}`,convertedBy:null},p=e==null?!1:e.includeOptimizer;if(p&&this.optimizer!=null){l.trainingConfig=this.getTrainingConfig();let f="optimizer",{data:m,specs:y}=await Qx(await this.optimizer.getWeights(),f);r.specs.push(...y),r.data=ud([r.data,m])}if(this.userDefinedMetadata!=null){let f=!0;wS(this.userDefinedMetadata,this.name,f),l.userDefinedMetadata=this.userDefinedMetadata}return l.weightData=r.data,l.weightSpecs=r.specs,t.save(l)}setUserDefinedMetadata(t){wS(t,this.name),this.userDefinedMetadata=t}getUserDefinedMetadata(){return this.userDefinedMetadata}}ks.className="Model",vt(ks);class RS extends ks{}RS.className="Functional",vt(RS);async function VU(n,t){"modelTopology"in n||(n={modelTopology:n}),n=n;let e=n.modelTopology;e.model_config!=null&&(e=e.model_config);let r=Wp(e),o=vo(r,t);if(n.weightsManifest!=null){let s=await a_(n.weightsManifest,n.pathPrefix,o.weights.map(l=>l.originalName)),c={};for(let l of o.weights)c[l.originalName]=s[l.originalName];o.loadWeights(c),Xt(s)}return o}async function GU(n,t){if(t==null&&(t={}),typeof n=="string"){let e=nw(n,t);if(e.length===0)e.push(fd(n,t));else if(e.length>1)throw new Y(`Found more than one (${e.length}) load handlers for URL '${n}'`);n=e[0]}return UU(n,void 0,t)}async function UU(n,t,e){if(e==null&&(e={}),n.load==null)throw new Y("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await n.load(),o=r.modelTopology;o.model_config!=null&&(o=o.model_config);let s=e.strict==null?!0:e.strict,c=r.weightData!=null&&r.weightSpecs!=null&&s,l=vo(Wp(o),t,c),p=r.trainingConfig;if(p!=null&&l.loadTrainingConfig(p),r.userDefinedMetadata!=null&&l.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new Y("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:f,optimizerWeights:m}=qU(r.weightData,r.weightSpecs);l.loadWeights(f,s),l.optimizer!=null&&m.length>0&&await l.optimizer.setWeights(m),Xt(f),Xt(m.map(y=>y.tensor))}return l}function qU(n,t){let e=ld(n,t),r={},o=[];return t.forEach(s=>{s.group==="optimizer"?o.push({name:s.name,tensor:e[s.name]}):r[s.name]=e[s.name]}),{modelWeights:r,optimizerWeights:o}}class Ta extends ks{constructor(t){super({inputs:[],outputs:[]});if(t=t||{},this.trainable=!0,this.built=!1,this.name=t.name!=null?t.name:xm("sequential_"),t.layers!=null)for(let e of t.layers)this.add(e)}checkShape(t){let e=t.inboundNodes[0].outputTensors[0].shape;if(e.some(r=>r<0))throw new Y(`Negative dimension size caused by adding layer ${t.name} with input shape [${t.inboundNodes[0].inputTensors[0].shape}]`)}add(t){let e=t instanceof Ta||t instanceof ks,r;if(e){if(r=t,r.outputs.length!==1)throw new Y("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(r.inputs.length!==1)throw new Y("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(t.inboundNodes.length===0){if(t.batchInputShape==null)throw new Y("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let o=iS({batchShape:t.batchInputShape,dtype:t.dtype,name:t.name+"_input"});t.apply(o)}if(e)this.outputs=r.outputs,this.inputs=r.inputs;else{if(t.inboundNodes.length!==1)throw new Y(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${t.name} which has ${t.inboundNodes.length} pre-existing inbound connections.`);if(t.inboundNodes[0].outputTensors.length!==1)throw new Y("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[t.inboundNodes[0].outputTensors[0]],this.inputs=sS(this.outputs[0])}this.inboundNodes=[],new Tm({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ya(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(o=>o.shape),outputShapes:this.outputs[0].shape})}else{let o=t.apply(this.outputs[0]);if(Array.isArray(o))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(t),this.outputs=[o],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(t),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let t=this.layers.length-1;this.layers[t].outboundNodes=[],this.outputs=[this.layers[t].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(t,e){return this.model==null&&this.build(),this.model.call(t,e)}build(t){if(Re(t),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ks({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(t,e,r=console.log){this.built||this.build(),super.summary(t,e,r)}setWeights(t){this.model==null&&this.build(),this.model.setWeights(t)}evaluate(t,e,r={}){if(!this.built)throw new Qr("The model needs to be compiled before being used.");return this.model.evaluate(t,e,r)}async evaluateDataset(t,e){if(!this.built)throw new Qr("The model needs to be compiled before being used.");return this.model.evaluateDataset(t,e)}predict(t,e={}){return this.model==null&&this.build(),this.model.predict(t,e)}predictOnBatch(t){return this.model==null&&this.build(),this.model.predictOnBatch(t)}compile(t){this.build(),this.model.compile(t),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(t){this.model.optimizer=t}async fit(t,e,r={}){if(!this.built)throw new Qr("The model needs to be compiled before being used.");return this.model.fit(t,e,r)}async fitDataset(t,e){if(!this.built)throw new Qr("The model needs to be compiled before being used.");return this.model.fitDataset(t,e)}async trainOnBatch(t,e){return this.model.trainOnBatch(t,e)}static fromConfig(t,e,r={},o=!1){let s,c={};if(e instanceof Array){if(!(e[0].className!=null)||e[0].className==="Merge")throw new Y("Legacy serialization format not supported yet.");s=e}else _(e.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=e.layers,delete e.layers,c=e;let l=new t(c);if(!(l instanceof Ta))throw new Ut(`Sequential.fromConfig called on non-Sequential input: ${l}`);for(let p of s){let f=void 0,m=vo(p,f,o);o&&m.setFastWeightInitDuringBuild(!0),l.add(m)}return l}set stopTraining(t){if(this.model==null)throw new Y("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=t}get stopTraining(){if(this.model==null)throw new Y("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let t=[];for(let e of this.layers){let r={};r.className=e.getClassName(),r.config=e.getConfig(),t.push(r)}return{name:this.name,layers:t}}}Ta.className="Sequential",vt(Ta);function HU(n){return new ks(n)}function jU(n){return new Ta(n)}function KU(n,t){return t==null&&(t={}),GU(n,t)}function PS(n){return iS(n)}function XU(n,t){Mr.registerCallbackConstructor(n,t)}class kr extends sa{getConfig(){return{}}}class OS extends kr{apply(t,e=1){return kG(t,e)}}OS.className="elu",vt(OS);class LS extends kr{apply(t){return zd(t)}}LS.className="selu",vt(LS);class MS extends kr{apply(t){return Uo(t)}}MS.className="relu",vt(MS);class BS extends kr{apply(t){return rt(()=>ua(6,Uo(t)))}}BS.className="relu6",vt(BS);class zS extends kr{apply(t){return t}}zS.className="linear",vt(zS);class WS extends kr{apply(t){return Wo(t)}}WS.className="sigmoid",vt(WS);class VS extends kr{apply(t){return _G(t)}}VS.className="hardSigmoid",vt(VS);class GS extends kr{apply(t){return zc(t)}}GS.className="softplus",vt(GS);class US extends kr{apply(t){return NG(t)}}US.className="softsign",vt(US);class qS extends kr{apply(t){return Pc(t)}}qS.className="tanh",vt(qS);class a0 extends kr{apply(t,e=-1){return da(t,e)}}a0.className="softmax",vt(a0);class HS extends kr{apply(t,e=-1){return Rd(t,e)}}HS.className="logSoftmax",vt(HS);class jS extends kr{apply(t,e=1){return rt(()=>Wo(t.mul(e)).mul(t))}}jS.className="swish",vt(jS);function Ti(n){return n.getClassName()}function c0(n,t={}){return Fp(n,Ar.getMap().classNameMap,t,"activation")}function ki(n){if(n==null){let t={};return t.className="linear",t.config={},c0(t)}if(typeof n=="string"){let t={};return t.className=n,t.config={},c0(t)}else return n instanceof kr?n:c0(n)}function l0(n){if(n!=null&&typeof n!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${n}`)}class KS extends sa{}class Up extends KS{constructor(t){super();l0(t),this.l1=t==null||t.l1==null?.01:t.l1,this.l2=t==null||t.l2==null?.01:t.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(t){return rt(()=>{let e=xe([1]);return this.hasL1&&(e=Tt(e,zt(nt(this.l1,bn(t))))),this.hasL2&&(e=Tt(e,zt(nt(this.l2,Mp(t))))),e.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(t,e){return new t({l1:e.l1,l2:e.l2})}}Up.className="L1L2",vt(Up);function YU(n){return l0(n),new Up({l1:n!=null?n.l1:null,l2:0})}function JU(n){return l0(n),new Up({l2:n!=null?n.l2:null,l1:0})}let XS={l1l2:"L1L2"};function Pe(n){return Cv(n)}function YS(n,t={}){return Fp(n,Ar.getMap().classNameMap,t,"regularizer")}function Ke(n){if(n==null)return null;if(typeof n=="string"){let t=n in XS?XS[n]:n,e={className:t,config:{}};return YS(e)}else return n instanceof KS?n:YS(n)}class u0 extends ye{constructor(t){super(t==null?{}:t);this.supportsMasking=!0,t!=null&&(this.maxValue=t.maxValue)}call(t,e){t=Qt(t);let r=Uo(t);return this.maxValue!=null&&(r=cr(r,0,this.maxValue)),r}computeOutputShape(t){return t}getConfig(){let t={maxValue:this.maxValue},e=super.getConfig();return Object.assign(t,e),t}}u0.className="ReLU",vt(u0);class p0 extends ye{constructor(t){super(t==null?{}:t);this.DEFAULT_ALPHA=.3,t==null&&(t={}),this.alpha=t.alpha==null?this.DEFAULT_ALPHA:t.alpha}call(t,e){let r=Qt(t);return Dd(r,this.alpha)}computeOutputShape(t){return t}getConfig(){let t={alpha:this.alpha},e=super.getConfig();return Object.assign(t,e),t}}p0.className="LeakyReLU",vt(p0);class h0 extends ye{constructor(t){super(t==null?{}:t);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",t==null&&(t={}),this.supportsMasking=!0,this.alphaInitializer=je(t.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ke(t.alphaRegularizer),this.alphaConstraint=Tn(t.alphaConstraint),t.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(t.sharedAxes))this.sharedAxes=t.sharedAxes;else if(typeof t.sharedAxes=="number")this.sharedAxes=[t.sharedAxes];else throw new Y(`Expected sharedAxes to be a number or an array of numbers, but got ${t.sharedAxes}`)}build(t){t=Re(t);let e=t.slice(1);if(this.sharedAxes!=null)for(let o of this.sharedAxes)e[o-1]=1;this.alpha=this.addWeight("alpha",e,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let r={};if(this.sharedAxes!=null)for(let o=1;o(nn(t),t==="channelsFirst"?Kt(n,[0,2,3,1]):n))}function JS(n,t){return rt(()=>(nn(t),t==="channelsFirst"?Kt(n,[0,2,3,4,1]):n))}function ZS(n,t,e,r=1,o="valid",s,c=1){return rt(()=>{if(s==null&&(s=yo()),nn(s),n.shape.length!==3)throw new Y(`The input of a conv1dWithBias operation should be 3, but is ${n.shape.length} instead.`);if(t.shape.length!==3)throw new Y(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(e!=null&&e.shape.length!==1)throw new Y(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(n=Kt(n,[0,2,1])),o==="causal")throw new Ut("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let l=Cd(n,t,r,o==="same"?"same":"valid","NWC",c);return e!=null&&(l=jo(l,e)),l})}function pst(n,t,e=1,r="valid",o,s=1){return rt(()=>(nn(o),ZS(n,t,null,e,r,o,s)))}function hst(n,t,e=[1,1],r="valid",o,s){return rt(()=>(nn(o),y0(n,t,null,e,r,o,s)))}function y0(n,t,e,r=[1,1],o="valid",s,c,l=null){return rt(()=>{if(s==null&&(s=yo()),nn(s),n.rank!==3&&n.rank!==4)throw new Y(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${n.rank}.`);if(t.rank!==3&&t.rank!==4)throw new Y(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${n.rank}.`);let p=g0(n,s);if(o==="causal")throw new Ut("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return p=cv({x:p,filter:t,strides:r,pad:o==="same"?"same":"valid",dilations:c,dataFormat:"NHWC",bias:e,activation:l}),s==="channelsFirst"&&(p=Kt(p,[0,3,1,2])),p})}function fst(n,t,e=[1,1,1],r="valid",o,s){return rt(()=>(nn(o),QS(n,t,null,e,r,o,s)))}function QS(n,t,e,r=[1,1,1],o="valid",s,c){return rt(()=>{if(s==null&&(s=yo()),nn(s),n.rank!==4&&n.rank!==5)throw new Y(`conv3dWithBias expects input to be of rank 4 or 5, but received ${n.rank}.`);if(t.rank!==4&&t.rank!==5)throw new Y(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${n.rank}.`);let l=JS(n,s);if(o==="causal")throw new Ut("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return l=Fw(l,t,r,o==="same"?"same":"valid","NDHWC",c),e!=null&&(l=jo(l,e)),s==="channelsFirst"&&(l=Kt(l,[0,4,1,2,3])),l})}class Fm extends ye{constructor(t,e){super(e);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Fm.verifyArgs(e),this.rank=t,$n(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Ut(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=rl(e.kernelSize,t,"kernelSize"),this.strides=rl(e.strides==null?1:e.strides,t,"strides"),this.padding=e.padding==null?"valid":e.padding,Lr(this.padding),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,nn(this.dataFormat),this.activation=ki(e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.biasInitializer=je(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Tn(e.biasConstraint),this.biasRegularizer=Ke(e.biasRegularizer),this.activityRegularizer=Ke(e.activityRegularizer),this.dilationRate=rl(e.dilationRate==null?1:e.dilationRate,t,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new Y(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new Y(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new Y(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(t){if(Or("kernelSize"in t,"required key 'kernelSize' not in config"),typeof t.kernelSize!="number"&&!$v(t.kernelSize,"number",1,3))throw new Y(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(t.kernelSize)}.`)}getConfig(){let t={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ti(this.activation),useBias:this.useBias,biasInitializer:rn(this.biasInitializer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),biasConstraint:vn(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}}class ol extends Fm{constructor(t,e){super(t,e);this.kernel=null,ol.verifyArgs(e),this.filters=e.filters,$n(this.filters,"filters"),this.kernelInitializer=je(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Tn(e.kernelConstraint),this.kernelRegularizer=Ke(e.kernelRegularizer)}build(t){t=Re(t);let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new Y(`The channel dimension of the input should be defined. Found ${t[e]}`);let r=t[e],o=this.kernelSize.concat([r,this.filters]);this.kernel=this.addWeight("kernel",o,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[e]:r}}],this.built=!0}call(t,e){return rt(()=>{t=Qt(t);let r,o=this.bias==null?null:this.bias.read(),s=GC(this.activation.getClassName());if(s!=null&&this.rank===2)r=y0(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)r=ZS(t,this.kernel.read(),o,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)r=y0(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)r=QS(t,this.kernel.read(),o,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Ut("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(r=this.activation.apply(r))}return r})}computeOutputShape(t){t=Re(t);let e=[],r=this.dataFormat==="channelsLast"?t.slice(1,t.length-1):t.slice(2);for(let s=0;s 0 but got ${JSON.stringify(t.filters)}`)}}class sl extends ol{constructor(t){super(2,t);sl.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!$v(t.kernelSize,"number",1,2))throw new Y(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(t.kernelSize)}.`)}}sl.className="Conv2D",vt(sl);class qp extends ol{constructor(t){super(3,t);qp.verifyArgs(t)}getConfig(){let t=super.getConfig();return delete t.rank,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!(Array.isArray(t.kernelSize)&&(t.kernelSize.length===1||t.kernelSize.length===3)))throw new Y(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(t.kernelSize)}.`)}}qp.className="Conv3D",vt(qp);class b0 extends sl{constructor(t){super(t);if(this.inputSpec=[new In({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new Y(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(t){if(t=Re(t),t.length!==4)throw new Y("Input should have rank 4; Received input shape: "+JSON.stringify(t));let e=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[e]==null)throw new Y("The channel dimension of the inputs should be defined. Found `None`.");let r=t[e],o=this.kernelSize.concat([this.filters,r]);this.kernel=this.addWeight("kernel",o,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new In({ndim:4,axes:{[e]:r}})],this.built=!0}call(t,e){return rt(()=>{let r=Qt(t);if(r.shape.length!==4)throw new Y(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${r.shape.length}`);let o=r.shape,s=o[0],c,l;this.dataFormat==="channelsFirst"?(c=2,l=3):(c=1,l=2);let p=o[c],f=o[l],m=this.kernelSize[0],y=this.kernelSize[1],b=this.strides[0],v=this.strides[1],T=Am(p,b,m,this.padding),N=Am(f,v,y,this.padding),S=[s,T,N,this.filters];this.dataFormat!=="channelsLast"&&(r=Kt(r,[0,2,3,1]));let D=Sd(r,this.kernel.read(),S,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(D=Kt(D,[0,3,1,2])),this.bias!=null&&(D=jo(D,this.bias.read(),this.dataFormat)),this.activation!=null&&(D=this.activation.apply(D)),D})}computeOutputShape(t){t=Re(t);let e=t.slice(),r,o,s;this.dataFormat==="channelsFirst"?(r=1,o=2,s=3):(r=3,o=1,s=2);let c=this.kernelSize[0],l=this.kernelSize[1],p=this.strides[0],f=this.strides[1];return e[r]=this.filters,e[o]=Am(e[o],p,c,this.padding),e[s]=Am(e[s],f,l,this.padding),e}getConfig(){let t=super.getConfig();return delete t.dilationRate,t}}b0.className="Conv2DTranspose",vt(b0);class t$ extends ol{constructor(t,e){super(t,e);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,e.filters==null)throw new Y("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(e.kernelInitializer!=null||e.kernelRegularizer!=null||e.kernelConstraint!=null)throw new Y("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(e.padding!=null&&e.padding!=="same"&&e.padding!=="valid")throw new Y(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(e.padding)}`);this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=je(e.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ke(e.depthwiseRegularizer),this.depthwiseConstraint=Tn(e.depthwiseConstraint),this.pointwiseInitializer=je(e.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ke(e.pointwiseRegularizer),this.pointwiseConstraint=Tn(e.pointwiseConstraint)}build(t){if(t=Re(t),t.length{t=Qt(t);let r;if(this.rank===1)throw new Ut("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(t=Kt(t,[0,2,3,1])),r=Jw(t,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(r=jo(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),this.dataFormat==="channelsFirst"&&(r=Kt(r,[0,3,1,2])),r})}getConfig(){let t=super.getConfig();return delete t.rank,delete t.kernelInitializer,delete t.kernelRegularizer,delete t.kernelConstraint,t.depthwiseInitializer=rn(this.depthwiseInitializer),t.pointwiseInitializer=rn(this.pointwiseInitializer),t.depthwiseRegularizer=Pe(this.depthwiseRegularizer),t.pointwiseRegularizer=Pe(this.pointwiseRegularizer),t.depthwiseConstraint=vn(this.depthwiseConstraint),t.pointwiseConstraint=vn(this.pointwiseConstraint),t}}t$.className="SeparableConv";class x0 extends t${constructor(t){super(2,t)}}x0.className="SeparableConv2D",vt(x0);class Hp extends ol{constructor(t){super(1,t);Hp.verifyArgs(t),this.inputSpec=[{ndim:3}]}getConfig(){let t=super.getConfig();return delete t.rank,delete t.dataFormat,t}static verifyArgs(t){if(typeof t.kernelSize!="number"&&!$v(t.kernelSize,"number",1,1))throw new Y(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(t.kernelSize)}.`)}}Hp.className="Conv1D",vt(Hp);class w0 extends ye{constructor(t){super(t);typeof t.cropping=="number"?this.cropping=[[t.cropping,t.cropping],[t.cropping,t.cropping]]:typeof t.cropping[0]=="number"?this.cropping=[[t.cropping[0],t.cropping[0]],[t.cropping[1],t.cropping[1]]]:this.cropping=t.cropping,this.dataFormat=t.dataFormat===void 0?"channelsLast":t.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(t){return this.dataFormat==="channelsFirst"?[t[0],t[1],t[2]-this.cropping[0][0]-this.cropping[0][1],t[3]-this.cropping[1][0]-this.cropping[1][1]]:[t[0],t[1]-this.cropping[0][0]-this.cropping[0][1],t[2]-this.cropping[1][0]-this.cropping[1][1],t[3]]}call(t,e){return rt(()=>{if(t=Qt(t),this.dataFormat==="channelsLast"){let r=lm(t,this.cropping[0][0],t.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return lm(r,this.cropping[1][0],t.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let r=lm(t,this.cropping[0][0],t.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return lm(r,this.cropping[1][0],t.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let t={cropping:this.cropping,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}w0.className="Cropping2D",vt(w0);class v0 extends ye{constructor(t){super(t);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=t.size==null?this.DEFAULT_SIZE:t.size,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat}computeOutputShape(t){if(this.dataFormat==="channelsFirst"){let e=t[2]==null?null:this.size[0]*t[2],r=t[3]==null?null:this.size[1]*t[3];return[t[0],t[1],e,r]}else{let e=t[1]==null?null:this.size[0]*t[1],r=t[2]==null?null:this.size[1]*t[2];return[t[0],e,r,t[3]]}}call(t,e){return rt(()=>{let r=Qt(t),o=r.shape;if(this.dataFormat==="channelsFirst"){r=Kt(r,[0,2,3,1]);let s=this.size[0]*o[2],c=this.size[1]*o[3],l=r.resizeNearestNeighbor([s,c]);return Kt(l,[0,3,1,2])}else{let s=this.size[0]*o[1],c=this.size[1]*o[2];return r.resizeNearestNeighbor([s,c])}})}getConfig(){let t={size:this.size,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}v0.className="UpSampling2D",vt(v0);function ZU(n,t,e=[1,1],r="valid",o,s){return rt(()=>{o==null&&(o=yo()),nn(o);let c=g0(n,o);if(n.rank!==4)throw new Y(`Input for depthwiseConv2d is required to be 4-D, but is instead ${n.rank}-D`);if(t.rank!==4)throw new Y(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return c=ca(c,t,e,r==="same"?"same":"valid","NHWC",s),o==="channelsFirst"&&(c=Kt(c,[0,3,1,2])),c})}class T0 extends Fm{constructor(t){super(2,t);this.depthwiseKernel=null,this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=je(t.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Tn(t.depthwiseConstraint),this.depthwiseRegularizer=Ke(t.depthwiseRegularizer)}build(t){if(t=Re(t),t.length<4)throw new Y(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(t)}.`);let e=this.dataFormat==="channelsFirst"?1:3;if(t[e]==null||t[e]<0)throw new Y(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${t[e]}).`);let r=t[e],o=[this.kernelSize[0],this.kernelSize[1],r,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",o,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[r*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return rt(()=>{t=Qt(t);let r=ZU(t,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(r=jo(r,this.bias.read(),this.dataFormat)),this.activation!=null&&(r=this.activation.apply(r)),r})}computeOutputShape(t){t=Re(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],r=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[1]*this.depthMultiplier:t[3]*this.depthMultiplier,s=ko(e,this.kernelSize[0],this.padding,this.strides[0]),c=ko(r,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[t[0],o,s,c]:[t[0],s,c,o]}getConfig(){let t=super.getConfig();return t.depthMultiplier=this.depthMultiplier,t.depthwiseInitializer=rn(this.depthwiseInitializer),t.depthwiseRegularizer=Pe(this.depthwiseRegularizer),t.depthwiseConstraint=vn(this.depthwiseRegularizer),t}}T0.className="DepthwiseConv2D",vt(T0);function e$(n,t,e,r){if(Array.isArray(n)){if(t!=null||e!=null)throw new Y("When inputs is an array, neither initialState or constants should be provided");r!=null&&(e=n.slice(n.length-r,n.length),n=n.slice(0,n.length-r)),n.length>1&&(t=n.slice(1,n.length)),n=n[0]}function o(s){return s==null||Array.isArray(s)?s:[s]}return t=o(t),e=o(e),{inputs:n,initialState:t,constants:e}}function n$(n,t,e,r=!1,o,s,c=!1,l=!1){return rt(()=>{let p=t.shape.length;if(p<3)throw new Y(`Input should be at least 3D, but is ${p}D.`);let f=[1,0].concat(bo(2,p));if(t=Kt(t,f),s!=null)throw new Ut("The rnn() functoin of the deeplearn.js backend does not support constants yet.");c&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),o!=null&&(o=o.asType("bool").asType("float32"),o.rank===p-1&&(o=lr(o,-1)),o=Kt(o,f)),r&&(t=Pr(t,0),o!=null&&(o=Pr(o,0)));let m=[],y,b=e,v=t.shape[0],T=go(t),N;o!=null&&(N=go(o));for(let D=0;Dn(I,b));if(o==null)y=P[0],b=P[1];else{let E=rt(()=>{let L=N[D],B=qn(L).sub(L),q=P[0].mul(L).add(b[0].mul(B)),H=b.map((Z,J)=>P[1][J].mul(L).add(Z.mul(B)));return{output:q,newStates:H}});y=E.output,b=E.newStates}l&&m.push(y)}let S;if(l){let D=1;S=pr(m,D)}return[y,S,b]})}class No extends ye{constructor(t){super(t);let e;if(t.cell==null)throw new Y("cell property is missing for the constructor of RNN.");if(Array.isArray(t.cell)?e=new Om({cells:t.cell}):e=t.cell,e.stateSize==null)throw new Y("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=e,this.returnSequences=t.returnSequences==null?!1:t.returnSequences,this.returnState=t.returnState==null?!1:t.returnState,this.goBackwards=t.goBackwards==null?!1:t.goBackwards,this._stateful=t.stateful==null?!1:t.stateful,this.unroll=t.unroll==null?!1:t.unroll,this.supportsMasking=!0,this.inputSpec=[new In({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return bo(0,t).map(e=>null)}else return this.states_}setStates(t){this.states_=t}computeOutputShape(t){qv(t)&&(t=t[0]),t=t;let e=this.cell.stateSize;Array.isArray(e)||(e=[e]);let r=e[0],o;if(this.returnSequences?o=[t[0],t[1],r]:o=[t[0],r],this.returnState){let s=[];for(let c of e)s.push([t[0],c]);return[o].concat(s)}else return o}computeMask(t,e){return rt(()=>{Array.isArray(e)&&(e=e[0]);let r=this.returnSequences?e:null;if(this.returnState){let o=this.states.map(s=>null);return[r].concat(o)}else return r})}get states(){if(this.states_==null){let t=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,e=[];for(let r=0;rl.shape[l.shape.length-1]),c))throw new Y(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=c.map(l=>new In({shape:[null,l]}));this.stateful&&this.resetStates()}resetStates(t,e=!1){rt(()=>{if(!this.stateful)throw new qo("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape[0];if(r==null)throw new Y("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>xe([r,o])):this.states_=[xe([r,this.cell.stateSize])];else if(t==null)Xt(this.states_),this.keptStates!=null&&(Xt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(o=>xe([r,o])):this.states_[0]=xe([r,this.cell.stateSize]);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new Y(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e===!0?this.keptStates.push(this.states_.slice()):Xt(this.states_);for(let o=0;oSn(o.clone()))})}apply(t,e){let r=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=e$(t,r,o,this.numConstants);t=s.inputs,r=s.initialState,o=s.constants;let c=[],l=[];if(r!=null){e.initialState=r,c=c.concat(r),this.stateSpec=[];for(let f of r)this.stateSpec.push(new In({shape:f.shape}));l=l.concat(this.stateSpec)}o!=null&&(e.constants=o,c=c.concat(o),this.numConstants=o.length);let p=c[0]instanceof wo;if(p){let f=[t].concat(c),m=this.inputSpec.concat(l),y=this.inputSpec;this.inputSpec=m;let b=super.apply(f,e);return this.inputSpec=y,b}else return super.apply(t,e)}call(t,e){return rt(()=>{let r=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;t=Qt(t),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(t));let c=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==c)throw new Y(`RNN Layer has ${c} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let l={training:o},p=(T,N)=>{let S=this.cell.call([T].concat(N),l);return[S[0],S.slice(1)]},f=n$(p,t,s,this.goBackwards,r,null,this.unroll,this.returnSequences),m=f[0],y=f[1],b=f[2];this.stateful&&this.resetStates(b,o);let v=this.returnSequences?y:m;return this.returnState?[v].concat(b):v})}getInitialState(t){return rt(()=>{let e=xe(t.shape);return e=zt(e,[1,2]),e=Lp(e),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(r=>r>1?Ov(e,[1,r]):e):this.cell.stateSize>1?[Ov(e,[1,this.cell.stateSize])]:[e]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(t)}getConfig(){let t=super.getConfig(),e={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(e.numConstants=this.numConstants);let r=this.cell.getConfig();return this.getClassName()===No.className&&(e.cell={className:this.cell.getClassName(),config:r}),Object.assign({},r,t,e)}static fromConfig(t,e,r={}){let o=e.cell,s=vo(o,r);return new t(Object.assign(e,{cell:s}))}}No.className="RNN",vt(No);class il extends ye{}class Rm extends il{constructor(t){super(t);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,$n(this.units,"units"),this.activation=ki(t.activation==null?this.DEFAULT_ACTIVATION:t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=je(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ke(t.kernelRegularizer),this.recurrentRegularizer=Ke(t.recurrentRegularizer),this.biasRegularizer=Ke(t.biasRegularizer),this.kernelConstraint=Tn(t.kernelConstraint),this.recurrentConstraint=Tn(t.recurrentConstraint),this.biasConstraint=Tn(t.biasConstraint),this.dropout=Qc([1,bi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Qc([1,bi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Re(t),this.kernel=this.addWeight("kernel",[t[t.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return rt(()=>{if(t=t,t.length!==2)throw new Y(`SimpleRNNCell expects 2 input Tensors, got ${t.length}.`);let r=t[1];t=t[0];let o=e.training==null?!1:e.training;0qn(t),rate:this.dropout,training:o})),0qn(r),rate:this.recurrentDropout,training:o}));let s,c=this.dropoutMask,l=this.recurrentDropoutMask;c!=null?s=Ho(nt(t,c),this.kernel.read()):s=Ho(t,this.kernel.read()),this.bias!=null&&(s=jo(s,this.bias.read())),l!=null&&(r=nt(r,l));let p=Tt(s,Ho(r,this.recurrentKernel.read()));return this.activation!=null&&(p=this.activation.apply(p)),[p,p]})}getConfig(){let t=super.getConfig(),e={units:this.units,activation:Ti(this.activation),useBias:this.useBias,kernelInitializer:rn(this.kernelInitializer),recurrentInitializer:rn(this.recurrentInitializer),biasInitializer:rn(this.biasInitializer),kernelRegularizer:Pe(this.kernelRegularizer),recurrentRegularizer:Pe(this.recurrentRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:vn(this.kernelConstraint),recurrentConstraint:vn(this.recurrentConstraint),biasConstraint:vn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},t,e)}}Rm.className="SimpleRNNCell",vt(Rm);class k0 extends No{constructor(t){t.cell=new Rm(t),super(t)}call(t,e){return rt(()=>{this.cell.dropoutMask!=null&&(Xt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Xt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:r,training:o,initialState:s})})}static fromConfig(t,e){return new t(e)}}k0.className="SimpleRNN",vt(k0);class Pm extends il{constructor(t){super(t);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.resetAfter)throw new Y("GRUCell does not support reset_after parameter set to true.");this.units=t.units,$n(this.units,"units"),this.activation=ki(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=ki(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=je(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ke(t.kernelRegularizer),this.recurrentRegularizer=Ke(t.recurrentRegularizer),this.biasRegularizer=Ke(t.biasRegularizer),this.kernelConstraint=Tn(t.kernelConstraint),this.recurrentConstraint=Tn(t.recurrentConstraint),this.biasConstraint=Tn(t.biasConstraint),this.dropout=Qc([1,bi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Qc([1,bi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.implementation=t.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){t=Re(t);let e=t[t.length-1];this.kernel=this.addWeight("kernel",[e,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(t,e){return rt(()=>{if(t=t,t.length!==2)throw new Y(`GRUCell expects 2 input Tensors (inputs, h, c), got ${t.length}.`);let r=e.training==null?!1:e.training,o=t[1];t=t[0],0qn(t),rate:this.dropout,training:r,count:3})),0qn(o),rate:this.recurrentDropout,training:r,count:3}));let s=this.dropoutMask,c=this.recurrentDropoutMask,l,p,f;0{this.cell.dropoutMask!=null&&(Xt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Xt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:r,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}}N0.className="GRU",vt(N0);class jp extends il{constructor(t){super(t);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=t.units,$n(this.units,"units"),this.activation=ki(t.activation===void 0?this.DEFAULT_ACTIVATION:t.activation),this.recurrentActivation=ki(t.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:t.recurrentActivation),this.useBias=t.useBias==null?!0:t.useBias,this.kernelInitializer=je(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=je(t.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=je(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=t.unitForgetBias,this.kernelRegularizer=Ke(t.kernelRegularizer),this.recurrentRegularizer=Ke(t.recurrentRegularizer),this.biasRegularizer=Ke(t.biasRegularizer),this.kernelConstraint=Tn(t.kernelConstraint),this.recurrentConstraint=Tn(t.recurrentConstraint),this.biasConstraint=Tn(t.biasConstraint),this.dropout=Qc([1,bi([0,t.dropout==null?0:t.dropout])]),this.recurrentDropout=Qc([1,bi([0,t.recurrentDropout==null?0:t.recurrentDropout])]),this.implementation=t.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(t){var e;t=Re(t);let r=t[t.length-1];this.kernel=this.addWeight("kernel",[r,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let o;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,c=this.units;o=new(e=class extends eo{apply(p,f){let m=s.apply([c]),y=new pm().apply([c]),b=s.apply([c*2]);return ZC(ZC(m,y),b)}},e.className="CustomInit",e)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,o,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(t,e){return rt(()=>{let r=e.training==null?!1:e.training;if(t=t,t.length!==3)throw new Y(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let o=t[1],s=t[2];t=t[0],0qn(t),rate:this.dropout,training:r,count:4})),0qn(o),rate:this.recurrentDropout,training:r,count:4}));let c=this.dropoutMask,l=this.recurrentDropoutMask,p,f,m,y;0{this.cell.dropoutMask!=null&&(Xt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Xt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let r=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:r,training:o,initialState:s})})}static fromConfig(t,e){return e.implmentation===0&&(e.implementation=1),new t(e)}}_0.className="LSTM",vt(_0);class Om extends il{constructor(t){super(t);this.cells=t.cells}get stateSize(){let t=[];for(let e of this.cells.slice().reverse())Array.isArray(e.stateSize)?t.push(...e.stateSize):t.push(e.stateSize);return t}call(t,e){return rt(()=>{t=t;let r=t.slice(1),o=[];for(let l of this.cells.slice().reverse())Array.isArray(l.stateSize)?o.push(r.splice(0,l.stateSize.length)):o.push(r.splice(0,1));o.reverse();let s=[],c;for(let l=0;l{xa(`RNNCell_${o}`,()=>{r.build(t),Array.isArray(r.stateSize)?e=r.stateSize[0]:e=r.stateSize,t=[t[0],e]})}),this.built=!0}getConfig(){let t=super.getConfig(),e=s=>({className:s.getClassName(),config:s.getConfig()}),r=this.cells.map(e),o={cells:r};return Object.assign({},t,o)}static fromConfig(t,e,r={}){let o=[];for(let s of e.cells)o.push(vo(s,r));return new t({cells:o})}get trainableWeights(){if(!this.trainable)return[];let t=[];for(let e of this.cells)t.push(...e.trainableWeights);return t}get nonTrainableWeights(){let t=[];for(let e of this.cells)t.push(...e.nonTrainableWeights);if(!this.trainable){let e=[];for(let r of this.cells)e.push(...r.trainableWeights);return e.concat(t)}return t}getWeights(){let t=[];for(let e of this.cells)t.push(...e.weights);return Hv(t)}setWeights(t){let e=[];for(let r of this.cells){let o=r.weights.length,s=t.splice(o);for(let c=0;ctS(t(),e),c=()=>Bp(s,t,r);if(!o||o<=1)return Sn(c().clone());let l=Array(o).fill(void 0).map(c);return l.map(p=>Sn(p.clone()))}var QU=function(n,t){var e={};for(var r in n)Object.prototype.hasOwnProperty.call(n,r)&&t.indexOf(r)<0&&(e[r]=n[r]);if(n!=null&&typeof Object.getOwnPropertySymbols=="function")for(var o=0,r=Object.getOwnPropertySymbols(n);o{if(this.cell.dropoutMask!=null&&(Xt(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Xt(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),e&&e.constants)throw new Y("ConvRNN2D cell does not support constants");let r=e==null?null:e.mask,o=e==null?null:e.training,s=e==null?null:e.initialState;return super.call(t,{mask:r,training:o,initialState:s})})}computeOutputShape(t){let e=this.computeSingleOutputShape(t);return this.returnSequences||(e=[e[0],...e.slice(2)]),this.returnState&&(e=[e,...Array(2).fill([t[0],...e.slice(-3)])]),e}getInitialState(t){return rt(()=>{let{stateSize:e}=this.cell,r=t.shape,o=this.computeSingleOutputShape(r),s=[o[0],...o.slice(2)],c=xe(s);return Array.isArray(e)?Array(e.length).fill(c):[c]})}resetStates(t,e=!1){rt(()=>{if(!this.stateful)throw new qo("Cannot call resetStates() on an RNN Layer that is not stateful.");let r=this.inputSpec[0].shape,o=this.computeSingleOutputShape(r),s=[o[0],...o.slice(2)],c=r[0];if(c==null)throw new Y("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xe(s)):this.states_=[xe(s)];else if(t==null)Xt(this.states_),this.keptStates!=null&&(Xt(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>xe(s)):this.states_[0]=xe(s);else{if(Array.isArray(t)||(t=[t]),t.length!==this.states_.length)throw new Y(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${t.length} state value(s). Input received: ${t}`);e?this.keptStates.push(this.states_.slice()):Xt(this.states_);for(let l=0;lSn(l.clone()))})}computeSingleOutputShape(t){let{dataFormat:e,filters:r,kernelSize:o,padding:s,strides:c,dilationRate:l}=this.cell,p=e==="channelsFirst",f=t[p?3:2],m=t[p?4:3],y=ko(f,o[0],s,c[0],l[0]),b=ko(m,o[1],s,c[1],l[1]),v=[...t.slice(0,2),...p?[r,y,b]:[y,b,r]];return v}}r$.className="ConvRNN2D";class Lm extends jp{constructor(t){let{filters:e,kernelSize:r,strides:o,padding:s,dataFormat:c,dilationRate:l}=t;super(Object.assign({},t,{units:e}));this.filters=e,$n(this.filters,"filters"),this.kernelSize=rl(r,2,"kernelSize"),this.kernelSize.forEach(p=>$n(p,"kernelSize")),this.strides=rl(o||1,2,"strides"),this.strides.forEach(p=>$n(p,"strides")),this.padding=s||"valid",Lr(this.padding),this.dataFormat=c||"channelsLast",nn(this.dataFormat),this.dilationRate=rl(l||1,2,"dilationRate"),this.dilationRate.forEach(p=>$n(p,"dilationRate"))}build(t){var e;t=Re(t);let r=this.dataFormat==="channelsFirst"?1:t.length-1;if(t[r]==null)throw new Y(`The channel dimension of the input should be defined. Found ${t[r]}`);let o=t[r],s=4,c=this.kernelSize.concat([o,this.filters*s]);this.kernel=this.addWeight("kernel",c,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let l=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",l,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let p;if(this.unitForgetBias){let f=this.biasInitializer,m=this.filters;p=new(e=class extends eo{apply(b,v){let T=f.apply([m]),N=fo([m]),S=f.apply([m*2]);return Pv([T,N,S])}},e.className="CustomInit",e)}else p=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,p,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(t,e){return rt(()=>{if(t.length!==3)throw new Y(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${t.length}.`);let r=e.training||!1,o=t[0],s=t[1],c=t[2],l=4;0qn(o),rate:this.dropout,training:r,count:l}));let p=this.dropoutMask,f=(kt,Nt,At)=>!Nt||!Nt[At]?kt:nt(Nt[At],kt),m=f(o,p,0),y=f(o,p,1),b=f(o,p,2),v=f(o,p,3);0qn(s),rate:this.recurrentDropout,training:r,count:l}));let T=this.recurrentDropoutMask,N=f(s,T,0),S=f(s,T,1),D=f(s,T,2),I=f(s,T,3),P=3,[E,L,B,q]=Tr(this.kernel.read(),l,P),[H,Z,J,it]=this.useBias?Tr(this.bias.read(),l):[null,null,null,null];m=this.inputConv(m,E,H,this.padding),y=this.inputConv(y,L,Z,this.padding),b=this.inputConv(b,B,J,this.padding),v=this.inputConv(v,q,it,this.padding);let[pt,ht,dt,ft]=Tr(this.recurrentKernel.read(),l,P);N=this.recurrentConv(N,pt),S=this.recurrentConv(S,ht),D=this.recurrentConv(D,dt),I=this.recurrentConv(I,ft);let ut=this.recurrentActivation.apply(Tt(m,N)),bt=this.recurrentActivation.apply(Tt(y,S)),yt=Tt(nt(bt,c),nt(ut,this.activation.apply(Tt(b,D)))),xt=nt(this.recurrentActivation.apply(Tt(v,I)),this.activation.apply(yt));return[xt,xt,yt]})}getConfig(){let t=super.getConfig(),{units:e}=t,r=QU(t,["units"]),o={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},r,o)}inputConv(t,e,r,o){let s=gs(t,e,this.strides,o||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return r?jo(s,r,this.dataFormat):s}recurrentConv(t,e){let r=1;return gs(t,e,r,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}}Lm.className="ConvLSTM2DCell",vt(Lm);class C0 extends r${constructor(t){let e=new Lm(t);super(Object.assign({},t,{cell:e}))}static fromConfig(t,e){return new t(e)}}C0.className="ConvLSTM2D",vt(C0);class Mm extends ye{constructor(t){super(t);this.rate=Math.max(Math.min(t.rate,1),0),this.noiseShape=t.noiseShape,this.seed=t.seed,this.supportsMasking=!0}getNoiseShape(t){if(this.noiseShape==null)return this.noiseShape;let e=t.shape,r=[];for(let o=0;o{this.invokeCallHook(t,e);let r=Qt(t);if(0tS(r,this.rate,s,this.seed),()=>r,o);return c}return t})}getConfig(){let t={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},e=super.getConfig();return Object.assign(t,e),t}dispose(){return super.dispose()}}Mm.className="Dropout",vt(Mm);class S0 extends Mm{constructor(t){super(t);this.inputSpec=[{ndim:3}]}getNoiseShape(t){let e=t.shape;return[e[0],1,e[2]]}}S0.className="SpatialDropout1D",vt(S0);class $0 extends ye{constructor(t){super(t);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",t.batchInputShape==null&&t.inputShape==null&&t.inputDim!=null){let e=null;t.batchSize!=null&&(e=t.batchSize),this.batchInputShape=[e,t.inputDim]}this.units=t.units,$n(this.units,"units"),this.activation=ki(t.activation),t.useBias!=null&&(this.useBias=t.useBias),this.kernelInitializer=je(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=je(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Tn(t.kernelConstraint),this.biasConstraint=Tn(t.biasConstraint),this.kernelRegularizer=Ke(t.kernelRegularizer),this.biasRegularizer=Ke(t.biasRegularizer),this.activityRegularizer=Ke(t.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(t){t=Re(t);let e=t[t.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[e,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:e}}],this.built=!0}computeOutputShape(t){t=Re(t);let e=t.slice();return e[e.length-1]=this.units,e}call(t,e){return rt(()=>{this.invokeCallHook(t,e);let r=Qt(t),o=GC(this.activation.getClassName()),s;return o!=null?s=Ho(r,this.kernel.read(),o,this.bias?this.bias.read():null):(s=Ho(r,this.kernel.read()),this.bias!=null&&(s=jo(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let t={units:this.units,activation:Ti(this.activation),useBias:this.useBias,kernelInitializer:rn(this.kernelInitializer),biasInitializer:rn(this.biasInitializer),kernelRegularizer:Pe(this.kernelRegularizer),biasRegularizer:Pe(this.biasRegularizer),activityRegularizer:Pe(this.activityRegularizer),kernelConstraint:vn(this.kernelConstraint),biasConstraint:vn(this.biasConstraint)},e=super.getConfig();return Object.assign(t,e),t}}$0.className="Dense",vt($0);class I0 extends ye{constructor(t){t=t||{},super(t),this.inputSpec=[{minNDim:3}],this.dataFormat=t.dataFormat}computeOutputShape(t){t=Re(t);for(let e of t.slice(1))if(e==null)throw new Y(`The shape of the input to "Flatten" is not fully defined (got ${t.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[t[0],yi(t,1)]}call(t,e){return rt(()=>{this.invokeCallHook(t,e);let r=Qt(t);if(this.dataFormat==="channelsFirst"&&r.rank>1){let o=[0];for(let s=2;s{this.invokeCallHook(t,e);let r=Qt(t);return this.activation.apply(r)})}getConfig(){let t={activation:Ti(this.activation)},e=super.getConfig();return Object.assign(t,e),t}}E0.className="Activation",vt(E0);class D0 extends ye{constructor(t){super(t);this.n=t.n,this.inputSpec=[{ndim:2}]}computeOutputShape(t){return[t[0],this.n,t[1]]}call(t,e){return rt(()=>(t=Qt(t),wG(t,this.n)))}getConfig(){let t={n:this.n},e=super.getConfig();return Object.assign(t,e),t}}D0.className="RepeatVector",vt(D0);class A0 extends ye{constructor(t){super(t);this.targetShape=t.targetShape;for(let e=0;e{this.invokeCallHook(t,e);let r=Qt(t),o=r.shape,s=o.slice(0,1).concat(this.fixUnknownDimension(o.slice(1),this.targetShape));return r.reshape(s)})}getConfig(){let t={targetShape:this.targetShape},e=super.getConfig();return Object.assign(t,e),t}}A0.className="Reshape",vt(A0);class F0 extends ye{constructor(t){super(t);if(t.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(t.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${t.dims} instead.`);let e=bo(1,t.dims.length+1);if(!lt(t.dims.slice().sort(),e))throw new Error("Invalid permutation `dims`: "+JSON.stringify(t.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=t.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new In({ndim:this.dims.length+1})]}computeOutputShape(t){t=Re(t);let e=t.slice();return this.dims.forEach((r,o)=>{e[o+1]=t[r]}),e}call(t,e){return Kt(Qt(t),this.dimsIncludingBatch)}getConfig(){let t={dims:this.dims},e=super.getConfig();return Object.assign(t,e),t}}F0.className="Permute",vt(F0);class R0 extends ye{constructor(t){super(t==null?{}:t);this.supportsMasking=!0,t!=null?this.maskValue=t.maskValue==null?0:t.maskValue:this.maskValue=0}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={maskValue:this.maskValue};return Object.assign(e,t),e}computeMask(t,e){let r=Qt(t),o=-1;return op(hi(r,this.maskValue),o)}call(t,e){return rt(()=>{this.invokeCallHook(t,e);let r=Qt(t),o=-1,s=!0,c=op(hi(r,this.maskValue),o,s),l=r.mul(c.asType(r.dtype));return l})}}R0.className="Masking",vt(R0);class P0 extends ye{constructor(t){super(t);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",t.batchInputShape==null&&t.inputShape==null){let e=null;t.batchSize!=null&&(e=t.batchSize),t.inputLength==null?this.batchInputShape=[e,null]:this.batchInputShape=[e].concat(We(t.inputLength))}this.inputDim=t.inputDim,$n(this.inputDim,"inputDim"),this.outputDim=t.outputDim,$n(this.outputDim,"outputDim"),this.embeddingsInitializer=je(t.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ke(t.embeddingsRegularizer),this.activityRegularizer=Ke(t.activityRegularizer),this.embeddingsConstraint=Tn(t.embeddingsConstraint),this.maskZero=t.maskZero,this.supportsMasking=t.maskZero,this.inputLength=t.inputLength}build(t){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(t){}computeMask(t,e){return rt(()=>this.maskZero?(t=Qt(t),hi(t,re(t))):null)}computeOutputShape(t){if(t=Re(t),this.inputLength==null)return[...t,this.outputDim];let e=We(this.inputLength);if(e.length!==t.length-1)throw new Y(`"inputLength" is ${this.inputLength}, but received input shape has shape ${t}`);{let r=0;for(let o=0;o{this.invokeCallHook(t,e);let r=Qt(t);r.dtype!=="int32"&&(r=Op(r,"int32"));let o=QC(this.embeddings.read(),r.as1D());return o.reshape(Re(this.computeOutputShape(r.shape)))})}getConfig(){let t={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:rn(this.embeddingsInitializer),embeddingsRegularizer:Pe(this.embeddingsRegularizer),activityRegularizer:Pe(this.activityRegularizer),embeddingsConstraint:vn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},e=super.getConfig();return Object.assign(t,e),t}}P0.className="Embedding",vt(P0);class ka extends ye{constructor(t){super(t||{});this.supportsMasking=!0}mergeFunction(t){throw new Ut}computeElementwiseOpOutputShape(t,e){if(t==null||e==null)return null;if(t.length1)throw new Y(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(t)}.`);let r=t[0]==null?null:t[0].slice(1);for(let s=1;ss.length);t.indexOf(null)===-1&&gi(o).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(t,e){return rt(()=>{if(t=t,this.reshapeRequired){let r=[],o=t.map(s=>s.rank);if(o.indexOf(null)===-1){let s=bi(o);for(let c of t){let l=c.rank;for(let p=0;p1){let m=bo(1,f).concat([0]);r.push(Kt(p,m)),s=!0}else r.push(p)}let c=this.mergeFunction(r),l=c.rank;if(s){if(l==null){let p=c.shape,f=p.length,m=p[f-1],y=[m].concat(p.slice(0,p.length-1));c=Kt(c.reshape([-1,m]),[1,0]).reshape(y)}else if(l>1){let p=[l-1].concat(bo(0,l-1));c=Kt(c,p)}}return c}}else return this.mergeFunction(t)})}computeOutputShape(t){t=t;let e;t[0]==null?e=null:e=t[0].slice(1);for(let o=1;o{if(e==null)return null;if(!Array.isArray(e))throw new Y("`mask` should be an Array");if(!Array.isArray(t))throw new Y("`inputs` should be an Array");if(e.length!==t.length)throw new Y(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${t.length} vs ${e.length})`);if(e.every(o=>o==null))return null;e=e.map(o=>o==null?o:lr(o,0));let r=e[0];for(let o=1;o{let e=t[0].clone();for(let r=1;r{let e=t[0].clone();for(let r=1;r{let e=t[0].clone();for(let r=1;r{let e=t[0];for(let r=1;r{let e=t[0];for(let r=1;r1)throw new Y("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(t))}mergeFunction(t){return rt(()=>Pv(t,this.axis))}computeOutputShape(t){if(!(Array.isArray(t)&&Array.isArray(t[0])))throw new Y("A `Concatenate` layer should be called on a list of inputs.");let e=t,r=e[0].slice(),o=this.axis<0?r.length+this.axis:this.axis;for(let s of e.slice(1)){if(r[o]==null||s[o]==null){r[o]=null;break}r[o]+=s[o]}return r}computeMask(t,e){if(e==null)return null;if(!Array.isArray(e))throw new Y("`mask` should be an array for Concatenate");if(!Array.isArray(t))throw new Y("`inputs` should be an array for Concatenate");if(e.length!==t.length)throw new Y(`Mismatch in the length of mask (${e.length}) and the legnth of inputs (${t.length})`);return rt(()=>{let r=!0;if(e.forEach(c=>{if(c!=null){r=!1;return}}),r)return null;let o=[];for(let c=0;c3||t.shape.length>3)throw new Ut("batchDot is not implemented for tensors of 4D or higher rank yet");if(_(n.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${n.shape.length}`),_(n.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof e=="number"&&(e=[e,e]),n.dtype==="complex64"||t.dtype==="complex64")throw new Ut("batchDot is not implemented for complex64-type Tensors yet.");let r=n.shape.length,o=t.shape.length;e==null&&(e=[r-1,o-2]);let s=e;return rt(()=>{let c;if(r>o){c=r-o;let p=[];for(let f=0;fr){c=o-r;let p=[];for(let f=0;f0){let p;r>o?p=r+o-3:p=r-1;let f=[];for(let m=p;m"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0],r=t[1];if(e.length>3||r.length>3)throw new Ut("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,r);if(e[o[0]]!==r[o[1]])throw new Y(`Dimension incompatibility: ${e[o[0]]} !== ${r[o[1]]}`)}mergeFunction(t){if(t.length!==2)throw new Y(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${t.length} input(s).`);let e=t[0],r=t[1],o;return Array.isArray(this.axes)?o=this.axes.map((s,c)=>th(s,t[c].shape.length)):o=[th(this.axes,e.shape.length),th(this.axes,r.shape.length)],this.normalize&&(e=km(e,o[0]),r=km(r,o[1])),tq(e,r,o)}interpretAxes(t,e){let r;return Array.isArray(this.axes)?r=this.axes:r=[th(this.axes,t.length),th(this.axes,e.length)],r}computeOutputShape(t){_(Array.isArray(t)&&t.length===2&&Array.isArray(t[0])&&Array.isArray(t[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let e=t[0].slice(),r=t[1].slice();if(e.length>3||r.length>3)throw new Ut("Dot layer does not support tensors of 4D or higher rank yet.");let o=this.interpretAxes(e,r);e.splice(o[0],1),r.splice(o[1],1),r.splice(0,1);let s=e.concat(r);return s.length===1&&s.push(1),s}computeMask(t,e){return null}getConfig(){let t={axes:this.axes,normalize:this.normalize},e=super.getConfig();return Object.assign(t,e),t}}O0.className="Dot",vt(O0);class L0 extends ye{constructor(t){super(t);this.supportsMasking=!0,this.stddev=t.stddev}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={stddev:this.stddev};return Object.assign(e,t),e}call(t,e){return rt(()=>{this.invokeCallHook(t,e);let r=Qt(t),o=()=>um(r.shape,0,this.stddev).add(r),s=Bp(o,()=>r,e.training||!1);return s})}}L0.className="GaussianNoise",vt(L0);class M0 extends ye{constructor(t){super(t);this.supportsMasking=!0,this.rate=t.rate}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return rt(()=>{this.invokeCallHook(t,e);let r=Qt(t);if(this.rate>0&&this.rate<1){let o=()=>{let s=Math.sqrt(this.rate/(1-this.rate));return r.mul(um(r.shape,1,s))};return Bp(o,()=>r,e.training||!1)}return r})}}M0.className="GaussianDropout",vt(M0);class B0 extends ye{constructor(t){super(t);this.supportsMasking=!0,this.rate=t.rate,this.noiseShape=t.noiseShape}_getNoiseShape(t){return this.noiseShape||Qt(t).shape}computeOutputShape(t){return t}getConfig(){let t=super.getConfig(),e={rate:this.rate};return Object.assign(e,t),e}call(t,e){return rt(()=>{if(this.rate<1&&this.rate>0){let r=this._getNoiseShape(t),o=()=>{let s=Qt(t),c=1.6732632423543772,l=1.0507009873554805,p=-c*l,f=ys(fa(r),this.rate);f=Op(f,"float32");let m=((1-this.rate)*(1+this.rate*p**2))**-.5,y=-m*p*this.rate,b=s.mul(f).add(f.add(-1).mul(p));return b.mul(m).add(y)};return Bp(o,()=>Qt(t),e.training||!1)}return t})}}B0.className="AlphaDropout",vt(B0);function eh(n,t,e,r,o,s=.001){let c;if(n.rank===2)c=$_(n,t,e,r,o,s);else if(n.rank===3)c=I_(n,t,e,r,o,s);else if(n.rank===4)c=E_(n,t,e,r,o,s);else throw new Ut(`batchNormalization is not implemented for array of rank ${n.rank} yet`);return c}function eq(n,t,e,r,o=.001){return rt(()=>{let s=Ld(n,r),c=s.mean,l=s.variance,p=eh(n,c,l,e,t,o);return[p,c,l]})}function nq(n,t,e,r,o=.001){return rt(()=>{let s=Ld(n,r),c=s.mean,l=s.variance,p=[];for(let T of bo(0,n.rank))r.indexOf(T)!==-1?p.push(1):p.push(n.shape[T]);let f=c.reshape(p),m=l.reshape(p),y=t==null?null:t.reshape(p),b=e==null?null:e.reshape(p),v=eh(n,f,m,b,y,o);return[v,c,l]})}function rq(n,t,e,r,o=.001){return lt(r.slice().sort(),bo(0,n.rank-1))?eq(n,t,e,r,o):nq(n,t,e,r,o)}class z0 extends ye{constructor(t){t==null&&(t={}),super(t),this.supportsMasking=!0,this.axis=t.axis==null?-1:t.axis,this.momentum=t.momentum==null?.99:t.momentum,this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=je(t.betaInitializer||"zeros"),this.gammaInitializer=je(t.gammaInitializer||"ones"),this.movingMeanInitializer=je(t.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=je(t.movingVarianceInitializer||"ones"),this.betaConstraint=Tn(t.betaConstraint),this.gammaConstraint=Tn(t.gammaConstraint),this.betaRegularizer=Ke(t.betaRegularizer),this.gammaRegularizer=Ke(t.gammaRegularizer)}build(t){t=Re(t);let e=this.axis>=0?this.axis:this.axis+t.length,r=t[e];if(r==null)throw new Y(`Axis ${e} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(t)}.`);this.inputSpec=[new In({ndim:t.length,axes:{[e]:r}})];let o=[r];this.scale&&(this.gamma=this.addWeight("gamma",o,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",o,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",o,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",o,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(t,e){return rt(()=>{let r=e.training==null?!1:e.training,o=Qt(t),s=o.shape,c=s.length,l=bo(0,c),p=this.axis>=0?this.axis:this.axis+c;l.splice(p,1);let f=ya(1,c);f[p]=s[p];let m=l.slice();m.sort();let y=!lt(m,bo(0,c).slice(0,c-1)),b=()=>{if(y){let I=this.movingMean.read().reshape(f),P=this.movingVariance.read().reshape(f),E=this.center?this.beta.read().reshape(f):null,L=this.scale?this.gamma.read().reshape(f):null;return eh(o,I,P,E,L,this.epsilon)}else return eh(o,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!r)return b();let[v,T,N]=rq(o,this.gamma.read(),this.beta.read(),l,this.epsilon),S=(I,P,E)=>{rt(()=>{let L=1-E,B=I.read(),q=B.sub(P).mul(L);I.write(B.sub(q))})},D=()=>{S(this.movingMean,T,this.momentum),S(this.movingVariance,N,this.momentum)};return D(),v})}getConfig(){let t={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:rn(this.betaInitializer),gammaInitializer:rn(this.gammaInitializer),movingMeanInitializer:rn(this.movingMeanInitializer),movingVarianceInitializer:rn(this.movingVarianceInitializer),betaRegularizer:Pe(this.betaRegularizer),gammaRegularizer:Pe(this.gammaRegularizer),betaConstraint:vn(this.betaConstraint),gammaConstraint:vn(this.gammaConstraint)},e=super.getConfig();return Object.assign(t,e),t}}z0.className="BatchNormalization",vt(z0);class W0 extends ye{constructor(t){if(t==null&&(t={}),super(t),this.axis=t.axis==null?-1:t.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let e of this.axis)if(!Number.isInteger(e))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=t.epsilon==null?.001:t.epsilon,this.center=t.center==null?!0:t.center,this.scale=t.scale==null?!0:t.scale,this.betaInitializer=je(t.betaInitializer||"zeros"),this.gammaInitializer=je(t.gammaInitializer||"ones"),this.betaRegularizer=Ke(t.betaRegularizer),this.gammaRegularizer=Ke(t.gammaRegularizer),this.supportsMasking=!0}build(t){t=Re(t);let e=t.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s=e)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==gi(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let r=this.axis.map(s=>t[s]),o=!0;this.scale?this.gamma=this.addWeight("gamma",r,"float32",this.gammaInitializer,this.gammaRegularizer,o):this.gamma=null,this.center?this.beta=this.addWeight("beta",r,"float32",this.betaInitializer,this.betaRegularizer,o):this.beta=null,this.built=!0}call(t,e){let r=Qt(t),o=r.shape,s=o.length;return rt(()=>{let c=!0,{mean:l,variance:p}=Ld(r,this.axis,c),f=ya(1,s);for(let N of this.axis)f[N]=o[N];let m=N=>N!=null&&N.shape.length!==s&&this.axis!==[s-1]?N.reshape(f):N,y=m(this.gamma.read()),b=m(this.beta.read()),v=[],T=[];for(let N=0;N{if(n.rank!==3)throw new Y(`temporalPadding expects input tensor to be 3-D, but received a ${n.rank}-D tensor.`);if(t==null&&(t=[1,1]),t.length!==2)throw new Y(`temporalPadding expects input padding pattern to be a length-2 array, but received a length-${t.length} array.`);let e=[[0,0],t,[0,0]];return Go(n,e)})}function oq(n,t,e){return rt(()=>{if(n.rank!==4)throw new Y(`temporalPadding expects input tensor to be 4-D, but received a ${n.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new Y("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(e==null&&(e=yo()),e!=="channelsLast"&&e!=="channelsFirst")throw new Y(`Unknown data format: ${e}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return e==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Go(n,r)})}class V0 extends ye{constructor(t){if(t==null&&(t={}),super(t),this.dataFormat=t.dataFormat==null?yo():t.dataFormat,t.padding==null)this.padding=[[1,1],[1,1]];else if(typeof t.padding=="number")this.padding=[[t.padding,t.padding],[t.padding,t.padding]];else{if(t.padding=t.padding,t.padding.length!==2)throw new Y(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${t.padding.length} array.`);let e,r;if(typeof t.padding[0]=="number")e=[t.padding[0],t.padding[0]],r=[t.padding[1],t.padding[1]];else{if(t.padding=t.padding,t.padding[0].length!==2)throw new Y(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${t.padding[0].length} array.`);if(e=t.padding[0],t.padding[1].length!==2)throw new Y(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${t.padding[1].length} array.`);r=t.padding[1]}this.padding=[e,r]}this.inputSpec=[new In({ndim:4})]}computeOutputShape(t){t=Re(t);let e,r;return this.dataFormat==="channelsFirst"?(t[2]!=null&&t[2]>=0?e=t[2]+this.padding[0][0]+this.padding[0][1]:e=null,t[3]!=null&&t[3]>=0?r=t[3]+this.padding[1][0]+this.padding[1][1]:r=null,[t[0],t[1],e,r]):(t[1]!=null&&t[1]>=0?e=t[1]+this.padding[0][0]+this.padding[0][1]:e=null,t[2]!=null&&t[2]>=0?r=t[2]+this.padding[1][0]+this.padding[1][1]:r=null,[t[0],e,r,t[3]])}call(t,e){return rt(()=>oq(Qt(t),this.padding,this.dataFormat))}getConfig(){let t={padding:this.padding,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}V0.className="ZeroPadding2D",vt(V0);function Bm(n,t,e,r,o,s){return rt(()=>{nn(o),HC(s),Lr(r),e==null&&(e=[1,1]),r==null&&(r="valid"),o==null&&(o=yo()),s==null&&(s="max"),n=g0(n,o);let c,l=r==="same"?"same":"valid";return s==="max"?c=mp(n,t,e,l):c=ap(n,t,e,l),o==="channelsFirst"&&(c=Kt(c,[0,3,1,2])),c})}function o$(n,t,e,r,o,s){return rt(()=>{nn(o),HC(s),Lr(r),e==null&&(e=[1,1,1]),r==null&&(r="valid"),o==null&&(o=yo()),s==null&&(s="max"),n=JS(n,o);let c,l=r==="same"?"same":"valid";return s==="max"?c=Gw(n,t,e,l):c=Ew(n,t,e,l),o==="channelsFirst"&&(c=Kt(c,[0,4,1,2,3])),c})}class s$ extends ye{constructor(t){if(t.poolSize==null&&(t.poolSize=2),super(t),typeof t.poolSize=="number")this.poolSize=[t.poolSize];else if(Array.isArray(t.poolSize)&&t.poolSize.length===1&&typeof t.poolSize[0]=="number")this.poolSize=t.poolSize;else throw new Y(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.poolSize)}`);if($n(this.poolSize,"poolSize"),t.strides==null)this.strides=this.poolSize;else if(typeof t.strides=="number")this.strides=[t.strides];else if(Array.isArray(t.strides)&&t.strides.length===1&&typeof t.strides[0]=="number")this.strides=t.strides;else throw new Y(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(t.strides)}`);$n(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,Lr(this.padding),this.inputSpec=[new In({ndim:3})]}computeOutputShape(t){t=Re(t);let e=ko(t[1],this.poolSize[0],this.padding,this.strides[0]);return[t[0],e,t[2]]}call(t,e){return rt(()=>{this.invokeCallHook(t,e),t=Lp(Qt(t),2);let r=this.poolingFunction(Qt(t),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return fi(r,[2])})}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides},e=super.getConfig();return Object.assign(t,e),t}}class G0 extends s${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),Bm(t,e,r,o,s,"max")}}G0.className="MaxPooling1D",vt(G0);class U0 extends s${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),Bm(t,e,r,o,s,"avg")}}U0.className="AveragePooling1D",vt(U0);class i$ extends ye{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==2)throw new Y(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides];$n(this.poolSize,"poolSize"),$n(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,nn(this.dataFormat),Lr(this.padding),this.inputSpec=[new In({ndim:4})]}computeOutputShape(t){t=Re(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],r=this.dataFormat==="channelsFirst"?t[3]:t[2];return e=ko(e,this.poolSize[0],this.padding,this.strides[0]),r=ko(r,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,r]:[t[0],e,r,t[3]]}call(t,e){return rt(()=>(this.invokeCallHook(t,e),this.poolingFunction(Qt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}class q0 extends i${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),Bm(t,e,r,o,s,"max")}}q0.className="MaxPooling2D",vt(q0);class H0 extends i${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),Bm(t,e,r,o,s,"avg")}}H0.className="AveragePooling2D",vt(H0);class a$ extends ye{constructor(t){if(t.poolSize==null&&(t.poolSize=[2,2,2]),super(t),this.poolSize=Array.isArray(t.poolSize)?t.poolSize:[t.poolSize,t.poolSize,t.poolSize],t.strides==null)this.strides=this.poolSize;else if(Array.isArray(t.strides)){if(t.strides.length!==3)throw new Y(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${t.strides.length}.`);this.strides=t.strides}else this.strides=[t.strides,t.strides,t.strides];$n(this.poolSize,"poolSize"),$n(this.strides,"strides"),this.padding=t.padding==null?"valid":t.padding,this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,nn(this.dataFormat),Lr(this.padding),this.inputSpec=[new In({ndim:5})]}computeOutputShape(t){t=Re(t);let e=this.dataFormat==="channelsFirst"?t[2]:t[1],r=this.dataFormat==="channelsFirst"?t[3]:t[2],o=this.dataFormat==="channelsFirst"?t[4]:t[3];return e=ko(e,this.poolSize[0],this.padding,this.strides[0]),r=ko(r,this.poolSize[1],this.padding,this.strides[1]),o=ko(o,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[t[0],t[1],e,r,o]:[t[0],e,r,o,t[4]]}call(t,e){return rt(()=>(this.invokeCallHook(t,e),this.poolingFunction(Qt(t),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let t={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}class j0 extends a${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),o$(t,e,r,o,s,"max")}}j0.className="MaxPooling3D",vt(j0);class K0 extends a${constructor(t){super(t)}poolingFunction(t,e,r,o,s){return nn(s),Lr(o),o$(t,e,r,o,s,"avg")}}K0.className="AveragePooling3D",vt(K0);class c$ extends ye{constructor(t){super(t);this.inputSpec=[new In({ndim:3})]}computeOutputShape(t){return[t[0],t[2]]}call(t,e){throw new Ut}}class X0 extends c${constructor(t){super(t||{})}call(t,e){return rt(()=>{let r=Qt(t);return en(r,1)})}}X0.className="GlobalAveragePooling1D",vt(X0);class Y0 extends c${constructor(t){super(t||{})}call(t,e){return rt(()=>{let r=Qt(t);return ur(r,1)})}}Y0.className="GlobalMaxPooling1D",vt(Y0);class l$ extends ye{constructor(t){super(t);this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,nn(this.dataFormat),this.inputSpec=[new In({ndim:4})]}computeOutputShape(t){return t=t,this.dataFormat==="channelsLast"?[t[0],t[3]]:[t[0],t[1]]}call(t,e){throw new Ut}getConfig(){let t={dataFormat:this.dataFormat},e=super.getConfig();return Object.assign(t,e),t}}class J0 extends l${call(t,e){return rt(()=>{let r=Qt(t);return this.dataFormat==="channelsLast"?en(r,[1,2]):en(r,[2,3])})}}J0.className="GlobalAveragePooling2D",vt(J0);class Z0 extends l${call(t,e){return rt(()=>{let r=Qt(t);return this.dataFormat==="channelsLast"?ur(r,[1,2]):ur(r,[2,3])})}}Z0.className="GlobalMaxPooling2D",vt(Z0);class u$ extends ye{constructor(t){super(t);this.layer=t.layer}build(t){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(t){this.layer!=null&&(this.layer.trainable=t)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(t){this.layer.setWeights(t)}getConfig(){let t={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},e=super.getConfig();return Object.assign(t,e),t}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(t)}static fromConfig(t,e,r={}){let o=e.layer,s=vo(o,r);delete e.layer;let c={layer:s};return Object.assign(c,e),new t(c)}}class Q0 extends u${constructor(t){super(t);this.supportsMasking=!0}build(t){if(t=Re(t),t.length<3)throw new Y(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(t)}`);this.inputSpec=[{shape:t}];let e=[t[0]].concat(t.slice(2));this.layer.built||(this.layer.build(e),this.layer.built=!0),super.build(t)}computeOutputShape(t){t=Re(t);let e=[t[0]].concat(t.slice(2)),r=this.layer.computeOutputShape(e),o=t[1];return[r[0],o].concat(r.slice(1))}call(t,e){return rt(()=>{t=Qt(t);let r=(c,l)=>{let p=Qt(this.layer.call(c,e));return[p,[]]},o=n$(r,t,[],!1,null,null,!1,!0),s=o[1];return s})}}Q0.className="TimeDistributed",vt(Q0);function sq(n){Jc(dG,"BidirectionalMergeMode",n)}let iq="concat";class t1 extends u${constructor(t){super(t);let e=t.layer.getConfig(),r={};r.className=t.layer.getClassName(),r.config=e,this.forwardLayer=vo(r),e.goBackwards=!(e.goBackwards===!0);let o={};if(o.className=t.layer.getClassName(),o.config=e,this.backwardLayer=vo(o),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=t.mergeMode===void 0?iq:t.mergeMode,sq(this.mergeMode),t.weights)throw new Ut("weights support is not implemented for Bidirectional layer yet.");this._stateful=t.layer.stateful,this.returnSequences=t.layer.returnSequences,this.returnState=t.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=t.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(t){this._trainable=t,this.forwardLayer!=null&&(this.forwardLayer.trainable=t),this.backwardLayer!=null&&(this.backwardLayer.trainable=t)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(t){let e=t.length,r=Math.floor(e/2);this.forwardLayer.setWeights(t.slice(0,r)),this.backwardLayer.setWeights(t.slice(r))}computeOutputShape(t){let e=this.forwardLayer.computeOutputShape(t);Array.isArray(e)&&Array.isArray(e[0])||(e=[e]),e=e;let r,o,s;return this.returnState&&(s=e.slice(1)),r=e[0],r=r,this.mergeMode==="concat"?(r[r.length-1]*=2,o=[r]):this.mergeMode==null?o=[r,r.slice()]:o=[r],this.returnState?this.mergeMode==null?o.concat(s).concat(s.slice()):[r].concat(s).concat(s.slice()):hr(o)}apply(t,e){let r=e==null?null:e.initialState,o=e==null?null:e.constants;e==null&&(e={});let s=e$(t,r,o,this.numConstants);if(t=s.inputs,r=s.initialState,o=s.constants,Array.isArray(t)&&(r=t.slice(1),t=t[0]),(r==null||r.length===0)&&o==null)return super.apply(t,e);let c=[],l=[];if(r!=null){let f=r.length;if(f%2>0)throw new Y("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");e.initialState=r,c.push(...r);let m=r.map(y=>new In({shape:y.shape}));this.forwardLayer.stateSpec=m.slice(0,f/2),this.backwardLayer.stateSpec=m.slice(f/2),l.push(...m)}if(o!=null)throw new Ut("Support for constants in Bidirectional layers is not implemented yet.");let p=c[0]instanceof wo;for(let f of c)if(f instanceof wo!==p)throw new Y("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(p){let f=[t].concat(c),m=this.inputSpec.concat(l),y=this.inputSpec;this.inputSpec=m;let b=super.apply(f,e);return this.inputSpec=y,b}else return super.apply(t,e)}call(t,e){return rt(()=>{let r=e.initialState,o,s;if(r==null)o=this.forwardLayer.call(t,e),s=this.backwardLayer.call(t,e);else{let p=r.slice(0,r.length/2),f=r.slice(r.length/2);o=this.forwardLayer.call(t,Object.assign(e,{initialState:p})),s=this.backwardLayer.call(t,Object.assign(e,{initialState:f}))}let c;this.returnState&&(Array.isArray(o)&&(c=o.slice(1).concat(s.slice(1))),o=o[0],s=s[0]),this.returnSequences&&(s=Pr(s,1));let l;return this.mergeMode==="concat"?l=Pv([o,s]):this.mergeMode==="sum"?l=Tt(o,s):this.mergeMode==="ave"?l=nt(.5,Tt(o,s)):this.mergeMode==="mul"?l=nt(o,s):this.mergeMode==null&&(l=[o,s]),this.returnState?this.mergeMode==null?l.concat(c):[l].concat(c):l})}resetStates(t){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(t){xa(this.forwardLayer.name,()=>{this.forwardLayer.build(t)}),xa(this.backwardLayer.name,()=>{this.backwardLayer.build(t)}),this.built=!0}computeMask(t,e){Array.isArray(e)&&(e=e[0]);let r;if(this.returnSequences?this.mergeMode==null?r=[e,e]:r=e:this.mergeMode==null?r=[null,null]:r=null,this.returnState){let o=this.forwardLayer.states,s=o.map(c=>null);return Array.isArray(r)?r.concat(s).concat(s):[r].concat(s).concat(s)}else return r}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(t){super.setFastWeightInitDuringBuild(t),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(t),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(t)}getConfig(){let t={mergeMode:this.mergeMode},e=super.getConfig();return Object.assign(t,e),t}static fromConfig(t,e){let r=vo(e.layer);if(delete e.layer,e.numConstants!=null)throw new Ut("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let o=e;return o.layer=r,new t(o)}}t1.className="Bidirectional",vt(t1);function aq(n){return new tl(n)}function cq(n){return new f0(n)}function lq(n){return new u0(n)}function uq(n){return new p0(n)}function pq(n){return new h0(n)}function hq(n){return new m0(n)}function fq(n){return new d0(n)}function dq(n){return new Hp(n)}function mq(n){return new sl(n)}function gq(n){return new b0(n)}function yq(n){return new qp(n)}function bq(n){return new x0(n)}function xq(n){return new w0(n)}function wq(n){return new v0(n)}function vq(n){return new T0(n)}function Tq(n){return new E0(n)}function kq(n){return new $0(n)}function Nq(n){return new Mm(n)}function _q(n){return new S0(n)}function Cq(n){return new I0(n)}function Sq(n){return new D0(n)}function $q(n){return new A0(n)}function Iq(n){return new F0(n)}function Eq(n){return new P0(n)}function Dq(n){return new Kp(n)}function Aq(n){return new Yp(n)}function Fq(n){return new Qp(n)}function Rq(n){return new Jp(n)}function Pq(n){return new Zp(n)}function Oq(n){return new Xp(n)}function Lq(n){return new O0(n)}function Mq(n){return new z0(n)}function Bq(n){return new W0(n)}function zq(n){return new V0(n)}function e1(n){return new U0(n)}function Wq(n){return e1(n)}function Vq(n){return e1(n)}function n1(n){return new H0(n)}function Gq(n){return n1(n)}function Uq(n){return n1(n)}function r1(n){return new K0(n)}function qq(n){return r1(n)}function Hq(n){return r1(n)}function jq(n){return new X0(n)}function Kq(n){return new J0(n)}function p$(n){return new Y0(n)}function h$(n){return new Z0(n)}function f$(n){return new G0(n)}function d$(n){return new q0(n)}function Xq(n){return new j0(n)}function Yq(n){return new N0(n)}function Jq(n){return new Pm(n)}function Zq(n){return new _0(n)}function Qq(n){return new jp(n)}function tH(n){return new k0(n)}function eH(n){return new Rm(n)}function nH(n){return new C0(n)}function rH(n){return new Lm(n)}function oH(n){return new No(n)}function sH(n){return new Om(n)}function iH(n){return new t1(n)}function aH(n){return new Q0(n)}let cH=p$,lH=h$,uH=f$,pH=d$;function hH(n){return new L0(n)}function fH(n){return new M0(n)}function dH(n){return new B0(n)}function mH(n){return new R0(n)}var gH=Object.freeze({__proto__:null,inputLayer:aq,elu:cq,reLU:lq,leakyReLU:uq,prelu:pq,softmax:hq,thresholdedReLU:fq,conv1d:dq,conv2d:mq,conv2dTranspose:gq,conv3d:yq,separableConv2d:bq,cropping2D:xq,upSampling2d:wq,depthwiseConv2d:vq,activation:Tq,dense:kq,dropout:Nq,spatialDropout1d:_q,flatten:Cq,repeatVector:Sq,reshape:$q,permute:Iq,embedding:Eq,add:Dq,average:Aq,concatenate:Fq,maximum:Rq,minimum:Pq,multiply:Oq,dot:Lq,batchNormalization:Mq,layerNormalization:Bq,zeroPadding2d:zq,averagePooling1d:e1,avgPool1d:Wq,avgPooling1d:Vq,averagePooling2d:n1,avgPool2d:Gq,avgPooling2d:Uq,averagePooling3d:r1,avgPool3d:qq,avgPooling3d:Hq,globalAveragePooling1d:jq,globalAveragePooling2d:Kq,globalMaxPooling1d:p$,globalMaxPooling2d:h$,maxPooling1d:f$,maxPooling2d:d$,maxPooling3d:Xq,gru:Yq,gruCell:Jq,lstm:Zq,lstmCell:Qq,simpleRNN:tH,simpleRNNCell:eH,convLstm2d:nH,convLstm2dCell:rH,rnn:oH,stackedRNNCells:sH,bidirectional:iH,timeDistributed:aH,globalMaxPool1d:cH,globalMaxPool2d:lH,maxPool1d:uH,maxPool2d:pH,Layer:ye,RNN:No,RNNCell:il,input:PS,gaussianNoise:hH,gaussianDropout:fH,alphaDropout:dH,masking:mH});function yH(n,t){return Jv(n,t)}function bH(n,t){return gS(n,t)}function xH(n,t){return yS(n,t)}function wH(n,t){return Zv(n,t)}function vH(n,t){return Qv(n,t)}function TH(n,t){return mS(n,t)}function kH(n,t){return lU(n,t)}function NH(n,t){return Cm(n,t)}function _H(n,t){return nl(n,t)}function CH(n,t){return wi(n,t)}function SH(n,t){return wi(n,t)}function $H(n,t){return wi(n,t)}function IH(n,t){return Ts(n,t)}function EH(n,t){return Ts(n,t)}function DH(n,t){return Ts(n,t)}var AH=Object.freeze({__proto__:null,binaryAccuracy:yH,binaryCrossentropy:bH,sparseCategoricalAccuracy:xH,categoricalAccuracy:wH,categoricalCrossentropy:vH,precision:TH,recall:kH,cosineProximity:NH,meanAbsoluteError:_H,meanAbsolutePercentageError:CH,MAPE:SH,mape:$H,meanSquaredError:IH,MSE:EH,mse:DH});var FH=Object.freeze({__proto__:null,modelFromJSON:VU});function RH(n){return new Up(n)}function PH(n){return YU(n)}function OH(n){return JU(n)}var LH=Object.freeze({__proto__:null,l1l2:RH,l1:PH,l2:OH});class m$ extends el{constructor(){super(...arguments);this.model=null}setModel(t){if(!(t instanceof ks))throw new Error("model must be a LayersModel, not some other Container");this.model=t}}function zm(n,t){return nt}class y$ extends m${constructor(t){super();if(t==null&&(t={}),t.restoreBestWeights)throw new Ut("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=t.monitor||"val_loss",this.minDelta=Math.abs(t.minDelta||0),this.patience=t.patience||0,this.verbose=t.verbose||0,this.mode=t.mode||"auto",this.baseline=t.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=zm:this.mode==="max"?this.monitorFunc=g$:this.monitor.indexOf("acc")!==-1?this.monitorFunc=g$:this.monitorFunc=zm,this.monitorFunc===zm&&(this.minDelta*=-1)}async onTrainBegin(t){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===zm?Infinity:-Infinity}async onEpochEnd(t,e){await xi(e);let r=this.getMonitorValue(e);if(r==null)return;this.monitorFunc(r-this.minDelta,this.best)?(this.best=r,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=t,this.model.stopTraining=!0))}async onTrainEnd(t){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(t){t==null&&(t={});let e=t[this.monitor];return e==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(t)}`),e}}function MH(n){return new y$(n)}let BH={earlyStopping:MH};var _o;(function(n){n[n.DT_INVALID=0]="DT_INVALID",n[n.DT_FLOAT=1]="DT_FLOAT",n[n.DT_DOUBLE=2]="DT_DOUBLE",n[n.DT_INT32=3]="DT_INT32",n[n.DT_UINT8=4]="DT_UINT8",n[n.DT_INT16=5]="DT_INT16",n[n.DT_INT8=6]="DT_INT8",n[n.DT_STRING=7]="DT_STRING",n[n.DT_COMPLEX64=8]="DT_COMPLEX64",n[n.DT_INT64=9]="DT_INT64",n[n.DT_BOOL=10]="DT_BOOL",n[n.DT_QINT8=11]="DT_QINT8",n[n.DT_QUINT8=12]="DT_QUINT8",n[n.DT_QINT32=13]="DT_QINT32",n[n.DT_BFLOAT16=14]="DT_BFLOAT16",n[n.DT_FLOAT_REF=101]="DT_FLOAT_REF",n[n.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",n[n.DT_INT32_REF=103]="DT_INT32_REF",n[n.DT_UINT8_REF=104]="DT_UINT8_REF",n[n.DT_INT16_REF=105]="DT_INT16_REF",n[n.DT_INT8_REF=106]="DT_INT8_REF",n[n.DT_STRING_REF=107]="DT_STRING_REF",n[n.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",n[n.DT_INT64_REF=109]="DT_INT64_REF",n[n.DT_BOOL_REF=110]="DT_BOOL_REF",n[n.DT_QINT8_REF=111]="DT_QINT8_REF",n[n.DT_QUINT8_REF=112]="DT_QUINT8_REF",n[n.DT_QINT32_REF=113]="DT_QINT32_REF",n[n.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(_o||(_o={}));var b$;(function(n){let t;(function(e){e[e.LEGACY=0]="LEGACY",e[e.V1=1]="V1",e[e.V2=2]="V2"})(t=n.CheckpointFormatVersion||(n.CheckpointFormatVersion={}))})(b$||(b$={}));let o1={};function zH(n,t){let e={tfOpName:n,category:"custom",inputs:[],attrs:[],customExecutor:t};o1[n]=e}function x$(n){return o1[n]}function WH(n){delete o1[n]}function A(n,t,e,r,o){let s=t.inputParams[n];if(s&&s.inputIndexStart!==void 0){let l=s.inputIndexStart,p=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?l+1:s.inputIndexEnd;if(s.type==="tensor")return dr(t.inputNames[s.inputIndexStart],e,r,o);if(s.type==="tensors"){let y=t.inputNames.slice(l,p);return y.map(b=>dr(b,e,r,o))}let f=dr(t.inputNames.slice(l)[0],e,r,o),m=f.dataSync();return s.type==="number"?m[0]:Dr(f.shape,m)}let c=t.attrParams[n];return c&&c.value}function dr(n,t,e,r){let[o,s]=Nr(n);if(r!=null){let l=r.getHashTableHandleByName(o);if(l!=null)return l}let c=e.currentContextIds.find(l=>!!t[Wm(o,l)]);return c!==void 0?t[Wm(o,c)][s]:void 0}function VH(n,t,e){return t[Wm(n,e.currentContextId)]}function Ns(n,t){let[e,r]=Nr(n);return[Wm(e,t&&t.currentContextId),r]}function Wm(n,t){return t?`${n}-${t}`:n}function Nr(n){let t=n.split(":");if(t.length===1)return[n,0];let e=t[0];return[e,Number(t[t.length-1])]}function Tst(n,t){let e=[];for(let r=0;rr.json));this.opMappers=e.reduce((r,o)=>(r[o.tfOpName]=o,r),{})}transformGraph(t,e={}){let r=t.node,o=[],s=[],c=[],l=r.reduce((N,S)=>(N[S.name]=this.mapNode(S),S.op.startsWith("Placeholder")?o.push(N[S.name]):S.op==="Const"?s.push(N[S.name]):(S.input==null||S.input.length===0)&&c.push(N[S.name]),N),{}),p=[],f=[],m={},y={};e!=null&&(m=this.mapSignatureEntries(e.inputs),y=this.mapSignatureEntries(e.outputs));let b=Object.keys(l);b.forEach(N=>{let S=l[N];S.inputNames.forEach(D=>{let[I]=Ns(D);S.inputs.push(l[I]),l[I].children.push(S)})}),Object.keys(y).length===0?b.forEach(N=>{let S=l[N];S.children.length===0&&f.push(S)}):Object.keys(y).forEach(N=>{let[S]=Ns(N),D=l[S];D!=null&&(D.signatureKey=y[N],f.push(D))}),Object.keys(m).length>0?Object.keys(m).forEach(N=>{let[S]=Ns(N),D=l[S];D&&(D.signatureKey=m[N],p.push(D))}):p=o;let v={};t.library!=null&&t.library.function!=null&&(v=t.library.function.reduce((N,S)=>(N[S.signature.name]=this.mapFunction(S),N),{}));let T={nodes:l,inputs:p,outputs:f,weights:s,placeholders:o,signature:e,functions:v};return c.length>0&&(T.initNodes=c),T}mapSignatureEntries(t){return Object.keys(t||{}).reduce((e,r)=>(e[t[r].name]=r,e),{})}mapNode(t){let e=x$(t.op)||this.opMappers[t.op]||{};t.attr==null&&(t.attr={});let r={name:t.name,op:t.op,category:e.category,inputNames:(t.input||[]).map(o=>o.startsWith("^")?o.substr(1):o),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:t.attr};return e.inputs!=null&&(r.inputParams=e.inputs.reduce((o,s)=>(o[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},o),{})),e.attrs!=null&&(r.attrParams=e.attrs.reduce((o,s)=>{let c=s.type,l;switch(s.type){case"string":l=s1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=s1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":l=f1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=f1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":l=a1(t.attr,s.tfName,s.defaultValue||0),l===void 0&&!!s.tfDeprecatedName&&(l=a1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":l=h1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=h1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":l=i1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=i1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":l=m1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=m1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":l=p1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=p1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":l=d1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=d1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":l=l1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=l1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":l=u1(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=u1(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":l=T$(t.attr,s.tfName,s.defaultValue),l===void 0&&!!s.tfDeprecatedName&&(l=T$(t.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${t.op}`)}return o[s.name]={value:l,type:c},o},{})),r}mapFunction(t){let e=t.nodeDef,r=[],o=[],s={};e!=null&&(s=e.reduce((y,b)=>(y[b.name]=this.mapNode(b),b.op==="Const"&&o.push(y[b.name]),y),{}));let c=[],l=[];t.signature.inputArg.forEach(y=>{let[b]=Ns(y.name),v={name:b,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:c1(y.type),type:"dtype"}},children:[]};v.signatureKey=y.name,c.push(v),s[b]=v});let p=Object.keys(s);p.forEach(y=>{let b=s[y];b.inputNames.forEach(v=>{let[T]=Ns(v);b.inputs.push(s[T]),s[T].children.push(b)})});let f=t.ret;t.signature.outputArg.forEach(y=>{let[b,v]=Ns(f[y.name]),T=s[b];T!=null&&(T.defaultOutput=v,l.push(T))});let m=this.mapArgsToSignature(t);return{nodes:s,inputs:c,outputs:l,weights:o,placeholders:r,signature:m}}mapArgsToSignature(t){return{methodName:t.signature.name,inputs:t.signature.inputArg.reduce((e,r)=>(e[r.name]=this.mapArgToTensorInfo(r),e),{}),outputs:t.signature.outputArg.reduce((e,r)=>(e[r.name]=this.mapArgToTensorInfo(r,t.ret),e),{})}}mapArgToTensorInfo(t,e){let r=t.name;return e!=null&&(r=e[r]),{name:r,dtype:t.type}}}function kj(n){let t=ct().global;if(typeof t.atob!="undefined")return t.atob(n);if(typeof Buffer!="undefined")return new Buffer(n,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function v$(n,t){let e=Array.isArray(n)?String.fromCharCode.apply(null,n):kj(n);return t?e:e.toLowerCase()}function s1(n,t,e,r=!1){let o=n[t];return o!=null?v$(o.s,r):e}function i1(n,t,e){let r=n[t];return r?r.b:e}function a1(n,t,e){let r=n[t]||{},o=r.i!=null?r.i:r.f!=null?r.f:e;return typeof o=="number"?o:parseInt(o,10)}function c1(n){typeof n=="string"&&(n=_o[n]);switch(n){case _o.DT_FLOAT:return"float32";case _o.DT_INT32:case _o.DT_INT64:case _o.DT_INT8:case _o.DT_UINT8:return"int32";case _o.DT_BOOL:return"bool";case _o.DT_DOUBLE:return"float32";case _o.DT_STRING:return"string";default:return null}}function T$(n,t,e){let r=n[t];return r&&r.func?r.func.name:e}function l1(n,t,e){let r=n[t];return r&&r.type?c1(r.type):e}function u1(n,t,e){let r=n[t];return r&&r.list&&r.list.type?r.list.type.map(o=>c1(o)):e}function k$(n){return n.unknownRank?void 0:n.dim!=null?n.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function p1(n,t,e){let r=n[t];return r&&r.shape?k$(r.shape):e}function h1(n,t,e){let r=n[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(o=>typeof o=="number"?o:parseInt(o,10)):e}function f1(n,t,e,r=!1){let o=n[t];return o&&o.list&&o.list.s?o.list.s.map(s=>v$(s,r)):e}function d1(n,t,e){let r=n[t];return r&&r.list&&r.list.shape?r.list.shape.map(o=>k$(o)):e}function m1(n,t,e){let r=n[t];return r&&r.list&&r.list.b?r.list.b:e}class Nj{constructor(t,e,r){this.node=t,this.tensorMap=e,this.context=r,this.inputs=[],this.attrs={},this.inputs=t.inputNames.map(o=>this.getInput(o)),t.rawAttrs!=null&&(this.attrs=Object.keys(t.rawAttrs).reduce((o,s)=>(o[s]=this.getAttr(s),o),{}))}getInput(t){return dr(t,this.tensorMap,this.context)}getAttr(t,e){let r=this.node.rawAttrs[t];if(r.tensor!=null)return dr(t,this.tensorMap,this.context);if(r.i!=null||r.f!=null)return a1(this.node.rawAttrs,t,e);if(r.s!=null)return s1(this.node.rawAttrs,t,e);if(r.b!=null)return i1(this.node.rawAttrs,t,e);if(r.shape!=null)return p1(this.node.rawAttrs,t,e);if(r.type!=null)return l1(this.node.rawAttrs,t,e);if(r.list!=null){if(r.list.i!=null||r.list.f!=null)return h1(this.node.rawAttrs,t,e);if(r.list.s!=null)return f1(this.node.rawAttrs,t,e);if(r.list.shape!=null)return d1(this.node.rawAttrs,t,e);if(r.list.b!=null)return m1(this.node.rawAttrs,t,e);if(r.list.type!=null)return u1(this.node.rawAttrs,t,e)}return e}}let _j=(n,t,e)=>{switch(n.op){case"BiasAdd":case"AddV2":case"Add":return[Tt(A("a",n,t,e),A("b",n,t,e))];case"AddN":return[C_(A("tensors",n,t,e))];case"FloorMod":case"Mod":return[Od(A("a",n,t,e),A("b",n,t,e))];case"Mul":return[nt(A("a",n,t,e),A("b",n,t,e))];case"RealDiv":case"Div":return[Bt(A("a",n,t,e),A("b",n,t,e))];case"DivNoNan":return[Ow(A("a",n,t,e),A("b",n,t,e))];case"FloorDiv":return[wd(A("a",n,t,e),A("b",n,t,e))];case"Sub":return[Dt(A("a",n,t,e),A("b",n,t,e))];case"Minimum":return[ua(A("a",n,t,e),A("b",n,t,e))];case"Maximum":return[Jr(A("a",n,t,e),A("b",n,t,e))];case"Pow":return[mo(A("a",n,t,e),A("b",n,t,e))];case"SquaredDifference":return[Tp(A("a",n,t,e),A("b",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},kst="arithmetic";let Cj=(n,t,e)=>{switch(n.op){case"Abs":case"ComplexAbs":return[bn(A("x",n,t,e))];case"Acos":return[xw(A("x",n,t,e))];case"Acosh":return[ww(A("x",n,t,e))];case"Asin":return[kw(A("x",n,t,e))];case"Asinh":return[Nw(A("x",n,t,e))];case"Atan":return[_w(A("x",n,t,e))];case"Atan2":return[Cw(A("x",n,t,e),A("y",n,t,e))];case"Atanh":return[Sw(A("x",n,t,e))];case"Ceil":return[Dw(A("x",n,t,e))];case"Complex":return[fs(A("real",n,t,e),A("imag",n,t,e))];case"Cos":return[up(A("x",n,t,e))];case"Cosh":return[$d(A("x",n,t,e))];case"Elu":return[Oc(A("x",n,t,e))];case"Erf":return[Lw(A("x",n,t,e))];case"Exp":return[Fr(A("x",n,t,e))];case"Expm1":return[Mw(A("x",n,t,e))];case"Floor":return[Mc(A("x",n,t,e))];case"Log":return[wr(A("x",n,t,e))];case"Log1p":return[Ad(A("x",n,t,e))];case"Imag":return[hp(A("x",n,t,e))];case"Neg":return[tn(A("x",n,t,e))];case"Reciprocal":return[Kw(A("x",n,t,e))];case"Real":return[Vc(A("x",n,t,e))];case"Relu":return[Uo(A("x",n,t,e))];case"Round":return[Yw(A("x",n,t,e))];case"Selu":return[zd(A("x",n,t,e))];case"Sigmoid":return[Wo(A("x",n,t,e))];case"Sin":return[Wd(A("x",n,t,e))];case"Sign":return[Zw(A("x",n,t,e))];case"Sinh":return[Vd(A("x",n,t,e))];case"Softplus":return[zc(A("x",n,t,e))];case"Sqrt":return[On(A("x",n,t,e))];case"Square":return[Ae(A("x",n,t,e))];case"Tanh":return[Pc(A("x",n,t,e))];case"Tan":return[ev(A("x",n,t,e))];case"Relu6":case"ClipByValue":return[cr(A("x",n,t,e),A("clipValueMin",n,t,e),A("clipValueMax",n,t,e))];case"Rsqrt":return[Bd(dr(n.inputNames[0],t,e))];case"Prod":return[Md(A("x",n,t,e),A("axes",n,t,e))];case"LeakyRelu":return[Dd(A("x",n,t,e),A("alpha",n,t,e))];case"Prelu":return[yp(A("x",n,t,e),A("alpha",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Nst="basic_math";function no(n,t,e=""){_(Sj(n,t),()=>e+` Shapes ${n} and ${t} must match`)}function Sj(n,t){if(n.length!==t.length)return!1;for(let e=0;e{(t==null||!t.has(e.tensor.id))&&e.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||t>=this.size())throw new Error(`Tried to read from index ${t}, but array size is: ${this.size()}`);let e=this.tensors[t];if(e.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${t} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(e.cleared=!0),e.read=!0,e.tensor}readMany(t){return t.map(e=>this.read(e))}write(t,e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(t<0||!this.dynamicSize&&t>=this.maxSize)throw new Error(`Tried to write to index ${t}, but array is not resizeable and size is: ${this.maxSize}`);let r=this.tensors[t]||{};if(e.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because the value dtype is ${e.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=e.shape),no(this.elementShape,e.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${t}.`),r.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been read.`);if(r.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${t}, because it has already been written.`);r.tensor=e,Sn(e),r.written=!0,this.tensors[t]=r}writeMany(t,e){if(t.length!==e.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${t.length} is not the same as tensors size: ${e.length}.`);t.forEach((r,o)=>this.write(r,e[o]))}gather(t,e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${e}`);if(t)t=t.slice(0,this.size());else{t=[];for(let o=0;o=this.maxSize)throw new Error(`Max index must be < array size (${r} vs. ${this.maxSize})`);this.writeMany(t,go(e,0))}split(t,e){if(e.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${e.dtype}`);let r=0,o=t.map(p=>(r+=p,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${e.shape}`);if(!this.dynamicSize&&t.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${t.length}), and the TensorArray is not marked as dynamically resizeable`);let s=r===0?0:e.size/r,c=[];rt(()=>{e=Q(e,[1,r,s]);for(let p=0;p{if(r!==s.dtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${s.dtype}`);no(e,s.shape,"TensorList shape mismatch: "),Sn(s)}),this.idTensor=Et(0),this.maxNumElements=o,Sn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new al([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(t){this.tensors.forEach(e=>{(t==null||!t.has(e.id))&&e.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(t,e,r=-1){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(r!==-1&&this.tensors.length!==r)throw new Error(`Operation expected a list with ${r} elements but got a list with ${this.tensors.length} elements.`);return no(t,this.elementShape,"TensorList shape mismatch: "),rt(()=>{let o=this.tensors.map(s=>Q(s,t));return pr(o,0)})}popBack(t,e){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let r=this.tensors.pop();return no(r.shape,t,"TensorList shape mismatch: "),Q(r,t)}pushBack(t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(no(t.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Sn(t),this.tensors.push(t)}resize(t){if(t<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${t}`);if(this.maxNumElements!==-1&&t>this.maxNumElements)throw new Error(`TensorListResize input size ${t} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=t}getItem(t,e,r){if(r!==this.elementDtype)throw new Error(`Invalid data types; op elements ${r}, but list elements ${this.elementDtype}`);if(t<0||t>this.tensors.length)throw new Error(`Trying to access element ${t} in a list with ${this.tensors.length} elements.`);if(this.tensors[t]==null)throw new Error(`element at index ${t} is null.`);return no(this.tensors[t].shape,e,"TensorList shape mismatch: "),this.tensors[t]}setItem(t,e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(t<0||this.maxNumElements!==-1&&t>=this.maxNumElements)throw new Error(`Trying to set element ${t} in a list with max ${this.maxNumElements} elements.`);no(this.elementShape,e.shape,"TensorList shape mismatch: "),Sn(e),this.tensors[t]=e}gather(t,e,r){if(e!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e}, but list elements ${this.elementDtype}`);return no(this.elementShape,r,"TensorList shape mismatch: "),t=t.slice(0,this.size()),t.length===0?un([],[0].concat(this.elementShape)):rt(()=>{let o=t.map(s=>Q(this.tensors[s],r));return pr(o,0)})}concat(t,e){if(!!t&&t!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${t}`);return no(this.elementShape,e,"TensorList shape mismatch: "),this.size()===0?un([],[0].concat(this.elementShape)):rt(()=>{let r=this.tensors.map(o=>Q(o,e));return Qe(r,0)})}}function Ij(n,t,e){let r=n.dtype;if(n.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${n.shape}`);if(n.dtype!==e)throw new Error(`Invalid data types; op elements ${n.dtype}, but list elements ${e}`);let o=n.shape.slice(1);no(o,t,"TensorList shape mismatch: ");let s=go(n);return new al(s,t,r)}function Ej(n,t,e){return new al([],n,t,e)}function Dj(n,t,e,r){if(t.length!==n.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${n.shape[0]}`);let o=Math.max(...t);if(r!=null&&r!==-1&&o>=r)throw new Error(`Max index must be < array size (${o} vs. ${r})`);let s=new al([],e,n.dtype,r),c=go(n,0);return t.forEach((l,p)=>{s.setItem(l,c[p])}),s}function Aj(n,t,e){let r=0,o=t.map(p=>(r+=p,r));if(r!==n.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${n.shape}`);let s=r===0?0:n.size/r,c=rt(()=>{let p=[];n=Q(n,[1,r,s]);for(let f=0;f{switch(n.op){case"If":case"StatelessIf":{let r=A("thenBranch",n,t,e),o=A("elseBranch",n,t,e),s=A("cond",n,t,e),c=A("args",n,t,e),l=await s.data();return l[0]?e.functionMap[r].executeFunctionAsync(c,e.tensorArrayMap,e.tensorListMap):e.functionMap[o].executeFunctionAsync(c,e.tensorArrayMap,e.tensorListMap)}case"While":case"StatelessWhile":{let r=A("body",n,t,e),o=A("cond",n,t,e),s=A("args",n,t,e),c=await e.functionMap[o].executeFunctionAsync(s,e.tensorArrayMap,e.tensorListMap),l=s.map(m=>m.id),p=await c[0].data();c.forEach(m=>{!m.kept&&l.indexOf(m.id)===-1&&m.dispose()});let f=s;for(;p[0];){let m=f;f=await e.functionMap[r].executeFunctionAsync(f,e.tensorArrayMap,e.tensorListMap);let y=f.map(v=>v.id);m.forEach(v=>{!v.kept&&l.indexOf(v.id)===-1&&y.indexOf(v.id)===-1&&v.dispose()});let b=await e.functionMap[o].executeFunctionAsync(f,e.tensorArrayMap,e.tensorListMap);p=await b[0].data(),b.forEach(v=>{!v.kept&&l.indexOf(v.id)===-1&&y.indexOf(v.id)===-1&&v.dispose()})}return f}case"LoopCond":{let r=A("pred",n,t,e);return[_s(r)]}case"Switch":{let r=A("pred",n,t,e),o=A("data",n,t,e);return o.kept||(o=_s(o)),(await r.data())[0]?[void 0,o]:[o,void 0]}case"Merge":{let r=n.inputNames.find(o=>dr(o,t,e)!==void 0);if(r){let o=dr(r,t,e);return[_s(o)]}return}case"Enter":{let r=A("frameName",n,t,e),o=A("tensor",n,t,e);return e.enterFrame(r),[_s(o)]}case"Exit":{let r=A("tensor",n,t,e);return e.exitFrame(),[_s(r)]}case"NextIteration":{let r=A("tensor",n,t,e);return e.nextIteration(),[_s(r)]}case"TensorArrayV3":{let r=A("size",n,t,e),o=A("dtype",n,t,e),s=A("elementShape",n,t,e),c=A("dynamicSize",n,t,e),l=A("clearAfterRead",n,t,e),p=A("identicalElementShapes",n,t,e),f=A("name",n,t,e),m=new $j(f,o,r,s,p,c,l);return e.addTensorArray(m),[m.idTensor,Et(1)]}case"TensorArrayWriteV3":{let r=A("tensorArrayId",n,t,e),o=A("index",n,t,e),s=A("tensor",n,t,e),c=e.getTensorArray(r.id);return c.write(o,s),[c.idTensor]}case"TensorArrayReadV3":{let r=A("tensorArrayId",n,t,e),o=A("index",n,t,e),s=e.getTensorArray(r.id);return[s.read(o)]}case"TensorArrayGatherV3":{let r=A("tensorArrayId",n,t,e),o=A("indices",n,t,e),s=A("dtype",n,t,e),c=e.getTensorArray(r.id);return[c.gather(o,s)]}case"TensorArrayScatterV3":{let r=A("tensorArrayId",n,t,e),o=A("indices",n,t,e),s=A("tensor",n,t,e),c=e.getTensorArray(r.id);return c.scatter(o,s),[c.idTensor]}case"TensorArrayConcatV3":{let r=A("tensorArrayId",n,t,e),o=e.getTensorArray(r.id),s=A("dtype",n,t,e);return[o.concat(s)]}case"TensorArraySplitV3":{let r=A("tensorArrayId",n,t,e),o=A("tensor",n,t,e),s=A("lengths",n,t,e),c=e.getTensorArray(r.id);return c.split(s,o),[c.idTensor]}case"TensorArraySizeV3":{let r=A("tensorArrayId",n,t,e),o=e.getTensorArray(r.id);return[Et(o.size(),"int32")]}case"TensorArrayCloseV3":{let r=A("tensorArrayId",n,t,e),o=e.getTensorArray(r.id);return o.clearAndClose(),[o.idTensor]}case"TensorListSetItem":{let r=A("tensorListId",n,t,e),o=A("index",n,t,e),s=A("tensor",n,t,e),c=e.getTensorList(r.id);return c.setItem(o,s),[c.idTensor]}case"TensorListGetItem":{let r=A("tensorListId",n,t,e),o=A("index",n,t,e),s=A("elementShape",n,t,e),c=A("elementDType",n,t,e),l=e.getTensorList(r.id);return[l.getItem(o,s,c)]}case"TensorListScatterV2":case"TensorListScatter":{let r=A("indices",n,t,e),o=A("tensor",n,t,e),s=A("elementShape",n,t,e),c=A("numElements",n,t,e),l=Dj(o,r,s,c);return e.addTensorList(l),[l.idTensor]}case"TensorListReserve":{let r=A("elementShape",n,t,e),o=A("elementDType",n,t,e),s=A("numElements",n,t,e),c=Ej(r,o,s);return e.addTensorList(c),[c.idTensor]}case"TensorListGather":{let r=A("tensorListId",n,t,e),o=A("indices",n,t,e),s=A("elementShape",n,t,e),c=A("elementDType",n,t,e),l=e.getTensorList(r.id);return[l.gather(o,c,s)]}case"TensorListStack":{let r=A("tensorListId",n,t,e),o=A("elementShape",n,t,e),s=A("elementDType",n,t,e),c=A("numElements",n,t,e),l=e.getTensorList(r.id);return[l.stack(o,s,c)]}case"TensorListFromTensor":{let r=A("tensor",n,t,e),o=A("elementShape",n,t,e),s=A("elementDType",n,t,e),c=Ij(r,o,s);return e.addTensorList(c),[c.idTensor]}case"TensorListConcat":{let r=A("tensorListId",n,t,e),o=e.getTensorList(r.id),s=A("dtype",n,t,e),c=A("elementShape",n,t,e);return[o.concat(s,c)]}case"TensorListPushBack":{let r=A("tensorListId",n,t,e),o=A("tensor",n,t,e),s=e.getTensorList(r.id);return s.pushBack(o),[s.idTensor]}case"TensorListPopBack":{let r=A("tensorListId",n,t,e),o=A("elementShape",n,t,e),s=A("elementDType",n,t,e),c=e.getTensorList(r.id);return[c.popBack(o,s)]}case"TensorListSplit":{let r=A("tensor",n,t,e),o=A("elementShape",n,t,e),s=A("lengths",n,t,e),c=Aj(r,s,o);return e.addTensorList(c),[c.idTensor]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},_st="control";function N$(n,t,e){let[r,o]=A("fusedOps",n,t,e),s=r==="biasadd",c=o==="prelu",l=r==="fusedbatchnorm",p=A("numArgs",n,t,e);if(s){if(c&&p!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!c&&p!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let f=A("strides",n,t,e),m=Vm(n,t,e),y=A("dataFormat",n,t,e).toUpperCase(),b=A("dilations",n,t,e),[v,T]=A("args",n,t,e);return{stride:f,pad:m,dataFormat:y,dilations:b,biasArg:v,preluArg:T,activationFunc:o}}let Rj=(n,t,e)=>{switch(n.op){case"Conv1D":{let r=A("stride",n,t,e),o=A("pad",n,t,e),s=A("dataFormat",n,t,e).toUpperCase(),c=A("dilation",n,t,e);return[Cd(A("x",n,t,e),A("filter",n,t,e),r,o,s,c)]}case"Conv2D":{let r=A("strides",n,t,e),o=Vm(n,t,e),s=A("dataFormat",n,t,e).toUpperCase(),c=A("dilations",n,t,e);return[gs(A("x",n,t,e),A("filter",n,t,e),[r[1],r[2]],o,s,[c[1],c[2]])]}case"_FusedConv2D":{let{stride:r,pad:o,dataFormat:s,dilations:c,biasArg:l,preluArg:p,activationFunc:f}=N$(n,t,e);return[cv({x:A("x",n,t,e),filter:A("filter",n,t,e),strides:[r[1],r[2]],pad:o,dataFormat:s,dilations:[c[1],c[2]],bias:l,activation:f,preluActivationWeights:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:o,dataFormat:s,dilations:c,biasArg:l,preluArg:p,activationFunc:f}=N$(n,t,e);return[bC({x:A("x",n,t,e),filter:A("filter",n,t,e),strides:[r[1],r[2]],pad:o,dataFormat:s,dilations:[c[1],c[2]],bias:l,activation:f,preluActivationWeights:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=A("outputShape",n,t,e),o=A("strides",n,t,e),s=Vm(n,t,e);return[Sd(A("x",n,t,e),A("filter",n,t,e),r,[o[1],o[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=A("strides",n,t,e),o=Vm(n,t,e),s=A("dilations",n,t,e),c=A("dataFormat",n,t,e).toUpperCase();return[ca(A("input",n,t,e),A("filter",n,t,e),[r[1],r[2]],o,c,[s[1],s[2]])]}case"Conv3D":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("dataFormat",n,t,e).toUpperCase(),c=A("dilations",n,t,e);return[Fw(A("x",n,t,e),A("filter",n,t,e),[r[1],r[2],r[3]],o,s,[c[1],c[2],c[3]])]}case"AvgPool":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("kernelSize",n,t,e);return[ap(A("x",n,t,e),[s[1],s[2]],[r[1],r[2]],o)]}case"MaxPool":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("kernelSize",n,t,e);return[mp(A("x",n,t,e),[s[1],s[2]],[r[1],r[2]],o)]}case"MaxPoolWithArgmax":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("kernelSize",n,t,e),c=A("includeBatchInIndex",n,t,e),{result:l,indexes:p}=U_(A("x",n,t,e),[s[1],s[2]],[r[1],r[2]],o,c);return[l,p]}case"AvgPool3D":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("kernelSize",n,t,e);return[Ew(A("x",n,t,e),[s[1],s[2],s[3]],[r[1],r[2],r[3]],o)]}case"MaxPool3D":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("kernelSize",n,t,e);return[Gw(A("x",n,t,e),[s[1],s[2],s[3]],[r[1],r[2],r[3]],o)]}case"Dilation2D":{let r=A("strides",n,t,e),o=A("pad",n,t,e),s=A("dilations",n,t,e),c=r[1],l=r[2],p=s[1],f=s[2];return[Pw(A("x",n,t,e),A("filter",n,t,e),[c,l],o,[p,f],"NHWC")]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Cst="convolution";let Pj=(n,t,e)=>{switch(n.op){case"Fill":{let r=A("shape",n,t,e),o=A("dtype",n,t,e),s=A("value",n,t,e);return[Lc(r,s,o)]}case"LinSpace":{let r=A("start",n,t,e),o=A("stop",n,t,e),s=A("num",n,t,e);return[W_(r,o,s)]}case"Multinomial":{let r=A("logits",n,t,e),o=A("numSamples",n,t,e),s=A("seed",n,t,e);return[q_(r,o,s)]}case"OneHot":{let r=A("indices",n,t,e),o=A("depth",n,t,e),s=A("onValue",n,t,e),c=A("offValue",n,t,e);return[oa(r,o,s,c)]}case"Ones":return[fo(A("shape",n,t,e),A("dtype",n,t,e))];case"OnesLike":return[qn(A("x",n,t,e))];case"RandomUniform":return[fa(A("shape",n,t,e),A("minval",n,t,e),A("maxval",n,t,e),A("dtype",n,t,e))];case"Range":{let r=A("start",n,t,e),o=A("stop",n,t,e),s=A("step",n,t,e);return[bp(r,o,s,A("dtype",n,t,e))]}case"TruncatedNormal":{let r=A("shape",n,t,e),o=A("mean",n,t,e),s=A("stdDev",n,t,e),c=A("seed",n,t,e);return[kp(r,o,s,A("dtype",n,t,e),c)]}case"Zeros":return[xe(A("shape",n,t,e),A("dtype",n,t,e))];case"ZerosLike":return[re(A("x",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Sst="creation";function g1(n,t,e){let r=A("boxes",n,t,e),o=A("scores",n,t,e),s=A("maxOutputSize",n,t,e),c=A("iouThreshold",n,t,e),l=A("scoreThreshold",n,t,e),p=A("softNmsSigma",n,t,e);return{boxes:r,scores:o,maxOutputSize:s,iouThreshold:c,scoreThreshold:l,softNmsSigma:p}}let Oj=async(n,t,e)=>{switch(n.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:o,maxOutputSize:s,iouThreshold:c,scoreThreshold:l,softNmsSigma:p}=g1(n,t,e),f=await mi.nonMaxSuppressionWithScoreAsync(r,o,s,c,l,p);return[f.selectedIndices,f.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:o,maxOutputSize:s,iouThreshold:c,scoreThreshold:l}=g1(n,t,e),p=A("padToMaxOutputSize",n,t,e),f=await mi.nonMaxSuppressionPaddedAsync(r,o,s,c,l,p);return[f.selectedIndices,f.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:o,maxOutputSize:s,iouThreshold:c,scoreThreshold:l}=g1(n,t,e);return[await mi.nonMaxSuppressionAsync(r,o,s,c,l)]}case"Where":{let r=$t(A("condition",n,t,e),"bool"),o=[await ov(r)];return r.dispose(),o}case"ListDiff":return j_(A("x",n,t,e),A("y",n,t,e));default:throw TypeError(`Node type ${n.op} is not implemented`)}},$st="dynamic";let Lj=(n,t,e)=>{switch(n.op){case"TopKV2":{let r=A("x",n,t,e),o=A("k",n,t,e),s=A("sorted",n,t,e),c=nv(r,o,s);return[c.values,c.indices]}case"Unique":{let r=A("x",n,t,e),o=Hd(r);return[o.values,o.indices]}case"UniqueV2":{let r=A("x",n,t,e),o=A("axis",n,t,e),s=Hd(r,o);return[s.values,s.indices]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Ist="evaluation";let Mj=(n,t,e)=>{switch(n.op){case"Const":return t[n.name];case"PlaceholderWithDefault":let r=A("default",n,t,e);return[dr(n.name,t,e)||r];case"Placeholder":return[dr(n.name,t,e)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let f=A("x",n,t,e);return[_s(f)]}case"IdentityN":return A("x",n,t,e).map(f=>_s(f));case"Snapshot":let o=A("x",n,t,e);return[_s(o)];case"Shape":return[vr(A("x",n,t,e).shape,"int32")];case"ShapeN":return A("x",n,t,e).map(f=>vr(f.shape));case"Size":return[Et(A("x",n,t,e).size,"int32")];case"Rank":return[Et(A("x",n,t,e).rank,"int32")];case"NoOp":return[Et(1)];case"Print":let s=A("x",n,t,e),c=A("data",n,t,e),l=A("message",n,t,e),p=A("summarize",n,t,e);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let f=0;ft.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(t,e){this.checkKeyAndValueTensor(t,e);let r=await t.data();return this.tensorMap.forEach(o=>o.dispose()),this.tensorMap.clear(),rt(()=>{let o=go(e),s=r.length,c=o.length;_(s===c,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${c} elements.`);for(let l=0;l{let o=[];for(let s=0;s{switch(n.op){case"HashTable":case"HashTableV2":{let o=A("keyDType",n,t,e),s=A("valueDType",n,t,e),c=new Bj(o,s);return r.addHashTable(n.name,c),[c.handle]}case"LookupTableImport":case"LookupTableImportV2":{let o=A("tableHandle",n,t,e,r),s=A("keys",n,t,e),c=A("values",n,t,e),l=r.getHashTableById(o.id);return[await l.import(s,c)]}case"LookupTableFind":case"LookupTableFindV2":{let o=A("tableHandle",n,t,e,r),s=A("keys",n,t,e),c=A("defaultValue",n,t,e),l=r.getHashTableById(o.id);return[await l.find(s,c)]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Dst="hash_table";let Wj=(n,t,e)=>{switch(n.op){case"ResizeBilinear":{let r=A("images",n,t,e),o=A("size",n,t,e),s=A("alignCorners",n,t,e);return[mi.resizeBilinear(r,[o[0],o[1]],s)]}case"ResizeNearestNeighbor":{let r=A("images",n,t,e),o=A("size",n,t,e),s=A("alignCorners",n,t,e);return[mi.resizeNearestNeighbor(r,[o[0],o[1]],s)]}case"CropAndResize":{let r=A("image",n,t,e),o=A("boxes",n,t,e),s=A("boxInd",n,t,e),c=A("cropSize",n,t,e),l=A("method",n,t,e),p=A("extrapolationValue",n,t,e);return[mi.cropAndResize(r,o,s,c,l,p)]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Ast="image";let Vj=(n,t,e)=>{switch(n.op){case"Equal":return[ho(A("a",n,t,e),A("b",n,t,e))];case"NotEqual":return[hi(A("a",n,t,e),A("b",n,t,e))];case"Greater":return[Rr(A("a",n,t,e),A("b",n,t,e))];case"GreaterEqual":return[ys(A("a",n,t,e),A("b",n,t,e))];case"Less":return[fp(A("a",n,t,e),A("b",n,t,e))];case"LessEqual":return[pi(A("a",n,t,e),A("b",n,t,e))];case"LogicalAnd":return[Zr(A("a",n,t,e),A("b",n,t,e))];case"LogicalNot":return[dp(A("a",n,t,e))];case"LogicalOr":return[Pd(A("a",n,t,e),A("b",n,t,e))];case"Select":case"SelectV2":return[Yn(A("condition",n,t,e),A("a",n,t,e),A("b",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Fst="logical";let Gj=(n,t,e)=>{switch(n.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[ge(A("a",n,t,e),A("b",n,t,e),A("transposeA",n,t,e),A("transposeB",n,t,e))];case"Transpose":return[Kt(A("x",n,t,e),A("perm",n,t,e))];case"_FusedMatMul":let[r,o]=A("fusedOps",n,t,e),s=r==="biasadd",c=o==="prelu",l=A("numArgs",n,t,e);if(s){if(c&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!c&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[p,f]=A("args",n,t,e);return[Qd({a:A("a",n,t,e),b:A("b",n,t,e),transposeA:A("transposeA",n,t,e),transposeB:A("transposeB",n,t,e),bias:p,activation:o,preluActivationWeights:f})];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Rst="matrices";let Uj=(n,t,e)=>{switch(n.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[aa(A("x",n,t,e),A("mean",n,t,e),A("variance",n,t,e),A("offset",n,t,e),A("scale",n,t,e),A("epsilon",n,t,e))];case"FusedBatchNormV3":return[aa(A("x",n,t,e),A("mean",n,t,e),A("variance",n,t,e),A("offset",n,t,e),A("scale",n,t,e),A("epsilon",n,t,e))];case"LRN":return[zw(A("x",n,t,e),A("radius",n,t,e),A("bias",n,t,e),A("alpha",n,t,e),A("beta",n,t,e))];case"Softmax":return[da(A("x",n,t,e))];case"LogSoftmax":return[Rd(A("x",n,t,e))];case"SparseToDense":return[sv(A("sparseIndices",n,t,e),A("outputShape",n,t,e),A("sparseValues",n,t,e),A("defaultValue",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Pst="normalization";let qj=(n,t,e)=>{switch(n.op){case"Max":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[ur(A("x",n,t,e),r,o)]}case"Mean":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[en(A("x",n,t,e),r,o)]}case"Min":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[Wc(A("x",n,t,e),r,o)]}case"Sum":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[zt(A("x",n,t,e),r,o)]}case"All":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[vd(A("x",n,t,e),r,o)]}case"Any":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[op(A("x",n,t,e),r,o)]}case"ArgMax":{let r=A("axis",n,t,e);return[sp(A("x",n,t,e),r)]}case"ArgMin":{let r=A("axis",n,t,e);return[Tw(A("x",n,t,e),r)]}case"Prod":{let r=A("axis",n,t,e),o=A("keepDims",n,t,e);return[Md(A("x",n,t,e),r,o)]}case"Cumsum":{let r=A("axis",n,t,e),o=A("exclusive",n,t,e),s=A("reverse",n,t,e);return[Id(A("x",n,t,e),r,o,s)]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Ost="reduction";let Hj=(n,t,e)=>{switch(n.op){case"ConcatV2":case"Concat":{let r=A("n",n,t,e),o=A("axis",n,t,e),s=A("tensors",n,t,e);return s=s.slice(0,r),[Qe(s,o)]}case"GatherV2":case"Gather":{let r=A("axis",n,t,e),o=A("x",n,t,e),s=A("indices",n,t,e);return[Bc(o,$t(s,"int32"),r)]}case"ReverseV2":case"Reverse":{let r=A("axis",n,t,e),o=A("x",n,t,e);return[Pr(o,r)]}case"Slice":{let r=A("begin",n,t,e),o=A("size",n,t,e);return[ce(A("x",n,t,e),r,o)]}case"StridedSlice":{let r=A("begin",n,t,e),o=A("end",n,t,e),s=A("strides",n,t,e),c=A("beginMask",n,t,e),l=A("endMask",n,t,e),p=A("ellipsisMask",n,t,e),f=A("newAxisMask",n,t,e),m=A("shrinkAxisMask",n,t,e),y=A("x",n,t,e);return[tv(y,r,o,s,c,l,p,f,m)]}case"Pack":return rt(()=>{let r=A("axis",n,t,e),o=A("tensors",n,t,e),s=o[0].shape,c=fi(o[0]).shape,l=o.map(p=>{let f=lt(p.shape,s);if(!f&&!lt(fi(p).shape,c))throw new Error("the input tensors shape does not match");return f?p:Q(p,s)});return[pr(l,r)]});case"Unpack":{let r=A("axis",n,t,e),o=A("tensor",n,t,e);return go(o,r)}case"Tile":{let r=A("reps",n,t,e);return[ui(A("x",n,t,e),r)]}case"Split":case"SplitV":{let r=A("axis",n,t,e),o=A("numOrSizeSplits",n,t,e),s=A("x",n,t,e);return Tr(s,o,r)}case"ScatterNd":{let r=A("indices",n,t,e),o=A("values",n,t,e),s=A("shape",n,t,e);return[hC(r,o,s)]}case"GatherNd":{let r=A("x",n,t,e),o=A("indices",n,t,e);return[fC(r,o)]}case"SparseToDense":{let r=A("sparseIndices",n,t,e),o=A("outputShape",n,t,e),s=A("sparseValues",n,t,e),c=A("defaultValue",n,t,e);return[sv(r,s,o,s.dtype===c.dtype?c:$t(c,s.dtype))]}default:throw TypeError(`Node type ${n.op} is not implemented`)}},Lst="slice_join";let jj=(n,t,e)=>{switch(n.op){case"FFT":return[wp(A("x",n,t,e))];case"IFFT":return[qc(A("x",n,t,e))];case"RFFT":return[vp(A("x",n,t,e))];case"IRFFT":return[qd(A("x",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Mst="spectral";let Kj=(n,t,e)=>{switch(n.op){case"Cast":return[$t(A("x",n,t,e),A("dtype",n,t,e))];case"ExpandDims":{let r=A("axis",n,t,e);return[lr(A("x",n,t,e),r)]}case"Squeeze":{let r=A("axis",n,t,e);return[fi(A("x",n,t,e),r)]}case"Reshape":return[Q(A("x",n,t,e),A("shape",n,t,e))];case"MirrorPad":return[Uw(A("x",n,t,e),A("padding",n,t,e),A("mode",n,t,e))];case"PadV2":case"Pad":return[Go(A("x",n,t,e),A("padding",n,t,e),A("constantValue",n,t,e))];case"SpaceToBatchND":{let r=A("blockShape",n,t,e),o=A("paddings",n,t,e);return[gp(A("x",n,t,e),r,o)]}case"BatchToSpaceND":{let r=A("blockShape",n,t,e),o=A("crops",n,t,e);return[cp(A("x",n,t,e),r,o)]}case"DepthToSpace":{let r=A("blockSize",n,t,e),o=A("dataFormat",n,t,e).toUpperCase();return[Rw(A("x",n,t,e),r,o)]}case"BroadcastTo":return[lp(A("x",n,t,e),A("shape",n,t,e))];default:throw TypeError(`Node type ${n.op} is not implemented`)}},Bst="transformation";function _$(n,t,e,r){let o=((s,c,l)=>{switch(s.category){case"arithmetic":return rt(()=>_j(s,c,l));case"basic_math":return rt(()=>Cj(s,c,l));case"control":return Fj(s,c,l);case"convolution":return rt(()=>Rj(s,c,l));case"creation":return rt(()=>Pj(s,c,l));case"dynamic":return Oj(s,c,l);case"evaluation":return rt(()=>Lj(s,c,l));case"image":return rt(()=>Wj(s,c,l));case"graph":return rt(()=>Mj(s,c,l));case"logical":return rt(()=>Vj(s,c,l));case"matrices":return rt(()=>Gj(s,c,l));case"normalization":return rt(()=>Uj(s,c,l));case"reduction":return rt(()=>qj(s,c,l));case"slice_join":return rt(()=>Hj(s,c,l));case"spectral":return rt(()=>jj(s,c,l));case"transformation":return rt(()=>Kj(s,c,l));case"hash_table":return zj(s,c,l,r);case"custom":let p=x$(s.op);if(p&&p.customExecutor)return p.customExecutor(new Nj(s,c,l));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(n,t,e);return Ji(o)?o.then(s=>[].concat(s)):[].concat(o)}class C${constructor(t={},e={},r={},o={}){this.weightMap=t,this.tensorArrayMap=e,this.tensorListMap=r,this.functionMap=o,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(t,e){return{id:t,frameName:e,iterationId:0}}set currentContext(t){this.contexts!==t&&(this.contexts=t,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let t=[];for(let e=0;ee.id===0&&e.iterationId===0?"":`${e.frameName}-${e.iterationId}`).join("/"):""}enterFrame(t){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,t)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let t=Object.assign({},this.contexts[this.contexts.length-1]);t.iterationId+=1,t.id=this.lastId,this.contexts.splice(-1,1,t),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(t){return this.weightMap[t]}addTensorArray(t){this.tensorArrayMap[t.id]=t}getTensorArray(t){return this.tensorArrayMap[t]}addTensorList(t){this.tensorListMap[t.id]=t}getTensorList(t){return this.tensorListMap[t]}dispose(t){for(let e in this.tensorArrayMap)this.tensorArrayMap[e].clearAndClose(t);for(let e in this.tensorListMap)this.tensorListMap[e].clearAndClose(t)}}function S$(n,t,e,r){let o=new Set,s=[],c=null,l=null,p=new Set,f=Object.keys(n).map(b=>Nr(b)[0]),m=[];r!=null&&(m=r.map(b=>Nr(b.name)[0]));let y=[...t];for(;y.length>0;){let b=y.pop();if(($$(b)||Qj(b)||t6(b))&&(c==null&&(c=b,l=c.children.map(v=>v.name).filter(v=>o.has(v)))),o.add(b.name),e[b.name]!=null)continue;if(f.indexOf(b.name)!==-1)continue;if(m.indexOf(b.name)!==-1)continue;if(b.inputs.length===0){s.push(b.name);continue}b.inputs.forEach(v=>{if(p.has(v.name))return;p.add(v.name),y.push(v)})}return{inputs:n,outputs:t,usedNodes:o,missingInputs:s,dynamicNode:c,syncInputs:l}}function Xj(n,t,e){let{usedNodes:r,inputs:o}=e,s=[],c=Object.keys(o).map(m=>Nr(m)[0]).map(m=>n.nodes[m]),l=n.initNodes;c.forEach(m=>{r.has(m.name)&&s.push(m)}),n.weights.forEach(m=>{r.has(m.name)&&s.push(m)}),l!=null&&l.forEach(m=>{r.has(m.name)&&s.push(m)});let p=new Set,f=[];for(;s.length>0;){let m=s.pop();p.add(m.name),t[m.name]||f.push(m),m.children.forEach(y=>{!p.has(y.name)&&r.has(y.name)&&y.inputs.every(b=>p.has(b.name))&&s.push(y)})}return f}let Yj=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Jj=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Zj=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function $$(n){return Yj.indexOf(n.op)>=0}function Qj(n){return Jj.indexOf(n.op)>=0}function t6(n){return Zj.indexOf(n.op)>=0}class Gm{constructor(t,e){this.graph=t,this.parent=e,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=t.outputs,this._inputs=t.inputs,this._initNodes=t.initNodes,this._signature=t.signature,this._functions=t.functions,t.functions!=null&&Object.keys(t.functions).forEach(r=>{this._functionExecutorMap[r]=new Gm(t.functions[r],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(t){let e=Object.keys(t).map(r=>t[r].map(o=>o.id));this._weightIds=[].concat(...e),this._weightMap=t}set resourceManager(t){this._resourceManager=t}get inputs(){return this._inputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(t=>({name:t.name,shape:t.attrParams.shape?t.attrParams.shape.value:void 0,dtype:t.attrParams.dtype?t.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(t=>t.signatureKey||t.name)}get outputNodes(){return this._outputs.map(t=>{let e=t.signatureKey||t.name;return t.defaultOutput?`${e}:${t.defaultOutput}`:e})}get functions(){return Object.keys(this._functions).reduce((t,e)=>(t[e]=this._functions[e].signature,t),{})}getCompilationKey(t,e){let r=t.map(s=>s.name).sort(),o=e.map(s=>s.name).sort();return r.join(this.SEPERATOR)+"--"+o.join(this.SEPERATOR)}compile(t,e){let r=S$(t,e,this.weightMap,this._initNodes),{missingInputs:o,dynamicNode:s,syncInputs:c}=r;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${c}]`);if(o.length>0){let l=e.map(f=>f.name),p=Object.keys(t);throw new Error(`Cannot compute the outputs [${l}] from the provided inputs [${p}]. Missing the following inputs: [${o}]`)}return Xj(this.graph,this.weightMap,r)}execute(t,e){t=this.mapInputs(t);let r=Object.keys(t).sort();this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e);let o=r.map(y=>this.graph.nodes[Nr(y)[0]]),s=e.map(y=>Nr(y)[0]),c=s.map(y=>this.graph.nodes[y]);c.length===0&&(c=this._outputs);let l=this.getCompilationKey(o,c),p=this.compiledMap.get(l);p==null&&(p=this.compile(t,c),this.compiledMap.set(l,p));let f={},m={};return rt(()=>{let y=new C$(this.weightMap,f,m,this.functionExecutorMap),b=Object.assign({},this.weightMap);Object.keys(t).forEach(N=>{let[S,D]=Nr(N),I=[];I[D]=t[N],b[S]=I});let v=this.getFrozenTensorIds(b),T={};for(let N=0;Ndr(N,b,y))})}getFrozenTensorIds(t){let e=[].concat.apply([],Object.keys(t).map(r=>t[r]).map(r=>r.map(o=>o.id)));return new Set(e)}checkTensorForDisposal(t,e,r,o,s,c,l){if(e.category==="control"||c.indexOf(t)!==-1)return;r[t].forEach(p=>{p!=null&&(l[p.id]=(l[p.id]||0)+e.children.length)}),e.inputs.forEach(p=>{if(p.category!=="control"){let f=VH(p.name,r,o);f!=null&&f.forEach(m=>{if(m&&!s.has(m.id)){let y=l[m.id];y===1?(m.dispose(),delete l[m.id]):y!=null&&l[m.id]--}})}})}async executeAsync(t,e){return this._executeAsync(t,e)}async _executeAsync(t,e,r=!1,o={},s={}){r||(t=this.mapInputs(t),this.checkInputs(t),this.checkInputShapeAndType(t),e=this.mapOutputs(e),this.checkOutputs(e));let c=new C$(this.weightMap,o,s,this.functionExecutorMap),l=await this.executeWithControlFlow(t,c,e,r),p=e.map(b=>dr(b,l,c)),f=p.map(b=>b.id),m=Object.keys(t).map(b=>t[b].id),y=new Set([...f,...m,...this.weightIds]);return Object.keys(l).forEach(b=>{let v=l[b];v.forEach(T=>{T&&!T.isDisposed&&!y.has(T.id)&&T.dispose()})}),this.parent==null&&c.dispose(y),p}async executeFunctionAsync(t,e,r){let o=t.reduce((s,c,l)=>(s[this.inputs[l].name]=c,s),{});return this._executeAsync(o,this.outputNodes,!0,e,r)}async executeWithControlFlow(t,e,r,o){let s=Object.keys(t),c=s.map(P=>this.graph.nodes[Nr(P)[0]]),l=r.map(P=>Nr(P)[0]),p=l.map(P=>this.graph.nodes[P]);p.length===0&&(p=this._outputs);let{usedNodes:f,missingInputs:m,dynamicNode:y,syncInputs:b}=S$(t,p,this.weightMap,this._initNodes),v=[...c,...this.graph.weights,...this._initNodes||[]].map(P=>({node:P,contexts:e.currentContext})),T=Object.assign({},this.weightMap);Object.keys(t).forEach(P=>{let[E,L]=Nr(P),B=[];B[L]=t[P],T[E]=B});let N={},S=this.getFrozenTensorIds(T),D={};for(;v.length>0;){let P=this.processStack(c,v,e,T,D,S,l,N,f);await Promise.all(P)}y==null&&!o&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let I=p.filter(P=>!$$(P)&&!dr(P.name,T,e)).map(P=>P.name);if(I.length>0){let P="";throw y!=null&&(P=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${b}]`),new Error(`Cannot compute the outputs [${I}] from the provided inputs [${s}]. Consider providing the following inputs: [${m}]. ${P}`)}return T}processStack(t,e,r,o,s,c,l,p,f){let m=[];for(;e.length>0;){let y=e.pop();r.currentContext=y.contexts;let b="";if(y.node.op==="Enter"&&A("isConstant",y.node,o,r)&&([b]=Ns(y.node.name,r)),o[y.node.name]==null){let v=_$(y.node,o,r,this._resourceManager);b||([b]=Ns(y.node.name,r));let T=r.currentContext;Ji(v)?m.push(v.then(N=>(o[b]=N,r.currentContext=T,this.checkTensorForDisposal(b,y.node,o,r,c,l,p),this.processChildNodes(y.node,e,r,o,s,f),N))):(o[b]=v,this.checkTensorForDisposal(b,y.node,o,r,c,l,p),this.processChildNodes(y.node,e,r,o,s,f))}else this.processChildNodes(y.node,e,r,o,s,f)}return m}processChildNodes(t,e,r,o,s,c){t.children.forEach(l=>{let[p]=Ns(l.name,r);if(s[p]||!c.has(l.name))return;l.op==="Merge"?l.inputNames.some(f=>!!dr(f,o,r))&&(s[p]=!0,e.push({contexts:r.currentContext,node:l})):l.inputNames.every(f=>!!dr(f,o,r))&&(s[p]=!0,e.push({contexts:r.currentContext,node:l}))})}dispose(){Object.keys(this.weightMap).forEach(t=>this.weightMap[t].forEach(e=>e.dispose()))}checkInputShapeAndType(t){Object.keys(t).forEach(e=>{let r=t[e],[o]=Nr(e),s=this.graph.nodes[o];if(s.attrParams.shape&&s.attrParams.shape.value){let c=s.attrParams.shape.value,l=c.length===r.shape.length&&r.shape.every((p,f)=>c[f]===-1||c[f]===p);_(l,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${c}], but was [${r.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&_(r.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${r.dtype}`)})}mapInputs(t){let e={};for(let r in t)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[r]!=null){let o=this._signature.inputs[r];e[o.name]=t[r]}else e[r]=t[r];return e}checkInputs(t){let e=Object.keys(t).filter(r=>{let[o]=Nr(r);return this.graph.nodes[o]==null});if(e.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${e}] that are not part of graph`)}mapOutputs(t){return t.map(e=>{if(this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[e]!=null){let r=this._signature.outputs[e];return r.name}return e},{})}checkOutputs(t){t.forEach(e=>{let[r]=Nr(e);if(!this.graph.nodes[r])throw new Error(`The output '${e}' is not found in the graph`)})}}class e6{constructor(t={},e={}){this.hashTableNameToHandle=t,this.hashTableMap=e}addHashTable(t,e){this.hashTableNameToHandle[t]=e.handle,this.hashTableMap[e.id]=e}getHashTableHandleByName(t){return this.hashTableNameToHandle[t]}getHashTableById(t){return this.hashTableMap[t]}dispose(){for(let t in this.hashTableMap)this.hashTableMap[t].clearAndClose(),delete this.hashTableMap[t];for(let t in this.hashTableNameToHandle)this.hashTableNameToHandle[t].dispose(),delete this.hashTableNameToHandle[t]}}let n6="?tfjs-format=file",r6="model.json";class I${constructor(t,e={}){this.modelUrl=t,this.loadOptions=e,this.version="n/a",e==null&&(this.loadOptions={}),this.resourceManager=new e6}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}findIOHandler(){let t=this.modelUrl;if(t.load!=null)this.handler=t;else if(this.loadOptions.requestInit!=null)this.handler=fd(t,this.loadOptions);else{let e=nw(t,this.loadOptions);if(e.length===0)e.push(fd(t,this.loadOptions));else if(e.length>1)throw new Error(`Found more than one (${e.length}) load handlers for URL '${[t]}'`);this.handler=e[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let t=await this.handler.load();return this.loadSync(t)}loadSync(t){this.artifacts=t;let e=this.artifacts.modelTopology,r={};this.artifacts.userDefinedMetadata!=null&&(r=this.artifacts.userDefinedMetadata.signature),this.version=`${e.versions.producer}.${e.versions.minConsumer}`;let o=ld(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Gm(w$.Instance.transformGraph(e,r)),this.executor.weightMap=this.convertTensorMapToTensorsMap(o),this.executor.resourceManager=this.resourceManager,t.modelInitializer!=null){let s=w$.Instance.transformGraph(t.modelInitializer);this.initializer=new Gm(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(t,e){if(typeof t=="string"){let r=ew(t);if(r.length===0)throw new Error(`Cannot find any save handlers for URL '${t}'`);if(r.length>1)throw new Error(`Found more than one (${r.length}) save handlers for URL '${t}'`);t=r[0]}if(t.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return t.save(this.artifacts)}predict(t,e){return this.execute(t,this.outputNodes)}normalizeInputs(t){if(!(t instanceof ot)&&!Array.isArray(t))return t;if(t=Array.isArray(t)?t:[t],t.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${t.length} input tensors.`);return this.inputNodes.reduce((e,r,o)=>(e[r]=t[o],e),{})}normalizeOutputs(t){return t=t||this.outputNodes,Array.isArray(t)?t:[t]}execute(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let r=this.executor.execute(t,e);return r.length>1?r:r[0]}async executeAsync(t,e){t=this.normalizeInputs(t),e=this.normalizeOutputs(e);let r=await this.executor.executeAsync(t,e);return r.length>1?r:r[0]}convertTensorMapToTensorsMap(t){return Object.keys(t).reduce((e,r)=>(e[r]=[t[r]],e),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}}async function o6(n,t={}){if(n==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&(n.load==null&&(n.endsWith("/")||(n=n+"/"),n=`${n}${r6}${n6}`));let e=new I$(n,t);return await e.load(),e}let E$="2.7.0";function s6(n,t){return Um(n,t)}function Um(n,t,e=new Map,r=new Set){if(n==null)return null;if(r.has(n))throw new Error("Circular references are not supported.");if(e.has(n))return e.get(n);let o=t(n);if(o.recurse&&o.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(o.recurse)if(cl(n)){let s=Array.isArray(n)?[]:{};r.add(n);for(let c in n){let l=n[c],p=Um(l,t,e,r);s[c]=p}return r.delete(n),s}else throw new Error(`Can't recurse into non-iterable type: ${n}`);else return e.set(n,o.value),o.value}function i6(n,t=A$){return D$(n,t)}function D$(n,t,e=new Set){let r=n[0];if(e.has(r))throw new Error("Circular references are not supported.");let o=t(n);if(o.recurse&&o.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(o.recurse)if(cl(r)){let s=Array.isArray(r)?[]:{};e.add(r);for(let c in r){let l=n.map(f=>f[c]),p=D$(l,t,e);s[c]=p}return e.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return o.value}function A$(n){return n===null?null:cl(n[0])?{value:null,recurse:!0}:{value:n,recurse:!1}}async function F$(n,t){let e=new Map;Um(n,t,e);for(let o of Array.from(e.keys())){let s=e.get(o);if(Ji(s)){let c=await s;e.set(o,c)}}let r=Um(n,t,e);return r}function cl(n){return n!=null&&!ArrayBuffer.isView(n)&&(Array.isArray(n)||typeof n=="object"&&!(n instanceof ot))}function a6(n){return n==null||c6(n)||Array.isArray(n)||typeof n=="object"&&n instanceof ot||gn(n)}function c6(n){return n===null||typeof n!="object"&&typeof n!="function"}function l6(n){return s6(n,u6)}function u6(n){return n instanceof ot?{value:n.clone(),recurse:!1}:cl(n)?{value:null,recurse:!0}:{value:n,recurse:!1}}class R${constructor(t){if(this.capacity=t,this.begin=0,this.end=0,t==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(t<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(t),this.doubledCapacity=2*t}wrap(t){for(;t<0;)t+=this.doubledCapacity;return t%this.doubledCapacity}get(t){if(t<0)throw new RangeError("Can't get item at a negative index.");return this.data[t%this.capacity]}set(t,e){if(t<0)throw new RangeError("Can't set item at a negative index.");this.data[t%this.capacity]=e}length(){let t=this.end-this.begin;return t<0&&(t=this.doubledCapacity+t),t}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,t),this.end=this.wrap(this.end+1)}pushAll(t){for(let e of t)this.push(e)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let t=this.get(this.end);return this.set(this.end,void 0),t}unshift(t){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,t)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),t}shuffleExcise(t){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.wrap(this.begin+t),r=this.get(e);return this.set(e,this.pop()),r}}class qm extends R${constructor(){super(qm.INITIAL_CAPACITY)}isFull(){return!1}push(t){super.isFull()&&this.expand(),super.push(t)}unshift(t){super.isFull()&&this.expand(),super.unshift(t)}expand(){let t=this.capacity*2,e=new Array(t),r=this.length();for(let o=0;o({value:t++,done:!1}))}function nh(n){return new f6(n)}function O$(n,t){return new M$(n,t)}function Wst(n,t,e){return O$(nh(n).take(t),e)}function p6(n,t=_i.FAIL){return new T6(n,t)}class En{async toArray(){let t=[],e=await this.next();for(;!e.done;)t.push(e.value),e=await this.next();return t}async toArrayForTest(){let t=this.prefetch(100),e=[],r=await t.next();for(;!r.done;)e.push(r.value),r=await t.next();return e}async resolveFully(){let t=await this.next();for(;!t.done;)t=await this.next()}async resolveWhile(t){let e=await this.next(),r=t(e.value);for(;!e.done&&r;)e=await this.next(),r=t(e.value)}handleErrors(t){return new w6(this,t)}filter(t){return new b6(this,t)}map(t){return new x6(this,t)}mapAsync(t){return new L$(this,t)}serialMapAsync(t){return new L$(this,t).serial()}flatmap(t){return new v6(this,t)}async forEachAsync(t){return this.map(t).resolveFully()}async serialForEach(t){return this.serialMapAsync(t).resolveWhile(e=>e===!0)}rowMajorBatch(t,e=!0){return new y6(this,t,e)}columnMajorBatch(t,e=!0,r=A$){let o=this.rowMajorBatch(t,e);return o.map(s=>i6(s,r))}concatenate(t,e){return new M$(P$([this,t]),e)}take(t){return t<0||t==null?this:new g6(this,t)}skip(t){return t<0||t==null?this:new m6(this,t)}prefetch(t){return new B$(this,t)}shuffle(t,e){return new k6(this,t,e)}serial(){return new d6(this)}}class h6 extends En{constructor(t){super();this.items=t,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let t=this.items[this.trav];return this.trav++,{value:l6(t),done:!1}}}class f6 extends En{constructor(t){super();this.nextFn=t}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(t){throw t.message=`Error thrown while iterating through a dataset: ${t.message}`,t}}}class d6 extends En{constructor(t){super();this.upstream=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}}class m6 extends En{constructor(t,e){super();this.upstream=t,this.maxCount=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}}class y6 extends En{constructor(t,e,r=!0){super();this.upstream=t,this.batchSize=e,this.enableSmallLastBatch=r,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let t=[];for(;t.length0?{value:t,done:!1}:{value:null,done:!0};t.push(e.value)}return{value:t,done:!1}}}class b6 extends En{constructor(t,e){super();this.upstream=t,this.predicate=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let t=await this.upstream.next();if(t.done||this.predicate(t.value))return t;Xt(t.value)}}}class x6 extends En{constructor(t,e){super();this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Map`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=ps(t.value),r=this.transform(t.value),o=ps(r);for(let s of e)ad(s,o)||s.dispose();return{value:r,done:!1}}}class w6 extends En{constructor(t,e){super();this.upstream=t,this.handler=e,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(t){if(!this.handler(t))return{value:null,done:!0}}}}class L$ extends En{constructor(t,e){super();this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let t=await this.upstream.next();if(t.done)return{value:null,done:!0};let e=ps(t.value),r=await this.transform(t.value),o=ps(r);for(let s of e)ad(s,o)||s.dispose();return{value:r,done:!1}}}class y1 extends En{constructor(){super();this.outputQueue=new qm,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}}class v6 extends y1{constructor(t,e){super();this.upstream=t,this.transform=e}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let t=await this.upstream.next();if(t.done)return!1;let e=ps(t.value),r=this.transform(t.value),o=ps(r);this.outputQueue.pushAll(r);for(let s of e)ad(s,o)||s.dispose();return!0}}class M$ extends En{constructor(t,e){super();this.baseErrorHandler=e,this.lastRead=null,this.iterator=null,this.moreIterators=t}summary(){let t="TODO: fill in upstream of chained summaries";return`${t} -> Chained`}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(t){if(await t,this.iterator==null){let r=await this.moreIterators.next();if(r.done)return{value:null,done:!0};this.iterator=r.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let e=await this.iterator.next();return e.done?(this.iterator=null,this.readFromChain(t)):e}}var _i;(function(n){n[n.FAIL=0]="FAIL",n[n.SHORTEST=1]="SHORTEST",n[n.LONGEST=2]="LONGEST"})(_i||(_i={}));class T6 extends En{constructor(t,e=_i.FAIL){super();this.iterators=t,this.mismatchMode=e,this.count=0,this.currentPromise=null}summary(){let t="TODO: fill in upstream of zip summaries";return`{${t}} -> Zip`}async nextState(t){await t;let e=0,r=0;function o(c){if(c instanceof En){let l=c.next();return{value:l.then(p=>(e++,p.done&&r++,p.value)),recurse:!1}}else return{value:null,recurse:!0}}let s=await F$(this.iterators,o);if(e===r)return{value:null,done:!0};if(r>0)switch(this.mismatchMode){case _i.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case _i.SHORTEST:return{value:null,done:!0};case _i.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}}class B$ extends En{constructor(t,e){super();this.upstream=t,this.bufferSize=e,this.buffer=new R$(e)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let t=this.upstream.next();this.buffer.push(t)}}next(){return this.refill(),this.buffer.shift()}}class k6 extends B${constructor(t,e,r){super(t,e);this.upstream=t,this.windowSize=e,this.upstreamExhausted=!1,this.random=Uc(r||sr().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(t){return Math.floor(this.random()*t)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let t=this.chooseIndex(),e=await this.buffer.shuffleExcise(t);if(e.done)this.upstreamExhausted=!0;else return this.refill(),e}return{value:null,done:!0}}}class ll{constructor(){this.size=null}batch(t,e=!0){let r=this;_(t>0,()=>`batchSize needs to be positive, but it is ${t}`);let o;return this.size===Infinity||this.size==null?o=this.size:e?o=Math.ceil(this.size/t):o=Math.floor(this.size/t),_r(async()=>(await r.iterator()).columnMajorBatch(t,e,C6),o)}concatenate(t){let e=this,r;return this.size===Infinity||t.size===Infinity?r=Infinity:this.size!=null&&t.size!=null?r=this.size+t.size:r=null,_r(async()=>(await e.iterator()).concatenate(await t.iterator()),r)}filter(t){let e=this,r;return this.size===Infinity?r=Infinity:r=null,_r(async()=>(await e.iterator()).filter(o=>rt(()=>t(o))),r)}async forEachAsync(t){return(await this.iterator()).forEachAsync(t)}map(t){let e=this;return _r(async()=>(await e.iterator()).map(r=>rt(()=>t(r))),this.size)}mapAsync(t){let e=this;return _r(async()=>(await e.iterator()).mapAsync(t),this.size)}prefetch(t){if(t==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let e=this;return _r(async()=>(await e.iterator()).prefetch(t),this.size)}repeat(t){let e=this,r;return this.size!=null&&t>0?r=this.size*t:t===0?r=0:this.size!=null&&(t===void 0||t<0)?r=Infinity:r=null,_r(async()=>{let o=nh(async()=>({value:await e.iterator(),done:!1}));return O$(o.take(t))},r)}skip(t){let e=this,r;return this.size!=null&&t>=0&&this.size>=t?r=this.size-t:this.size!=null&&(this.size(await e.iterator()).skip(t),r)}shuffle(t,e,r=!0){if(t==null||t<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let o=this,s=Uc(e||sr().toString());return _r(async()=>{let c=s.int32();return r&&(c+=s.int32()),(await o.iterator()).shuffle(t,c.toString())},this.size)}take(t){let e=this,r;return this.size!=null&&this.size>t?r=t:this.size!=null&&this.size<=t?r=this.size:r=null,_r(async()=>(await e.iterator()).take(t),r)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}}ll.MAX_BUFFER_SIZE=1e4;function _r(n,t=null){return new class extends ll{constructor(){super(...arguments);this.size=t}async iterator(){return n()}}}function N6(n){return _r(async()=>P$(n),n.length)}function _6(n){if(!cl(n))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(n))for(let e=0;e{let e=await F$(n,r=>{if(r instanceof ll)return{value:r.iterator(),recurse:!1};if(cl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return p6(e,_i.SHORTEST)},t)}function C6(n){if(n===null)return null;let t=n[0];if(a6(t)){let e=S6(n);return{value:e,recurse:!1}}return{value:null,recurse:!0}}function S6(n){if(n.length===0)throw new Error("Can't make a batch of zero elements.");return n[0]instanceof ot?pr(n):un(n)}class z$ extends ll{constructor(t){super();this.input=t}async iterator(){let t=await this.input.iterator(),e=t.decodeUTF8(),r=e.split(` `).map(o=>(o.endsWith("\r")&&(o=o.slice(0,-1)),o));return r}}let Hm='"',rh=Symbol("out"),W$=Symbol("field"),jm=Symbol("quote"),b1=Symbol("quoteafterquote"),V$=Symbol("quoteinquote");class G$ extends ll{constructor(t,e){super();this.input=t,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new z$(t),e||(e={}),this.hasHeader=!(e.hasHeader===!1),this.fullColumnNames=e.columnNames,this.columnConfigs=e.columnConfigs,this.configuredColumnsOnly=e.configuredColumnsOnly,e.delimWhitespace?(_(e.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=e.delimiter?e.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let t=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!t)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&t&&_(t.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+t.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=t);let e=this.fullColumnNames.reduce((o,s)=>(o[s]=o[s]+1||1,o),{}),r=Object.keys(e).filter(o=>e[o]>1);if(_(r.length===0,()=>"Duplicate column names found: "+r.toString()),this.columnConfigs)for(let o of Object.keys(this.columnConfigs)){let s=this.fullColumnNames.indexOf(o);if(s===-1)throw new Error('The key "'+o+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await this.base.iterator(),e=await t.next();if(e.done)throw new Error("No data was found for CSV parsing.");let r=e.value,o=this.parseRow(r,!1);return o}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let t=await this.base.iterator();return this.hasHeader&&(t=t.skip(1)),t.map(e=>this.makeDataElement(e))}makeDataElement(t){let e=this.parseRow(t),r={},o={};for(let s=0;s14||!Number.isInteger(e))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=t.numFramesPerSpectrogram||43,this.sampleRateHz=t.sampleRateHz,this.columnTruncateLength=t.columnTruncateLength||this.fftSize,this.audioTrackConstraints=t.audioTrackConstraints,this.smoothingTimeConstant=t.smoothingTimeConstant||0,this.includeSpectrogram=!(t.includeSpectrogram===!1),this.includeWaveform=t.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(t={}){if(ct().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let e=new x1(t);return await e.start(),e}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(r){throw new Error(`Error thrown while initializing video stream: ${r.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let t=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new t,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let e=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,e.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize);return}async next(){if(this.isClosed)return{value:null,done:!0};let t,e,r=await this.getAudioData();if(this.includeSpectrogram){let o=this.flattenQueue(r.freqDataQueue);t=this.getTensorFromAudioDataArray(o,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let o=this.flattenQueue(r.timeDataQueue);e=this.getTensorFromAudioDataArray(o,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:t,waveform:e},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let t=[],e=[],r=0;return new Promise(o=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&o({freqDataQueue:t,timeDataQueue:e}),t.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),e.push(this.timeData.slice())),++r===this.numFrames&&(clearInterval(s),o({freqDataQueue:t,timeDataQueue:e}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(t){let e=t[0].length,r=new Float32Array(t.length*e);return t.forEach((o,s)=>r.set(o,s*e)),r}getTensorFromAudioDataArray(t,e){let r=new Float32Array(G(e));return r.set(t,r.length-t.length),un(r,e)}}class w1 extends En{constructor(t,e){super();if(this.webcamVideoElement=t,this.webcamConfig=e,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=vr([0],"int32"),this.webcamConfig.centerCrop){let r=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,o=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-r)/2,c=(1-o)/2,l=s+r,p=o+c;this.cropBox=di([c,s,p,l],[1,4])}else this.cropBox=di([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(t,e={}){if(ct().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!t){if(t=document.createElement("video"),!e.resizeWidth||!e.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");t.width=e.resizeWidth,t.height=e.resizeHeight}let r=new w1(t,e);return await r.start(),r}async start(){this.webcamConfig.facingMode&&_(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(t){throw t.message=`Error thrown while initializing video stream: ${t.message}`,t}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(t){console.log(t),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(t=>{this.webcamVideoElement.onloadedmetadata=()=>{t()}})}async next(){if(this.isClosed)return{value:null,done:!0};let t;try{t=p_(this.webcamVideoElement)}catch(e){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(e)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(t),done:!1}}catch(e){throw new Error(`Error thrown cropping the video: ${e.message}`)}finally{t.dispose()}else return{value:t,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(t){return rt(()=>{let e=t.toFloat().expandDims(0),r;r=mi.cropAndResize(e,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let o=r.shape;return r.reshape(o.slice(1))})}async capture(){return(await this.next()).value}stop(){let t=this.stream.getTracks();t.forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}}class U${}class q$ extends En{split(t){return new $6(this,t)}}class $6 extends q${constructor(t,e){super();this.upstream=t,this.impl=new I6(t,e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class I6 extends y1{constructor(t,e){super();this.upstream=t,this.separator=e,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let t=await this.upstream.next();if(t.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let e=t.value.split(this.separator);e[0]=this.carryover+e[0];for(let r of e.slice(0,-1))this.outputQueue.push(r);return this.carryover=e[e.length-1],!0}}class E6 extends En{decodeUTF8(){return new D6(this)}}class D6 extends q${constructor(t){super();this.upstream=t,this.impl=new A6(t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}}class A6 extends y1{constructor(t){super();if(this.upstream=t,ct().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:e}=require("string_decoder");this.decoder=new e("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let t=await this.upstream.next(),e;if(t.done)return!1;e=t.value;let r;return ct().get("IS_BROWSER")?r=this.decoder.decode(e,{stream:!0}):r=this.decoder.write(Buffer.from(e.buffer)),this.outputQueue.push(r),!0}}class H$ extends E6{constructor(t,e={}){super();this.file=t,this.options=e,_(t instanceof Uint8Array||(ct().get("IS_BROWSER")?t instanceof File||t instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=e.offset||0,this.chunkSize=e.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){if(this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size))return{value:null,done:!0};let t=new Promise((e,r)=>{let o=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,o)));else{let s=new FileReader;s.onload=l=>{let p=s.result;if(p instanceof ArrayBuffer&&(p=new Uint8Array(p)),!(p instanceof Uint8Array))return r(new TypeError("FileReader returned unknown type."));e(p)},s.onabort=l=>r(new Error("Aborted")),s.onerror=l=>r(new Error(l.type));let c=this.file.slice(this.offset,o);s.readAsArrayBuffer(c)}this.offset=o});return{value:await t,done:!1}}}async function F6(n,t={}){let e,r;typeof n=="string"?e=n:(e=n.url,r=R6(n));let o=await LN(e,r);if(o.ok){let s=new Uint8Array(await o.arrayBuffer());return new H$(s,t)}else throw new Error(o.statusText)}let R6=n=>{let t={method:n.method,headers:n.headers,body:n.body,mode:n.mode,credentials:n.credentials,cache:n.cache,redirect:n.redirect,referrer:n.referrer,integrity:n.integrity};return t};function j$(n){return typeof n=="string"&&n.substr(0,7)==="file://"}class K$ extends U${constructor(t,e={}){super();this.input=t,this.options=e}async iterator(){if(j$(this.input)&&ct().get("IS_NODE")){let t=require("fs");this.input=t.readFileSync(this.input.substr(7))}return new H$(this.input,this.options)}}class X$ extends U${constructor(t,e={}){super();this.url=t,this.fileOptions=e}async iterator(){return j$(this.url)?new K$(this.url,this.fileOptions).iterator():F6(this.url,this.fileOptions)}}function P6(n,t={}){return new G$(new X$(n),t)}function O6(n){let t=nh(n);return _r(async()=>t)}function L6(n){return _r(async()=>{let t=await n();return nh(()=>t.next())})}async function M6(n,t){return w1.create(n,t)}async function B6(n){return x1.create(n)}let Y$="2.7.0";var z6=Object.freeze({__proto__:null,array:N6,Dataset:ll,zip:_6,CSVDataset:G$,TextLineDataset:z$,csv:P6,func:O6,generator:L6,microphone:B6,webcam:M6,FileDataSource:K$,URLDataSource:X$,version_data:Y$});function Ct(n,t){Array.isArray(n)||(n=[n]),n.forEach(e=>{e!=null&&_(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}let W6=tm,V6=Tv,G6=kv,U6=Nv,q6=jd;class H6 extends d{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new h(this,ds())}write(t,e,r){this.firstUse&&(this.firstUse=!1,ct().get("IS_NODE")&&Yc(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let o={};return this.data.set(o,{values:t,dtype:r,refCount:1}),o}makeTensorInfo(t,e,r){let o;if(e==="string"&&r!=null&&r.length>0&&us(r[0])){let s=r.map(c=>od(c));o=this.write(s,t,e)}else o=this.write(r,t,e);return{dataId:o,shape:t,dtype:e}}incRef(t){let e=this.data.get(t);e.refCount++}decRef(t){if(this.data.has(t)){let e=this.data.get(t);e.refCount--}}move(t,e,r,o){this.data.set(t,{values:e,dtype:o,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(t){return this.readSync(t)}readSync(t){let{dtype:e,complexTensorInfos:r}=this.data.get(t);if(e==="complex64"){let o=this.readSync(r.real.dataId),s=this.readSync(r.imag.dataId);return ws(o,s)}return this.data.get(t).values}bufferSync(t){let e=this.readSync(t.dataId),r=e;if(t.dtype==="string")try{r=e.map(o=>Yu(o))}catch(o){throw new Error("Failed to decode encoded string bytes into utf-8")}return Se(t.shape,t.dtype,r)}makeOutput(t,e,r){let o=this.write(t,e,r);return ds().makeTensorFromDataId(o,e,r,this)}disposeData(t){if(this.data.has(t)){let{complexTensorInfos:e}=this.data.get(t);e!=null&&(this.disposeData(e.real.dataId),this.disposeData(e.imag.dataId)),this.data.delete(t)}}disposeIntermediateTensorInfo(t){let e=t.dataId;if(this.data.has(e)){let r=this.data.get(e);r.refCount--,r.refCount<1&&this.disposeData(e)}}async time(t){let e=sr();t();let r=sr()-e;return{kernelMs:r}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}stridedSlice(t,e,r,o){Ct(t,"stridedSlice");let s=gd(e,r,o);if(s.some(p=>p===0))return un([],s);let c=Se(s,t.dtype),l=this.bufferSync(t);for(let p=0;pl[p]=t.shape[p]-1-l[p]),r.set(o.get(...l),...c)}return r.toTensor()}neg(t){return Ct(t,"neg"),nt(Et(-1),t)}addN(t){Ct(t,"addN");let e=t.map(s=>this.readSync(s.dataId)),r=Se(t[0].shape,t[0].dtype),o=r.values;for(let s=0;sMath.pow(r,o))}floorDiv(t,e){Ct([t,e],"floorDiv");let r=(s,c)=>Math.floor(s/c),o="int32";return this.broadcastedBinaryOp(t,e,o,r)}sum(t,e){Ct(t,"sum"),ir("sum",e,t.rank);let[r,o]=Rn(t.shape,e),s=Kn(t.dtype,"int32"),c=xe(r,s),l=G(o),p=this.readSync(c.dataId),f=this.readSync(t.dataId);for(let m=0;mb&&(b=N,v=T)}p[m]=v}return c}cumsum(t,e,r,o){if(Ct(t,"cumsum"),e!==t.rank-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${t.rank-1} but got axis=${e}`);let s=Kn(t.dtype,"int32"),c=xe(t.shape,s),l=this.readSync(c.dataId),p=this.readSync(t.dataId),f=t.shape[t.rank-1],m=o?(y,b)=>y+f-b-1:(y,b)=>y+b;for(let y=0;yr===o?1:0)}notEqual(t,e){return Ct([t,e],"notEqual"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>r!==o?1:0)}less(t,e){return Ct([t,e],"less"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>rr<=o?1:0)}greater(t,e){return Ct([t,e],"greater"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>r>o?1:0)}greaterEqual(t,e){return Ct([t,e],"greaterEqual"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>r>=o?1:0)}logicalAnd(t,e){return Ct([t,e],"logicalAnd"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>r&&o)}logicalOr(t,e){return Ct([t,e],"logicalOr"),this.broadcastedBinaryOp(t,e,"bool",(r,o)=>r||o)}select(t,e,r){Ct([t,e,r],"select");let o=this.readSync(t.dataId),s=this.readSync(e.dataId),c=this.readSync(r.dataId),l=xe(e.shape,Kn(e.dtype,r.dtype)),p=this.readSync(l.dataId),f=0,m=t.rank===0||t.rank>1||e.rank===1?1:G(e.shape.slice(1));for(let y=0;yMath.min(r,o))}mod(t,e){return Ct([t,e],"mod"),this.broadcastedBinaryOp(t,e,t.dtype,(r,o)=>{let s=r%o;return r<0&&o<0||r>=0&&o>=0?s:(s+o)%o})}maximum(t,e){return Ct([t,e],"maximum"),this.broadcastedBinaryOp(t,e,t.dtype,(r,o)=>Math.max(r,o))}all(t,e){Ct(t,"all"),ir("all",e,t.rank);let[r,o]=Rn(t.shape,e),s=xe(r,t.dtype),c=G(o),l=this.readSync(s.dataId),p=this.readSync(t.dataId);for(let f=0;f{let s=r-o;return s*s})}eluDer(t,e){Ct([t,e],"eluDer");let r=new Float32Array(e.size),o=this.readSync(e.dataId),s=this.readSync(t.dataId);for(let c=0;c=1?r[c]=s[c]:r[c]=s[c]*(l+1)}return this.makeOutput(r,e.shape,"float32")}atan2(t,e){return Ct([t,e],"atan2"),this.broadcastedBinaryOp(t,e,t.dtype,(r,o)=>Math.atan2(r,o))}tile(t,e){return Ct(t,"tile"),G6(this.bufferSync(t),e)}gather(t,e,r){Ct([t,e],"gather");let o=t.shape.slice(),s=this.readSync(e.dataId);o[r]=s.length;let c=Se(o,t.dtype),l=this.bufferSync(t);for(let p=0;pm*y),s=Ep(t.shape,e,o),c=Dp(s.length,e.length),l=Ap(t.shape,e,o),p=pv(r,e.length),f=hv(l,r,e.length);return Kt(t.reshape(s),c).reshape(l).slice(p,f)}pool3d(t,e,r){Ct(t,"pool3d");let o=e.strideDepth,s=e.strideHeight,c=e.strideWidth,l=e.dilationDepth,p=e.dilationHeight,f=e.dilationWidth,m=e.effectiveFilterDepth,y=e.effectiveFilterHeight,b=e.effectiveFilterWidth,v=e.padInfo.front,T=e.padInfo.top,N=e.padInfo.left,S=r==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,D=this.readSync(t.dataId),I=Se(e.outShape,t.dtype),P=I.values,E=e.outShape[1]*e.outShape[2]*e.outShape[3]*e.outShape[4],L=e.outShape[2]*e.outShape[3]*e.outShape[4],B=e.outShape[3]*e.outShape[4],q=e.outShape[4];for(let H=0;Hoe?oe=Le:r==="avg"&&(de+=Le,ie++),isNaN(oe))break}if(isNaN(oe))break}if(isNaN(oe))break}let we=Ht+it;P[we]=r==="avg"?de/ie:oe}}}}return I.toTensor()}avgPool3d(t,e){return Ct(t,"avgPool3d"),this.pool3d(t,e,"avg").toFloat()}avgPool3dBackprop(t,e,r){Ct([t,e],"avgPool3dBackprop");let o=r.strideDepth,s=r.strideHeight,c=r.strideWidth,l=r.filterDepth,p=r.filterHeight,f=r.filterWidth,m=r.dilationDepth,y=r.dilationHeight,b=r.dilationWidth,v=r.effectiveFilterDepth,T=r.effectiveFilterHeight,N=r.effectiveFilterWidth,S=v-1-r.padInfo.front,D=N-1-r.padInfo.left,I=T-1-r.padInfo.top,P=Se(e.shape,"float32"),E=1/(l*p*f),L=this.bufferSync(t);for(let B=0;B=r.outDepth||Math.floor(ut)!==ut)continue;for(let bt=0;bt=r.outHeight||Math.floor(yt)!==yt)continue;for(let xt=0;xt=r.outWidth||Math.floor(kt)!==kt)continue;let Nt=L.get(B,ut,yt,kt,q);dt+=Nt}}}P.set(dt*E,B,H,Z,J,q)}return P.toTensor()}maxPool3d(t,e){return Ct(t,"maxPool3d"),this.pool3d(t,e,"max").toFloat()}maxPool3dPositions(t,e){let r=Se(e.outShape,"int32"),o=e.strideDepth,s=e.strideHeight,c=e.strideWidth,l=e.dilationDepth,p=e.dilationHeight,f=e.dilationWidth,m=e.effectiveFilterDepth,y=e.effectiveFilterHeight,b=e.effectiveFilterWidth,v=e.padInfo.front,T=e.padInfo.top,N=e.padInfo.left,S=this.bufferSync(t);for(let D=0;D=ft&&(ft=It,ut=yt*y*b+kt*y+At)}}}r.set(ut,D,P,q,it,I)}}}return r.toTensor()}maxPool3dBackprop(t,e,r,o){Ct([e,r],"maxPool3dBackprop");let s=this.maxPool3dPositions(e,o),c=o.strideDepth,l=o.strideHeight,p=o.strideWidth,f=o.dilationDepth,m=o.dilationHeight,y=o.dilationWidth,b=o.effectiveFilterDepth,v=o.effectiveFilterHeight,T=o.effectiveFilterWidth,N=b-1-o.padInfo.front,S=T-1-o.padInfo.left,D=v-1-o.padInfo.top,I=Se(e.shape,"float32"),P=this.bufferSync(s),E=this.bufferSync(t);for(let L=0;L=o.outDepth||Math.floor(ft)!==ft)continue;for(let ut=0;ut=o.outHeight||Math.floor(bt)!==bt)continue;for(let yt=0;yt=o.outWidth||Math.floor(xt)!==xt)continue;let kt=b*v*T-1-P.get(L,ft,bt,xt,B),Nt=dt*v*T+ut*T+yt,At=kt===Nt?1:0;if(At===0)continue;let It=E.get(L,ft,bt,xt,B);ht+=It*At}}}I.set(ht,L,q,H,Z,B)}return I.toTensor()}resizeBilinear(t,e,r,o){Ct(t,"resizeBilinear");let[s,c,l,p]=t.shape,f=this.readSync(t.dataId),m=new Float32Array(G([s,e,r,p])),y=[o&&e>1?c-1:c,o&&r>1?l-1:l],b=[o&&e>1?e-1:e,o&&r>1?r-1:r],v=0,T=y[0]/b[0],N=y[1]/b[1];for(let S=0;S1?s-1:s,r&&f>1?c-1:c],b=[r&&p>1?p-1:p,r&&f>1?f-1:f],v=y[0]/b[0],T=y[1]/b[1],N=this.readSync(t.dataId),S=0;for(let D=0;D1?c-1:c,o&&r>1?l-1:l],b=[o&&e>1?e-1:e,o&&r>1?r-1:r],v=y[0]/b[0],T=y[1]/b[1],N=0;for(let S=0;S1?s-1:s,r&&f>1?c-1:c],v=[r&&p>1?p-1:p,r&&f>1?f-1:f],T=b[0]/v[0],N=b[1]/v[1],S=1/T,D=1/N,I=Math.ceil(S)*2+2,P=Math.ceil(D)*2+2;for(let E=0;E=p)continue;let yt=L+bt*t.strides[1],xt=bt*T,kt=Math.min(s-1,r?Math.round(xt):Math.floor(xt));if(B!==kt)continue;for(let Nt=0;Nt=f)continue;let It=yt+At*t.strides[2],St=At*N,Lt=Math.min(c-1,r?Math.round(St):Math.floor(St));J===Lt&&(ft+=y[It+dt])}}m[it+dt]=ft}}}}return jc(m,e.shape,e.dtype)}localResponseNormalization4D(t,e,r,o,s){Ct(t,"localResponseNormalization4D");let c=t.shape[3],l=c-1,p=this.readSync(t.dataId),f=t.size,m=new Float32Array(f);function y(b){let v=b%c,T=b-v+Math.max(0,v-e),N=b-v+Math.min(v+e,l),S=0;for(;T<=N;T++){let D=p[T];S+=D*D}return S}for(let b=0;b=0&&c[l]`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${r}`),_(e>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${e}`);let o=t.shape[0],s=t.shape[1],c=t.shape[2],l=t.shape[3],p=s*e,f=c*e,m=l/(e*e),y=this.readSync(t.dataId),b=new Float32Array(o*p*f*m),v=0;for(let T=0;TS[E]=0);let D=b.locToIndex(S),I=N.slice(-e.rank);m.forEach(E=>I[E]=0);let P=v.locToIndex(I);y[T]=o(l[D],p[P])}}return c.toTensor()}split(t,e,r){return V6(t,e,r)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}cropAndResize(t,e,r,o,s,c){let[l,p,f,m]=t.shape,y=e.shape[0],[b,v]=o,T=Se([y,b,v,m],"float32"),N=this.readSync(e.dataId),S=this.readSync(r.dataId),D=this.readSync(t.dataId),I=t.strides,P=T.strides;for(let E=0;E=l)continue;let it=b>1?(H-B)*(p-1)/(b-1):0,pt=v>1?(Z-q)*(f-1)/(v-1):0;for(let ht=0;ht1?B*(p-1)+ht*it:.5*(B+H)*(p-1);if(dt<0||dt>p-1){for(let ft=0;ft1?q*(f-1)+yt*pt:.5*(q+Z)*(f-1);if(xt<0||xt>f-1){for(let It=0;It1?q*(f-1)+ft*pt:.5*(q+Z)*(f-1);if(ut<0||ut>f-1){for(let xt=0;xt=t.size/l)throw new Error(`Invalid indices: ${v} does not index into ${t.shape}`);for(let N=0;N=o/s)throw new Error(`Invalid indices: ${S} does not index into ${r}`);for(let I=0;I{let{x:t}=n.inputs,e=n.backend,r=new Float32Array(G(t.shape));if(t.dtype!=="complex64"){let o=e.data.get(t.dataId).values;r=J$(o)}else{let o=e.data.get(t.dataId),s=o.complexTensorInfos.real,c=o.complexTensorInfos.imag,l=e.data.get(s.dataId).values,p=e.data.get(c.dataId).values;for(let f=0;f{let c=le(t,e),l=c.length,p=Jt(c),f=G(c),m=Ce(s,f),y=t.length,b=e.length,v=Jt(t),T=Jt(e),N=la(t,c),S=la(e,c);if(N.length+S.length===0)for(let D=0;DP[q]=0);let E=Yr(P,y,v),L=I.slice(-b);S.forEach(q=>L[q]=0);let B=Yr(L,b,T);m[D]=n(r[E],o[B])}return[m,c]}}function Co(n){let{inputs:t,backend:e}=n,{real:r,imag:o}=t,s=e.data.get(r.dataId).values,c=e.data.get(o.dataId).values,l=e.makeTensorInfo(r.shape,"complex64"),p=e.data.get(l.dataId);return p.complexTensorInfos={real:e.makeTensorInfo(r.shape,"float32",s),imag:e.makeTensorInfo(o.shape,"float32",c)},l}let X6={kernelName:Sf,backendName:"cpu",kernelFunc:Co};function Na(n){let{inputs:t,backend:e}=n,{x:r}=t;return e.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}let Y6={kernelName:Nu,backendName:"cpu",kernelFunc:Na};function oh(n){let{inputs:t,backend:e}=n,{input:r}=t,o=e.data.get(r.dataId).complexTensorInfos.real,s=e.data.get(o.dataId).values;return e.makeTensorInfo(o.shape,o.dtype,s)}let J6={kernelName:Hf,backendName:"cpu",kernelFunc:oh};function sh(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{dtype:s}=r;if(s==="complex64"){if(o.dtype==="complex64")return Na({inputs:{x:o},backend:e});let c=xe(o.shape),l=sh({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),p=Co({inputs:{real:l,imag:c},backend:e});return c.dispose(),e.disposeIntermediateTensorInfo(l),p}if(o.dtype==="complex64"){let c=oh({inputs:{input:o},backend:e}),l=sh({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),l}if(!gc(o.dtype,s)){let c=Na({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}if(s==="int32"){let c=e.data.get(o.dataId).values,l=Int32Array.from(c);return e.makeTensorInfo(o.shape,"int32",l)}if(s==="bool"){let c=e.data.get(o.dataId).values,l=ri([0],o.dtype),[p,f]=Ci((m,y)=>m!==y?1:0)(o.shape,[],c,l,"bool");return e.makeTensorInfo(f,"bool",p)}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}let Z6={kernelName:xc,backendName:"cpu",kernelFunc:sh};function ul(n,t,e,r){return e==null?({inputs:o,backend:s})=>{let{a:c,b:l}=o,p=s;Ct([c,l],n);let f=p.data.get(c.dataId).values,m=p.data.get(l.dataId).values,y=r||c.dtype,[b,v]=t(c.shape,l.shape,f,m,y);return p.makeTensorInfo(v,y,b)}:({inputs:o,backend:s})=>{let{a:c,b:l}=o,p=s;if(c.dtype==="complex64"||l.dtype==="complex64"){let f=sh({inputs:{x:c},backend:p,attrs:{dtype:"complex64"}}),m=p.data.get(f.dataId),y=m.complexTensorInfos.real,b=m.complexTensorInfos.imag,v=p.data.get(y.dataId).values,T=p.data.get(b.dataId).values,N=sh({inputs:{x:l},backend:p,attrs:{dtype:"complex64"}}),S=p.data.get(N.dataId),D=S.complexTensorInfos.real,I=S.complexTensorInfos.imag,P=p.data.get(D.dataId).values,E=p.data.get(I.dataId).values,[L,B,q]=e(c.shape,l.shape,v,T,P,E),H=p.makeTensorInfo(q,"float32",L),Z=p.makeTensorInfo(q,"float32",B),J=Co({inputs:{real:H,imag:Z},backend:p});return p.disposeIntermediateTensorInfo(f),p.disposeIntermediateTensorInfo(N),p.disposeIntermediateTensorInfo(H),p.disposeIntermediateTensorInfo(Z),J}else{let f=p.data.get(c.dataId).values,m=p.data.get(l.dataId).values,y=r||c.dtype,[b,v]=t(c.shape,l.shape,f,m,y);return p.makeTensorInfo(v,y,b)}}}function v1(n){return(t,e,r,o,s,c)=>{let l=le(t,e),p=G(l),f=l.length,m=Jt(l),y=Ce("float32",p),b=Ce("float32",p),v=la(t,l),T=la(e,l),N=ws(r,o),S=ws(s,c),D=t.length,I=Jt(t),P=e.length,E=Jt(e);if(v.length+T.length===0)for(let L=0;Lq[pt]=0);let H=Yr(q,D,I),Z=B.slice(-P);T.forEach(pt=>Z[pt]=0);let J=Yr(Z,P,E),it=n(N[H*2],N[H*2+1],S[J*2],S[J*2+1]);y[L]=it.real,b[L]=it.imag}return[y,b,l]}}let Z$=Ci((n,t)=>n+t),Q6=v1((n,t,e,r)=>({real:n+e,imag:t+r})),ih=ul(Zi,Z$,Q6),tK={kernelName:Zi,backendName:"cpu",kernelFunc:ih};function pl(n){return(t,e,r)=>{let o=Ce(e,t.length);for(let s=0;s{let{x:c}=r;if(Ct(c,n),c.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let l=s,p=l.data.get(c.dataId).values,f=G(c.shape),m=e||c.dtype,y=or(m,f);for(let b=0;b{let{x:c}=r;if(Ct(c,n),c.dtype==="string"||e==="string")throw new Error("unaryKernelFunc does not support string input/output");let l=s,p=l.data.get(c.dataId).values,f=e||c.dtype,m=t(p,f,o);return l.makeTensorInfo(c.shape,f,m)}}let Q$=pl(n=>Math.ceil(n)),eK=hl(du,Q$),nK={kernelName:du,backendName:"cpu",kernelFunc:eK};let tI=pl(n=>Math.exp(n)),rK=hl(wu,tI),oK={kernelName:wu,backendName:"cpu",kernelFunc:rK};let eI=pl(n=>Math.expm1(n)),sK=hl(vu,eI),iK={kernelName:vu,backendName:"cpu",kernelFunc:sK};let nI=pl(n=>Math.floor(n)),aK=hl(Tu,nI),cK={kernelName:Tu,backendName:"cpu",kernelFunc:aK};let rI=pl(n=>Math.log(n)),lK=hl($u,rI),uK={kernelName:$u,backendName:"cpu",kernelFunc:lK};function oI(n,t,e,r){let o=Ce(r,G(e));for(let s=0;sl&&(l=f)}o[s]=l}return o}let sI=Ci((n,t)=>n*t),pK=v1((n,t,e,r)=>({real:n*e-t*r,imag:n*r+t*e})),iI=ul(Tc,sI,pK),hK={kernelName:Tc,backendName:"cpu",kernelFunc:iI};let aI=Ci((n,t)=>n!==t?1:0),fK=ul(Fu,aI,null,"bool"),dK={kernelName:Fu,backendName:"cpu",kernelFunc:fK};let cI=pl(n=>1/Math.sqrt(n)),mK=hl(Bu,cI),gK={kernelName:Bu,backendName:"cpu",kernelFunc:mK};function lI(n,t,e,r,o){let s=fw(r,t,e),c=G(e),l=Jt(r);if(s){let f=dw(t,l);return n.subarray(f,f+c)}let p=Ce(o,c);for(let f=0;fN+t[S]),T=Yr(v,r.length,l);p[f]=n[T]}return p}function T1(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{begin:s,size:c}=r;Ct(o,"slice");let[l,p]=yd(o,s,c);hw(o,l,p);let f=e.data.get(o.dataId).values,m=lI(f,l,p,o.shape,o.dtype);return e.makeTensorInfo(p,o.dtype,m)}let yK={kernelName:jf,backendName:"cpu",kernelFunc:T1};let uI=Ci((n,t)=>{let e=n-t;return e*e}),bK=ul(Nc,uI),xK={kernelName:Nc,backendName:"cpu",kernelFunc:bK};let pI=Ci((n,t)=>n-t),wK=v1((n,t,e,r)=>({real:n-e,imag:t-r})),hI=ul(_c,pI,wK),vK={kernelName:_c,backendName:"cpu",kernelFunc:hI};function k1(n,t,e,r,o){let s=t.length,c=G(t),l=Jt(t),p=Jt(o),f=Ce(e,G(o));for(let m=0;m{for(let S=0;Snew H6,1);let dI=Ee(bu,n=>n>=0?n:Math.exp(n)-1),NK={kernelName:bu,backendName:"cpu",kernelFunc:dI};let _K=Ci((n,t)=>n<0?t*n:n);function mI(n){let{inputs:t,backend:e}=n,{x:r,alpha:o}=t;Ct([r,o],"prelu");let s=e.data.get(r.dataId).values,c=e.data.get(o.dataId).values,[l,p]=_K(r.shape,o.shape,s,c,r.dtype);return e.makeTensorInfo(p,r.dtype,l)}let CK={kernelName:qf,backendName:"cpu",kernelFunc:mI};let gI=Ee(Pu,n=>Math.max(0,n)),SK={kernelName:Pu,backendName:"cpu",kernelFunc:gI};let yI=Ee(Lu,n=>Math.min(Math.max(0,n),6)),$K={kernelName:Lu,backendName:"cpu",kernelFunc:yI};function N1(n,t,e,r){if(e==="linear")return Na({inputs:{x:t},backend:n});if(e==="relu")return gI({inputs:{x:t},backend:n});if(e==="elu")return dI({inputs:{x:t},backend:n});if(e==="relu6")return yI({inputs:{x:t},backend:n});if(e==="prelu")return mI({inputs:{x:t,alpha:r},backend:n});throw new Error(`Activation ${e} has not been implemented for the CPU backend.`)}function Ko(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{shape:s}=r,c=G(o.shape),l=Ue(s,c),p=G(l);_(c===p,()=>`The new shape (${l}) has ${p} elements and the old shape (${o.shape}) has ${c} elements. The new shape and old shape must have the same number of elements.`),e.incRef(o.dataId);let f=e.data.get(o.dataId);if(f.complexTensorInfos!=null){let m=f.complexTensorInfos.real,y=f.complexTensorInfos.imag;m.shape=l,y.shape=l}return{dataId:o.dataId,shape:l,dtype:o.dtype}}let IK={kernelName:Ou,backendName:"cpu",kernelFunc:Ko};function bI(n){let{inputs:t,backend:e,attrs:r}=n,{a:o,b:s}=t,{transposeA:c,transposeB:l}=r;Ct([o,s],"matMul");let p=o.shape.length,f=s.shape.length,m=c?o.shape[p-2]:o.shape[p-1],y=l?s.shape[f-1]:s.shape[f-2],b=c?o.shape[p-1]:o.shape[p-2],v=l?s.shape[f-2]:s.shape[f-1],T=o.shape.slice(0,-2),N=s.shape.slice(0,-2),S=G(T),D=G(N),I=S===D||S===1||D===1;_(p>=2&&f>=2&&I,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${T}) and (${N}).`);let P=S>D?o.shape.slice(0,-2):s.shape.slice(0,-2),E=P.concat([b,v]);_(m===y,()=>`Error in matMul: inner shapes (${m}) and (${y}) of Tensors with shapes ${o.shape} and ${s.shape} and transposeA=${c} and transposeB=${l} must match.`);let L=c?[S,m,b]:[S,b,m],B=l?[D,v,y]:[D,y,v],q=Ko({inputs:{x:o},backend:e,attrs:{shape:L}}),H=Ko({inputs:{x:s},backend:e,attrs:{shape:B}}),Z=c?q.shape[1]:q.shape[2],J=c?q.shape[2]:q.shape[1],it=l?H.shape[1]:H.shape[2],pt=Math.max(S,D),ht=e.data.get(q.dataId).values,dt=e.data.get(H.dataId).values,ft=Jt(q.shape),ut=Jt(H.shape),[bt,yt,xt]=c?[ft[0],1,ft[1]]:[ft[0],ft[1],1],[kt,Nt,At]=l?[1,ut[1],ut[0]]:[ut[1],1,ut[0]],It=J*it,St=Se([pt,J,it],q.dtype),Lt=St.values,Ht=e.blockSize;for(let oe=0;oeMath.acos(n)),RK={kernelName:au,backendName:"cpu",kernelFunc:FK};let PK=Ee(cu,n=>Math.acosh(n)),OK={kernelName:cu,backendName:"cpu",kernelFunc:PK};let LK=Ee(lu,n=>Math.asin(n)),MK={kernelName:lu,backendName:"cpu",kernelFunc:LK};let BK=Ee(uu,n=>Math.asinh(n)),zK={kernelName:uu,backendName:"cpu",kernelFunc:BK};let WK=Ee(pu,n=>Math.atan(n)),VK={kernelName:pu,backendName:"cpu",kernelFunc:WK};let GK=Ee(hu,n=>Math.atanh(n)),UK={kernelName:hu,backendName:"cpu",kernelFunc:GK};function _1(n,t,e,r,o,s){let c=o.strideHeight,l=o.strideWidth,p=o.dilationHeight,f=o.dilationWidth,m=o.effectiveFilterHeight,y=o.effectiveFilterWidth,b=o.padInfo.top,v=o.padInfo.left,T=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,N=Se(o.outShape,e),S=N.values,D=o.outShape[1]*o.outShape[2]*o.outShape[3],I=o.outShape[2]*o.outShape[3],P=o.outShape[3];for(let E=0;Ebt?bt=Lt:s==="avg"&&(yt+=Lt,xt++)}if(isNaN(bt))break}let kt=pt+ht*P+q;S[kt]=s==="avg"?yt/xt:bt}}}return N}function xI(n,t,e,r,o=!1,s=!1){let c=Se(r.outShape,"int32"),l=r.strideHeight,p=r.strideWidth,f=r.dilationHeight,m=r.dilationWidth,y=r.effectiveFilterHeight,b=r.effectiveFilterWidth,v=r.padInfo.top,T=r.padInfo.left,N=Se(t,e,n);for(let S=0;SJ&&(J=ut,o?it=s?((S*r.inHeight+pt)*r.inWidth+dt)*r.inChannels+D:(pt*r.inWidth+dt)*r.inChannels+D:it=ht*b+ft)}}c.set(it,S,I,B,D)}}return c}function qK(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t;Ct(o,"avgPool");let{filterSize:s,strides:c,pad:l,dimRoundingMode:p}=r,f=1;_(fn(c,f),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${c} and dilations '${f}'`);let m=Xn(o.shape,s,c,f,l,p),y;if(m.filterWidth===1&&m.filterHeight===1&<(m.inShape,m.outShape))y=Na({inputs:{x:o},backend:e});else{let b=e.data.get(o.dataId).values,v=Jt(o.shape),T=_1(b,o.shape,o.dtype,v,m,"avg");y=e.makeTensorInfo(m.outShape,o.dtype,T.values)}return y}let HK={kernelName:fu,backendName:"cpu",kernelFunc:qK};function jK(n){let{inputs:t,backend:e,attrs:r}=n,{dy:o,input:s}=t,c=s;Ct([o,s],"avgPoolBackprop");let{filterSize:l,strides:p,pad:f}=r,m=Xn(c.shape,l,p,1,f),y=m.strideHeight,b=m.strideWidth,v=m.filterHeight,T=m.filterWidth,N=m.dilationHeight,S=m.dilationWidth,D=m.effectiveFilterHeight,I=m.effectiveFilterWidth,P=I-1-m.padInfo.left,E=D-1-m.padInfo.top,L=Se(c.shape,"float32"),B=1/(v*T),q=e.data.get(o.dataId).values,H=Se(o.shape,"float32",q);for(let Z=0;Z=m.outHeight||Math.floor(bt)!==bt)continue;for(let yt=0;yt=m.outWidth||Math.floor(xt)!==xt)continue;let kt=H.get(Z,bt,xt,J);ft+=kt}}L.set(ft*B,Z,it,pt,J)}return e.makeTensorInfo(L.shape,L.dtype,L.values)}let KK={kernelName:_f,backendName:"cpu",kernelFunc:jK};function XK(n){let{inputs:t,backend:e,attrs:r}=n,{x:o,scale:s,offset:c,mean:l,variance:p}=t;_(l.shape.length===p.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(c==null||l.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(s==null||l.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ct([o,l,p,s,c],"batchNorm");let{varianceEpsilon:f}=r;f==null&&(f=.001);let m=e.data.get(o.dataId).values,y=e.data.get(l.dataId).values,b=e.data.get(p.dataId).values,v=s?e.data.get(s.dataId).values:new Float32Array([1]),T=c?e.data.get(c.dataId).values:new Float32Array([0]),N=new Float32Array(m.length),S=T.length,D=v.length,I=b.length,P=y.length,E=0,L=0,B=0,q=0;for(let H=0;H=S&&(E=0),L>=P&&(L=0),B>=D&&(B=0),q>=I&&(q=0);return e.makeTensorInfo(o.shape,o.dtype,N)}let YK={kernelName:ku,backendName:"cpu",kernelFunc:XK};let JK=Ee(mu,(n,t)=>{let e=t;return n>e.clipValueMax?e.clipValueMax:nv.shape),s);if(G(c)===0)return e.makeTensorInfo(c,t[0].dtype,[]);let l=t.filter(v=>G(v.shape)>0);if(l.length===1)return l[0];let p=l.map(v=>v.shape);if(Nd(p,s),l[0].dtype==="complex64"){let v=l.map(I=>oh({inputs:{input:I},backend:e})),T=l.map(I=>Km({inputs:{input:I},backend:e})),N=ah({inputs:v,backend:e,attrs:{axis:s}}),S=ah({inputs:T,backend:e,attrs:{axis:s}}),D=Co({inputs:{real:N,imag:S},backend:e});return v.forEach(I=>e.disposeIntermediateTensorInfo(I)),T.forEach(I=>e.disposeIntermediateTensorInfo(I)),e.disposeIntermediateTensorInfo(N),e.disposeIntermediateTensorInfo(S),D}let f=l.map(v=>{let T=G(v.shape.slice(s)),N=[-1,T];return Ko({inputs:{x:v},backend:e,attrs:{shape:N}})});c=ms(f.map(v=>v.shape),1);let m=Ce(l[0].dtype,G(c));if(f[0].shape[0]===1){let v=0;f.forEach(T=>{let N=e.data.get(T.dataId).values,S=G(T.shape);m.set(N,v),v+=S})}else{let v=0;f.forEach(T=>{let N=e.data.get(T.dataId).values,S=0;for(let D=0;Dv.shape),s),b=e.makeTensorInfo(y,t[0].dtype,m);return f.forEach(v=>e.disposeIntermediateTensorInfo(v)),b}let t5={kernelName:gu,backendName:"cpu",kernelFunc:ah};function wI(n){let{inputs:t,backend:e,attrs:r}=n,{x:o,filter:s}=t,{strides:c,pad:l,dataFormat:p,dilations:f,dimRoundingMode:m}=r;Ct([o,s],"conv2d");let y=li(p),b=Un(o.shape,s.shape,c,f,l,m,!1,y),v=b.filterHeight,T=b.filterWidth,N=b.dilationHeight,S=b.dilationWidth,D=b.padInfo.left,I=b.padInfo.top,P=b.dataFormat==="channelsLast",E=new hn(b.outShape,o.dtype),L=Jt(o.shape),B=Jt(s.shape),q=L[0],H=P?L[1]:L[2],Z=P?L[2]:1,J=P?1:L[1],it=E.strides[0],pt=P?E.strides[1]:E.strides[2],ht=P?E.strides[2]:1,dt=P?1:E.strides[1],ft=e.data.get(o.dataId).values,ut=e.data.get(s.dataId).values,bt=E.values;for(let yt=0;yt=b.inHeight)continue;let Ht=St*B[0],oe=xt+Lt*H;for(let de=0;de=b.inWidth)continue;let on=Ht+pe*B[1],sn=oe+Xe*Z,Fe=on;for(let Ye=0;Ye=f.inDepth)continue;let yt=ut*Z[0],xt=it+bt*H[1];for(let kt=0;kt=f.inHeight)continue;let Lt=yt+It*Z[1],Ht=xt+St*H[2];for(let oe=0;oe=f.inWidth)continue;let Xe=Lt+we*Z[2],on=Ht+pe*f.inChannels,sn=Xe;for(let Fe=0;FeMath.cos(n)),f5={kernelName:wc,backendName:"cpu",kernelFunc:h5};let d5=Ee(yu,n=>Math.cosh(n)),m5={kernelName:yu,backendName:"cpu",kernelFunc:d5};function vI(n){let{inputs:t,backend:e,attrs:r}=n,{x:o,filter:s}=t,{strides:c,pad:l,dilations:p,dimRoundingMode:f}=r;Ct([o,s],"depthwiseConv2DNative");let m=Jt(o.shape),y=Jt(s.shape),b=p;b==null&&(b=[1,1]),_(fn(c,b),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${c} and dilations '${b}'`);let v=Un(o.shape,s.shape,c,b,l,f,!0),{filterHeight:T,filterWidth:N,dilationHeight:S,dilationWidth:D,padInfo:I}=v,P=I.left,E=I.top,L=v.outChannels/v.inChannels,B=new hn(v.outShape,o.dtype),q=e.data.get(o.dataId).values,H=e.data.get(s.dataId).values,Z=B.values;for(let J=0;J=v.inHeight)continue;let yt=ut*y[0],xt=it+bt*m[1];for(let kt=0;kt=v.inWidth)continue;let Lt=yt+It*y[1],Ht=xt+St*v.inChannels,oe=Nt,de=Lt;for(let ie=0;ie{let{x:r,filter:o}=n,{strides:s,pad:c,dilations:l}=e,p=t,f=p.data.get(r.dataId).values,m=r.shape.length,y=p.data.get(o.dataId).values,b=o.shape.length,{batchSize:v,inHeight:T,inWidth:N,inChannels:S,outHeight:D,outWidth:I,padInfo:P,strideHeight:E,strideWidth:L,filterHeight:B,filterWidth:q,dilationHeight:H,dilationWidth:Z,outShape:J}=Td(r.shape,o.shape,s,c,"NHWC",l),it=G(J),pt=J.length,ht=or(r.dtype,it);for(let ft=0;ft=0&&St=0&&HtNt&&(Nt=ie)}}}let At=Yr([ft,ut,yt,kt],pt,Jt(J));ht[At]=Nt}}}let dt=p.write(ri(ht,r.dtype),J,r.dtype);return{dataId:dt,shape:J,dtype:r.dtype}}};let T5={kernelName:Rf,backendName:"cpu",kernelFunc:({inputs:n,backend:t,attrs:e})=>{let{x:r,filter:o,dy:s}=n,{strides:c,pad:l,dilations:p}=e,f=t,m=Dr(r.shape,f.data.get(r.dataId).values),y=Dr(o.shape,f.data.get(o.dataId).values),{batchSize:b,inHeight:v,inWidth:T,inChannels:N,outHeight:S,outWidth:D,padInfo:I,strideHeight:P,strideWidth:E,filterHeight:L,filterWidth:B,dilationHeight:q,dilationWidth:H,outShape:Z}=Td(r.shape,o.shape,c,l,"NHWC",p);_(s.rank===Z.length,()=>`Error in ${Rf}, dy must have the same rank as output ${Z.length}, but got ${s.rank}`);let J=Dr(Z,f.data.get(s.dataId).values),it=tx(o.shape,o.dtype);for(let ht=0;ht=0&&It=0&&Ltxt&&(xt=Ht,kt=At,Nt=St)}}}it[kt][Nt][yt]+=J[ht][dt][ut][yt]}}}let pt=f.write(ri(it,r.dtype),o.shape,o.dtype);return{dataId:pt,shape:o.shape,dtype:o.dtype}}};let k5={kernelName:Ff,backendName:"cpu",kernelFunc:({inputs:n,backend:t,attrs:e})=>{let{x:r,filter:o,dy:s}=n,{strides:c,pad:l,dilations:p}=e,f=t,m=Dr(r.shape,f.data.get(r.dataId).values),y=Dr(o.shape,f.data.get(o.dataId).values),{batchSize:b,inHeight:v,inWidth:T,inChannels:N,outHeight:S,outWidth:D,padInfo:I,strideHeight:P,strideWidth:E,filterHeight:L,filterWidth:B,dilationHeight:q,dilationWidth:H,outShape:Z}=Td(r.shape,o.shape,c,l,"NHWC",p);_(s.rank===Z.length,()=>`Error in ${Ff}, dy must have the same rank as output ${Z.length}, but got ${s.rank}`);let J=Dr(Z,f.data.get(s.dataId).values),it=tx(r.shape,r.dtype);for(let ht=0;ht=0&&It=0&&Ltxt&&(xt=Ht,kt=It,Nt=Lt)}}}it[ht][kt][Nt][yt]+=J[ht][dt][ut][yt]}}}let pt=f.write(ri(it,r.dtype),r.shape,r.dtype);return{dataId:pt,shape:r.shape,dtype:r.dtype}}};let N5=Ci((n,t)=>n/t),_5=ul(vc,N5),C1={kernelName:vc,backendName:"cpu",kernelFunc:_5};let C5=fv,S5=dv,$5=mv,I5=gv,E5=yv,D5=bv,A5=Ee(xu,n=>{let t=Math.sign(n),e=Math.abs(n),r=1/(1+C5*e);return t*(1-((((D5*r+E5)*r+I5)*r+$5)*r+S5)*r*Math.exp(-e*e))}),F5={kernelName:xu,backendName:"cpu",kernelFunc:A5};function TI(n,t,e){let r=n.shape,o=r[0],s=r[1],c=e.data.get(n.dataId),l=c.complexTensorInfos.real,p=c.complexTensorInfos.imag,f=[o,s],m=G(f),y=Ce("float32",m),b=Ce("float32",m);for(let S=0;S{let{image:r}=n,o=e,s=Ce(r.dtype,G(r.shape)),[c,l,p,f]=r.shape,m=o.data.get(r.dataId).values;for(let b=0;b=0&&LNumber.isFinite(n)?1:0,"bool"),Y5={kernelName:_u,backendName:"cpu",kernelFunc:X5};let J5=Ee(Cu,n=>Math.abs(n)===Infinity?1:0,"bool"),Z5={kernelName:Cu,backendName:"cpu",kernelFunc:J5};let Q5=Ee(Su,n=>Number.isNaN(n)?1:0,"bool"),t8={kernelName:Su,backendName:"cpu",kernelFunc:Q5};let e8=Ee(Iu,n=>Math.log1p(n)),n8={kernelName:Iu,backendName:"cpu",kernelFunc:e8};let r8=Ee(Bf,n=>n?0:1,"bool"),o8={kernelName:Bf,backendName:"cpu",kernelFunc:r8};let s8={kernelName:Eu,backendName:"cpu",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{x:r}=n,{reductionIndices:o,keepDims:s}=t,c=e,l=r.shape,p=l.length,f=Vt(o,l),m=f,y=ar(m,p),b=c.data.get(r.dataId).values;if(y!=null){let P=new Array(p);for(let E=0;E`Error in maxPool: Either strides or dilations must be 1. Got strides ${c} and dilations '${f}'`);let m=Xn(o.shape,s,c,f,l,p),y;if(m.filterWidth===1&&m.filterHeight===1&<(m.inShape,m.outShape))y=Na({inputs:{x:o},backend:e});else{let b=e.data.get(o.dataId).values,v=Jt(o.shape),T=_1(b,o.shape,o.dtype,v,m,"max");y=e.makeTensorInfo(m.outShape,o.dtype,T.values)}return y}let a8={kernelName:Du,backendName:"cpu",kernelFunc:i8};function c8(n){let{inputs:t,backend:e,attrs:r}=n,{dy:o,input:s,output:c}=t,l=s;Ct([s,c],"maxPoolBackprop");let{filterSize:p,strides:f,pad:m,dimRoundingMode:y}=r,b=Xn(l.shape,p,f,1,m,y),v=e.data.get(l.dataId).values,T=Se(b.outShape,l.dtype,xI(v,l.shape,l.dtype,b).values),N=b.strideHeight,S=b.strideWidth,D=b.dilationHeight,I=b.dilationWidth,P=b.effectiveFilterHeight,E=b.effectiveFilterWidth,L=E-1-b.padInfo.left,B=P-1-b.padInfo.top,q=Se(l.shape,"float32"),H=e.data.get(o.dataId).values,Z=Se(o.shape,"float32",H);for(let J=0;J=b.outHeight||Math.floor(yt)!==yt)continue;for(let xt=0;xt=b.outWidth||Math.floor(kt)!==kt)continue;let Nt=P*E-1-T.get(J,yt,kt,it),At=bt*E+xt,It=Nt===At?1:0;if(It===0)continue;let St=Z.get(J,yt,kt,it);ut+=St*It}}q.set(ut,J,pt,ht,it)}return e.makeTensorInfo(q.shape,q.dtype,q.values)}let l8={kernelName:zf,backendName:"cpu",kernelFunc:c8};function u8(n,t,e,r,o){let s=Jt(t),c=_1(n,t,e,s,o,"max"),l=xI(n,t,e,o,!0,r);return[c.values,l.values]}let p8={kernelName:Wf,backendName:"cpu",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{x:r}=n,{filterSize:o,strides:s,pad:c,includeBatchInIndex:l}=t,p=e;Ct(r,"MaxPoolWithArgmax");let f=p.data.get(r.dataId).values,m=Xn(r.shape,o,s,[1,1],c),[y,b]=u8(f,r.shape,r.dtype,l,m),v=p.write(y,m.outShape,r.dtype),T=p.write(b,m.outShape,r.dtype);return[{dataId:v,shape:m.outShape,dtype:r.dtype},{dataId:T,shape:m.outShape,dtype:"int32"}]}};function h8(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{paddings:s,mode:c}=r;Ct(o,"mirrorPad");let l=s.map((P,E)=>P[0]+o.shape[E]+P[1]),p=s.map(P=>P[0]),f=s.map((P,E)=>P[0]+o.shape[E]),m=c==="reflect"?0:1,y=e.data.get(o.dataId).values,b=o.shape.length,v=Jt(o.shape),T=G(l),N=l.length,S=Jt(l),D=Ce(o.dtype,T);for(let P=0;P=f[B]&&(E[B]=(f[B]-1)*2-E[B]+m);E=E.map((B,q)=>B-p[q]);let L=Yr(E,b,v);D[P]=y[L]}let I=e.write(D,l,o.dtype);return{dataId:I,shape:l,dtype:o.dtype}}let f8={kernelName:Au,backendName:"cpu",kernelFunc:h8};let d8=em,m8={kernelName:Vf,backendName:"cpu",kernelFunc:({inputs:n,backend:t,attrs:e})=>{let{boxes:r,scores:o}=n,{maxOutputSize:s,iouThreshold:c,scoreThreshold:l,padToMaxOutputSize:p}=e,f=t;Ct(r,"NonMaxSuppressionPadded");let m=f.data.get(r.dataId).values,y=f.data.get(o.dataId).values,{selectedIndices:b,validOutputs:v}=d8(m,y,s,c,l,p);return[b,v]}};let g8=nm,y8={kernelName:Gf,backendName:"cpu",kernelFunc:({inputs:n,backend:t,attrs:e})=>{let{boxes:r,scores:o}=n,{maxOutputSize:s,iouThreshold:c,scoreThreshold:l,softNmsSigma:p}=e,f=t;Ct(r,"NonMaxSuppressionWithScore");let m=f.data.get(r.dataId).values,y=f.data.get(o.dataId).values,b=s,v=c,T=l,N=p,{selectedIndices:S,selectedScores:D}=g8(m,y,b,v,T,N);return[S,D]}};function b8(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{paddings:s,constantValue:c}=r;Ct(o,"pad");let l=s.map((I,P)=>I[0]+o.shape[P]+I[1]),p=s.map(I=>I[0]),f=e.data.get(o.dataId).values,m=G(o.shape),y=o.shape.length,b=Jt(o.shape),v=G(l),T=l.length,N=Jt(l),S=Ce(o.dtype,v);c!==0&&S.fill(c);for(let I=0;IB+p[q]),L=Yr(E,T,N);S[L]=f[I]}let D=e.write(S,l,o.dtype);return{dataId:D,shape:l,dtype:o.dtype}}let kI={kernelName:Uf,backendName:"cpu",kernelFunc:b8};let x8=Ee(Ru,n=>1/n),w8={kernelName:Ru,backendName:"cpu",kernelFunc:x8};let v8={kernelName:Zf,backendName:"cpu",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{image:r}=n,{radians:o,fillValue:s,center:c}=t,l=e,p=Ce(r.dtype,G(r.shape)),[f,m,y,b]=r.shape,[v,T]=uv(c,m,y),N=255,S=Math.sin(o),D=Math.cos(o),I=l.data.get(r.dataId).values;for(let E=0;E=0&&dt=0&&ft{let t=Math.floor(n);return n-t<.5?Math.floor(n):n-t>.5?Math.ceil(n):t%2===0?t:t+1}),k8={kernelName:Mu,backendName:"cpu",kernelFunc:T8};let N8=om,_8=sm,C8=Ee(zu,n=>n>=0?_8*n:N8*(Math.exp(n)-1)),S8={kernelName:zu,backendName:"cpu",kernelFunc:C8};let $8=Ee(Gu,n=>1/(1+Math.exp(-n))),I8={kernelName:Gu,backendName:"cpu",kernelFunc:$8};let E8=Ee(Vu,n=>n<0?-1:n>0?1:0),D8={kernelName:Vu,backendName:"cpu",kernelFunc:E8};let A8=Ee(kc,n=>Math.sin(n)),F8={kernelName:kc,backendName:"cpu",kernelFunc:A8};let R8=Ee(Wu,n=>Math.sinh(n)),P8={kernelName:Wu,backendName:"cpu",kernelFunc:R8};let O8=11920928955078125e-23,NI=Math.log(O8)+2,L8=Ee(Uu,n=>{let t=n>-NI,e=nMath.sqrt(n)),G8={kernelName:qu,backendName:"cpu",kernelFunc:V8};let U8={kernelName:Xf,backendName:"cpu",kernelFunc:({inputs:n,backend:t})=>{let{x:e}=n,r=t;Ct(e,"square");let o=r.data.get(e.dataId).values,s=new Float32Array(o.length);for(let l=0;l{let e=t;return isNaN(n)?NaN:n>0?1:e.alpha}),H8={kernelName:Ku,backendName:"cpu",kernelFunc:q8};let j8=Ee(Cc,n=>Math.tan(n)),K8={kernelName:Cc,backendName:"cpu",kernelFunc:j8};let X8=Ee(Hu,n=>Math.tanh(n)),Y8={kernelName:Hu,backendName:"cpu",kernelFunc:X8};function J8(n){let{inputs:t,attrs:e,backend:r}=n,{axis:o}=e,{x:s}=t;Ct(s,"unique");let c=r.data.get(s.dataId).values,{outputValues:l,outputShape:p,indices:f}=fI(c,o,s.shape,s.dtype);return[r.makeTensorInfo(p,s.dtype,l),r.makeTensorInfo([f.length],"int32",f)]}let Z8={kernelName:Yf,backendName:"cpu",kernelFunc:J8};let Q8=[AK,K6,RK,OK,tK,MK,zK,VK,UK,HK,KK,EK,YK,Z6,nK,ZK,X6,t5,r5,s5,e5,l5,p5,a5,f5,m5,g5,b5,w5,v5,k5,T5,C1,NK,F5,oK,iK,M5,z5,V5,cK,U5,H5,Y6,K5,QK,Y5,Z5,t8,uK,n8,o8,a8,l8,p8,s8,f8,hK,m8,y8,dK,kI,CK,J6,w8,SK,$K,IK,v8,k8,gK,S8,I8,D8,F8,P8,yK,M8,W8,G8,U8,xK,H8,vK,K8,Y8,B8,Z8];for(let n of Q8)rd(n);let Si={},$1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Vst(n){delete Si[n]}function tX(n,t){Si[n]=t}function Xo(n){if(!(n in Si)){let e=nX(n);if(e!==null)Si[n]=e;else return console.log("Could not get context for WebGL version",n),null}let t=Si[n];return t.isContextLost()?(delete Si[n],Xo(n)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Si[n])}function eX(n){if(typeof OffscreenCanvas!="undefined"&&n===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function nX(n){if(n!==1&&n!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=eX(n);return t.addEventListener("webglcontextlost",e=>{e.preventDefault(),delete Si[n]},!1),n===1?t.getContext("webgl",$1)||t.getContext("experimental-webgl",$1):t.getContext("webgl2",$1)}var ch;(function(n){n[n.DENSE=0]="DENSE",n[n.SHARED_BATCH=1]="SHARED_BATCH"})(ch||(ch={}));var Br;(function(n){n[n.RENDER=0]="RENDER",n[n.UPLOAD=1]="UPLOAD",n[n.PIXELS=2]="PIXELS",n[n.DOWNLOAD=3]="DOWNLOAD"})(Br||(Br={}));var Ln;(function(n){n[n.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",n[n.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",n[n.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",n[n.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",n[n.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Ln||(Ln={}));function lh(n,t){return[t,n]}function rX(n,t){return n*t}function Gst(n,t){return[t*4,n]}function uh(n){let t=G(n),e=Math.ceil(t/4);return Gt(e)}function Ust(n,t){if(n%t!==0)throw new Error(`unpackedSize (${n}) must be a multiple of ${t}`);return n/t}function qst(n,t,e){let r=n.length*e/4;if(t.length= ${r}`);let o=0;for(let s=0;sn.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function uX(n,t){let e=Cs(n,()=>n.createShader(n.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Rt(n,()=>n.shaderSource(e,t)),Rt(n,()=>n.compileShader(e)),n.getShaderParameter(e,n.COMPILE_STATUS)===!1)throw console.log(n.getShaderInfoLog(e)),new Error("Failed to compile vertex shader.");return e}function pX(n,t){let e=Cs(n,()=>n.createShader(n.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Rt(n,()=>n.shaderSource(e,t)),Rt(n,()=>n.compileShader(e)),n.getShaderParameter(e,n.COMPILE_STATUS)===!1)throw fX(t,n.getShaderInfoLog(e)),new Error("Failed to compile fragment shader.");return e}let hX=/ERROR: [0-9]+:([0-9]+):/g;function fX(n,t){let e=hX.exec(t);if(e==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(n);return}let r=+e[1],o=n.split(` `),s=o.length.toString().length+2,c=o.map((y,b)=>fe((b+1).toString(),s)+y),l=0;for(let y=0;yn.createProgram(),"Unable to create WebGLProgram.")}function mX(n,t){if(Rt(n,()=>n.linkProgram(t)),n.getProgramParameter(t,n.LINK_STATUS)===!1)throw console.log(n.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function E1(n,t){if(Rt(n,()=>n.validateProgram(t)),n.getProgramParameter(t,n.VALIDATE_STATUS)===!1)throw console.log(n.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function gX(n,t){let e=Cs(n,()=>n.createBuffer(),"Unable to create WebGLBuffer");return Rt(n,()=>n.bindBuffer(n.ARRAY_BUFFER,e)),Rt(n,()=>n.bufferData(n.ARRAY_BUFFER,t,n.STATIC_DRAW)),e}function yX(n,t){let e=Cs(n,()=>n.createBuffer(),"Unable to create WebGLBuffer");return Rt(n,()=>n.bindBuffer(n.ELEMENT_ARRAY_BUFFER,e)),Rt(n,()=>n.bufferData(n.ELEMENT_ARRAY_BUFFER,t,n.STATIC_DRAW)),e}function Hst(){return ct().getNumber("WEBGL_VERSION")===2?1:4}function bX(n){return Cs(n,()=>n.createTexture(),"Unable to create WebGLTexture.")}function xX(n,t){let e=ct().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(n<=0||t<=0){let r=`[${n}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(n>e||t>e){let r=`[${n}x${t}]`,o=`[${e}x${e}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+o+".")}}function wX(n){return Cs(n,()=>n.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function CI(n,t,e,r,o,s,c){let l=n.getAttribLocation(t,e);return l===-1?!1:(Rt(n,()=>n.bindBuffer(n.ARRAY_BUFFER,r)),Rt(n,()=>n.vertexAttribPointer(l,o,n.FLOAT,!1,s,c)),Rt(n,()=>n.enableVertexAttribArray(l)),!0)}function vX(n,t,e){$I(n,e),Rt(n,()=>n.activeTexture(n.TEXTURE0+e)),Rt(n,()=>n.bindTexture(n.TEXTURE_2D,t))}function jst(n,t){$I(n,t),Rt(n,()=>n.activeTexture(n.TEXTURE0+t)),Rt(n,()=>n.bindTexture(n.TEXTURE_2D,null))}function TX(n,t,e){return Cs(n,()=>n.getUniformLocation(t,e),'uniform "'+e+'" not present in program.')}function kX(n,t,e){return n.getUniformLocation(t,e)}function NX(n,t,e,r){Rt(n,()=>vX(n,t,r)),Rt(n,()=>n.uniform1i(e,r))}function Kst(n){Rt(n,()=>n.bindFramebuffer(n.FRAMEBUFFER,null)),Rt(n,()=>n.viewport(0,0,n.canvas.width,n.canvas.height)),Rt(n,()=>n.scissor(0,0,n.canvas.width,n.canvas.height))}function D1(n,t,e){Rt(n,()=>n.bindFramebuffer(n.FRAMEBUFFER,e)),Rt(n,()=>n.framebufferTexture2D(n.FRAMEBUFFER,n.COLOR_ATTACHMENT0,n.TEXTURE_2D,t,0))}function SI(n,t){Rt(n,()=>n.bindFramebuffer(n.FRAMEBUFFER,t)),Rt(n,()=>n.framebufferTexture2D(n.FRAMEBUFFER,n.COLOR_ATTACHMENT0,n.TEXTURE_2D,null,0))}function Ym(n){let t=n.checkFramebufferStatus(n.FRAMEBUFFER);if(t!==n.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+_X(n,t))}function _X(n,t){switch(t){case n.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case n.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case n.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case n.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Cs(n,t,e){let r=Rt(n,()=>t());if(r==null)throw new Error(e);return r}function $I(n,t){let e=n.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+n.TEXTURE0;if(re){let o=`[gl.TEXTURE0, gl.TEXTURE${e}]`;throw new Error(`textureUnit must be in ${o}.`)}}function dl(n,t=2){return G(n.slice(0,n.length-t))}function ml(n){if(n.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[n.length>1?n[n.length-2]:1,n[n.length-1]]}function A1(n){let t=[1,1,1],e=n.length===0||n.length===1&&n[0]===1;return e||(t=[dl(n),...ml(n)]),t}function CX(n,t=!1){let e=ct().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(t&&(e=e*2,n=n.map((o,s)=>s>=n.length-2?k(n[s]):n[s]),n.length===1&&(n=[2,n[0]])),n.length!==2){let o=ln(n);n=o.newShape}let r=G(n);if(n.length<=1&&r<=e)return[1,r];if(n.length===2&&n[0]<=e&&n[1]<=e)return n;if(n.length===3&&n[0]*n[1]<=e&&n[2]<=e)return[n[0]*n[1],n[2]];if(n.length===3&&n[0]<=e&&n[1]*n[2]<=e)return[n[0],n[1]*n[2]];if(n.length===4&&n[0]*n[1]*n[2]<=e&&n[3]<=e)return[n[0]*n[1]*n[2],n[3]];if(n.length===4&&n[0]<=e&&n[1]*n[2]*n[3]<=e)return[n[0],n[1]*n[2]*n[3]];if(t){let o=dl(n),s=2,c=2;return n.length&&([s,c]=ml(n)),r=o*(s/2)*(c/2),Gt(r).map(l=>l*2)}return Gt(r)}function Jm(n){return n%2===0}function Zm(n,t){if(n=n.slice(-2),t=t.slice(-2),lt(n,t))return!0;if(!n.length||!t.length)return!0;if(n[0]===0||n[1]===0||t[0]===0||t[1]===0)return!0;if(n.length!==t.length){let e=n.slice(-1)[0],r=t.slice(-1)[0];if(e===r)return!0;if(Jm(e)&&Jm(r)&&(n[0]===1||t[0]===1))return!0}return n[1]===t[1]&&Jm(n[0])&&Jm(t[0])}let Qm,tg;function SX(n){if(Qm==null){let t=Xo(n);Qm=t.getParameter(t.MAX_TEXTURE_SIZE)}return Qm}function Xst(){Qm=null}function Yst(){tg=null}function $X(n){if(tg==null){let t=Xo(n);tg=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,tg)}function IX(n){if(n===0)return 0;let t,e=Xo(n);return ro(e,"EXT_disjoint_timer_query_webgl2")&&n===2?t=2:ro(e,"EXT_disjoint_timer_query")?t=1:t=0,t}function ro(n,t){let e=n.getExtension(t);return e!=null}function II(n){try{let t=Xo(n);if(t!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function EX(n){if(n===0)return!1;let t=Xo(n);if(n===1){if(!ro(t,"OES_texture_float"))return!1}else if(!ro(t,"EXT_color_buffer_float"))return!1;let e=F1(t);return e}function DX(n){if(n===0)return!1;let t=Xo(n);if(n===1){if(!ro(t,"OES_texture_float"))return!1;if(!ro(t,"WEBGL_color_buffer_float"))return!1}else{if(ro(t,"EXT_color_buffer_float"))return F1(t);let r="EXT_color_buffer_half_float";if(ro(t,r)){let o=t.getExtension(r);return AX(t,o)}return!1}let e=F1(t);return e}function F1(n){let t=I1(n),e=n.createTexture();n.bindTexture(n.TEXTURE_2D,e);let r=1,o=1;n.texImage2D(n.TEXTURE_2D,0,t.internalFormatFloat,r,o,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=n.createFramebuffer();n.bindFramebuffer(n.FRAMEBUFFER,s),n.framebufferTexture2D(n.FRAMEBUFFER,n.COLOR_ATTACHMENT0,n.TEXTURE_2D,e,0);let c=n.checkFramebufferStatus(n.FRAMEBUFFER)===n.FRAMEBUFFER_COMPLETE;return n.bindTexture(n.TEXTURE_2D,null),n.bindFramebuffer(n.FRAMEBUFFER,null),n.deleteTexture(e),n.deleteFramebuffer(s),c}function AX(n,t){let e=I1(n,t),r=n.createTexture();n.bindTexture(n.TEXTURE_2D,r);let o=1,s=1;n.texImage2D(n.TEXTURE_2D,0,e.internalFormatHalfFloat,o,s,0,e.textureFormatFloat,e.textureTypeHalfFloat,null);let c=n.createFramebuffer();n.bindFramebuffer(n.FRAMEBUFFER,c),n.framebufferTexture2D(n.FRAMEBUFFER,n.COLOR_ATTACHMENT0,n.TEXTURE_2D,r,0);let l=n.checkFramebufferStatus(n.FRAMEBUFFER)===n.FRAMEBUFFER_COMPLETE;return n.bindTexture(n.TEXTURE_2D,null),n.bindFramebuffer(n.FRAMEBUFFER,null),n.deleteTexture(r),n.deleteFramebuffer(c),l}function FX(n){if(n!==2)return!1;let t=Xo(n),e=t.fenceSync!=null;return e}function ph(n,t){Array.isArray(n)||(n=[n]),n.forEach(e=>{e!=null&&_(e.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}let qt=ct();qt.registerFlag("HAS_WEBGL",()=>qt.getNumber("WEBGL_VERSION")>0),qt.registerFlag("WEBGL_VERSION",()=>II(2)?2:II(1)?1:0),qt.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1),qt.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>qt.get("WEBGL_VERSION")===2),qt.registerFlag("WEBGL_CPU_FORWARD",()=>!0),qt.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1),qt.registerFlag("WEBGL_PACK",()=>qt.getBool("HAS_WEBGL")),qt.registerFlag("WEBGL_PACK_NORMALIZATION",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_CLIP",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1),qt.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_PACK_REDUCE",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_LAZILY_UNPACK",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_CONV_IM2COL",()=>qt.getBool("WEBGL_PACK")),qt.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>SX(qt.getNumber("WEBGL_VERSION"))),qt.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>$X(qt.getNumber("WEBGL_VERSION"))),qt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let n=qt.getNumber("WEBGL_VERSION");return n===0?0:IX(n)}),qt.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>qt.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!qN()),qt.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>EX(qt.getNumber("WEBGL_VERSION"))),qt.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>qt.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:qt.getBool("WEBGL_RENDER_FLOAT32_CAPABLE")),qt.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>DX(qt.getNumber("WEBGL_VERSION"))),qt.registerFlag("WEBGL_FENCE_API_ENABLED",()=>FX(qt.getNumber("WEBGL_VERSION"))),qt.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>{let n=qt.getBool("WEBGL_RENDER_FLOAT32_ENABLED");return n?4:0}),qt.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,n=>{if(n<0&&n!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${n}.`)});let{simpleAbsImpl:RX,addImpl:PX,ceilImpl:OX,expImpl:LX,expm1Impl:MX,floorImpl:BX,logImpl:zX,maxImpl:WX,multiplyImpl:VX,rsqrtImpl:GX,sliceImpl:UX,subImpl:qX,transposeImpl:R1,uniqueImpl:HX}=TK;class jX{constructor(t,e){this.outputShape=[],this.outputShape=t,this.variableNames=e.map((s,c)=>`T${c}`);let r=[];this.variableNames.forEach(s=>{r.push(`float v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${r.join(` `)} float result = ${o}; setOutput(result); } `}}class KX{constructor(t,e){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.variableNames=e.map((s,c)=>`T${c}`);let r=[];this.variableNames.forEach(s=>{r.push(`vec4 v${s} = get${s}AtOutCoords();`)});let o=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${r.join(` `)} vec4 result = ${o}; setOutput(result); } `}}class XX{constructor(t,e,r){this.variableNames=["A"];let{windowSize:o,batchSize:s,outSize:c}=t;r||this.variableNames.push("bestIndicesA"),this.outputShape=[s,c];let l=e==="max"?">":"<",p=r?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${o}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${o}; i++) { int inIdx = ${p}; float candidate = getA(batch, inIdx); if (candidate ${l} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}}function EI(n,t){return["x","y","z","w","u","v"].slice(0,t).map(e=>`${n}.${e}`)}function Jn(n,t){return t===1?[n]:EI(n,t)}function YX(n,t){if(n===1)return"rc";let e="";for(let r=0;r 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,p="",f=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(n="",t="attribute",e="varying",r="varying",o="texture2D",s="gl_FragColor",c="",l=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,p=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,f=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:n,attribute:t,varyingVs:e,varyingFs:r,texture2D:o,output:s,defineOutput:c,defineSpecialNaN:l,defineSpecialInf:p,defineRound:f}}function _a(n,t,e="index"){let r=Jt(t);return r.map((o,s)=>{let c=`int ${n[s]} = ${e} / ${o}`,l=s===r.length-1?`int ${n[s+1]} = ${e} - ${n[s]} * ${o}`:`index -= ${n[s]} * ${o}`;return`${c}; ${l};`}).join("")}function eg(n){return n.length===1?`${n[0]}`:`vec${n.length}(${n.join(",")})`}function Jst(n,t){if(n.length!==t.length)throw new Error(`Vectors to be dotted must be of the same length -got ${n.length} and ${t.length}`);let e=[],r=Math.floor(n.length/4),o=n.length%4;for(let s=0;s`float(${l})`),c=c.map(l=>`float(${l})`)),e.push(`${eg(s)}, ${eg(c)}`)}return e.map((s,c)=>`dot(${s})`).join("+")}function P1(n){let t=Jt(n).map(e=>e.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}let DI=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `;let{getBroadcastDims:AI}=vv;function JX(n,t,e,r){let o=[];n.forEach(T=>{let N=G(T.shapeInfo.logicalShape);T.shapeInfo.isUniform?o.push(`uniform float ${T.name}${N>1?`[${N}]`:""};`):(o.push(`uniform sampler2D ${T.name};`),o.push(`uniform int offset${T.name};`))});let s=o.join(` `),c=n.map(T=>ZX(T,t,r)).join(` `),l=t.texShape,p=Zn(),f=eY(p),m,y,b=oY(p);t.isPacked?(m=QX(t.logicalShape,l),y=rY(p)):(m=tY(t.logicalShape,l),y=nY(p)),r&&(b+=cY);let v=[b,f,y,s,m,c,e].join(` `);return v}function gl(n){let t=n.shapeInfo.logicalShape;switch(t.length){case 0:return wY(n);case 1:return TY(n);case 2:return NY(n);case 3:return CY(n);case 4:return $Y(n);case 5:return IY(n);case 6:return EY(n);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function FI(n){let t=n.shapeInfo.logicalShape;switch(t.length){case 0:return xY(n);case 1:return vY(n);case 2:return kY(n);case 3:return _Y(n);default:return SY(n)}}function ZX(n,t,e=!1){let r="";e?r+=FI(n):r+=gl(n);let o=n.shapeInfo.logicalShape,s=t.logicalShape;return o.length<=s.length&&(e?r+=DY(n,t):r+=AY(n,t)),r}function QX(n,t){switch(n.length){case 0:return RI();case 1:return lY(n,t);case 2:return yY(n,t);case 3:return pY(n,t);default:return fY(n,t)}}function tY(n,t){switch(n.length){case 0:return RI();case 1:return uY(n,t);case 2:return bY(n,t);case 3:return hY(n,t);case 4:return dY(n,t);case 5:return mY(n,t);case 6:return gY(n,t);default:throw new Error(`${n.length}-D output sampling is not yet supported`)}}function eY(n){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${n.texture2D}(textureSampler, uv).r; } `}function nY(n){return` void setOutput(float val) { ${n.output} = vec4(val, 0, 0, 0); } `}function rY(n){return` void setOutput(vec4 val) { ${n.output} = val; } `}function oY(n){let t=`${n.version} precision highp float; precision highp int; precision highp sampler2D; ${n.varyingFs} vec2 resultUV; ${n.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${n.defineSpecialNaN} ${n.defineSpecialInf} ${n.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${sY} ${iY} ${aY} `;return t}let sY=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,iY=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,aY=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,cY=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function RI(){return` int getOutputCoords() { return 0; } `}function lY(n,t){let e=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return e[0]===1?` int getOutputCoords() { return 2 * int(resultUV.x * ${e[1]}.0); } `:e[1]===1?` int getOutputCoords() { return 2 * int(resultUV.y * ${e[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); return 2 * (resTexRC.x * ${e[1]} + resTexRC.y); } `}function uY(n,t){return t[0]===1?` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function pY(n,t){let e=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(n[2]/2),o=r*Math.ceil(n[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); int index = resTexRC.x * ${e[1]} + resTexRC.y; int b = index / ${o}; index -= b * ${o}; int r = 2 * (index / ${r}); int c = imod(index, ${r}) * 2; return ivec3(b, r, c); } `}function hY(n,t){let e=_a(["r","c","d"],n);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${e} return ivec3(r, c, d); } `}function fY(n,t){let e=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(n[n.length-1]/2),o=r*Math.ceil(n[n.length-2]/2),s=o,c="",l="b, r, c";for(let p=2;p=1?m="coords = 0;":m=l.map(I=>`coords.${y[I+f]} = 0;`).join(` `);let b="";c<2&&s>0?b="coords":b=n.shapeInfo.logicalShape.map((I,P)=>`coords.${y[P+f]}`).join(", ");let v="return outputValue;",T=G(n.shapeInfo.logicalShape),N=T===1,S=G(t.logicalShape),D=S===1;if(s===1&&!N&&!D)v=` return vec4(outputValue.xy, outputValue.xy); `;else if(N&&!D)c===1?v=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:v=` return vec4(outputValue.x); `;else if(l.length){let I=s-2,P=s-1;l.indexOf(I)>-1&&l.indexOf(P)>-1?v="return vec4(outputValue.x);":l.indexOf(I)>-1?v="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":l.indexOf(P)>-1&&(v="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${o}() { ${p} coords = getOutputCoords(); ${m} vec4 outputValue = get${r}(${b}); ${v} } `}function AY(n,t){let e=n.name,r=e.charAt(0).toUpperCase()+e.slice(1),o="get"+r+"AtOutCoords",s=t.texShape,c=n.shapeInfo.texShape,l=n.shapeInfo.logicalShape.length,p=t.logicalShape.length;if(!n.shapeInfo.isUniform&&l===p&&n.shapeInfo.flatOffset==null&<(c,s))return` float ${o}() { return sampleTexture(${e}, resultUV); } `;let f=Oe(p),m=AI(n.shapeInfo.logicalShape,t.logicalShape),y=p-l,b,v=["x","y","z","w","u","v"];l===0?b="":p<2&&m.length>=1?b="coords = 0;":b=m.map(N=>`coords.${v[N+y]} = 0;`).join(` `);let T="";return p<2&&l>0?T="coords":T=n.shapeInfo.logicalShape.map((N,S)=>`coords.${v[S+y]}`).join(", "),` float ${o}() { ${f} coords = getOutputCoords(); ${b} return get${r}(${T}); } `}function Oe(n){if(n<=1)return"int";if(n===2)return"ivec2";if(n===3)return"ivec3";if(n===4)return"ivec4";if(n===5)return"ivec5";if(n===6)return"ivec6";throw Error(`GPU for rank ${n} is not yet supported`)}function bl(n,t){let e=JSON.parse(JSON.stringify(n));return e.shapeInfo.logicalShape=t,e}function xl(n,t){return t.map(e=>n[e]).join(", ")}class FY{constructor(t,e,r,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,_(t.length>2,()=>`Packed arg${r.charAt(0).toUpperCase()+r.slice(1)} supports only inputs with rank above 2.`);let s=t[t.length-1],c=Math.ceil(s/e);this.outputShape=t.slice(0,-1),c>1&&this.outputShape.push(c),o||this.variableNames.push("bestIndicesA");let l=this.outputShape,p=l.length,f=Oe(p),m=Jn("coords",p),y,b;if(c===1){b=p+1;let H=Oe(b);y=` ${H} sourceLocR = ${H}(${m.join()}, 0); ++${m[p-1]}; ${H} sourceLocG = ${H}(${m.join()}, 0); ++${m[p-2]}; ${H} sourceLocA = ${H}(${m.join()}, 0); --${m[p-1]}; ${H} sourceLocB = ${H}(${m.join()}, 0); --${m[p-2]};`}else b=p,y=` ${f} sourceLocR = coords; ++${m[p-1]}; ${f} sourceLocG = coords; ++${m[p-2]}; ${f} sourceLocA = coords; --${m[p-1]}; ${f} sourceLocB = coords; --${m[p-2]};`;let v=["x","y","z","w","u","v"].slice(0,b),T="."+v[b-1],N=v.map(H=>"int "+H),S=Jn("sourceLocR",b-1).concat("inIdx.r"),D=Jn("sourceLocG",b-1).concat("inIdx.g"),I=Jn("sourceLocB",b-1).concat("inIdx.b"),P=Jn("sourceLocA",b-1).concat("inIdx.a"),E=r==="max"?"greaterThan":"lessThan",L=o?"":` inIdx = round(vec4(getBestIndicesAChannel(${S.join()}), getBestIndicesAChannel(${D.join()}), getBestIndicesAChannel(${I.join()}), getBestIndicesAChannel(${P.join()})));`,B=`vec4( getAChannel(${S.join()}), hasNextCol ? getAChannel(${D.join()}) : 0., hasNextRow ? getAChannel(${I.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${P.join()}) : 0.)`,q=o?"":` float getBestIndicesAChannel(${N.join()}) { return getChannel(getBestIndicesA(${v.join()}), vec2(${v.slice(-2).join()})); }`;this.userCode=` float getAChannel(${N.join()}) { return getChannel(getA(${v.join()}), vec2(${v.slice(-2).join()})); } ${q} void main() { ${f} coords = getOutputCoords(); bool hasNextCol = ${m[p-1]} < ${l[p-1]-1}; bool hasNextRow = ${m[p-2]} < ${l[p-2]-1}; ${y} ivec4 srcIdx = ivec4(sourceLocR${T}, sourceLocG${T}, sourceLocB${T}, sourceLocA${T}) * ${e}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${B}; for (int i = 0; i < ${e}; i++) { inIdx = srcIdx; ${L} vec4 candidate = ${B}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${E}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}}class RY{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterHeight,r=t.filterWidth,o=t.strideHeight,s=t.strideWidth,c=t.dilationHeight,l=t.dilationWidth,p=t.effectiveFilterHeight,f=t.effectiveFilterWidth,m=p-1-t.padInfo.top,y=f-1-t.padInfo.left,b=1/(e*r);this.userCode=` const ivec2 pads = ivec2(${m}, ${y}); const float avgMultiplier = float(${b}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${p}; wR += ${c}) { float dyR = float(dyRCorner + wR) / ${o}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${f}; wC+= ${l}) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}}class PY{constructor(t){this.variableNames=["dy"],this.outputShape=t.inShape;let e=t.filterDepth,r=t.filterHeight,o=t.filterWidth,s=t.strideDepth,c=t.strideHeight,l=t.strideWidth,p=t.dilationDepth,f=t.dilationHeight,m=t.dilationWidth,y=t.effectiveFilterDepth,b=t.effectiveFilterHeight,v=t.effectiveFilterWidth,T=y-1-t.padInfo.front,N=b-1-t.padInfo.top,S=v-1-t.padInfo.left,D=1/(e*r*o);this.userCode=` const ivec3 pads = ivec3(${T}, ${N}, ${S}); const float avgMultiplier = float(${D}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${y}; wD += ${p}) { float dyD = float(dyDCorner + wD) / ${s}.0; if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${b}; wR += ${f}) { float dyR = float(dyRCorner + wR) / ${c}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${v}; wC += ${m}) { float dyC = float(dyCCorner + wC) / ${l}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}}let PI=` if (isnan(a)) return a; if (isnan(b)) return b; `,OY=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,LY=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,Zst="return (a - b) * (a - b);",MY="return float(a == b);",BY="return float(a < b);",zY="return float(a <= b);",WY="return float(a > b);",VY="return float(a >= b);",GY="return float(a >= 1.0 && b >= 1.0);",UY="return float(a >= 1.0 || b >= 1.0);",qY=PI+` return max(a, b); `,HY=PI+` return min(a, b); `,jY=`if (b == 0.0) return NAN; return mod(a, b);`,KY="return (b >= 1.0) ? a : a * (b + 1.0);",OI="return (a < 0.) ? b * a : a;";class Hn{constructor(t,e,r){this.variableNames=["A","B"],this.outputShape=le(e,r),this.userCode=` float binaryOperation(float a, float b) { ${t} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}}let ng=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,XY=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,YY=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+ng+` return result; `,LI=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `,JY=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,ZY=` return vec4(equal(a, b)); `,Qst=` return vec4(notEqual(a, b)); `,QY=` return vec4(lessThan(a, b)); `,t7=` return vec4(lessThanEqual(a, b)); `,e7=` return vec4(greaterThan(a, b)); `,n7=` return vec4(greaterThanEqual(a, b)); `,r7=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,o7=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,s7=` vec4 result = vec4(max(a, b)); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+ng+` return result; `,i7=` vec4 result = vec4(min(a, b)); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+ng+` return result; `,a7=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+ng+` return result; `;class Ss{constructor(t,e,r,o=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=le(e,r);let s=this.outputShape.length,c="";if(o)if(s===0||G(this.outputShape)===1)c=` result.y = 0.; result.z = 0.; result.w = 0.; `;else{let l=Oe(s);if(c=` ${l} coords = getOutputCoords(); `,s===1)c+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let p=Jn("coords",s);c+=` bool nextRowOutOfBounds = (${p[s-2]} + 1) >= ${this.outputShape[s-2]}; bool nextColOutOfBounds = (${p[s-1]} + 1) >= ${this.outputShape[s-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${t} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${c} setOutput(result); } `}}class c7{constructor(t){this.variableNames=["A"],this.outputShape=t,this.userCode=` uniform float minVal; uniform float maxVal; void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}getCustomSetupFunc(t,e){return(r,o)=>{this.minLoc==null&&(this.minLoc=r.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=r.getUniformLocationNoThrow(o,"maxVal")),r.gl.uniform1f(this.minLoc,t),r.gl.uniform1f(this.maxLoc,e)}}}class l7{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.userCode=` uniform float minVal; uniform float maxVal; void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}getCustomSetupFunc(t,e){return(r,o)=>{this.minLoc==null&&(this.minLoc=r.getUniformLocationNoThrow(o,"minVal"),this.maxLoc=r.getUniformLocationNoThrow(o,"maxVal")),r.gl.uniform1f(this.minLoc,t),r.gl.uniform1f(this.maxLoc,e)}}}class u7{constructor(t){this.variableNames=["real","imag"],this.outputShape=t,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}}class p7{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,r=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,c=t.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${t.batchSize}; b++) { for (int yR = 0; yR < ${t.outHeight}; yR++) { int xR = wR + yR * ${e} - ${o}; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int yC = 0; yC < ${t.outWidth}; yC++) { int xC = wC + yC * ${r} - ${s}; if (xC < 0 || xC >= ${t.inWidth}) { continue; } if (${c}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}}class h7{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,r=t.filterWidth,o=t.strideHeight,s=t.strideWidth,c=t.dataFormat==="channelsLast",l=e-1-t.padInfo.top,p=r-1-t.padInfo.left,f=c?1:2,m=c?2:3,y=c?3:1;this.userCode=` const ivec2 pads = ivec2(${l}, ${p}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${y}]; ivec2 dyCorner = ivec2(coords[${f}], coords[${m}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${e}; wR++) { float dyR = float(dyRCorner + wR) / ${o}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${e} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; for (int d2 = 0; d2 < ${t.outChannels}; d2++) { if (${c}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}}class f7{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideDepth,r=t.strideHeight,o=t.strideWidth,s=t.padInfo.front,c=t.padInfo.top,l=t.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${t.batchSize}; b++) { for (int yF = 0; yF < ${t.outDepth}; yF++) { int xF = wF + yF * ${e} - ${s}; if (xF < 0 || xF >= ${t.inDepth}) { continue; } for (int yR = 0; yR < ${t.outHeight}; yR++) { int xR = wR + yR * ${r} - ${c}; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int yC = 0; yC < ${t.outWidth}; yC++) { int xC = wC + yC * ${o} - ${l}; if (xC < 0 || xC >= ${t.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}}class d7{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterDepth,r=t.filterHeight,o=t.filterWidth,s=t.strideDepth,c=t.strideHeight,l=t.strideWidth,p=e-1-t.padInfo.front,f=r-1-t.padInfo.top,m=o-1-t.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${p}, ${f}, ${m}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${e}; wF++) { float dyF = float(dyFCorner + wF) / ${s}.0; if (dyF < 0.0 || dyF >= ${t.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${e} - 1 - wF; for (int wR = 0; wR < ${r}; wR++) { float dyR = float(dyRCorner + wR) / ${c}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${r} - 1 - wR; for (int wC = 0; wC < ${o}; wC++) { float dyC = float(dyCCorner + wC) / ${l}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${o} - 1 - wC; for (int d2 = 0; d2 < ${t.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}}class m7{constructor(t){this.variableNames=["x","dy"],this.outputShape=t.filterShape;let e=t.strideHeight,r=t.strideWidth,o=t.padInfo.top,s=t.padInfo.left,c=t.outChannels/t.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${c} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${t.batchSize}; b++) { for (int yR = 0; yR < ${t.outHeight}; yR++) { int xR = wR + yR * ${e} - ${o}; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int yC = 0; yC < ${t.outWidth}; yC++) { int xC = wC + yC * ${r} - ${s}; if (xC < 0 || xC >= ${t.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}}class g7{constructor(t){this.variableNames=["dy","W"],this.outputShape=t.inShape;let e=t.filterHeight,r=t.filterWidth,o=t.strideHeight,s=t.strideWidth,c=e-1-t.padInfo.top,l=r-1-t.padInfo.left,p=t.outChannels/t.inChannels;this.userCode=` const ivec2 pads = ivec2(${c}, ${l}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${e}; wR++) { float dyR = float(dyRCorner + wR) / ${o}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${e} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${p}; dm++) { int d2 = d1 * ${p} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}}class MI{constructor(t,e=!1,r=null,o=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let s=t.padInfo.top,c=t.padInfo.left,l=t.strideHeight,p=t.strideWidth,f=t.dilationHeight,m=t.dilationWidth,y=t.filterHeight,b=t.filterWidth,v=Math.floor(t.inChannels/4)*4,T=t.inChannels%4,N=t.dataFormat==="channelsLast",S=N?1:2,D=N?2:3,I=N?3:1,P="",E="";r&&(o?P=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${r} }`:P=` float activation(float x) { ${r} } `,E="result = activation(result);");let L=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.userCode=` ${P} const ivec2 strides = ivec2(${l}, ${p}); const ivec2 pads = ivec2(${s}, ${c}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${I}]; ivec2 xRCCorner = ivec2(coords[${S}], coords[${D}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${y}; wR++) { int xR = xRCorner + wR * ${f}; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC++) { int xC = xCCorner + wC * ${m}; if (xC < 0 || xC >= ${t.inWidth}) { continue; } for (int d1 = 0; d1 < ${v}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${N}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${T===1}) { if (${N}) { dotProd += getX(batch, xR, xC, ${v}) * getW(wR, wC, ${v}, d2); } else { dotProd += getX(batch, ${v}, xR, xC) * getW(wR, wC, ${v}, d2); } } else if (${T===2}) { vec2 wValues = vec2( getW(wR, wC, ${v}, d2), getW(wR, wC, ${v} + 1, d2) ); if (${N}) { vec2 xValues = vec2( getX(batch, xR, xC, ${v}), getX(batch, xR, xC, ${v} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${v}, xR, xC), getX(batch, ${v} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${T===3}) { vec3 wValues = vec3( getW(wR, wC, ${v}, d2), getW(wR, wC, ${v} + 1, d2), getW(wR, wC, ${v} + 2, d2) ); if (${N}) { vec3 xValues = vec3( getX(batch, xR, xC, ${v}), getX(batch, xR, xC, ${v} + 1), getX(batch, xR, xC, ${v} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${v}, xR, xC), getX(batch, ${v} + 1, xR, xC), getX(batch, ${v} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${L} ${E} setOutput(result); } `}}class y7{constructor(t){this.variableNames=["x","W"],this.outputShape=t.outShape;let e=t.padInfo.front,r=t.padInfo.top,o=t.padInfo.left,s=t.strideDepth,c=t.strideHeight,l=t.strideWidth,p=t.dilationDepth,f=t.dilationHeight,m=t.dilationWidth,y=t.filterDepth,b=t.filterHeight,v=t.filterWidth,T=Math.floor(t.inChannels/4)*4,N=t.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${s}, ${c}, ${l}); const ivec3 pads = ivec3(${e}, ${r}, ${o}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${y}; wF++) { int xF = xFCorner + wF * ${p}; if (xF < 0 || xF >= ${t.inDepth}) { continue; } for (int wR = 0; wR < ${b}; wR++) { int xR = xRCorner + wR * ${f}; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${v}; wC++) { int xC = xCCorner + wC * ${m}; if (xC < 0 || xC >= ${t.inWidth}) { continue; } for (int d1 = 0; d1 < ${T}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${N===1}) { dotProd += getX(batch, xF, xR, xC, ${T}) * getW(wF, wR, wC, ${T}, d2); } else if (${N===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${T}), getX(batch, xF, xR, xC, ${T} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${T}, d2), getW(wF, wR, wC, ${T} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${N===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${T}), getX(batch, xF, xR, xC, ${T} + 1), getX(batch, xF, xR, xC, ${T} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${T}, d2), getW(wF, wR, wC, ${T} + 1, d2), getW(wF, wR, wC, ${T} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}}class BI{constructor(t,e=!1,r=null,o=!1){this.variableNames=["x","W"],this.outputShape=t.outShape;let s=t.inHeight,c=t.inWidth,l=t.padInfo.top,p=t.padInfo.left,f=t.strideHeight,m=t.strideWidth,y=t.dilationHeight,b=t.dilationWidth,v=t.filterHeight,T=t.filterWidth,N=t.outChannels/t.inChannels,S="",D="";r&&(o?S=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${r} }`:S=` float activation(float x) { ${r} } `,D="result = activation(result);");let I=e?"result += getBiasAtOutCoords();":"";e&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),this.userCode=` ${S} const ivec2 strides = ivec2(${f}, ${m}); const ivec2 pads = ivec2(${l}, ${p}); void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${N}; int q = d2 - d1 * ${N}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${v}; wR++) { int xR = xRCorner + wR * ${y}; if (xR < 0 || xR >= ${s}) { continue; } for (int wC = 0; wC < ${T}; wC++) { int xC = xCCorner + wC * ${b}; if (xC < 0 || xC >= ${c}) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${I} ${D} setOutput(result); } `}}class zI{constructor(t,e=!1,r=null,o=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.outShape;let s=t.inHeight,c=t.inWidth,l=t.padInfo.top,p=t.padInfo.left,f=t.strideHeight,m=t.strideWidth,y=t.dilationHeight,b=t.dilationWidth,v=t.filterHeight,T=t.filterWidth,N=T,S="int xR; int xC; int xCOffset;";for(let E=0;E= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${c}) { xTexelR${E}C${B}.zw = vec2(0.); } } else { xTexelR${E}C${B} = vec4(0.); } xCOffset = xC + 1 - 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${c}) { vec4 previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if(xCOffset + 1 >= ${c}) { previous.zw = vec2(0.); } xR${E}C${B} = vec4(previous.zw, xTexelR${E}C${B}.xy); } else { xR${E}C${B} = vec4(0, 0, xTexelR${E}C${B}.xy); } `:S+=` if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${c}) { xTexelR${E}C${B} = getX(batch, xR, xC, d1); } else { xTexelR${E}C${B} = vec4(0.); } xR${E}C${B} = xTexelR${E}C${B}; `,B+1= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B+2} = getX(batch, xR, xCOffset, d1); } `,b>1&&(S+=` xCOffset -= 2; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B} = getX(batch, xR, xCOffset, d1); } else { xTexelR${E}C${B} = vec4(0.); } `),S+=` xR${E}C${B+1} = vec4( xTexelR${E}C${B}.zw, xTexelR${E}C${B+2}.xy); `):S+=` xCOffset = xC + ${q}; if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B+2} = getX(batch, xR, xCOffset, d1); } xR${E}C${B+1} = xTexelR${E}C${B+2}; `}}else B= 0 && xR < ${s}) { `,p%2===1?(S+=` xCOffset = xC + 1 - ${m}; if(xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B} = getX(batch, xR, xCOffset, d1); } else { xTexelR${E}C${B} = vec4(0.); } if(xC + 1 >= 0 && xC + 1 < ${c}) { xTexelR${E}C${B+2} = getX(batch, xR, xC + 1, d1); } else { xTexelR${E}C${B+2} = vec4(0.); } xR${E}C${B} = vec4( xTexelR${E}C${B}.zw, xTexelR${E}C${B+2}.zw); `,B+1= 0 && xCOffset < ${c}) { final = getX(batch, xR, xCOffset, d1); } xR${E}C${B+1} = vec4(xTexelR${E}C${B+2}.xy, final.xy); `)):(S+=` if(xC >= 0 && xC < ${c}) { xTexelR${E}C${B} = getX(batch, xR, xC, d1); } else { xTexelR${E}C${B} = vec4(0.); } xCOffset = xC + ${m}; if(xCOffset >= 0 && xCOffset < ${c}) { xTexelR${E}C${B+2} = getX(batch, xR, xCOffset, d1); } else { xTexelR${E}C${B+2} = vec4(0.); } xR${E}C${B} = vec4( xTexelR${E}C${B}.xy, xTexelR${E}C${B+2}.xy); `,B+11?[`${(l-1)/(y-1)}`,"(y2-y1) * height_ratio",`y1*${T} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${T}`],[P,E,L]=b>1?[`${(p-1)/(b-1)}`,"(x2-x1) * width_ratio",`x1*${N} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${N}`];this.userCode=` const float height_ratio = float(${S}); const float width_ratio = float(${P}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${c}) { return; } float height_scale = ${D}; float width_scale = ${E}; float in_y = ${I}; if( in_y < 0.0 || in_y > ${T} ) { setOutput(float(${s})); return; } float in_x = ${L}; if( in_x < 0.0 || in_x > ${N} ) { setOutput(float(${s})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${v} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}}class WI{constructor(t,e,r){this.variableNames=["x"],this.outputShape=t;let o=t.length,s=e?"0.0":`getX(${VI(o,"coords")})`,c=t[t.length-1],l="",p="";e?(l=r?`end != ${c-1}`:"end != 0",p=r?"end + 1":"end - 1"):(l=r?`end + pow2 < ${c}`:"end >= pow2",p=r?"end + pow2":"end - pow2"),this.userCode=` uniform float index; void main() { ${Oe(o)} coords = getOutputCoords(); int end = ${GI(o,"coords")}; float val = ${s}; int pow2 = int(pow(2.0, index)); if (${l}) { int idx = ${p}; ${GI(o,"coords")} = idx; val += getX(${VI(o,"coords")}); } setOutput(val); } `}getCustomSetupFunc(t){return(e,r)=>{this.index==null&&(this.index=e.getUniformLocation(r,"index")),e.gl.uniform1f(this.index,t)}}}function VI(n,t){if(n===1)return`${t}`;if(n===2)return`${t}.x, ${t}.y`;if(n===3)return`${t}.x, ${t}.y, ${t}.z`;if(n===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${n} is not yet supported`)}function GI(n,t){if(n===1)return`${t}`;if(n===2)return`${t}.y`;if(n===3)return`${t}.z`;if(n===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${n} is not yet supported`)}class x7{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ch.DENSE;let e=uh(t),r=Zn();this.outputShape=t,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${_a(["r","c","d"],t)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); int index = 4 * (resTexRC.x * ${e[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${r.output} = result; } `}}class w7{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ch.DENSE;let e=uh(t),r=Zn();this.outputShape=t,this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${_a(["r","c","d"],t)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]})); int index = 4 * (resTexRC.x * ${e[1]} + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${r.output} = result; } `}}class v7{constructor(t,e,r){this.variableNames=["x"],this.outputShape=[],this.outputShape=t,this.blockSize=e,this.dataFormat=r,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${e}; int offset_h = imod(h, ${e}); int in_w = w / ${e}; int offset_w = imod(w, ${e}); int offset_d = (offset_h * ${e} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}}class T7{constructor(t){this.variableNames=["X"],this.outputShape=[t,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}}class k7{constructor(t){this.variableNames=["A"],this.outTexUsage=Br.DOWNLOAD;let e=Zn();this.outputShape=t,this.userCode=` ${DI} void main() { float x = getAAtOutCoords(); ${e.output} = encode_float(x); } `}}class N7{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Br.DOWNLOAD;let e=Zn();this.outputShape=t,this.userCode=` ${DI} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${e.output} = encode_float(x); } `}}class _7{constructor(t,e,r=!1){this.variableNames=["A"];let o=Zn(),[s,c]=e;this.outputShape=t;let l="result";r&&(l="floor(result * 255. + 0.5)"),this.userCode=` ${P1(t)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / ${c}; int c = imod(flatIndex, ${c}); vec2 uv = (vec2(c, r) + halfCR) / vec2(${c}.0, ${s}.0); vec4 values = ${o.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${o.output} = vec4(${l}, 0., 0., 0.); } `}}class C7{constructor(t,e,r=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let o=Zn(),[s,c]=e;this.outputShape=t;let l="",p="result";r&&(p="floor(result * 255. + 0.5)");for(let f=0;f<=1;f++)for(let m=0;m<=1;m++){let y=f*2+m;l+=` localCoords = coords; if(localCoords[2] + ${m} < ${t[2]}) { localCoords[2] += ${m}; if(localCoords[1] + ${f} < ${t[1]}) { localCoords[1] += ${f}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); r = flatIndex / ${c}; c = imod(flatIndex, ${c}); uv = (vec2(c, r) + halfCR) / vec2(${c}.0, ${s}.0); values = ${o.texture2D}(A, uv); if(offset == 0) { result[${y}] = values[0]; } else if(offset == 1) { result[${y}] = values[1]; } else if(offset == 2) { result[${y}] = values[2]; } else { result[${y}] = values[3]; } } } `}this.userCode=` ${P1(t)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${l} ${o.output} = ${p}; } `}}class S7{constructor(t,e){this.outputShape=[],this.variableNames=["x"],this.outputShape=t,this.userCode=` uniform float value; void main() { // Input can be obtained from uniform value. setOutput(value); } `}getCustomSetupFunc(t){return(e,r)=>{this.valueLoc==null&&(this.valueLoc=e.getUniformLocationNoThrow(r,"value")),e.gl.uniform1f(this.valueLoc,t)}}}class $7{constructor(t,e,r){this.variableNames=["A","indices"];let o=t.slice();o[r]=e,this.outputShape=o,this.rank=o.length;let s=Oe(this.rank),c=I7(t,r);this.userCode=` void main() { ${s} resRC = getOutputCoords(); setOutput(getA(${c})); } `}}function I7(n,t){let e=n.length;if(e>4)throw Error(`Gather for rank ${e} is not yet supported`);if(e===1)return"int(getIndices(resRC))";let r=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let s=0;s1?"strides[j]":"strides";this.userCode=` ${o} strides = ${o}(${this.strides}); void main() { ${s} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${c}; } setOutput(getX(flattenIndex, coords[1])); } `}}function D7(n){let t=Zn(),e=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return uX(n,e)}function A7(n){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return gX(n,t)}function F7(n){let t=new Uint16Array([0,1,2,2,1,3]);return yX(n,t)}function hh(n,t,e,r,o,s){xX(t,e);let c=bX(n),l=n.TEXTURE_2D;return Rt(n,()=>n.bindTexture(l,c)),Rt(n,()=>n.texParameteri(l,n.TEXTURE_WRAP_S,n.CLAMP_TO_EDGE)),Rt(n,()=>n.texParameteri(l,n.TEXTURE_WRAP_T,n.CLAMP_TO_EDGE)),Rt(n,()=>n.texParameteri(l,n.TEXTURE_MIN_FILTER,n.NEAREST)),Rt(n,()=>n.texParameteri(l,n.TEXTURE_MAG_FILTER,n.NEAREST)),Rt(n,()=>n.texImage2D(l,0,r,t,e,0,o,s,null)),Rt(n,()=>n.bindTexture(n.TEXTURE_2D,null)),c}function UI(n){return n.internalFormatFloat}function R7(n,t,e,r){let[o,s]=lh(t,e);return hh(n,o,s,UI(r),r.textureFormatFloat,n.FLOAT)}function qI(n){return n.internalFormatHalfFloat}function P7(n,t,e,r){let[o,s]=lh(t,e);return hh(n,o,s,qI(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function HI(n){return n.downloadTextureFormat}function O7(n,t,e,r){let[o,s]=lh(t,e);return hh(n,o,s,HI(r),n.RGBA,n.UNSIGNED_BYTE)}function jI(n){return n.internalFormatPackedFloat}function L7(n,t,e,r){let[o,s]=fl(t,e);return hh(n,o,s,jI(r),n.RGBA,n.FLOAT)}function KI(n){return n.internalFormatPackedHalfFloat}function M7(n,t,e,r){let[o,s]=fl(t,e);return hh(n,o,s,KI(r),n.RGBA,r.textureTypeHalfFloat)}function B7(n,t,e){let r=0,o=3*4,s=3*4+2*4;Rt(n,()=>n.bindBuffer(n.ARRAY_BUFFER,e));let c=CI(n,t,"clipSpacePos",e,3,s,r);return c&&CI(n,t,"uv",e,2,s,o)}function z7(n,t,e,r,o,s){Rt(n,()=>n.bindTexture(n.TEXTURE_2D,t));let c,l,p;o instanceof Uint8Array?(c=new Uint8Array(e*r*4),l=n.UNSIGNED_BYTE,p=n.RGBA):(c=new Float32Array(e*r*4),l=n.FLOAT,p=s.internalFormatPackedFloat),c.set(o),Rt(n,()=>n.texImage2D(n.TEXTURE_2D,0,p,e,r,0,n.RGBA,l,c)),Rt(n,()=>n.bindTexture(n.TEXTURE_2D,null))}function W7(n,t,e){Rt(n,()=>n.bindTexture(n.TEXTURE_2D,t)),e.data instanceof Uint8Array?Rt(n,()=>n.texImage2D(n.TEXTURE_2D,0,n.RGBA,e.width,e.height,0,n.RGBA,n.UNSIGNED_BYTE,e.data)):Rt(n,()=>n.texImage2D(n.TEXTURE_2D,0,n.RGBA,n.RGBA,n.UNSIGNED_BYTE,e)),Rt(n,()=>n.bindTexture(n.TEXTURE_2D,null))}function V7(n,t,e,r){let o=n.createBuffer();Rt(n,()=>n.bindBuffer(n.PIXEL_PACK_BUFFER,o));let s=4,c=4,l=s*c*t*e;return Rt(n,()=>n.bufferData(n.PIXEL_PACK_BUFFER,l,n.STREAM_READ)),Rt(n,()=>n.readPixels(0,0,e,t,n.RGBA,n.FLOAT,0)),Rt(n,()=>n.bindBuffer(n.PIXEL_PACK_BUFFER,null)),o}function G7(n,t,e){let r=n,o=new Float32Array(e);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,o),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),o}function U7(n,t,e,r){let[o,s]=lh(t,e),c=4,l=new Uint8Array(rX(t*e,c));return Rt(n,()=>n.readPixels(0,0,o,s,r.downloadTextureFormat,n.UNSIGNED_BYTE,l)),new Float32Array(l.buffer)}function q7(n,t,e,r,o,s,c,l){let p=n,f=new Float32Array(oX(s,c));return p.bindBuffer(p.PIXEL_PACK_BUFFER,t),p.getBufferSubData(p.PIXEL_PACK_BUFFER,0,f),p.bindBuffer(p.PIXEL_PACK_BUFFER,null),f}function H7(n,t,e){let r=new Float32Array(t*e*4);return Rt(n,()=>n.readPixels(0,0,e,t,n.RGBA,n.FLOAT,r)),r}class j7{constructor(t){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let e=ct().getNumber("WEBGL_VERSION");t!=null?(this.gl=t,tX(e,t)):this.gl=Xo(e);let r="WEBGL_color_buffer_float",o="EXT_color_buffer_half_float";if(ct().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",c="OES_texture_half_float";if(this.textureFloatExtension=Xm(this.gl,s),ro(this.gl,c))this.textureHalfFloatExtension=Xm(this.gl,c);else if(ct().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(r),ro(this.gl,o))this.colorBufferHalfFloatExtension=Xm(this.gl,o);else if(ct().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(r="EXT_color_buffer_float",ro(this.gl,r))this.colorBufferFloatExtension=this.gl.getExtension(r);else if(ro(this.gl,o))this.colorBufferHalfFloatExtension=this.gl.getExtension(o);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=A7(this.gl),this.indexBuffer=F7(this.gl),this.framebuffer=wX(this.gl),this.textureConfig=I1(this.gl,this.textureHalfFloatExtension)}get debug(){return ct().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let t=this.gl;Rt(t,()=>t.finish()),Rt(t,()=>t.bindFramebuffer(t.FRAMEBUFFER,null)),Rt(t,()=>t.deleteFramebuffer(this.framebuffer)),Rt(t,()=>t.bindBuffer(t.ARRAY_BUFFER,null)),Rt(t,()=>t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null)),Rt(t,()=>t.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(t,e){return this.throwIfDisposed(),R7(this.gl,t,e,this.textureConfig)}createFloat16MatrixTexture(t,e){return this.throwIfDisposed(),P7(this.gl,t,e,this.textureConfig)}createUnsignedBytesMatrixTexture(t,e){return this.throwIfDisposed(),O7(this.gl,t,e,this.textureConfig)}uploadPixelDataToTexture(t,e){this.throwIfDisposed(),W7(this.gl,t,e)}uploadDenseMatrixToTexture(t,e,r,o){this.throwIfDisposed(),z7(this.gl,t,e,r,o,this.textureConfig)}createFloat16PackedMatrixTexture(t,e){return this.throwIfDisposed(),M7(this.gl,t,e,this.textureConfig)}createPackedMatrixTexture(t,e){return this.throwIfDisposed(),L7(this.gl,t,e,this.textureConfig)}deleteMatrixTexture(t){this.throwIfDisposed(),this.outputTexture===t&&(SI(this.gl,this.framebuffer),this.outputTexture=null),Rt(this.gl,()=>this.gl.deleteTexture(t))}downloadByteEncodedFloatMatrixFromOutputTexture(t,e,r){return this.downloadMatrixDriver(t,()=>U7(this.gl,e,r,this.textureConfig))}downloadPackedMatrixFromBuffer(t,e,r,o,s,c){return q7(this.gl,t,e,r,o,s,c,this.textureConfig)}downloadFloat32MatrixFromBuffer(t,e){return G7(this.gl,t,e)}createBufferFromTexture(t,e,r){this.bindTextureToFrameBuffer(t);let o=V7(this.gl,e,r,this.textureConfig);return this.unbindTextureToFrameBuffer(),o}createAndWaitForFence(){let t=this.createFence(this.gl);return this.pollFence(t)}createFence(t){let e,r;if(ct().getBool("WEBGL_FENCE_API_ENABLED")){let o=t,s=o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE,0);t.flush(),r=()=>{let c=o.clientWaitSync(s,0,0);return c===o.ALREADY_SIGNALED||c===o.CONDITION_SATISFIED},e=s}else ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(e=this.beginQuery(),this.endQuery(),r=()=>this.isQueryAvailable(e,ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):r=()=>!0;return{query:e,isFencePassed:r}}downloadMatrixFromPackedTexture(t,e,r){return this.downloadMatrixDriver(t,()=>H7(this.gl,e,r))}createProgram(t){this.throwIfDisposed();let e=this.gl,r=pX(e,t),o=D7(e),s=dX(e);return Rt(e,()=>e.attachShader(s,o)),Rt(e,()=>e.attachShader(s,r)),mX(e,s),this.debug&&E1(e,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=B7(e,this.program,this.vertexBuffer)),s}deleteProgram(t){this.throwIfDisposed(),t===this.program&&(this.program=null),t!=null&&Rt(this.gl,()=>this.gl.deleteProgram(t))}setProgram(t){this.throwIfDisposed(),this.program=t,this.program!=null&&this.debug&&E1(this.gl,this.program),Rt(this.gl,()=>this.gl.useProgram(t))}getUniformLocation(t,e,r=!0){return this.throwIfDisposed(),r?TX(this.gl,t,e):kX(this.gl,t,e)}getAttributeLocation(t,e){return this.throwIfDisposed(),Rt(this.gl,()=>this.gl.getAttribLocation(t,e))}getUniformLocationNoThrow(t,e){return this.throwIfDisposed(),this.gl.getUniformLocation(t,e)}setInputMatrixTexture(t,e,r){this.throwIfDisposed(),this.throwIfNoProgram(),NX(this.gl,t,e,r)}setOutputMatrixTexture(t,e,r){this.setOutputMatrixTextureDriver(t,r,e)}setOutputPackedMatrixTexture(t,e,r){this.throwIfDisposed();let[o,s]=fl(e,r);this.setOutputMatrixTextureDriver(t,o,s)}setOutputMatrixWriteRegion(t,e,r,o){this.setOutputMatrixWriteRegionDriver(r,t,o,e)}setOutputPackedMatrixWriteRegion(t,e,r,o){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&E1(this.gl,this.program),Ym(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let t=this.gl;this.debug&&this.debugValidate(),Rt(t,()=>t.drawElements(t.TRIANGLES,6,t.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Rt(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Xm(this.gl,ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let r=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=r.createQuery();return r.beginQuery(o.TIME_ELAPSED_EXT,s),s}let t=this.getQueryTimerExtensionWebGL1(),e=t.createQueryEXT();return t.beginQueryEXT(t.TIME_ELAPSED_EXT,e),e}endQuery(){if(ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let e=this.gl,r=this.getQueryTimerExtensionWebGL2();e.endQuery(r.TIME_ELAPSED_EXT);return}let t=this.getQueryTimerExtensionWebGL1();t.endQueryEXT(t.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(t){return await _e(()=>this.disposed||this.isQueryAvailable(t,ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(t,ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(t,e){if(e===0)return null;if(e===2){let r=this.gl,o=r.getQueryParameter(t,r.QUERY_RESULT);return o/1e6}else{let r=this.getQueryTimerExtensionWebGL1(),o=r.getQueryObjectEXT(t,r.QUERY_RESULT_EXT);return o/1e6}}isQueryAvailable(t,e){if(e===0)return!0;if(e===2){let r=this.gl,o=this.getQueryTimerExtensionWebGL2(),s=r.getQueryParameter(t,r.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let r=this.getQueryTimerExtensionWebGL1(),o=r.getQueryObjectEXT(t,r.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),o&&!this.disjoint}}pollFence(t){return new Promise(e=>{this.addItemToPoll(()=>t.isFencePassed(),()=>e())})}pollItems(){let t=K7(this.itemsToPoll.map(e=>e.isDoneFn));for(let e=0;e<=t;++e){let{resolveFn:r}=this.itemsToPoll[e];r()}this.itemsToPoll=this.itemsToPoll.slice(t+1)}addItemToPoll(t,e){if(this.itemsToPoll.push({isDoneFn:t,resolveFn:e}),this.itemsToPoll.length>1)return;_e(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(t){this.throwIfDisposed(),D1(this.gl,t,this.framebuffer),this.debug&&Ym(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(D1(this.gl,this.outputTexture,this.framebuffer),this.debug&&Ym(this.gl)):SI(this.gl,this.framebuffer)}downloadMatrixDriver(t,e){this.bindTextureToFrameBuffer(t);let r=e();return this.unbindTextureToFrameBuffer(),r}setOutputMatrixTextureDriver(t,e,r){this.throwIfDisposed();let o=this.gl;D1(o,t,this.framebuffer),this.debug&&Ym(o),this.outputTexture=t,Rt(o,()=>o.viewport(0,0,e,r)),Rt(o,()=>o.scissor(0,0,e,r))}setOutputMatrixWriteRegionDriver(t,e,r,o){this.throwIfDisposed(),Rt(this.gl,()=>this.gl.scissor(t,e,r,o))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}}function K7(n){let t=0;for(;t{let N={logicalShape:v.shape,texShape:v.isUniform?null:v.texData.texShape,isUniform:v.isUniform,isPacked:v.isUniform?!1:v.texData.isPacked,flatOffset:null};return v.texData!=null&&v.texData.slice!=null&&v.texData.slice.flatOffset>0&&(N.flatOffset=v.texData.slice.flatOffset),{name:t.variableNames[T],shapeInfo:N}}),c=s.map(v=>v.shapeInfo),l={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},p=JX(s,l,o,t.packedInputs),f=n.createProgram(p),m=null,y=n.getUniformLocation(f,"NAN",!1);ct().getNumber("WEBGL_VERSION")===1&&(m=n.getUniformLocation(f,"INFINITY",!1));let b={};for(let v=0;v{let o=e.logicalShape,s=t[r],c=s.shape;if(!lt(o,c))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${o} and ${c} must match`);if(e.isUniform&&s.isUniform)return;let l=e.texShape,p=s.isUniform?null:s.texData.texShape;if(!lt(l,p))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${l} and ${p} must match`)})}function Y7(n,t,e,r,o){XI(t.inShapeInfos,e),XI([t.outShapeInfo],[r]);let s=r.texData.texture,c=r.texData.texShape;r.texData.isPacked?n.setOutputPackedMatrixTexture(s,c[0],c[1]):n.setOutputMatrixTexture(s,c[0],c[1]),n.setProgram(t.webGLProgram),ct().getNumber("WEBGL_VERSION")===1&&(t.infLoc!==null&&n.gl.uniform1f(t.infLoc,Infinity)),t.nanLoc!==null&&n.gl.uniform1f(t.nanLoc,NaN),e.forEach((l,p)=>{let f=t.program.variableNames[p],m=t.uniformLocations[f],y=t.uniformLocations[`offset${f}`];if(m==null)return;if(l.isUniform){if(G(l.shape)<2)n.gl.uniform1f(m,l.uniformValues[0]);else{let b=l.uniformValues;b instanceof Float32Array||(b=new Float32Array(b)),n.gl.uniform1fv(m,b)}return}l.texData.slice!=null&&y!=null&&n.gl.uniform1i(y,l.texData.slice.flatOffset),n.setInputMatrixTexture(l.texData.texture,m,p)}),o!=null&&o(n,t.webGLProgram),n.executeProgram()}function J7(n,t,e){let r="";t.concat(e).forEach(c=>{let l=c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0,p=c.isUniform?"uniform":c.texData.texShape;r+=`${c.shape}_${p}_${l}`});let o=n.userCode,s=n.constructor.name;return s+="_"+r+"_"+o,s}class Z7{constructor(t,e,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t;let{filterWidth:o,inChannels:s,strideWidth:c,strideHeight:l,padInfo:p,outWidth:f,dilationWidth:m,dilationHeight:y,dataFormat:b}=r,{left:v,top:T}=p,N=s*o,S=Zn(),D=b==="channelsLast",I=D?0:1,P=D?1:2,E="";for(let L=0;L<=1;L++)for(let B=0;B<=1;B++)E+=` blockIndex = rc.y + ${B}; pos = rc.x + ${L}; if(blockIndex < ${t[1]} && pos < ${t[0]}) { offsetY = int(blockIndex / (${f})) * ${l} - ${T}; d0 = offsetY + ${y} * (pos / ${N}); if(d0 < ${e[I]} && d0 >= 0) { offsetX = int(mod(float(blockIndex), ${f}.) * ${c}. - ${v}.); d1 = offsetX + ${m} * (int(mod(float(pos), ${N}.) / ${s}.)); if(d1 < ${e[P]} && d1 >= 0) { ch = int(mod(float(pos), ${s}.)); if (${D}) { innerDims = vec2(d1, ch); result[${L*2+B}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${L*2+B}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${E} ${S.output} = result; } `}}class Q7{constructor(t,e,r,o,s){this.variableNames=["x"],this.outputShape=[];let c=e,l=t[3]-1;this.outputShape=t;let p,f=`float(${r}) + float(${o}) * sum`;s===.5?p=`inversesqrt(${f})`:s===1?p=`1.0/(${f})`:p=`exp(log(${f}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${c}; j <= ${c}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${l}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${p}; setOutput(val); } `}}class tJ{constructor(t,e,r,o,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=t,this.depth=t[3],this.depthRadius=e,this.bias=r,this.alpha=o,this.beta=s,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${e}))); int depthEnd = int(min(float(${this.depth}), float(d + ${e} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${o}) * norm + float(${r}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${o}) * float(${s}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${s}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}}class eJ{constructor(t,e,r,o,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let c=e,l=t[3]-1;this.outputShape=t;let p,f=`float(${r}) + float(${o}) * sum`;s===.5?p=`inversesqrt(${f})`:s===1?p=`1.0/(${f})`:p=`exp(log(${f}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${c}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${c}; j <= ${c}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${l})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${p}; setOutput(result); } `}}class nJ{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideHeight,r=t.strideWidth,o=t.dilationHeight,s=t.effectiveFilterHeight,c=t.effectiveFilterWidth,l=s-1-t.padInfo.top,p=c-1-t.padInfo.left,f=s*c-1;this.userCode=` const ivec2 pads = ivec2(${l}, ${p}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${s}; wR += ${o}) { float dyR = float(dyRCorner + wR) / ${e}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC++) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${f} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${c} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}}class rJ{constructor(t){this.variableNames=["dy","maxPos"],this.outputShape=t.inShape;let e=t.strideDepth,r=t.strideHeight,o=t.strideWidth,s=t.dilationDepth,c=t.dilationHeight,l=t.dilationWidth,p=t.effectiveFilterDepth,f=t.effectiveFilterHeight,m=t.effectiveFilterWidth,y=p-1-t.padInfo.front,b=f-1-t.padInfo.top,v=m-1-t.padInfo.left,T=p*f*m-1;this.userCode=` const ivec3 pads = ivec3(${y}, ${b}, ${v}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${p}; wD += ${s}) { float dyD = float(dyDCorner + wD) / ${e}.0; if (dyD < 0.0 || dyD >= ${t.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${f}; wR += ${c}) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${t.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${m}; wC += ${l}) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${t.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${T} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${f} * ${m} + wR * ${m} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}}class O1{constructor(t,e,r,o=!1,s=!1,c=!1,l=null,p=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=r;let f=o?t[1]:t[2],m=Math.ceil(f/2),y=o?"i * 2, rc.y":"rc.y, i * 2",b=s?"rc.z, i * 2":"i * 2, rc.z",v=o?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],T=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],N="",S="";l&&(p?N=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${l} }`:N=`vec4 activation(vec4 x) { ${l} }`,S="result = activation(result);");let D=c?"result += getBiasAtOutCoords();":"";c&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights");let I="rc.x",P="rc.x";t[0]{this.seedLoc==null&&(this.seedLoc=e.getUniformLocation(r,"seed")),e.gl.uniform1f(this.seedLoc,t)}}}class sJ{constructor(t,e,r,o){this.variableNames=["indices"],this.outputShape=[t,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${o}), float(${r}), float(index == coords.y))); } `}}class iJ{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=t;let e=t.length;if(e===0)this.userCode=` void main() { setOutput(vec4(getA(), 0., 0., 0.)); } `;else{let r=Jn("rc",e),o=Oe(e),s=cJ(e,t,r),c=lJ(e,t[t.length-1],t[t.length-2],r),l=uJ(t,r);this.userCode=` void main() { ${o} rc = getOutputCoords(); if(${s}) { setOutput(vec4(0)); } else { ${c} setOutput(vec4(${l})); } } `}}}function aJ(n,t){let e=[];for(let r=0;r<=1;r++)for(let o=0;o<=1;o++){let s=`${r===0?"r":"rp1"}, ${o===0?"c":"cp1"}`;for(let c=2;c ${t[0]}`;let r="";for(let o=n-2;o= ${t[o]}`,o= ${t}; bool rEdge = rp1 >= ${e}; `}function uJ(n,t){let e=n.length,r=aJ(e,t);return e===1?`getA(rc), rc + 1 >= ${n[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), rEdge || cEdge ? 0. : getA(${r[3]})`}class pJ{constructor(t,e,r){this.variableNames=["x"],this.outputShape=e.map((f,m)=>f[0]+t[m]+f[1]);let o=t.length,s=Oe(o),c=e.map(f=>f[0]).join(","),l=e.map((f,m)=>f[0]+t[m]).join(","),p=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o);if(o===1){this.userCode=` int start = ${c}; int end = ${l}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(float(${r})); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${s} start = ${s}(${c}); ${s} end = ${s}(${l}); void main() { ${s} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(float(${r})); } else { ${s} coords = outC - start; setOutput(getX(${p})); } } `}}class hJ{constructor(t,e,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((N,S)=>N[0]+t[S]+N[1]);let o=t.length,s=Oe(o),c=e.map(N=>N[0]).join(","),l=e.map((N,S)=>N[0]+t[S]).join(","),p=Jn("rc",o),f=Jn("source",o),m=`${p[o-1]} < ${this.outputShape[o-1]}`,y=o===1?"source":`vec2(${f.slice(-2).join()})`,b=[`${s} rc = outputLoc;`,`${p[o-1]} += 1; if(${m}) { `,o===1?"":`} rc = outputLoc; ${p[o-2]} += 1; if(${p[o-2]} < ${this.outputShape[o-2]}) {`,o===1?"":` ${p[o-1]} += 1; if(${m}) {`],v=o===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",T="";for(let N=0,S=o===1?2:4;N= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${b}; wC += ${m}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${t.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${H} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${o?s?S:D:`wR * ${b} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let P="max",E=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(E="avgValue / count");let L=Math.floor(c/4)*4,B=c%4,q=` if (${N}) { avgValue += dot(values, ones); } else { minMaxValue = ${P}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${l}, ${p}); const ivec2 pads = ivec2(${v}, ${T}); const float initializationValue = ${I}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${t.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${I}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${y}; wR += ${f}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${L}; wC += 4) { int xC = xCCorner + wC * ${m}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${m}, d), getValue(batch, xR, xC + 2 * ${m}, d), getValue(batch, xR, xC + 3 * ${m}, d) ); ${q} } int xC = xCCorner + ${L}; if (${B===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${q} } else if (${B===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${m}, d), initializationValue, initializationValue ); ${q} } else if (${B===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${m}, d), getValue(batch, xR, xC + 2 * ${m}, d), initializationValue ); ${q} } } setOutput(${E}); } `}}class L1{constructor(t,e,r,o=!1,s=!1){if(this.variableNames=["x"],e==="avg"&&r)throw new Error("Cannot compute positions for average pool.");let c=t.filterWidth,l=t.strideDepth,p=t.strideHeight,f=t.strideWidth,m=t.dilationDepth,y=t.dilationHeight,b=t.dilationWidth,v=t.effectiveFilterDepth,T=t.effectiveFilterHeight,N=t.effectiveFilterWidth,S=t.padInfo.front,D=t.padInfo.top,I=t.padInfo.left;this.outputShape=t.outShape;let P=e==="avg",E="0.0";if(P||(E="-1.0 / 1e-20"),r){let J=">=";this.userCode=` const ivec3 strides = ivec3(${l}, ${p}, ${f}); const ivec3 pads = ivec3(${S}, ${D}, ${I}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${v}; wD += ${m}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${t.inDepth}) { continue; } for (int wR = 0; wR < ${T}; wR += ${y}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${N}; wC += ${b}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${t.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${J} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${o?s?`(((batch * ${t.inDepth} + xD) * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`((xD * ${t.inHeight} + xR) * ${t.inWidth} + xC) * ${t.inChannels} + ch`:`wD * ${T} * ${N} + wR * ${N} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let L="max",B=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="avg"&&(B="avgValue / count");let q=Math.floor(c/4)*4,H=c%4,Z=` if (${P}) { avgValue += dot(values, ones); } else { minMaxValue = ${L}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${l}, ${p}, ${f}); const ivec3 pads = ivec3(${S}, ${D}, ${I}); const float initializationValue = ${E}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${t.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${E}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${v}; wD += ${m}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${t.inDepth}) { continue; } for (int wR = 0; wR < ${T}; wR += ${y}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${t.inHeight}) { continue; } for (int wC = 0; wC < ${q}; wC += 4) { int xC = xCCorner + wC * ${b}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${b}, ch), getValue(batch, xD, xR, xC + 2 * ${b}, ch), getValue(batch, xD, xR, xC + 3 * ${b}, ch) ); ${Z} } int xC = xCCorner + ${q}; if (${H===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${Z} } else if (${H===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${b}, ch), initializationValue, initializationValue ); ${Z} } else if (${H===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${b}, ch), getValue(batch, xD, xR, xC + 2 * ${b}, ch), initializationValue ); ${Z} } } setOutput(${B}); } } `}}class YI{constructor(t,e){this.variableNames=["x"];let{windowSize:r,batchSize:o,inSize:s,outSize:c}=t;this.outputShape=[o,c];let l="0.0",p="";e==="prod"?l="1.0":e==="min"?(l="1.0 / 1e-20",p="min"):e==="max"&&(l="-1.0 / 1e-20",p="max");let f=`${e}(${e}(${e}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;e==="sum"?f="sumValue":e==="prod"?f="prodValue":e==="all"?f="allValue":e==="any"&&(f="anyValue");let m=Math.floor(r/4)*4,y=r%4,b=` if (${e==="sum"}) { sumValue += dot(values, ones); } else if (${e==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${p}(values, minMaxValue); } `,v="vec4";e==="all"?(l="1.0",b=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,v="bvec4"):e==="any"&&(l="0.0",b=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,v="bvec4");let T="";s%r>0&&(T=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${l}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${T} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; vec4 minMaxValue = vec4(${l}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${m}; i += 4) { int inIdx = inOffset + i; ${v} values = ${v}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${b} } int inIdx = inOffset + ${m}; if (${y===1}) { ${v} values = ${v}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${b} } else if (${y===2}) { ${v} values = ${v}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${b} } else if (${y===3}) { ${v} values = ${v}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${b} } setOutput(${f}); } `}}class JI{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t;let r="";for(let o=0;o<4;o++){let s="thisRC = rc;";o%2===1&&(s+="thisRC.z += 1;"),o>1&&(s+="thisRC.y += 1;"),r+=` ${s} ${o>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${o}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${o>0?"}":""} `}this.userCode=` ${fJ(e)} ${P1(t)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${t[1]}; int cols = ${t[2]}; ${r} setOutput(result); } `}}function fJ(n){let t=_a(["r","c","d"],n);return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${t} return ivec3(r, c, d); } `}class dJ{constructor(t,e,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e.shape;let[,o,s]=e.shape,[,c,l]=t.shape,p=[r&&c>1?o-1:o,r&&l>1?s-1:s],f=[r&&c>1?c-1:c,r&&l>1?l-1:l],m=p[0]/f[0],y=p[1]/f[1],b=1/m,v=1/y,T=Math.ceil(b)*2+2,N=Math.ceil(v)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${m}); const float widthScale = float(${y}); const float invHeightScale = float(${b}); const float invWidthScale = float(${v}); const int winHeight = int(${T}); const int winWidth = int(${N}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${c}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${l}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${o-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}}class mJ{constructor(t,e,r,o){this.variableNames=["A"],this.outputShape=[];let[s,c,l,p]=t;this.outputShape=[s,e,r,p];let f=[o&&e>1?c-1:c,o&&r>1?l-1:l],m=[o&&e>1?e-1:e,o&&r>1?r-1:r];this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${f[0]/m[0]}, ${f[1]/m[1]}); const vec2 inputShapeRC = vec2(${c}.0, ${l}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(sourceFracIndexRC); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}}class gJ{constructor(t,e,r,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,c,l,p]=t;this.outputShape=[s,e,r,p];let f=[o&&e>1?c-1:c,o&&r>1?l-1:l],m=[o&&e>1?e-1:e,o&&r>1?r-1:r];this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${f[0]/m[0]}, ${f[1]/m[1]}, ${f[1]/m[1]}); const vec3 inputShapeRC = vec3(${c}.0, ${l}.0, ${l}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(sourceFracIndexRC); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${p-1}; bool hasNextRow = coords.z < ${r-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}}class yJ{constructor(t,e,r){this.variableNames=["dy"],this.outputShape=[],this.outputShape=e.shape;let[,o,s]=e.shape,[,c,l]=t.shape,p=[r&&c>1?o-1:o,r&&l>1?s-1:s],f=[r&&c>1?c-1:c,r&&l>1?l-1:l],m=p[0]/f[0],y=p[1]/f[1],b=1/m,v=1/y,T=Math.ceil(b)*2+2,N=Math.ceil(v)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${m}); const float widthScale = float(${y}); const float invHeightScale = float(${b}); const float invWidthScale = float(${v}); const int winHeight = int(${T}); const int winWidth = int(${N}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${c}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${l}) { continue; } float sourceFracRow = float(${p[0]}) * (float(dyR) / float(${f[0]})); float sourceFracCol = float(${p[1]}) * (float(dyC) / float(${f[1]})); int sourceNearestRow = int(min( float(int(${o}) - 1), ${r} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${s}) - 1), ${r} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}}class bJ{constructor(t,e,r,o){this.variableNames=["A"],this.outputShape=[];let[s,c,l,p]=t;this.outputShape=[s,e,r,p];let f=[o&&e>1?c-1:c,o&&r>1?l-1:l],m=[o&&e>1?e-1:e,o&&r>1?r-1:r],y=o?"0.5":"0.0";this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${f[0]/m[0]}, ${f[1]/m[1]}); const vec2 inputShapeRC = vec2(${c}.0, ${l}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${y}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}}class xJ{constructor(t,e){this.variableNames=["x"];let r=t.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);if(this.outputShape=t,r===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${t[0]} - coord - 1)); } `;return}let o=l=>e.indexOf(l)!==-1&&t[l]!==1?`${t[l]} - coords[${l}] - 1`:`coords[${l}]`,s=t.map((l,p)=>o(p)).join(","),c=Oe(r);this.userCode=` void main() { ${c} coords = getOutputCoords(); setOutput(getX(${s})); } `}}class wJ{constructor(t,e){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let r=t.length;if(r>4)throw new Error(`WebGL backend: Reverse of rank-${r} tensor is not yet supported`);this.outputShape=t;let o=Jn("rc",r),s=`${o[r-1]} + 1 < ${this.outputShape[r-1]}`,c=`${o[r-2]} + 1 < ${this.outputShape[r-2]}`,l=Oe(r);r===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${t[0]} - rc - 1), ${t[0]} - rc - 1); if(${s}){ result.g = getChannel(getX(${t[0]} - (rc + 1) - 1), ${t[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${l} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${p(o.slice())}; if(${s}){ result.g = ${f(o.slice())}; } if(${c}) { result.b = ${m(o.slice())}; if(${s}) { result.a = ${y(o.slice())}; } } setOutput(result); } `;function p(T){return b(T)}function f(T){return T[r-1]="("+T[r-1]+" + 1)",b(T)}function m(T){return T[r-2]="("+T[r-2]+" + 1)",b(T)}function y(T){return T[r-1]="("+T[r-1]+" + 1)",T[r-2]="("+T[r-2]+" + 1)",b(T)}function b(T){let N=t.map((I,P)=>v(P,T)),S=N.join(","),D=N.slice(-2).join(",");return`getChannel(getX(${S}), vec2(${D}))`}function v(T,N){return e.indexOf(T)!==-1&&t[T]!==1?`${t[T]} - ${N[T]} - 1`:`${N[T]}`}}}class ZI{constructor(t,e,r,o,s,c,l=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=c;let p=Oe(s.length),f=Oe(c.length),m="";r===1?m="i":r===2&&(m="i, j");let y=`getIndices(${m})`,b="";o===1?b="i":o===2&&(b="i, coords[1]");let v=`getUpdates(${b})`,T=e>1?"strides[j]":"strides";this.userCode=` ${p} strides = ${p}(${s}); void main() { ${f} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${t}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${e}; j++) { int index = round(${y}); flattenedIndex += index * ${T}; } if (flattenedIndex == coords[0]) { sum += ${v}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}}class vJ{constructor(t,e){this.variableNames=["x","segmentIds"];let r=t.windowSize,o=t.batchSize,s=t.inSize,c=t.numSegments,l=c*Math.ceil(s/r);this.outputShape=[o,l];let p="0.0",f="sumValue",m=Math.floor(r/4)*4,y=r%4,b=` sumValue += dot(values, segFilter); `,v="";s%r>0&&(v=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `);let T="";s%r>0&&(T=` if (inIdx < 0 || inIdx >= ${s}) { return -1.0; } `),this.userCode=` const float initializationValue = ${p}; float getValue(int batch, int inIdx) { ${v} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${T} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${c})) * float(${r})); int currentSeg = int(mod(float(outIdx), float(${c}))); float sumValue = 0.0; for (int i = 0; i < ${m}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${b} } int inIdx = inOffset + ${m}; if (${y===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${b} } else if (${y===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${b} } else if (${y===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${b} } setOutput(${f}); } `}}class TJ{constructor(t,e,r){this.variableNames=["c","a","b"],this.outputShape=e;let o,s;if(r>4)throw Error(`Where for rank ${r} is not yet supported`);if(r===1)s="resRC",o="resRC";else{let l=["resRC.x","resRC.y","resRC.z","resRC.w"],p=[],f=[];for(let m=0;m= 1.0) { setOutput(getA(${s})); } else { setOutput(getB(${s})); } } `}}class kJ{constructor(t){this.variableNames=["source"],this.outputShape=t,this.rank=t.length;let e=Oe(this.rank),r=`uniform int start[${this.rank}];`,o=NJ(this.rank),s,c=t.map((l,p)=>`sourceLoc.${M1[p]} = start[${p}] + coords.${M1[p]};`);s=` ${e} sourceLoc; ${e} coords = getOutputCoords(); ${c.join(` `)} `,this.userCode=` ${r} void main() { ${s} setOutput(getSource(${o})); } `}getCustomSetupFunc(t){if(t.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${t.length})`);return(e,r)=>{if(this.startLoc==null&&(this.startLoc=e.getUniformLocationNoThrow(r,"start"),this.startLoc==null))return;e.gl.uniform1iv(this.startLoc,t)}}}let M1=["x","y","z","w","u","v"];function NJ(n){if(n===1)return"sourceLoc";if(n<=6)return M1.slice(0,n).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${n} is not yet supported`)}class _J{constructor(t){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.rank=t.length;let e=Oe(this.rank),r=Jn("coords",this.rank),o=Jn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${o.slice(-2).join()})`,c=`getChannel(getSource(${o.join()}), ${s})`,l=` result.x = ${c}; if (++${r[this.rank-1]} < ${t[this.rank-1]}) { ++${o[this.rank-1]}; result.y = ${c}; --${o[this.rank-1]}; } `,p=this.rank===1?"":` --${r[this.rank-1]}; if (++${r[this.rank-2]} < ${t[this.rank-2]}) { ++${o[this.rank-2]}; result.z = ${c}; if (++${r[this.rank-1]} < ${t[this.rank-1]}) { ++${o[this.rank-1]}; result.w = ${c}; } } `,f=this.rank<=4?`sourceLoc = coords + ${e}(${t.map((m,y)=>`start[${y}]`).join()});`:t.map((m,y)=>`${o[y]} = ${r[y]} + start[${y}];`).join(` `);this.userCode=` uniform int start[${this.rank}]; void main() { ${e} coords = getOutputCoords(); ${e} sourceLoc; ${f} vec4 result = vec4(0.); ${l} ${p} setOutput(result); } `}getCustomSetupFunc(t){if(t.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${t.length})`);return(e,r)=>{if(this.startLoc==null&&(this.startLoc=e.getUniformLocationNoThrow(r,"start"),this.startLoc==null))return;e.gl.uniform1iv(this.startLoc,t)}}}class CJ{constructor(t,e,r){this.variableNames=["x"],this.outputShape=r;let o=r.length,s=Oe(r.length),c=Oe(r.length),l="";if(o===1)l="coords * strides + begin";else{let p=0;l=r.map((f,m)=>(p++,r.length===1?`coords * strides[${m}] + begin[${m}]`:`coords[${p-1}] * strides[${m}] + begin[${m}]`)).join(",")}this.userCode=` ${s} begin = ${s}(${t}); ${s} strides = ${s}(${e}); void main() { ${c} coords = getOutputCoords(); setOutput(getX(${l})); } `}}class SJ{constructor(t){this.gpgpu=t,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(t,e,r){let o=tE(e,r),s=eE(t,o,r);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let c=QI(t,o,this.gpgpu.gl,this.gpgpu.textureConfig,r);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=c,this.log();let p=this.freeTextures[s].shift();return this.usedTextures[s].push(p),p}let l;return o===Ln.PACKED_2X2_FLOAT32?l=this.gpgpu.createPackedMatrixTexture(t[0],t[1]):o===Ln.PACKED_2X2_FLOAT16?l=this.gpgpu.createFloat16PackedMatrixTexture(t[0],t[1]):o===Ln.UNPACKED_FLOAT32?l=this.gpgpu.createFloat32MatrixTexture(t[0],t[1]):o===Ln.UNPACKED_FLOAT16?l=this.gpgpu.createFloat16MatrixTexture(t[0],t[1]):o===Ln.PACKED_4X1_UNSIGNED_BYTE&&(l=this.gpgpu.createUnsignedBytesMatrixTexture(t[0],t[1])),this.usedTextures[s].push(l),this.numUsedTextures++,this._numBytesAllocated+=c,this.log(),l}releaseTexture(t,e,r,o){if(this.freeTextures==null)return;let s=tE(r,o),c=eE(e,s,o);c in this.freeTextures||(this.freeTextures[c]=[]);let l=QI(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,o),p=ct().get("WEBGL_DELETE_TEXTURE_THRESHOLD");p!==-1&&this._numBytesAllocated>p?(this.gpgpu.deleteMatrixTexture(t),this._numBytesAllocated-=l):(this.freeTextures[c].push(t),this.numFreeTextures++,this._numBytesFree+=l),this.numUsedTextures--;let f=this.usedTextures[c],m=f.indexOf(t);if(m<0)throw new Error("Cannot release a texture that was never provided by this texture manager");f.splice(m,1),this.log()}log(){if(!this.logEnabled)return;let t=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${t})`);let e=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*e)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures==null)return;for(let t in this.freeTextures)this.freeTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e)});for(let t in this.usedTextures)this.usedTextures[t].forEach(e=>{this.gpgpu.deleteMatrixTexture(e)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}function $J(n,t){let e=n;if(t===e.R32F)return 4;if(t===e.R16F)return 2;if(t===e.RGBA32F)return 16;if(t===n.RGBA)return 16;if(t===e.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function QI(n,t,e,r,o){let s=IJ(t,r),c;if(o){let[p,f]=fl(n[0],n[1]);c=p*f}else{let[p,f]=lh(n[0],n[1]);c=p*f}let l=$J(e,s);return c*l}function IJ(n,t){switch(n){case Ln.PACKED_2X2_FLOAT32:return jI(t);case Ln.PACKED_2X2_FLOAT16:return KI(t);case Ln.UNPACKED_FLOAT32:return UI(t);case Ln.UNPACKED_FLOAT16:return qI(t);case Ln.PACKED_4X1_UNSIGNED_BYTE:return HI(t);default:throw new Error(`Unknown physical texture type ${n}`)}}function EJ(n){return ct().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?n?Ln.PACKED_2X2_FLOAT32:Ln.UNPACKED_FLOAT32:n?Ln.PACKED_2X2_FLOAT16:Ln.UNPACKED_FLOAT16}function tE(n,t){if(n===Br.UPLOAD)return Ln.PACKED_2X2_FLOAT32;if(n===Br.RENDER||n==null)return EJ(t);if(n===Br.DOWNLOAD||n===Br.PIXELS)return Ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${n}`)}function eE(n,t,e){return`${n[0]}_${n[1]}_${t}_${e}`}class DJ{constructor(t,e){this.variableNames=["A"];let r=new Array(t.length);for(let c=0;c5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${n[0]})`;let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let o=0;o= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `;function PJ(n=0){return $s+` return x > 0.0 ? 1.0 : float(${n}); `}let iE="return -x;",aE="return ceil(x);",cE="return floor(x);",OJ=` if (isnan(x)) { return 0.0; } return sign(x); `,LJ="return float(isnan(x));",MJ="return float(isinf(x));",BJ="return float(!isnan(x) && !isinf(x));",zJ=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,lE="return exp(x);",uE="return exp(x) - 1.0;",WJ=`if (x < 0.0) return NAN; return log(x);`,VJ="return log(1.0 + x);",GJ="return sqrt(x);",UJ="return inversesqrt(x);",qJ="return 1.0 / (1.0 + exp(-1.0 * x));",HJ=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,jJ=$s+` if (abs(x) > 1.) { return NAN; } return asin(x); `,KJ=$s+` if (abs(x) > 1.) { return NAN; } return acos(x); `,XJ=$s+` return atan(x); `,YJ=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,JJ=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,ZJ=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,QJ=$s+"return log(x + sqrt(x * x + 1.0));",tZ=$s+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,eZ=$s+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,nZ=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${fv}; float a1 = ${dv}; float a2 = ${mv}; float a3 = ${gv}; float a4 = ${yv}; float a5 = ${bv}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,rZ="return 1.0 / x;",oZ="return float(!(x >= 1.0));",rg="return x;";let sZ="return x;",iZ=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,pE=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,hE=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,fE=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `;class dh{constructor(t,e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t,this.userCode=` vec4 unaryOperation(vec4 x) { ${e} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}}class aZ{constructor(t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=t;let e=t.length,r=Jn("rc",e),o=Oe(e),s=YX(e,r),c=r.slice(-2),l=e<=1?"rc":`vec2(${c.join(",")})`;this.userCode=` void main() { ${o} rc = getOutputCoords(); vec4 packedInput = getA(${s}); setOutput(getChannel(packedInput, ${l})); } `}}let{segment_util:dE}=vv,cZ=Tv,lZ=kv,uZ=Nv,pZ=jd,hZ=1e-7,fZ=1e-4,og={};function dZ(n){return n in og||(og[n]={}),og[n]}function sg(n,t=!1){if(n==="linear")return t?sZ:FJ;if(n==="relu")return t?pE:rE;if(n==="elu")return t?fE:sE;if(n==="relu6")return t?hE:oE;if(n==="prelu")return t?LI:OI;throw new Error(`Activation ${n} has not been implemented for the WebGL backend.`)}let mZ=128,gZ=600;function yZ(){return ct().global.screen==null?1024:ct().global.screen.height*ct().global.screen.width*window.devicePixelRatio*gZ/1024/1024}let mE=1e3;class bZ extends d{constructor(t){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!ct().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(t==null){let e=Xo(ct().getNumber("WEBGL_VERSION"));this.binaryCache=dZ(ct().getNumber("WEBGL_VERSION")),this.gpgpu=new j7(e),this.canvas=e.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=t,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=t.gl.canvas;this.textureManager=new SJ(this.gpgpu),this.numMBBeforeWarning=yZ(),this.texData=new h(this,ds())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(t,e,r){if((ct().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||ct().getBool("DEBUG"))&&this.checkNumericalProblems(t),r==="complex64"&&t!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let o={};return this.texData.set(o,{shape:e,dtype:r,values:t,usage:Br.UPLOAD,refCount:1,complexParentRefCount:0}),o}incRef(t){let e=this.texData.get(t);e.refCount++}decRef(t){if(this.texData.has(t)){let e=this.texData.get(t);e.refCount--}}move(t,e,r,o){if(ct().getBool("DEBUG")&&this.checkNumericalProblems(e),o==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(t,{shape:r,dtype:o,values:e,usage:Br.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(t){let e=t.dataId;if(this.texData.has(e)){let r=this.texData.get(e);r.refCount--,r.refCount<1&&this.disposeData(e)}}readSync(t){let e=this.texData.get(t),{values:r,dtype:o,complexTensorInfos:s,slice:c,shape:l,isPacked:p}=e;if(c!=null){let b;p?b=new dh(l,rg):b=new ue(l,rg);let v=this.runWebGLProgram(b,[{dataId:t,shape:l,dtype:o}],o),T=this.readSync(v.dataId);return this.disposeIntermediateTensorInfo(v),T}if(r!=null)return this.convertAndCacheOnCPU(t);if(o==="string")return r;let f=this.activeTimers!=null,m;f&&(m=sr());let y;if(o==="complex64"){let b=this.readSync(s.real.dataId),v=this.readSync(s.imag.dataId);y=ws(b,v)}else y=this.getValuesFromTexture(t);return f&&(this.downloadWaitMs+=sr()-m),this.convertAndCacheOnCPU(t,y)}async read(t){if(this.pendingRead.has(t)){let T=this.pendingRead.get(t);return new Promise(N=>T.push(N))}let e=this.texData.get(t),{values:r,shape:o,slice:s,dtype:c,complexTensorInfos:l,isPacked:p}=e;if(s!=null){let T;p?T=new dh(o,rg):T=new ue(o,rg);let N=this.runWebGLProgram(T,[{dataId:t,shape:o,dtype:c}],c),S=this.read(N.dataId);return this.disposeIntermediateTensorInfo(N),S}if(r!=null)return this.convertAndCacheOnCPU(t);if(!ct().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&ct().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let f=null,m;if(c!=="complex64"&&ct().get("WEBGL_BUFFER_SUPPORTED")){m=this.decode(t);let T=this.texData.get(m.dataId);f=this.gpgpu.createBufferFromTexture(T.texture,...uh(o))}this.pendingRead.set(t,[]),c!=="complex64"&&await this.gpgpu.createAndWaitForFence();let y;if(c==="complex64"){let T=await Promise.all([this.read(l.real.dataId),this.read(l.imag.dataId)]),N=T[0],S=T[1];y=ws(N,S)}else if(f==null)y=this.getValuesFromTexture(t);else{let T=G(o);y=this.gpgpu.downloadFloat32MatrixFromBuffer(f,T)}m!=null&&this.disposeIntermediateTensorInfo(m);let b=this.convertAndCacheOnCPU(t,y),v=this.pendingRead.get(t);return this.pendingRead.delete(t),v.forEach(T=>T(b)),this.pendingDisposal.has(t)&&(this.pendingDisposal.delete(t),this.disposeData(t),this.pendingDeletes--),b}checkNumericalProblems(t){if(t==null)return;for(let e=0;ep.query)).filter(p=>p!=null),c=tt(this.activeTimers.map(p=>p.name)).filter(p=>p!=null);this.activeTimers=e,o&&(this.programTimersStack=null);let l={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let p=await Promise.all(s);l.kernelMs=C(p),l.getExtraProfileInfo=()=>p.map((f,m)=>({name:c[m],ms:f})).map(f=>`${f.name}: ${f.ms}`).join(", ")}else l.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,l}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:sr(),endMs:null}}endTimer(t){return ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),t):(t.endMs=sr(),t)}async getQueryTime(t){if(ct().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(t);let e=t;return e.endMs-e.startMs}disposeData(t){if(this.pendingDisposal.has(t))return;if(this.pendingRead.has(t)){this.pendingDisposal.add(t),this.pendingDeletes++;return}if(!this.texData.has(t))return;if(this.texData.get(t).complexParentRefCount>0){this.texData.get(t).refCount--;return}this.releaseGPUData(t);let{complexTensorInfos:e}=this.texData.get(t);e!=null&&(this.texData.get(e.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(e.real),this.texData.get(e.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(e.imag)),this.texData.delete(t)}releaseGPUData(t){let{texture:e,dtype:r,texShape:o,usage:s,isPacked:c,slice:l}=this.texData.get(t),p=l&&l.origDataId||t,f=this.dataRefCount.get(p);f>1?this.dataRefCount.set(p,f-1):(this.dataRefCount.delete(p),e!=null&&(this.numBytesInGPU-=this.computeBytes(o,r),this.textureManager.releaseTexture(e,o,s,c)));let m=this.texData.get(t);m.texture=null,m.texShape=null,m.isPacked=!1,m.slice=null}getTexture(t){return this.uploadToGPU(t),this.texData.get(t).texture}getDataInfo(t){return this.texData.get(t)}getCPUBackend(){return ct().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=ds().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(t,e=mZ){let r=this.getCPUBackend();return!this.warnedAboutCPUBackend&&r==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),r!=null&&t.every(o=>this.texData.get(o.dataId).texture==null&&G(o.shape)this.cpuBackend.stridedSlice(t,e,r,o));if(s)return s;let c=gd(e,r,o);if(c.some(p=>p===0))return un([],c);let l=new CJ(e,o,c);return this.compileAndRun(l,[t])}reverse(t,e){let r=ct().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new wJ(t.shape,e):new xJ(t.shape,e);return this.compileAndRun(r,[t])}neg(t){let e=this.tryRunOnCpuOrThrow([t],()=>this.cpuBackend.neg(t));if(e)return e;if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,iE,t.dtype);let r=new ue(t.shape,iE);return this.compileAndRun(r,[t])}batchMatMul(t,e,r,o){let s=r?t.shape[2]:t.shape[1],c=o?e.shape[1]:e.shape[2],l=r?t.shape[1]:t.shape[2],p=Math.max(t.shape[0],e.shape[0]);if((s===1||c===1)&&l>mE){r&&(t=Kt(t,[0,2,1])),o&&(e=Kt(e,[0,2,1]));let y=c===1?t:t.as3D(p,l,1),b=c===1?2:1,v=c===1?e.as3D(p,1,l):e,T=nt(y,v);return T.sum(b,!0)}let f=Kn(t.dtype,e.dtype),m=new O1(t.shape,e.shape,[p,s,c],r,o);return this.compileAndRun(m,[t,e],f)}fusedBatchMatMul({a:t,b:e,transposeA:r,transposeB:o,bias:s,activation:c,preluActivationWeights:l}){let p=r?t.shape[2]:t.shape[1],f=o?e.shape[1]:e.shape[2],m=Math.max(t.shape[0],e.shape[0]),y=Kn(t.dtype,e.dtype),b=s!=null,v=l!=null,T=c?sg(c,!0):null,N=new O1(t.shape,e.shape,[m,p,f],r,o,b,T,v),S=[t,e];return s&&S.push(s),l&&S.push(l),this.compileAndRun(N,S,y)}localResponseNormalization4D(t,e,r,o,s){let c=ct().getBool("WEBGL_PACK_NORMALIZATION")?new eJ(t.shape,e,r,o,s):new Q7(t.shape,e,r,o,s);return this.compileAndRun(c,[t])}LRNGrad(t,e,r,o,s,c,l){let p=new tJ(e.shape,o,s,c,l);return this.compileAndRun(p,[e,r,t])}tile(t,e){if(t.dtype==="string"){let o=this.readSync(t.dataId),s=o.map(l=>Yu(l)),c=Se(t.shape,t.dtype,s);return lZ(c,e)}let r=new DJ(t.shape,e);return this.compileAndRun(r,[t])}pad(t,e,r){let o=ct().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new hJ(t.shape,e,r):new pJ(t.shape,e,r);return this.compileAndRun(o,[t])}gather(t,e,r){let o=this.tryRunOnCpuOrThrow([t,e],()=>this.cpuBackend.gather(t,e,r));if(o)return o;let s=new $7(t.shape,e.size,r);return this.compileAndRun(s,[t,e])}batchToSpaceND(t,e,r){_(t.rank<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=e.reduce((m,y)=>m*y),s=Ep(t.shape,e,o),c=Dp(s.length,e.length),l=Ap(t.shape,e,o),p=pv(r,e.length),f=hv(l,r,e.length);return Kt(t.reshape(s),c).reshape(l).slice(p,f)}spaceToBatchND(t,e,r){_(t.rank<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=e.reduce((y,b)=>y*b),s=[[0,0]];s.push(...r);for(let y=1+e.length;ythis.cpuBackend.prod(t,e));if(r)return r;let[o,s]=Rn(t.shape,e),c=G(s),l=t.as2D(-1,c),p=id(t.dtype);return this.reduce(l,"prod",p).reshape(o)}unsortedSegmentSum(t,e,r){let o=0,s=ar([o],t.rank),c=t;s!=null&&(c=Kt(t,s),o=xr(1,t.rank)[0]);let l=dE.computeOutShape(c.shape,o,r),p=G([c.shape[o]]),f=c.as2D(-1,p),m=id(t.dtype),y=this.segOpCompute(f,"unsortedSegmentSum",e,m,r).reshape(l);return s!=null&&(y=Kt(y,rp(s))),y}segOpCompute(t,e,r,o,s){let c=t.shape[0],l=t.shape[1],p=dE.segOpComputeOptimalWindowSize(l,s),f={windowSize:p,inSize:l,batchSize:c,numSegments:s},m=new vJ(f,e),y=this.compileAndRun(m,[t,r],o);return y.shape[1]===s?y:(r=bp(0,s).tile([l/p]),this.segOpCompute(y,e,r,o,s))}argMinMaxReduce(t,e,r){let o=[e];if(ir("arg"+r.charAt(0).toUpperCase()+r.slice(1),o,t.rank),!ct().getBool("WEBGL_PACK_REDUCE")||t.rank<=2){let[s,c]=Rn(t.shape,o),l=G(c),p=t.as2D(-1,l);return this.argReduce(p,r).reshape(s)}return this.argReducePacked(t,r)}argMin(t,e){return this.argMinMaxReduce(t,e,"min")}argMax(t,e){return this.argMinMaxReduce(t,e,"max")}cumsum(t,e,r,o){if(e!==t.rank-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${t.rank-1} but got axis=${e}`);let s=t.shape[e],c=t;for(let l=0;l<=Math.ceil(Math.log2(s))-1;l++){let p=new WI(t.shape,!1,o),f=p.getCustomSetupFunc(l),m=c;c=this.compileAndRun(p,[c],c.dtype,f),m.dispose()}if(r){let l=new WI(t.shape,r,o),p=c;c=this.compileAndRun(l,[c]),p.dispose()}return c}equal(t,e){if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,ZY,"bool");let r=new Hn(MY,t.shape,e.shape);return this.compileAndRun(r,[t,e],"bool")}less(t,e){let r=this.tryRunOnCpuOrThrow([t,e],()=>this.cpuBackend.less(t,e));if(r)return r;if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,QY,"bool");let o=new Hn(BY,t.shape,e.shape);return this.compileAndRun(o,[t,e],"bool")}lessEqual(t,e){if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,t7,"bool");let r=new Hn(zY,t.shape,e.shape);return this.compileAndRun(r,[t,e],"bool")}greater(t,e){let r=this.tryRunOnCpuOrThrow([t,e],()=>this.cpuBackend.greater(t,e));if(r)return r;if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,e7,"bool");let o=new Hn(WY,t.shape,e.shape);return this.compileAndRun(o,[t,e],"bool")}greaterEqual(t,e){if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,n7,"bool");let r=new Hn(VY,t.shape,e.shape);return this.compileAndRun(r,[t,e],"bool")}logicalNot(t){let e=new ue(t.shape,oZ);return this.compileAndRun(e,[t])}logicalAnd(t,e){if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,r7,"bool");let r=new Hn(GY,t.shape,e.shape);return this.compileAndRun(r,[t,e],"bool")}logicalOr(t,e){if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,o7,"bool");let r=new Hn(UY,t.shape,e.shape);return this.compileAndRun(r,[t,e],"bool")}select(t,e,r){let o=new TJ(t.rank,e.shape,e.rank);return this.compileAndRun(o,[t,e,r],Kn(e.dtype,r.dtype))}where(t){Yc("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let e=t.dataSync();return pZ(t.shape,e)}topk(t,e,r){let o=t.dataSync();return uZ(o,t.shape,t.dtype,e,r)}min(t,e){ir("min",e,t.rank);let[r,o]=Rn(t.shape,e),s=G(o),c=t.as2D(-1,s);return this.reduce(c,"min",c.dtype).reshape(r)}minimum(t,e){let r=this.tryRunOnCpuOrThrow([t,e],()=>this.cpuBackend.minimum(t,e));if(r)return r;let o=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(i7,t.shape,e.shape):new Hn(HY,t.shape,e.shape);return this.compileAndRun(o,[t,e])}mod(t,e){let r=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(a7,t.shape,e.shape):new Hn(jY,t.shape,e.shape);return this.compileAndRun(r,[t,e])}maximum(t,e){let r=this.tryRunOnCpuOrThrow([t,e],()=>this.cpuBackend.maximum(t,e));if(r)return r;let o=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(s7,t.shape,e.shape):new Hn(qY,t.shape,e.shape);return this.compileAndRun(o,[t,e])}all(t,e){ir("all",e,t.rank);let[r,o]=Rn(t.shape,e),s=G(o),c=t.as2D(-1,s);return this.reduce(c,"all",c.dtype).reshape(r)}any(t,e){ir("any",e,t.rank);let[r,o]=Rn(t.shape,e),s=G(o),c=t.as2D(-1,s);return this.reduce(c,"any",c.dtype).reshape(r)}floorDiv(t,e){let r=OY,o="int32";if(ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"))return this.packedBinaryOp(t,e,XY,o);let s=new Hn(r,t.shape,e.shape);return this.compileAndRun(s,[t,e],o)}packedUnaryOp(t,e,r){let o=new dh(t.shape,e);return this.compileAndRun(o,[t],r)}packedBinaryOp(t,e,r,o,s=!1){let c=new Ss(r,t.shape,e.shape,s);return this.compileAndRun(c,[t,e],o)}makeComplexComponentTensorInfo(t,e){return{dataId:e.dataId,dtype:e.dtype,shape:t.shape}}addN(t){if(t.length===1)return t[0];if(t.length>ct().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(t.length/2),l=this.addN(t.slice(0,c)),p=this.addN(t.slice(c));return this.addN([l,p])}let e=t.map(c=>c.dtype).reduce((c,l)=>Kn(c,l)),r=t.map(c=>c.shape),o=ct().getBool("WEBGL_PACK"),s=o?new KX(t[0].shape,r):new jX(t[0].shape,r);return this.compileAndRun(s,t,e)}pow(t,e){let r=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS"),o=r?new Ss(YY,t.shape,e.shape):new Hn(LY,t.shape,e.shape),s=Kn(t.dtype,e.dtype);return this.compileAndRun(o,[t,e],s)}ceil(t){if(this.shouldExecuteOnCPU([t])){let r=OX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,aE,t.dtype);let e=new ue(t.shape,aE);return this.compileAndRun(e,[t])}floor(t){if(this.shouldExecuteOnCPU([t])){let r=BX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,cE,t.dtype);let e=new ue(t.shape,cE);return this.compileAndRun(e,[t])}sign(t){let e=new ue(t.shape,OJ);return this.compileAndRun(e,[t])}isNaN(t){let e=new ue(t.shape,LJ);return this.compileAndRun(e,[t],"bool")}isInf(t){let e=new ue(t.shape,MJ);return this.compileAndRun(e,[t],"bool")}isFinite(t){let e=new ue(t.shape,BJ);return this.compileAndRun(e,[t],"bool")}round(t){let e=new ue(t.shape,zJ);return this.compileAndRun(e,[t])}exp(t){if(this.shouldExecuteOnCPU([t])){let r=LX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,lE,t.dtype);let e=new ue(t.shape,lE);return this.compileAndRun(e,[t])}expm1(t){if(this.shouldExecuteOnCPU([t])){let r=MX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,uE,t.dtype);let e=new ue(t.shape,uE);return this.compileAndRun(e,[t])}softmax(t,e){let r=Vt([e],t.shape),o=ur(t,r),s=Pn(o.shape,r),c=Dt(t,o.reshape(s)),l=this.exp(c),p=this.sum(l,r).reshape(s);return Bt(l,p)}log(t){if(this.shouldExecuteOnCPU([t])){let r=zX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,iZ,t.dtype);let e=new ue(t.shape,WJ);return this.compileAndRun(e,[t])}log1p(t){let e=new ue(t.shape,VJ);return this.compileAndRun(e,[t])}sqrt(t){let e=new ue(t.shape,GJ);return this.compileAndRun(e,[t])}rsqrt(t){if(this.shouldExecuteOnCPU([t])){let r=GX(this.texData.get(t.dataId).values,t.dtype);return this.makeOutput(t.shape,t.dtype,r)}let e=new ue(t.shape,UJ);return this.compileAndRun(e,[t])}reciprocal(t){let e=new ue(t.shape,rZ);return this.compileAndRun(e,[t])}relu(t){let e;return ct().getBool("WEBGL_PACK")?e=new dh(t.shape,pE):e=new ue(t.shape,rE),this.compileAndRun(e,[t])}relu6(t){let e;return ct().getBool("WEBGL_PACK")?e=new dh(t.shape,hE):e=new ue(t.shape,oE),this.compileAndRun(e,[t])}prelu(t,e){let r=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(LI,t.shape,e.shape):new Hn(OI,t.shape,e.shape);return this.compileAndRun(r,[t,e])}elu(t){if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,fE,t.dtype);let e=new ue(t.shape,sE);return this.compileAndRun(e,[t])}eluDer(t,e){let r=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ss(JY,t.shape,e.shape):new Hn(KY,t.shape,e.shape);return this.compileAndRun(r,[t,e])}selu(t){let e=new ue(t.shape,RJ);return this.compileAndRun(e,[t])}clip(t,e,r){let o;ct().getBool("WEBGL_PACK_CLIP")?o=new l7(t.shape):o=new c7(t.shape);let s=o.getCustomSetupFunc(e,r);return this.compileAndRun(o,[t],null,s)}abs(t){if(this.shouldExecuteOnCPU([t])&&t.dtype!=="complex64"){let r=RX(this.texData.get(t.dataId).values);return this.makeOutput(t.shape,t.dtype,r)}if(ct().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(t,nE,t.dtype);let e=new ue(t.shape,nE);return this.compileAndRun(e,[t])}complexAbs(t){let e=this.texData.get(t.dataId),r=new u7(t.shape),o=[this.makeComplexComponentTensorInfo(t,e.complexTensorInfos.real),this.makeComplexComponentTensorInfo(t,e.complexTensorInfos.imag)];return this.compileAndRun(r,o)}sigmoid(t){let e=new ue(t.shape,qJ);return this.compileAndRun(e,[t])}softplus(t){let e=new ue(t.shape,HJ);return this.compileAndRun(e,[t])}asin(t){let e=new ue(t.shape,jJ);return this.compileAndRun(e,[t])}acos(t){let e=new ue(t.shape,KJ);return this.compileAndRun(e,[t])}atan(t){let e=new ue(t.shape,XJ);return this.compileAndRun(e,[t])}sinh(t){let e=new ue(t.shape,YJ);return this.compileAndRun(e,[t])}cosh(t){let e=new ue(t.shape,JJ);return this.compileAndRun(e,[t])}tanh(t){let e=new ue(t.shape,ZJ);return this.compileAndRun(e,[t])}asinh(t){let e=new ue(t.shape,QJ);return this.compileAndRun(e,[t])}acosh(t){let e=new ue(t.shape,tZ);return this.compileAndRun(e,[t])}atanh(t){let e=new ue(t.shape,eZ);return this.compileAndRun(e,[t])}erf(t){let e=new ue(t.shape,nZ);return this.compileAndRun(e,[t])}step(t,e){let r=new ue(t.shape,PJ(e));return this.compileAndRun(r,[t])}conv2dByMatMul(t,e,r,o,s,c){let l=t.shape,p=this.texData.get(t.dataId),f=r.inChannels,m=l[0]*l[1]*l[2],y=r.outChannels,b=r.dataFormat==="channelsLast",v=!1,T=!1,N=(m===1||y===1)&&f>mE,S=l[2]%2!==0&&!!p.isPacked;if(N||!ct().getBool("WEBGL_LAZILY_UNPACK")||!ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!S){let q=b?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],H=Q(t,[1,q,r.inChannels]),Z=Q(e,[1,r.inChannels,r.outChannels]),J=this.fusedBatchMatMul({a:H,b:Z,transposeA:v,transposeB:T,bias:o,activation:s,preluActivationWeights:c});return Q(J,r.outShape)}let D=b?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),I={dataId:t.dataId,shape:[1,D,r.inChannels],dtype:t.dtype},P=p.shape;p.shape=p.shape.slice(),p.shape[p.shape.length-2]++,_(Zm(p.shape,I.shape),()=>`packed reshape ${p.shape} to ${I.shape} isn't free`);let E=Q(e,[1,r.inChannels,r.outChannels]),L=this.fusedBatchMatMul({a:I,b:E,transposeA:v,transposeB:T,bias:o,activation:s,preluActivationWeights:c}),B=this.texData.get(L.dataId);return _(B.isPacked,()=>"batchMatMul result is expected to be packed"),p.shape=P,B.shape=r.outShape,ds().makeTensorFromDataId(L.dataId,r.outShape,L.dtype)}conv2dWithIm2Row(t,e,r,o,s,c){let{filterWidth:l,filterHeight:p,inChannels:f,outWidth:m,outHeight:y,dataFormat:b}=r,v=b==="channelsLast",T=l*p*f,N=y*m,S=[T,N],D=!0,I=!1,P=t.squeeze([0]),E=e.reshape([1,T,-1]),L=new Z7(S,P.shape,r),B=this.compileAndRun(L,[P]).reshape([1,S[0],S[1]]),q=o!=null,H=c!=null,Z=s?sg(s,!0):null,J=new O1(B.shape,E.shape,[1,N,r.outChannels],D,I,q,Z,H),it=[B,E];o&&it.push(o),H&&it.push(c);let pt=this.compileAndRun(J,it);return v?pt.reshape([1,y,m,r.outChannels]):pt.reshape([1,r.outChannels,y,m])}fusedConv2d({input:t,filter:e,convInfo:r,bias:o,activation:s,preluActivationWeights:c}){if(r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return this.conv2dByMatMul(t,e,r,o,s,c);if(ct().getBool("WEBGL_CONV_IM2COL")&&t.shape[0]===1)return this.conv2dWithIm2Row(t,e,r,o,s,c);let l=o!=null,p=c!=null,f=s?sg(s,!1):null,m=new MI(r,l,f,p),y=[t,e];return o&&y.push(o),c&&y.push(c),this.compileAndRun(m,y)}conv2d(t,e,r){if(r.filterHeight===1&&r.filterWidth===1&&r.dilationHeight===1&&r.dilationWidth===1&&r.strideHeight===1&&r.strideWidth===1&&(r.padInfo.type==="SAME"||r.padInfo.type==="VALID"))return this.conv2dByMatMul(t,e,r);if(ct().getBool("WEBGL_CONV_IM2COL")&&t.shape[0]===1)return this.conv2dWithIm2Row(t,e,r);let o=new MI(r);return this.compileAndRun(o,[t,e])}conv2dDerInput(t,e,r){let o=new h7(r);return this.compileAndRun(o,[t,e])}conv2dDerFilter(t,e,r){let o=new p7(r);return this.compileAndRun(o,[t,e])}fusedDepthwiseConv2D({input:t,filter:e,convInfo:r,bias:o,activation:s,preluActivationWeights:c}){let l=ct().getBool("WEBGL_PACK_DEPTHWISECONV")&&r.strideWidth<=2&&r.outChannels/r.inChannels===1,p=s?sg(s,l):null,f=[t,e],m=o!=null,y=c!=null;m&&f.push(o),y&&f.push(c);let b;return l?(b=new zI(r,m,p,y),this.compileAndRun(b,f)):(b=new BI(r,m,p,y),this.compileAndRun(b,f))}depthwiseConv2D(t,e,r){let o;return ct().getBool("WEBGL_PACK_DEPTHWISECONV")&&r.strideWidth<=2&&r.outChannels/r.inChannels===1?(o=new zI(r),this.compileAndRun(o,[t,e])):(o=new BI(r),this.compileAndRun(o,[t,e]))}depthwiseConv2DDerInput(t,e,r){let o=new g7(r);return this.compileAndRun(o,[t,e])}depthwiseConv2DDerFilter(t,e,r){let o=new m7(r);return this.compileAndRun(o,[t,e])}conv3d(t,e,r){let o=new y7(r);return this.compileAndRun(o,[t,e])}conv3dDerInput(t,e,r){let o=new d7(r);return this.compileAndRun(o,[t,e])}conv3dDerFilter(t,e,r){let o=new f7(r);return this.compileAndRun(o,[t,e])}unstack(t,e){let r=t.shape[e],o=new Array(t.rank-1),s=0;for(let f=0;f1,()=>`blockSize should be > 1 for depthToSpace, but was: ${e}`);let o=t.shape[0],s=r==="NHWC"?t.shape[1]:t.shape[2],c=r==="NHWC"?t.shape[2]:t.shape[3],l=r==="NHWC"?t.shape[3]:t.shape[1],p=s*e,f=c*e,m=l/(e*e),y=r==="NHWC"?[o,p,f,m]:[o,m,p,f],b=new v7(y,e,r);return this.compileAndRun(b,[t])}split(t,e,r){return cZ(t,e,r)}scatterND(t,e,r){let{sliceRank:o,numUpdates:s,sliceSize:c,strides:l,outputSize:p}=Fc(e,t,r),f=[p/c,c],m=t.reshape([s,o]),y=e.reshape([s,c]);if(p===0)return AC(un([]),r);let b=Et(0),v=new ZI(s,o,m.rank,y.rank,l,f),T=this.compileAndRun(v,[y,m,b]);return T.reshape(r)}sparseToDense(t,e,r,o){let{sliceRank:s,numUpdates:c,strides:l,outputSize:p}=Fc(e,t,r),f=!1,m=new ZI(c,s,t.rank,e.rank,l,[p,1],f),y=this.compileAndRun(m,[e,t,o]);return y.reshape(r)}gatherND(t,e){let r=e.shape,o=r[r.length-1],[s,c,l,p]=dd(t,e),f=e.reshape([c,o]),m=t.reshape([t.size/l,l]),y=new E7(o,p,[c,l]),b=this.compileAndRun(y,[m,f]);return b.reshape(s)}fill(t,e,r){if(r=r||yc(e),r==="string"){let o=or(r,G(t));return o.fill(e),ds().makeTensor(o,t,r,this)}else{let o=new S7(t,e),s=o.getCustomSetupFunc(e);return this.compileAndRun(o,[],r,s)}}onesLike(t){if(t.dtype==="string")throw new Error("onesLike is not supported under string dtype");return this.fill(t.shape,1,t.dtype)}zerosLike(t){return this.fill(t.shape,t.dtype==="string"?"":0,t.dtype)}linspace(t,e,r){return wv(t,e,r)}makeTensorInfo(t,e,r){let o=this.write(r,t,e);return this.texData.get(o).usage=null,{dataId:o,shape:t,dtype:e}}makeOutput(t,e,r){let{dataId:o}=this.makeTensorInfo(t,e,r);return ds().makeTensorFromDataId(o,t,e,this)}unpackTensor(t){let e=new aZ(t.shape);return this.runWebGLProgram(e,[t],t.dtype)}packTensor(t){let e=new iJ(t.shape),r=!0;return this.runWebGLProgram(e,[t],t.dtype,null,r)}packedReshape(t,e){let r=[dl(t.shape),...ml(t.shape)],o={dtype:t.dtype,shape:r,dataId:t.dataId},s=[dl(e),...ml(e)],c=new JI(s,r),l=!0,p=this.runWebGLProgram(c,[o],t.dtype,null,l);return{dataId:p.dataId,shape:e,dtype:p.dtype}}decode(t){let e=this.texData.get(t),{isPacked:r,shape:o,dtype:s}=e,c=A1(o),l;r?l=new w7(c):l=new x7(c);let p=!0,f=this.runWebGLProgram(l,[{shape:c,dtype:s,dataId:t}],s,null,p);return{dtype:s,shape:o,dataId:f.dataId}}runWebGLProgram(t,e,r,o,s=!1){let c=this.makeTensorInfo(t.outputShape,r),l=this.texData.get(c.dataId);if(t.packedOutput&&(l.isPacked=!0),t.outPackingScheme===ch.DENSE){let N=uh(t.outputShape);l.texShape=N.map(S=>S*2)}if(t.outTexUsage!=null&&(l.usage=t.outTexUsage),G(c.shape)===0)return l.values=Ce(c.dtype,0),c;let p=[],f=e.map(N=>{if(N.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let S=this.texData.get(N.dataId);if(S.texture==null){if(!t.packedInputs&&G(N.shape)<=ct().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:N.shape,texData:null,isUniform:!0,uniformValues:S.values};t.packedInputs&&(S.isPacked=!0,S.shape=N.shape)}else if(!!S.isPacked!==!!t.packedInputs)N=S.isPacked?this.unpackTensor(N):this.packTensor(N),p.push(N),S=this.texData.get(N.dataId);else if(S.isPacked&&!Zm(S.shape,N.shape)){let D=N,I=N.shape;N.shape=S.shape,N=this.packedReshape(N,I),p.push(N),S=this.texData.get(N.dataId),D.shape=I}return this.uploadToGPU(N.dataId),{shape:N.shape,texData:S,isUniform:!1}});this.uploadToGPU(c.dataId);let m={shape:c.shape,texData:l,isUniform:!1},y=J7(t,f,m),b=this.getAndSaveBinary(y,()=>X7(this.gpgpu,t,f,m)),v=this.activeTimers!=null,T;if(v&&(T=this.startTimer()),Y7(this.gpgpu,b,f,m,o),p.forEach(N=>this.disposeIntermediateTensorInfo(N)),v&&(T=this.endTimer(T),this.activeTimers.push({name:t.constructor.name,query:this.getQueryTime(T)})),!ct().getBool("WEBGL_LAZILY_UNPACK")&&l.isPacked&&s===!1){let N=this.unpackTensor(c);return this.disposeIntermediateTensorInfo(c),N}return c}compileAndRun(t,e,r,o,s=!1){r=r||e[0].dtype;let c=this.runWebGLProgram(t,e,r,o,s);return ds().makeTensorFromDataId(c.dataId,c.shape,c.dtype)}getAndSaveBinary(t,e){return t in this.binaryCache||(this.binaryCache[t]=e()),this.binaryCache[t]}getTextureManager(){return this.textureManager}dispose(){if(this.disposed)return;if(!ct().getBool("IS_TEST")){let t=Object.keys(this.binaryCache);t.forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]})}this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=rt(()=>{if(!ct().get("WEBGL_RENDER_FLOAT32_ENABLED")){let t=ct().getBool("DEBUG");ct().set("DEBUG",!1);let e=this.abs(Et(1e-8)).dataSync()[0];if(ct().set("DEBUG",t),e>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?hZ:fZ}uploadToGPU(t){let e=this.texData.get(t),{shape:r,dtype:o,values:s,texture:c,usage:l,isPacked:p}=e;if(c!=null)return;let f=this.activeTimers!=null,m;f&&(m=sr());let y=e.texShape;if(y==null&&(y=CX(r,p),e.texShape=y),s!=null){let b=A1(r),v,T=y[1],N=y[0],S=s instanceof Uint8Array;p?([T,N]=fl(y[0],y[1]),v=new C7(b,[N,T],S)):v=new _7(b,[N,T],S);let D=this.makeTensorInfo([N,T],o);S?this.texData.get(D.dataId).usage=Br.PIXELS:this.texData.get(D.dataId).usage=Br.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(D.dataId),T,N,s);let I=!0,P=this.runWebGLProgram(v,[D],o,null,I),E=this.texData.get(P.dataId);e.texture=E.texture,e.texShape=E.texShape,e.isPacked=E.isPacked,e.usage=E.usage,this.disposeIntermediateTensorInfo(D),this.texData.delete(P.dataId),e.values=null,f&&(this.uploadWaitMs+=sr()-m)}else{let b=this.acquireTexture(y,l,o,p);e.texture=b}}convertAndCacheOnCPU(t,e){let r=this.texData.get(t),{dtype:o}=r;return this.releaseGPUData(t),e!=null&&(r.values=xZ(e,o)),r.values}acquireTexture(t,e,r,o){if(this.numBytesInGPU+=this.computeBytes(t,r),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(t,e,o)}computeBytes(t,e){return t[0]*t[1]*Zb(e)}tryRunOnCpuOrThrow(t,e){if(this.shouldExecuteOnCPU(t))try{return e()}catch(r){if(ct().getBool("IS_TEST"))throw new Error("CPU forwarding failed")}return null}}function xZ(n,t){if(t==="float32"||t==="complex64")return n;if(t==="int32"||t==="bool"){let e=t==="int32"?new Int32Array(n.length):new Uint8Array(n.length);for(let r=0;rnew bZ,2);let tit={forceHalfFloat:vZ};function Is(n){let{inputs:t,backend:e}=n,{x:r}=t;return e.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}let TZ={kernelName:Nu,backendName:"webgl",kernelFunc:Is};function wl(n){let{inputs:t,backend:e}=n,{real:r,imag:o}=t,s=e.makeTensorInfo(r.shape,"complex64"),c=e.texData.get(s.dataId),l=Is({inputs:{x:r},backend:e}),p=e.texData.get(l.dataId);p.complexParentRefCount++;let f=Is({inputs:{x:o},backend:e}),m=e.texData.get(f.dataId);return m.complexParentRefCount++,c.complexTensorInfos={real:l,imag:f},s}let kZ={kernelName:Sf,backendName:"webgl",kernelFunc:wl};let gE="if (isnan(x)) return x;",NZ=` if (isnan(a)) return a; if (isnan(b)) return b; `,_Z=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function ig(n){return({inputs:t,backend:e})=>{let{x:r}=t,o=e,s=new ue(r.shape,n);return o.runWebGLProgram(s,[r],r.dtype)}}function vl({opSnippet:n,packedOpSnippet:t,checkOutOfBounds:e=!1,supportsComplex:r=!1,cpuKernelImpl:o,dtype:s}){return({inputs:c,backend:l})=>{let{a:p,b:f}=c,m=l;if(r&&p.dtype==="complex64"){let T=m.texData.get(p.dataId),N=m.texData.get(f.dataId),[S,D]=[[T.complexTensorInfos.real,N.complexTensorInfos.real],[T.complexTensorInfos.imag,N.complexTensorInfos.imag]].map(P=>{let[E,L]=P,B={dataId:E.dataId,dtype:E.dtype,shape:p.shape},q={dataId:L.dataId,dtype:L.dtype,shape:f.shape},H=new Hn(n,p.shape,f.shape);return m.runWebGLProgram(H,[B,q],Kn(E.dtype,L.dtype))}),I=wl({inputs:{real:S,imag:D},backend:m});return m.disposeIntermediateTensorInfo(S),m.disposeIntermediateTensorInfo(D),I}let y=s||Kn(p.dtype,f.dtype);if(m.shouldExecuteOnCPU([p,f])&&o!=null){let T=m.texData.get(p.dataId),N=m.texData.get(f.dataId),[S,D]=o(p.shape,f.shape,T.values,N.values,y),I=m.makeTensorInfo(D,y),P=m.texData.get(I.dataId);return P.values=S,I}let b=ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,v;return b?v=new Ss(t,p.shape,f.shape,e):v=new Hn(n,p.shape,f.shape),m.runWebGLProgram(v,[p,f],y)}}let yE="return a + b;",CZ=vl({opSnippet:yE,packedOpSnippet:yE,supportsComplex:!0,cpuKernelImpl:PX}),SZ={kernelName:Zi,backendName:"webgl",kernelFunc:CZ};let $Z=NZ+` return atan(a, b); `,IZ=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+_Z+` return result; `,EZ=vl({opSnippet:$Z,packedOpSnippet:IZ}),DZ={kernelName:Nf,backendName:"webgl",kernelFunc:EZ};function AZ(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t;ph(o,"avgPool");let{filterSize:s,strides:c,pad:l,dimRoundingMode:p}=r,f=1;_(fn(c,f),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${c} and dilations '${f}'`);let m=Xn(o.shape,s,c,f,l,p);if(m.filterWidth===1&&m.filterHeight===1&<(m.inShape,m.outShape))return Is({inputs:{x:o},backend:e});let y=new fh(m,"avg",!1);return e.runWebGLProgram(y,[o],"float32")}let FZ={kernelName:fu,backendName:"webgl",kernelFunc:AZ};function RZ(n){let{inputs:t,backend:e,attrs:r}=n,{dy:o,input:s}=t,c=s;ph([o,s],"avgPoolBackprop");let{filterSize:l,strides:p,pad:f}=r,m=Xn(c.shape,l,p,1,f),y=new RY(m);return e.runWebGLProgram(y,[o],c.dtype)}let PZ={kernelName:_f,backendName:"webgl",kernelFunc:RZ};class OZ{constructor(t,e,r,o,s,c){this.outputShape=[],this.variableNames=["x","mean","variance"],le(t,e),le(t,r);let l="0.0";o!=null&&(le(t,o),this.variableNames.push("offset"),l="getOffsetAtOutCoords()");let p="1.0";s!=null&&(le(t,s),this.variableNames.push("scale"),p="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${l}; float scale = ${p}; float inv = scale * inversesqrt(variance + float(${c})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}}class LZ{constructor(t,e,r,o,s,c){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],le(t,e),le(t,r);let l="vec4(0.0)";o!=null&&(le(t,o),this.variableNames.push("offset"),l="getOffsetAtOutCoords()");let p="vec4(1.0)";s!=null&&(le(t,s),this.variableNames.push("scale"),p="getScaleAtOutCoords()"),this.outputShape=t,this.userCode=` void main() { vec4 offset = ${l}; vec4 scale = ${p}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${c})); setOutput((x - mean) * inv + offset); } `}}let MZ=({inputs:n,backend:t,attrs:e})=>{let{x:r,mean:o,variance:s,offset:c,scale:l}=n;_(o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),_(c==null||o.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),_(l==null||o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:p}=e;p==null&&(p=.001);let f=[r,o,s],m=null;c!=null&&(m=c.shape,f.push(c));let y=null;l!=null&&(y=l.shape,f.push(l));let b=ct().getBool("WEBGL_PACK_NORMALIZATION")?new LZ(r.shape,o.shape,s.shape,m,y,p):new OZ(r.shape,o.shape,s.shape,m,y,p),v=t.runWebGLProgram(b,f,f[0].dtype);return v},BZ={kernelName:ku,backendName:"webgl",kernelFunc:MZ};let zZ="return float(a != b);",bE=vl({opSnippet:zZ,dtype:"bool"}),WZ={kernelName:Fu,backendName:"webgl",kernelFunc:bE};function B1(n){let{inputs:t,backend:e}=n,{input:r}=t,o=e.texData.get(r.dataId);return Is({inputs:{x:o.complexTensorInfos.real},backend:e})}let VZ={kernelName:Hf,backendName:"webgl",kernelFunc:B1};let GZ="return float(int(x));";function UZ(n,t){let e=new ue(n.shape,GZ),r=t.runWebGLProgram(e,[n],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function z1(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{dtype:s}=r;if(s==="complex64"){if(o.dtype==="complex64")return Is({inputs:{x:o},backend:e});let c=xe(o.shape),l=z1({inputs:{x:o},backend:e,attrs:{dtype:"float32"}}),p=wl({inputs:{real:l,imag:c},backend:e});return c.dispose(),e.disposeIntermediateTensorInfo(l),p}if(o.dtype==="complex64"){let c=B1({inputs:{input:o},backend:e}),l=z1({inputs:{x:c},backend:e,attrs:{dtype:s}});return e.disposeIntermediateTensorInfo(c),l}if(!gc(o.dtype,s)){let c=Is({inputs:{x:o},backend:e});return{dataId:c.dataId,shape:c.shape,dtype:s}}if(s==="int32")return UZ(o,e);if(s==="bool"){let c=e.makeTensorInfo([],"bool",Ce("bool",1)),l={a:o,b:c},p=bE({inputs:l,backend:e});return e.disposeIntermediateTensorInfo(c),p}throw new Error(`Error in Cast: failed to cast ${o.dtype} to ${s}`)}let qZ={kernelName:xc,backendName:"webgl",kernelFunc:z1};class HZ{constructor(t){this.outputShape=[],this.outputShape=ms(t,1),this.variableNames=t.map((c,l)=>`T${l}`);let e=new Array(t.length-1);e[0]=t[0][1];for(let c=1;c`T${S}`);let p=new Array(t.length-1);p[0]=t[0][e];for(let N=1;N= ${p[N-1]}) { return getChannel( getT${N}(${ag(l,f,S)}), vec2(${ag(m,f,S)})); }`}let v=p.length,T=p[p.length-1];b+=` return getChannel( getT${v}(${ag(l,f,T)}), vec2(${ag(m,f,T)}));`,this.userCode=` float getValue(${l.map(N=>"int "+N)}) { ${b} } void main() { ${s} coords = getOutputCoords(); vec4 result = vec4(getValue(${c}), 0., 0., 0.); ${c[o-1]} = ${c[o-1]} + 1; if (${c[o-1]} < ${r[o-1]}) { result.g = getValue(${c}); } ${c[o-2]} = ${c[o-2]} + 1; if (${c[o-2]} < ${r[o-2]}) { result.a = getValue(${c}); } ${c[o-1]} = ${c[o-1]} - 1; if (${c[o-2]} < ${r[o-2]} && ${c[o-1]} < ${r[o-1]}) { result.b = getValue(${c}); } setOutput(result); } `}}function ag(n,t,e){let r=n.indexOf(t),o=n.map((s,c)=>c===r?`${s} - ${e}`:s);return o.join()}function xE(n){let{inputs:t,backend:e}=n,{input:r}=t,o=e.texData.get(r.dataId);return Is({inputs:{x:o.complexTensorInfos.imag},backend:e})}let KZ={kernelName:Mf,backendName:"webgl",kernelFunc:xE};function XZ(n,t,e){let r=[dl(n.shape),...ml(n.shape)],o={dtype:n.dtype,shape:r,dataId:n.dataId},s=[dl(t),...ml(t)],c=new JI(s,r),l=!0,p=e.runWebGLProgram(c,[o],n.dtype,null,l);return{dataId:p.dataId,shape:t,dtype:p.dtype}}function Es(n){let{inputs:t,backend:e,attrs:r}=n,{x:o}=t,{shape:s}=r,c=e,l=G(o.shape),p=Ue(s,l),f=G(p);_(l===f,()=>`The new shape (${p}) has ${f} elements and the old shape (${o.shape}) has ${l} elements. The new shape and old shape must have the same number of elements.`);let m=c.texData.get(o.dataId);return m.isPacked&&!Zm(o.shape,p)&&!(m.texture!==null&&Zm(m.shape,p))?XZ(o,p,c):(c.incRef(o.dataId),{dataId:o.dataId,shape:p,dtype:o.dtype})}let YZ={kernelName:Ou,backendName:"webgl",kernelFunc:Es};function Tl(n,t,e){let r=n[0].dtype;if(r==="complex64"){let f=n.map(T=>B1({inputs:{input:T},backend:e})),m=n.map(T=>xE({inputs:{input:T},backend:e})),y=Tl(f,t,e),b=Tl(m,t,e),v=wl({inputs:{real:y,imag:b},backend:e});return f.forEach(T=>e.disposeIntermediateTensorInfo(T)),m.forEach(T=>e.disposeIntermediateTensorInfo(T)),e.disposeIntermediateTensorInfo(y),e.disposeIntermediateTensorInfo(b),v}if(n.length>ct().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let f=Math.floor(n.length/2),m=Tl(n.slice(0,f),t,e),y=Tl(n.slice(f),t,e),b=Tl([m,y],t,e);return e.disposeIntermediateTensorInfo(m),e.disposeIntermediateTensorInfo(y),b}if(ct().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&n[0].shape.length>1){let f=new jZ(n.map(m=>m.shape),t);return e.runWebGLProgram(f,n,r)}let o=ms(n.map(f=>f.shape),t),s=n.map(f=>Es({inputs:{x:f},attrs:{shape:[-1,G(f.shape.slice(t))]},backend:e})),c=new HZ(s.map(f=>f.shape)),l=e.runWebGLProgram(c,s,r);s.forEach(f=>e.disposeIntermediateTensorInfo(f));let p=Es({inputs:{x:l},attrs:{shape:o},backend:e});return e.disposeIntermediateTensorInfo(l),p}function JZ(n){let{inputs:t,backend:e,attrs:r}=n,{axis:o}=r,s=Vt(o,t[0].shape)[0],c=ms(t.map(f=>f.shape),s);if(G(c)===0)return e.makeTensorInfo(c,t[0].dtype,[]);let l=t.filter(f=>G(f.shape)>0);if(l.length===1)return l[0];let p=l.map(f=>f.shape);return Nd(p,s),Tl(l,s,e)}let ZZ={kernelName:gu,backendName:"webgl",kernelFunc:JZ};let QZ=gE+` return cos(x); `,t9=ig(QZ),e9={kernelName:wc,backendName:"webgl",kernelFunc:t9};let n9=` if (a == b) { return 1.0; }; return a / b;`,r9=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,o9=vl({opSnippet:n9,packedOpSnippet:r9,checkOutOfBounds:!0}),s9={kernelName:vc,backendName:"webgl",kernelFunc:o9};class wE{constructor(t,e,r){this.variableNames=["real","imag"];let o=e[1];this.outputShape=e;let s=r?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,c=r?`${o}.0`:"1.0",l;if(t==="real")l="return real * expR - imag * expI;";else if(t==="imag")l="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${t}.`);this.userCode=` const float exponentMultiplier = ${s}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${l} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${o}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${o}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${c}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}}function vE(n,t,e){let r=e.texData.get(n.dataId),o=G(n.shape),s=n.shape[n.shape.length-1],c=o/s,l=Es({inputs:{x:n},backend:e,attrs:{shape:[c,s]}}),p=l.shape,f=new wE("real",p,t),m=new wE("imag",p,t),y=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:p},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:p}],b=e.runWebGLProgram(f,y,"float32"),v=e.runWebGLProgram(m,y,"float32"),T=wl({inputs:{real:b,imag:v},backend:e});e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(v);let N=Es({inputs:{x:T},backend:e,attrs:{shape:n.shape}});return e.disposeIntermediateTensorInfo(N),N}function i9(n){let{inputs:t,backend:e}=n,{input:r}=t;return vE(r,!1,e)}let a9={kernelName:Pf,backendName:"webgl",kernelFunc:i9};class c9{constructor(t){this.variableNames=["Image"],this.outputShape=[];let e=t[2];this.outputShape=t,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${e} - x; float outputValue; if(coordX >= 0 && coordX < ${e}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}}let l9={kernelName:Of,backendName:"webgl",kernelFunc:({inputs:n,backend:t})=>{let{image:e}=n,r=t,o=new c9(e.shape),s=r.runWebGLProgram(o,[e],e.dtype);return s}};class u9{constructor(t){this.variableNames=["A"];let e=Zn(),[r,o]=t;this.outputShape=t,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${r}.0); vec4 values = ${e.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}}class p9{constructor(t){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let e=Zn(),[r,o]=t;this.outputShape=t,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${o}.0, ${r}.0); vec4 values = ${e.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${e.output} = result; } `}}let h9={kernelName:Jf,backendName:"webgl",kernelFunc:f9},kl;function f9(n){let{inputs:t,backend:e,attrs:r}=n,{pixels:o}=t,{numChannels:s}=r,c=typeof HTMLVideoElement!="undefined"&&o instanceof HTMLVideoElement,l=typeof HTMLImageElement!="undefined"&&o instanceof HTMLImageElement,[p,f]=c?[o.videoWidth,o.videoHeight]:[o.width,o.height],m=[f,p],y=[f,p,s];(l||c)&&(kl==null&&(kl=document.createElement("canvas").getContext("2d")),kl.canvas.width=p,kl.canvas.height=f,kl.drawImage(o,0,0,p,f),o=kl.canvas);let b=e.makeTensorInfo(m,"int32");e.texData.get(b.dataId).usage=Br.PIXELS,e.gpgpu.uploadPixelDataToTexture(e.getTexture(b.dataId),o);let v=ct().getBool("WEBGL_PACK")?new p9(y):new u9(y),T=e.runWebGLProgram(v,[b],"int32");return e.disposeData(b.dataId),T}function d9(n){let{inputs:t,backend:e}=n,{input:r}=t;return vE(r,!0,e)}let m9={kernelName:Lf,backendName:"webgl",kernelFunc:d9};class TE{constructor(t,e){this.variableNames=["x"];let{windowSize:r,batchSize:o,inSize:s,outSize:c}=t;this.outputShape=[o,c];let l=Math.floor(r/4)*4,p=r%4,f="sumValue += dot(values, ones);";if(e!=null){let y=1/e;f=`sumValue += dot(values * ${gt(y)?y.toPrecision(2):y}, ones);`}let m="";s%r>0&&(m=` if (inIdx < 0 || inIdx >= ${s}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${m} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; float sumValue = 0.0; for (int i = 0; i < ${l}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${f} } int inIdx = inOffset + ${l}; if (${p===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${f} } else if (${p===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${f} } else if (${p===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${f} } setOutput(sumValue); } `}}function g9(n){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let e=t.length?t[t.length-1].outSize:n[1],r=pp(e);t.push({inSize:e,windowSize:r,outSize:Math.ceil(e/r)})}return t}function kE(n,t,e,r){let o=g9(n.shape),s=n;for(let c=0;c6)throw Error(`Transpose for rank ${t} is not yet supported`);let e=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let o=0;o6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let o=Oe(this.rank),s=EI("rc",this.rank),c=new Array(this.rank);for(let m=0;m{let{x:r}=n,{reductionIndices:o,keepDims:s}=t,c=e,l=r.shape.length,p=Vt(o,r.shape),f=p,m=ar(f,l),y=m!=null,b=c.shouldExecuteOnCPU([r]),v=r;if(y){if(b){let I=c.texData.get(v.dataId),P=I.values,E=new Array(l);for(let q=0;q`Error in maxPool: Either strides or dilations must be 1. Got strides ${c} and dilations '${f}'`);let m=Xn(o.shape,s,c,f,l,p);if(m.filterWidth===1&&m.filterHeight===1&<(m.inShape,m.outShape))return Is({inputs:{x:o},backend:e});let y=new fh(m,"max",!1);return e.runWebGLProgram(y,[o],o.dtype)}let k9={kernelName:Du,backendName:"webgl",kernelFunc:T9};function N9(n){let{inputs:t,backend:e,attrs:r}=n,{dy:o,input:s,output:c}=t,l=s;ph([s,c],"maxPoolBackprop");let{filterSize:p,strides:f,pad:m,dimRoundingMode:y}=r,b=Xn(l.shape,p,f,1,m,y),v=!0,T=new fh(b,"max",v),N=e.runWebGLProgram(T,[l],l.dtype),S=new nJ(b),D=e.runWebGLProgram(S,[o,N],l.dtype);return e.disposeIntermediateTensorInfo(N),D}let _9={kernelName:zf,backendName:"webgl",kernelFunc:N9};function C9(n,t,e,r){let o=new fh(e,"max",!1),s=r.runWebGLProgram(o,[n],"float32");o=new fh(e,"max",!0,!0,t);let c=r.runWebGLProgram(o,[n],"float32");return[s,c]}let S9={kernelName:Wf,backendName:"webgl",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{x:r}=n,{filterSize:o,strides:s,pad:c,includeBatchInIndex:l}=t,p=e;_(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let f=[1,1];_(fn(s,f),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${f}'`);let m=Xn(r.shape,o,s,f,c),[y,b]=C9(r,l,m,p);return[y,b]}};function $9(n,t,e,r){let o=G(t),s=G(n.shape),c=s/o,l=Es({inputs:{x:n},attrs:{shape:[c,o]},backend:r}),p=kE(l,"float32","mean",r),f=Es({inputs:{x:p},attrs:{shape:e},backend:r});return r.disposeIntermediateTensorInfo(l),r.disposeIntermediateTensorInfo(p),f}let I9={kernelName:kx,backendName:"webgl",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{x:r}=n,{keepDims:o,axis:s}=t,c=e,l=r.shape.length,p=Vt(s,r.shape),f=p,m=ar(f,l),y=m!=null,b=c.shouldExecuteOnCPU([r]),v=[],T=r;if(y){if(b){let P=c.texData.get(T.dataId),E=P.values,L=new Array(l);for(let H=0;Hm[0]+t[y]+m[1]);let o=t.length,s=Oe(o),c=e.map(m=>m[0]).join(","),l=e.map((m,y)=>m[0]+t[y]).join(","),p=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,o),f=r==="reflect"?0:1;if(o===1){this.userCode=` int start = ${c}; int end = ${l}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${f}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${f}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${s} start = ${s}(${c}); ${s} end = ${s}(${l}); void main() { ${s} outC = getOutputCoords(); for (int i = 0; i < ${o}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${f}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${f}; } } ${s} coords = outC - start; setOutput(getX(${p})); } `}}class D9{constructor(t,e,r){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.map((T,N)=>T[0]+t[N]+T[1]);let o=t.length,s=Oe(o),c=e.map(T=>T[0]).join(","),l=e.map((T,N)=>T[0]+t[N]).join(","),p=Jn("rc",o),f=Jn("source",o),m=`${p[o-1]} < ${this.outputShape[o-1]}`,y=o===1?"source":`vec2(${f.slice(-2).join()})`,b=r==="reflect"?0:1,v="";if(o===1){let T=` ${s} source = rc; if (source < start) { source = start * 2 - source - ${b}; } else if (source >= end) { source = (end - 1) * 2 - source + ${b}; } source -= start; `;v=` ${s} rc = outputLoc; ${T} result[0] = getChannel(getX(${f.join()}), ${y}); ${p[o-1]} += 1; if(${m}) { ${T} result[1] = getChannel(getX(${f.join()}), ${y}); } `}else{let T=` ${s} source = rc; ${s} lt = ${s}(lessThan(source, start)); ${s} gte = ${s}(greaterThanEqual(source, end)); ${s} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${b}) + gte * ((end - 1) * 2 - source + ${b}); source -= start; `;v=` ${s} rc = outputLoc; ${T} result[0] = getChannel(getX(${f.join()}), ${y}); ${p[o-1]} += 1; if(${m}) { ${T} result[1] = getChannel(getX(${f.join()}), ${y}); } rc = outputLoc; ${p[o-2]} += 1; if(${p[o-2]} < ${this.outputShape[o-2]}) { ${T} result[2] = getChannel(getX(${f.join()}), ${y}); ${p[o-1]} += 1; if(${m}) { ${T} result[3] = getChannel(getX(${f.join()}), ${y}); } } `}this.userCode=` const ${s} start = ${s}(${c}); const ${s} end = ${s}(${l}); void main() { ${s} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${v} setOutput(result); } `}}let A9=({inputs:n,backend:t,attrs:e})=>{let{x:r}=n,{paddings:o,mode:s}=e,c=ct().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new D9(r.shape,o,s):new E9(r.shape,o,s),l=t.runWebGLProgram(c,[r],r.dtype);return l},F9={kernelName:Au,backendName:"webgl",kernelFunc:A9};let NE={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"};class _E{constructor(t,e,r){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=le(e,r),this.userCode=` float binaryOpComplex( float areal, float aimag, float breal, float bimag) { ${t} } void main() { float areal = getARealAtOutCoords(); float aimag = getAImagAtOutCoords(); float breal = getBRealAtOutCoords(); float bimag = getBImagAtOutCoords(); setOutput(binaryOpComplex(areal, aimag, breal, bimag)); } `}}let CE="return a * b;";function R9(n){let{inputs:t,backend:e}=n,{a:r,b:o}=t,s=Kn(r.dtype,o.dtype);if(r.dtype==="complex64"){let l=e.texData.get(r.dataId),p=e.texData.get(o.dataId),f=new _E(NE.REAL,r.shape,o.shape),m=new _E(NE.IMAG,r.shape,o.shape),y=[{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape}],b=e.runWebGLProgram(f,y,"float32"),v=e.runWebGLProgram(m,y,"float32"),T=wl({inputs:{real:b,imag:v},backend:e});return e.disposeIntermediateTensorInfo(b),e.disposeIntermediateTensorInfo(v),T}if(e.shouldExecuteOnCPU([r,o])){let l=e.texData.get(r.dataId),p=e.texData.get(o.dataId),[f,m]=VX(r.shape,o.shape,l.values,p.values,s),y=e.makeTensorInfo(m,s),b=e.texData.get(y.dataId);return b.values=f,y}let c;return ct().getBool("WEBGL_PACK_BINARY_OPERATIONS")?c=new Ss(CE,r.shape,o.shape):c=new Hn(CE,r.shape,o.shape),e.runWebGLProgram(c,[r,o],s)}let P9={kernelName:Tc,backendName:"webgl",kernelFunc:R9};let O9={kernelName:$x,backendName:"webgl",kernelFunc:({inputs:n,backend:t,attrs:e})=>{Yc("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes:r,scores:o}=n,{maxOutputSize:s,iouThreshold:c,scoreThreshold:l}=e,p=t,f=p.readSync(r.dataId),m=p.readSync(o.dataId),y=s,b=c,v=l;return tm(f,m,y,b,v)}};let L9=em,M9={kernelName:Vf,backendName:"webgl",kernelFunc:({inputs:n,backend:t,attrs:e})=>{Yc("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes:r,scores:o}=n,{maxOutputSize:s,iouThreshold:c,scoreThreshold:l,padToMaxOutputSize:p}=e,f=t,m=f.readSync(r.dataId),y=f.readSync(o.dataId),{selectedIndices:b,validOutputs:v}=L9(m,y,s,c,l,p);return[b,v]}};let B9=nm,z9={kernelName:Gf,backendName:"webgl",kernelFunc:({inputs:n,backend:t,attrs:e})=>{Yc("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{boxes:r,scores:o}=n,{maxOutputSize:s,iouThreshold:c,scoreThreshold:l,softNmsSigma:p}=e,f=t,m=f.readSync(r.dataId),y=f.readSync(o.dataId),b=s,v=c,T=l,N=p,{selectedIndices:S,selectedScores:D}=B9(m,y,b,v,T,N);return[S,D]}};class W9{constructor(t,e,r,o){this.variableNames=["Image"],this.outputShape=[];let s=t[1],c=t[2],l=Math.sin(e).toFixed(3),p=Math.cos(e).toFixed(3);this.outputShape=t;let[f,m]=uv(o,s,c),y=f.toFixed(3),b=m.toFixed(3),v="";typeof r=="number"?v=`float outputValue = ${r.toFixed(2)};`:v=` vec3 fill = vec3(${r.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - ${y}) * ${p} - (float(y) - ${b}) * ${l}; float coordYFloat = (float(x) - ${y}) * ${l} + (float(y) - ${b}) * ${p}; int coordX = int(round(coordXFloat + ${y})); int coordY = int(round(coordYFloat + ${b})); ${v} if(coordX >= 0 && coordX < ${c} && coordY >= 0 && coordY < ${s}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}}let V9={kernelName:Zf,backendName:"webgl",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{image:r}=n,{radians:o,fillValue:s,center:c}=t,l=e,p=new W9(r.shape,o,s,c),f=l.runWebGLProgram(p,[r],r.dtype);return f}};let G9=gE+` return sin(x); `,U9=ig(G9),q9={kernelName:kc,backendName:"webgl",kernelFunc:U9};let H9="return x * x;",j9=ig(H9),K9={kernelName:Xf,backendName:"webgl",kernelFunc:j9};let SE="return (a - b) * (a - b);",X9=vl({opSnippet:SE,packedOpSnippet:SE}),Y9={kernelName:Nc,backendName:"webgl",kernelFunc:X9};let $E="return a - b;",J9=vl({opSnippet:$E,packedOpSnippet:$E,supportsComplex:!0,cpuKernelImpl:qX}),Z9={kernelName:_c,backendName:"webgl",kernelFunc:J9};let Q9="return tan(x);",tQ=ig(Q9),eQ={kernelName:Cc,backendName:"webgl",kernelFunc:tQ};let nQ={kernelName:ju,backendName:"webgl",kernelFunc:({inputs:n,attrs:t,backend:e})=>{let{x:r}=n,{perm:o}=t,s=e,c=r.shape.length,l=new Array(c);for(let f=0;f{mh(TQ,{isNodejs:()=>kQ});function kQ(){return typeof global=="object"&&!0&&typeof OE!="undefined"&&typeof process!="undefined"&&!!process.version}}),xD=ug(()=>{}),lot={};mh(lot,{AgeGenderNet:()=>ef,BoundingBox:()=>Da,Box:()=>De,ComposableTask:()=>Xr,ComputeAllFaceDescriptorsTask:()=>Zs,ComputeFaceDescriptorsTaskBase:()=>hf,ComputeSingleFaceDescriptorTask:()=>Qs,DetectAllFaceLandmarksTask:()=>mf,DetectAllFacesTask:()=>iu,DetectFaceLandmarksTaskBase:()=>df,DetectFacesTaskBase:()=>yf,DetectSingleFaceLandmarksTask:()=>gf,DetectSingleFaceTask:()=>bf,Dimensions:()=>jn,FACE_EXPRESSION_LABELS:()=>Gb,FaceDetection:()=>Ve,FaceDetectionNet:()=>Hk,FaceExpressionNet:()=>Qh,FaceExpressions:()=>Ks,FaceLandmark68Net:()=>ic,FaceLandmark68TinyNet:()=>rf,FaceLandmarkNet:()=>Vk,FaceLandmarks:()=>Cr,FaceLandmarks5:()=>j1,FaceLandmarks68:()=>Fa,FaceMatch:()=>$l,FaceMatcher:()=>wf,FaceRecognitionNet:()=>ac,Gender:()=>cs,LabeledBox:()=>Il,LabeledFaceDescriptors:()=>Qo,NetInput:()=>as,NeuralNetwork:()=>Fn,ObjectDetection:()=>Ps,Point:()=>Yt,PredictedBox:()=>K1,Rect:()=>Aa,SsdMobilenetv1:()=>Ki,SsdMobilenetv1Options:()=>Kr,TinyFaceDetector:()=>pc,TinyFaceDetectorOptions:()=>pf,TinyYolov2:()=>lc,TinyYolov2Options:()=>Lo,TinyYolov2SizeType:()=>Yb,allFaces:()=>IP,allFacesSsdMobilenetv1:()=>eN,allFacesTinyYolov2:()=>$P,awaitMediaLoaded:()=>vg,bufferToImage:()=>Tg,computeFaceDescriptor:()=>dP,createCanvas:()=>Ra,createCanvasFromMedia:()=>Dl,createFaceDetectionNet:()=>ZR,createFaceRecognitionNet:()=>GR,createSsdMobilenetv1:()=>qk,createTinyFaceDetector:()=>EP,createTinyYolov2:()=>aP,detectAllFaces:()=>xf,detectFaceLandmarks:()=>Jk,detectFaceLandmarksTiny:()=>fP,detectLandmarks:()=>CP,detectSingleFace:()=>SP,draw:()=>qb,env:()=>$e,euclideanDistance:()=>Jb,extendWithAge:()=>af,extendWithFaceDescriptor:()=>sf,extendWithFaceDetection:()=>Ai,extendWithFaceExpressions:()=>tf,extendWithFaceLandmarks:()=>sc,extendWithGender:()=>cf,extractFaceTensors:()=>rc,extractFaces:()=>nc,fetchImage:()=>kR,fetchJson:()=>Db,fetchNetWeights:()=>NR,fetchOrThrow:()=>Vi,getContext2dOrThrow:()=>Qn,getMediaDimensions:()=>Pi,imageTensorToCanvas:()=>Ng,imageToSquare:()=>Ib,inverseSigmoid:()=>PE,iou:()=>mg,isMediaElement:()=>yh,isMediaLoaded:()=>El,isWithAge:()=>UR,isWithFaceDetection:()=>Eo,isWithFaceExpressions:()=>Ub,isWithFaceLandmarks:()=>qi,isWithGender:()=>qR,loadAgeGenderModel:()=>kP,loadFaceDetectionModel:()=>NP,loadFaceExpressionModel:()=>TP,loadFaceLandmarkModel:()=>xP,loadFaceLandmarkTinyModel:()=>wP,loadFaceRecognitionModel:()=>vP,loadSsdMobilenetv1Model:()=>Zk,loadTinyFaceDetectorModel:()=>yP,loadTinyYolov2Model:()=>bP,loadWeightMap:()=>Fb,locateFaces:()=>_P,matchDimensions:()=>CR,minBbox:()=>gg,nets:()=>Te,nonMaxSuppression:()=>yg,normalize:()=>oo,padToSquare:()=>bg,predictAgeAndGender:()=>gP,recognizeFaceExpressions:()=>mP,resizeResults:()=>nN,resolveInput:()=>Fi,shuffleArray:()=>RE,sigmoid:()=>Sl,ssdMobilenetv1:()=>Yk,tf:()=>AP,tinyFaceDetector:()=>pP,tinyYolov2:()=>hP,toNetInput:()=>ze,utils:()=>hg,validateConfig:()=>Xb,version:()=>FP});var AP=te(ee()),qb={};mh(qb,{AnchorPosition:()=>ts,DrawBox:()=>wg,DrawBoxOptions:()=>eT,DrawFaceLandmarks:()=>Mk,DrawFaceLandmarksOptions:()=>Lk,DrawTextField:()=>Ri,DrawTextFieldOptions:()=>gh,drawContour:()=>Fs,drawDetections:()=>CQ,drawFaceExpressions:()=>Hrt,drawFaceLandmarks:()=>jrt});function Fs(i,a,u=!1){if(i.beginPath(),a.slice(1).forEach(({x:h,y:d},g)=>{let x=a[g];i.moveTo(x.x,x.y),i.lineTo(h,d)}),u){let h=a[a.length-1],d=a[0];if(!h||!d)return;i.moveTo(h.x,h.y),i.lineTo(d.x,d.y)}i.stroke()}var hg={};mh(hg,{computeReshapedDimensions:()=>H1,getCenterPoint:()=>Ea,isDimensions:()=>dg,isEven:()=>fg,isFloat:()=>q1,isTensor:()=>$a,isTensor1D:()=>bQ,isTensor2D:()=>U1,isTensor3D:()=>Rs,isTensor4D:()=>Wr,isValidNumber:()=>Io,isValidProbablitiy:()=>Cl,range:()=>Jo,round:()=>Ia});var FE=te(ee()),jn=class{constructor(a,u){if(!Io(a)||!Io(u))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:a,height:u})}`);this._width=a,this._height=u}get width(){return this._width}get height(){return this._height}reverse(){return new jn(1/this.width,1/this.height)}};function $a(i,a){return i instanceof FE.Tensor&&i.shape.length===a}function bQ(i){return $a(i,1)}function U1(i){return $a(i,2)}function Rs(i){return $a(i,3)}function Wr(i){return $a(i,4)}function q1(i){return i%1!==0}function fg(i){return i%2===0}function Ia(i,a=2){let u=Math.pow(10,a);return Math.floor(i*u)/u}function dg(i){return i&&i.width&&i.height}function H1({width:i,height:a},u){let h=u/Math.max(a,i);return new jn(Math.round(i*h),Math.round(a*h))}function Ea(i){return i.reduce((a,u)=>a.add(u),new Yt(0,0)).div(new Yt(i.length,i.length))}function Jo(i,a,u){return Array(i).fill(0).map((h,d)=>a+d*u)}function Io(i){return!!i&&i!==Infinity&&i!==-Infinity&&!isNaN(i)||i===0}function Cl(i){return Io(i)&&0<=i&&i<=1}var Yt=class{constructor(a,u){this._x=a,this._y=u}get x(){return this._x}get y(){return this._y}add(a){return new Yt(this.x+a.x,this.y+a.y)}sub(a){return new Yt(this.x-a.x,this.y-a.y)}mul(a){return new Yt(this.x*a.x,this.y*a.y)}div(a){return new Yt(this.x/a.x,this.y/a.y)}abs(){return new Yt(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(Math.pow(this.x,2)+Math.pow(this.y,2))}floor(){return new Yt(Math.floor(this.x),Math.floor(this.y))}},De=class{static isRect(a){return!!a&&[a.x,a.y,a.width,a.height].every(Io)}static assertIsValidBox(a,u,h=!1){if(!De.isRect(a))throw new Error(`${u} - invalid box: ${JSON.stringify(a)}, expected object with properties x, y, width, height`);if(!h&&(a.width<0||a.height<0))throw new Error(`${u} - width (${a.width}) and height (${a.height}) must be positive numbers`)}constructor(a,u=!0){let h=a||{},d=[h.left,h.top,h.right,h.bottom].every(Io),g=[h.x,h.y,h.width,h.height].every(Io);if(!g&&!d)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(h)}`);let[x,w,k,C]=g?[h.x,h.y,h.width,h.height]:[h.left,h.top,h.right-h.left,h.bottom-h.top];De.assertIsValidBox({x,y:w,width:k,height:C},"Box.constructor",u),this._x=x,this._y=w,this._width=k,this._height=C}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Yt(this.left,this.top)}get topRight(){return new Yt(this.right,this.top)}get bottomLeft(){return new Yt(this.left,this.bottom)}get bottomRight(){return new Yt(this.right,this.bottom)}round(){let[a,u,h,d]=[this.x,this.y,this.width,this.height].map(g=>Math.round(g));return new De({x:a,y:u,width:h,height:d})}floor(){let[a,u,h,d]=[this.x,this.y,this.width,this.height].map(g=>Math.floor(g));return new De({x:a,y:u,width:h,height:d})}toSquare(){let{x:a,y:u,width:h,height:d}=this,g=Math.abs(h-d);return hu&&(w=-F+u+h,F=u),_>a&&(k=-_+a+d,_=a),C<1&&(k=2-C,C=1),$<1&&(k=2-$,$=1),{dy:x,edy:k,dx:g,edx:w,y:$,ey:_,x:C,ex:F,w:h,h:d}}calibrate(a){return new De({left:this.left+a.left*this.width,top:this.top+a.top*this.height,right:this.right+a.right*this.width,bottom:this.bottom+a.bottom*this.height}).toSquare().round()}},Da=class extends De{constructor(a,u,h,d,g=!1){super({left:a,top:u,right:h,bottom:d},g)}};var Ps=class{constructor(a,u,h,d,g){this._imageDims=new jn(g.width,g.height),this._score=a,this._classScore=u,this._className=h,this._box=new De(d).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new De(this._box).rescale(this.imageDims.reverse())}forSize(a,u){return new Ps(this.score,this.classScore,this.className,this.relativeBox,{width:a,height:u})}},Ve=class extends Ps{constructor(a,u,h){super(a,a,"",u,h)}forSize(a,u){let{score:h,relativeBox:d,imageDims:g}=super.forSize(a,u);return new Ve(h,d,g)}};function mg(i,a,u=!0){let h=Math.max(0,Math.min(i.right,a.right)-Math.max(i.left,a.left)),d=Math.max(0,Math.min(i.bottom,a.bottom)-Math.max(i.top,a.top)),g=h*d;return u?g/(i.area+a.area-g):g/Math.min(i.area,a.area)}function gg(i){let a=i.map(w=>w.x),u=i.map(w=>w.y),h=a.reduce((w,k)=>kkww({score:x,boxIndex:w})).sort((x,w)=>x.score-w.score).map(x=>x.boxIndex),g=[];for(;d.length>0;){let x=d.pop();g.push(x);let w=d,k=[];for(let C=0;Ck[$]<=u)}return g}var Zo=te(ee());function oo(i,a){return Zo.tidy(()=>{let[u,h,d]=a,g=Zo.fill([...i.shape.slice(0,3),1],u,"float32"),x=Zo.fill([...i.shape.slice(0,3),1],h,"float32"),w=Zo.fill([...i.shape.slice(0,3),1],d,"float32"),k=Zo.concat([g,x,w],3);return Zo.sub(i,k)})}var Di=te(ee());function bg(i,a=!1){return Di.tidy(()=>{let[u,h]=i.shape.slice(1);if(u===h)return i;let d=Math.abs(u-h),g=Math.round(d*(a?.5:1)),x=u>h?2:1,w=_=>{let W=i.shape.slice();return W[x]=_,Di.fill(W,0,"float32")},k=w(g),C=d-k.shape[x],$=a&&C?w(C):null,F=[$,i,k].filter(_=>!!_).map(_=>Di.cast(_,"float32"));return Di.concat(F,x)})}function RE(i){let a=i.slice();for(let u=a.length-1;u>0;u--){let h=Math.floor(Math.random()*(u+1)),d=a[u];a[u]=a[h],a[h]=d}return a}function Sl(i){return 1/(1+Math.exp(-i))}function PE(i){return Math.log(i/(1-i))}var Aa=class extends De{constructor(a,u,h,d,g=!1){super({x:a,y:u,width:h,height:d},g)}},xQ=.5,wQ=.43,vQ=.45,Cr=class{constructor(a,u,h=new Yt(0,0)){let{width:d,height:g}=u;this._imgDims=new jn(d,g),this._shift=h,this._positions=a.map(x=>x.mul(new Yt(d,g)).add(h))}get shift(){return new Yt(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(a=>a.sub(this._shift).div(new Yt(this.imageWidth,this.imageHeight)))}forSize(a,u){return new this.constructor(this.relativePositions,{width:a,height:u})}shiftBy(a,u){return new this.constructor(this.relativePositions,this._imgDims,new Yt(a,u))}shiftByPoint(a){return this.shiftBy(a.x,a.y)}align(a,u={}){if(a){let g=a instanceof Ve?a.box.floor():new De(a);return this.shiftBy(g.x,g.y).align(null,u)}let{useDlibAlignment:h,minBoxPadding:d}=Object.assign({},{useDlibAlignment:!1,minBoxPadding:.2},u);return h?this.alignDlib():this.alignMinBbox(d)}alignDlib(){let a=this.getRefPointsForAlignment(),[u,h,d]=a,g=F=>d.sub(F).magnitude(),x=(g(u)+g(h))/2,w=Math.floor(x/vQ),k=Ea(a),C=Math.floor(Math.max(0,k.x-xQ*w)),$=Math.floor(Math.max(0,k.y-wQ*w));return new Aa(C,$,Math.min(w,this.imageWidth+C),Math.min(w,this.imageHeight+$))}alignMinBbox(a){let u=gg(this.positions);return u.pad(u.width*a,u.height*a)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var j1=class extends Cr{getRefPointsForAlignment(){let a=this.positions;return[a[0],a[1],Ea([a[3],a[4]])]}};var Fa=class extends Cr{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ea)}};var $l=class{constructor(a,u){this._label=a,this._distance=u}get label(){return this._label}get distance(){return this._distance}toString(a=!0){return`${this.label}${a?` (${Ia(this.distance)})`:""}`}};var Il=class extends De{static assertIsValidLabeledBox(a,u){if(De.assertIsValidBox(a,u),!Io(a.label))throw new Error(`${u} - expected property label (${a.label}) to be a number`)}constructor(a,u){super(a);this._label=u}get label(){return this._label}};var Qo=class{constructor(a,u){if(!(typeof a=="string"))throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(u)||u.some(h=>!(h instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=a,this._descriptors=u}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(a=>Array.from(a))}}static fromJSON(a){let u=a.descriptors.map(h=>new Float32Array(h));return new Qo(a.label,u)}};var K1=class extends Il{static assertIsValidPredictedBox(a,u){if(Il.assertIsValidLabeledBox(a,u),!Cl(a.score)||!Cl(a.classScore))throw new Error(`${u} - expected properties score (${a.score}) and (${a.classScore}) to be a number between [0, 1]`)}constructor(a,u,h,d){super(a,u);this._score=h,this._classScore=d}get score(){return this._score}get classScore(){return this._classScore}};function Eo(i){return i.detection instanceof Ve}function Ai(i,a){let u={detection:a};return Object.assign({},i,u)}function X1(){let i=window.fetch||function(){throw new Error("fetch - missing fetch implementation for browser environment")},a=function(){throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:i,readFile:a}}function xg(i){let a="";if(!i)try{i=require("fs")}catch(h){a=h.toString()}let u=i?function(h){return new Promise((d,g)=>{i.readFile(h,function(x,w){return x?g(x):d(w)})})}:function(){throw new Error(`readFile - failed to require fs in nodejs environment with error: ${a}`)};return{readFile:u}}function Y1(){let i=global.Canvas||global.HTMLCanvasElement,a=global.Image||global.HTMLImageElement,u=function(){if(i)return new i;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},h=function(){if(a)return new a;throw new Error("createImageElement - missing Image implementation for nodejs environment")},d=global.fetch||function(){throw new Error("fetch - missing fetch implementation for nodejs environment")},g=xg();return{Canvas:i||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:a||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:u,createImageElement:h,fetch:d,...g}}function J1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Z1=te(LE()),Dn;function NQ(){if(!Dn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Dn}function Q1(i){Dn=i}function tT(){if(J1())return Q1(X1());if(Z1.isNodejs())return Q1(Y1())}function _Q(i){if(Dn||tT(),!Dn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:a=Dn.Canvas,Image:u=Dn.Image}=i;Dn.Canvas=a,Dn.Image=u,Dn.createCanvasElement=i.createCanvasElement||(()=>new a),Dn.createImageElement=i.createImageElement||(()=>new u),Dn.ImageData=i.ImageData||Dn.ImageData,Dn.Video=i.Video||Dn.Video,Dn.fetch=i.fetch||Dn.fetch,Dn.readFile=i.readFile||Dn.readFile}var $e={getEnv:NQ,setEnv:Q1,initialize:tT,createBrowserEnv:X1,createFileSystem:xg,createNodejsEnv:Y1,monkeyPatch:_Q,isBrowser:J1,isNodejs:Z1.isNodejs};tT();function Fi(i){return!$e.isNodejs()&&typeof i=="string"?document.getElementById(i):i}function Qn(i){let{Canvas:a,CanvasRenderingContext2D:u}=$e.getEnv();if(i instanceof u)return i;let h=Fi(i);if(!(h instanceof a))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let d=h.getContext("2d");if(!d)throw new Error("resolveContext2d - canvas 2d context is null");return d}var ts;(function(i){i.TOP_LEFT="TOP_LEFT",i.TOP_RIGHT="TOP_RIGHT",i.BOTTOM_LEFT="BOTTOM_LEFT",i.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ts||(ts={}));var gh=class{constructor(a={}){let{anchorPosition:u,backgroundColor:h,fontColor:d,fontSize:g,fontStyle:x,padding:w}=a;this.anchorPosition=u||ts.TOP_LEFT,this.backgroundColor=h||"rgba(0, 0, 0, 0.5)",this.fontColor=d||"rgba(255, 255, 255, 1)",this.fontSize=g||14,this.fontStyle=x||"Georgia",this.padding=w||4}},Ri=class{constructor(a,u,h={}){this.text=typeof a=="string"?[a]:a instanceof Ri?a.text:a,this.anchor=u,this.options=new gh(h)}measureWidth(a){let{padding:u}=this.options;return this.text.map(h=>a.measureText(h).width).reduce((h,d)=>h{let et=k+F.x,tt=k+F.y+(W+1)*x;h.fillText(_,et,tt)})}},eT=class{constructor(a={}){let{boxColor:u,lineWidth:h,label:d,drawLabelOptions:g}=a;this.boxColor=u||"rgba(0, 0, 255, 1)",this.lineWidth=h||2,this.label=d;let x={anchorPosition:ts.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new gh(Object.assign({},x,g))}},wg=class{constructor(a,u={}){this.box=new De(a),this.options=new eT(u)}draw(a){let u=Qn(a),{boxColor:h,lineWidth:d}=this.options,{x:g,y:x,width:w,height:k}=this.box;u.strokeStyle=h,u.lineWidth=d,u.strokeRect(g,x,w,k);let{label:C}=this.options;C&&new Ri([C],{x:g-d/2,y:x},this.options.drawLabelOptions).draw(a)}};function CQ(i,a){let u=Array.isArray(a)?a:[a];u.forEach(h=>{let d=h instanceof Ve?h.score:Eo(h)?h.detection.score:void 0,g=h instanceof Ve?h.box:Eo(h)?h.detection.box:new De(h),x=d?`${Ia(d)}`:void 0;new wg(g,{label:x}).draw(i)})}var Jl=te(ee());function El(i){let{Image:a,Video:u}=$e.getEnv();return i instanceof a&&i.complete||i instanceof u&&i.readyState>=3}function vg(i){return new Promise((a,u)=>{if(i instanceof $e.getEnv().Canvas||El(i))return a(null);function h(g){if(!g.currentTarget)return;g.currentTarget.removeEventListener("load",h),g.currentTarget.removeEventListener("error",d),a(g)}function d(g){if(!g.currentTarget)return;g.currentTarget.removeEventListener("load",h),g.currentTarget.removeEventListener("error",d),u(g)}i.addEventListener("load",h),i.addEventListener("error",d)})}function Tg(i){return new Promise((a,u)=>{if(!(i instanceof Blob))return u("bufferToImage - expected buf to be of type: Blob");let h=new FileReader;h.onload=()=>{if(typeof h.result!="string")return u("bufferToImage - expected reader.result to be a string, in onload");let d=$e.getEnv().createImageElement();d.onload=()=>a(d),d.onerror=u,d.src=h.result},h.onerror=u,h.readAsDataURL(i)})}function Pi(i){let{Image:a,Video:u}=$e.getEnv();return i instanceof a?new jn(i.naturalWidth,i.naturalHeight):i instanceof u?new jn(i.videoWidth,i.videoHeight):new jn(i.width,i.height)}function Ra({width:i,height:a}){let{createCanvasElement:u}=$e.getEnv(),h=u();return h.width=i,h.height=a,h}function Dl(i,a){let{ImageData:u}=$e.getEnv();if(!(i instanceof u)&&!El(i))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:h,height:d}=a||Pi(i),g=Ra({width:h,height:d});return i instanceof u?Qn(g).putImageData(i,0,0):Qn(g).drawImage(i,0,0,h,d),g}var kg=te(ee());async function Ng(i,a){let u=a||$e.getEnv().createCanvasElement(),[h,d,g]=i.shape.slice(Wr(i)?1:0),x=kg.tidy(()=>i.as3D(h,d,g).toInt());return await kg.browser.toPixels(x,u),x.dispose(),u}function yh(i){let{Image:a,Canvas:u,Video:h}=$e.getEnv();return i instanceof a||i instanceof u||i instanceof h}var SQ=1e-7,$Q=1e-4,nT=class{time(a){return st("time")}read(a){return st("read")}readSync(a){return st("readSync")}numDataIds(){return st("numDataIds")}disposeData(a){return st("disposeData")}write(a,u,h){return st("write")}move(a,u,h,d){return st("move")}memory(){return st("memory")}floatPrecision(){return st("floatPrecision")}epsilon(){return this.floatPrecision()===32?SQ:$Q}batchMatMul(a,u,h,d){return st("batchMatMul")}fusedBatchMatMul({a,b:u,transposeA:h,transposeB:d,bias:g,activation:x,preluActivationWeights:w}){return st("fusedBatchMatMul")}slice(a,u,h){return st("slice")}stridedSlice(a,u,h,d){return st("stridedSlice")}unstack(a,u){return st("unstack")}reverse(a,u){return st("reverse")}concat(a,u){return st("concat")}neg(a){return st("neg")}add(a,u){return st("add")}addN(a){return st("addN")}subtract(a,u){return st("subtract")}multiply(a,u){return st("multiply")}realDivide(a,u){return st("realDivide")}floorDiv(a,u){return st("floorDiv")}sum(a,u){return st("sum")}prod(a,u){return st("prod")}unsortedSegmentSum(a,u,h){return st("unsortedSegmentSum")}argMin(a,u){return st("argMin")}argMax(a,u){return st("argMax")}equal(a,u){return st("equal")}notEqual(a,u){return st("notEqual")}less(a,u){return st("less")}lessEqual(a,u){return st("lessEqual")}greater(a,u){return st("greater")}greaterEqual(a,u){return st("greaterEqual")}logicalNot(a){return st("logicalNot")}logicalAnd(a,u){return st("logicalAnd")}logicalOr(a,u){return st("logicalOr")}where(a){return st("where")}select(a,u,h){return st("select")}topk(a,u,h){return st("topk")}min(a,u){return st("min")}minimum(a,u){return st("minimum")}mod(a,u){return st("mod")}max(a,u){return st("max")}maximum(a,u){return st("maximum")}all(a,u){return st("all")}any(a,u){return st("any")}squaredDifference(a,u){return st("squaredDifference")}ceil(a){return st("ceil")}floor(a){return st("floor")}round(a){return st("round")}sign(a){return st("sign")}isNaN(a){return st("isNaN")}isInf(a){return st("isInf")}isFinite(a){return st("isFinite")}pow(a,u){return st("pow")}exp(a){return st("exp")}expm1(a){return st("expm1")}softmax(a,u){return st("softmax")}log(a){return st("log")}log1p(a){return st("log1p")}sqrt(a){return st("sqrt")}rsqrt(a){return st("rsqrt")}square(a){return st("square")}reciprocal(a){return st("reciprocal")}relu(a){return st("relu")}relu6(a){return st("relu6")}prelu(a,u){return st("prelu")}elu(a){return st("elu")}eluDer(a,u){return st("eluDer")}selu(a){return st("selu")}int(a){return st("int")}clip(a,u,h){return st("clip")}abs(a){return st("abs")}complexAbs(a){return st("complexAbs")}sigmoid(a){return st("sigmoid")}softplus(a){return st("softplus")}sin(a){return st("sin")}cos(a){return st("cos")}tan(a){return st("tan")}asin(a){return st("asin")}acos(a){return st("acos")}atan(a){return st("atan")}atan2(a,u){return st("atan2")}sinh(a){return st("sinh")}cosh(a){return st("cosh")}tanh(a){return st("tanh")}asinh(a){return st("asinh")}acosh(a){return st("acosh")}atanh(a){return st("atanh")}erf(a){return st("erf")}step(a,u){return st("step")}fusedConv2d({input:a,filter:u,convInfo:h,bias:d,activation:g,preluActivationWeights:x}){return st("fusedConv2d")}conv2d(a,u,h){return st("conv2d")}conv2dDerInput(a,u,h){return st("conv2dDerInput")}conv2dDerFilter(a,u,h){return st("conv2dDerFilter")}fusedDepthwiseConv2D({input:a,filter:u,convInfo:h,bias:d,activation:g,preluActivationWeights:x}){return st("fusedDepthwiseConv2D")}depthwiseConv2D(a,u,h){return st("depthwiseConv2D")}depthwiseConv2DDerInput(a,u,h){return st("depthwiseConv2DDerInput")}depthwiseConv2DDerFilter(a,u,h){return st("depthwiseConv2DDerFilter")}conv3d(a,u,h){return st("conv3d")}conv3dDerInput(a,u,h){return st("conv3dDerInput")}conv3dDerFilter(a,u,h){return st("conv3dDerFilter")}maxPool(a,u){return st("maxPool")}maxPoolBackprop(a,u,h,d){return st("maxPoolBackprop")}avgPool(a,u){return st("avgPool")}avgPoolBackprop(a,u,h){return st("avgPoolBackprop")}avgPool3d(a,u){return st("avgPool3d")}avgPool3dBackprop(a,u,h){return st("avgPool3dBackprop")}maxPool3d(a,u){return st("maxPool3d")}maxPool3dBackprop(a,u,h,d){return st("maxPool3dBackprop")}reshape(a,u){return st("reshape")}cast(a,u){return st("cast")}tile(a,u){return st("tile")}pad(a,u,h){return st("pad")}transpose(a,u){return st("transpose")}gather(a,u,h){return st("gather")}gatherND(a,u){return st("gatherND")}scatterND(a,u,h){return st("scatterND")}batchToSpaceND(a,u,h){return st("batchToSpaceND")}spaceToBatchND(a,u,h){return st("spaceToBatchND")}resizeBilinear(a,u,h,d){return st("resizeBilinear")}resizeBilinearBackprop(a,u,h){return st("resizeBilinearBackprop")}resizeNearestNeighbor(a,u,h,d){return st("resizeNearestNeighbor")}resizeNearestNeighborBackprop(a,u,h){return st("resizeNearestNeighborBackprop")}batchNorm(a,u,h,d,g,x){return st("batchNorm")}localResponseNormalization4D(a,u,h,d,g){return st("localResponseNormalization4D")}LRNGrad(a,u,h,d,g,x,w){return st("LRNGrad")}multinomial(a,u,h,d){return st("multinomial")}oneHot(a,u,h,d){return st("oneHot")}cumsum(a,u,h,d){return st("cumsum")}nonMaxSuppression(a,u,h,d,g){return st("nonMaxSuppression")}fft(a){return st("fft")}ifft(a){return st("ifft")}complex(a,u){return st("complex")}real(a){return st("real")}imag(a){return st("imag")}cropAndResize(a,u,h,d,g,x){return st("cropAndResize")}depthToSpace(a,u,h){return st("depthToSpace")}split(a,u,h){return st("split")}sparseToDense(a,u,h,d){return st("sparseToDense")}diag(a){return st("diag")}fill(a,u,h){return st("fill")}onesLike(a){return st("onesLike")}zerosLike(a){return st("zerosLike")}linspace(a,u,h){return st("linspace")}dispose(){return st("dispose")}};function st(i){throw new Error(`'${i}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function bh(i,a,u){return Math.max(i,Math.min(a,u))}function U(i,a){if(!i)throw new Error(typeof a=="string"?a:a())}function ae(i,a,u=""){U(Os(i,a),()=>u+` Shapes ${i} and ${a} must match`)}function Al(i){U(i!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Pa(i,a=[],u=!1){if(a==null&&(a=[]),Array.isArray(i)||Vr(i)&&!u)for(let h=0;h=0)u*=i[g];else if(i[g]===-1){if(h!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${h} and dim ${g}`);h=g}else if(i[g]<0)throw Error(`Shapes can not be < 0. Found ${i[g]} at dim ${g}`);if(h===-1){if(a>0&&a!==u)throw Error(`Size(${a}) must match the product of shape ${i}`);return i}if(u===0)throw Error(`Cannot infer the missing size in [${i}] when there are 0 elements`);if(a%u!==0)throw Error(`The implicit shape can't be a fractional number. Got ${a} / ${u}`);let d=i.slice();return d[h]=a/u,d}function Zt(i,a){let u=a.length;return i=i==null?a.map((h,d)=>d):[].concat(i),U(i.every(h=>h>=-u&&h`All values in axis param must be in range [-${u}, ${u}) but got axis ${i}`),U(i.every(h=>ke(h)),()=>`All values in axis param must be integers but got axis ${i}`),i.map(h=>h<0?u+h:h)}function BE(i,a){let u=[],h=[],d=a!=null&&Array.isArray(a)&&a.length===0,g=a==null||d?null:Zt(a,i).sort(),x=0;for(let w=0;ww)&&i[w]===1&&(u.push(i[w]),h.push(w)),g[x]<=w&&x++}i[w]!==1&&(u.push(i[w]),h.push(w))}return{newShape:u,keptDims:h}}function zE(i,a){let u=null;if(i==null||i==="float32")u=new Float32Array(a);else if(i==="int32")u=new Int32Array(a);else if(i==="bool")u=new Uint8Array(a);else if(i==="string")u=new Array(a);else throw new Error(`Unknown data type ${i}`);return u}function WE(i,a){for(let u=0;ua+=u.length),a}function xh(i){return typeof i=="string"||i instanceof String}function IQ(i){return typeof i=="boolean"}function EQ(i){return typeof i=="number"}function wh(i){return Array.isArray(i)?wh(i[0]):i instanceof Float32Array?"float32":i instanceof Int32Array||i instanceof Uint8Array?"int32":EQ(i)?"float32":xh(i)?"string":IQ(i)?"bool":"float32"}function rT(i){return!!(i&&i.constructor&&i.call&&i.apply)}function vh(i){let a=i.length;if(a<2)return[];let u=new Array(a-1);u[a-2]=i[a-1];for(let h=a-3;h>=0;--h)u[h]=u[h+1]*i[h+1];return u}function qE(i,a,u){let h=new Array;if(a.length===1){let d=a[0];for(let g=0;gw*k);for(let w=0;wh*d);if(u===0)return[];if(u!==a.length)throw new Error(`[${i}] does not match the input size ${a.length}.`);return qE(0,i,a)}function _g(i,a){let u=Oa(i,a);for(let h=0;h{U(Number.isInteger(a)&&a>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${i}].`)})}function Sg(i){return i&&i.then&&typeof i.then=="function"}var HE="tfjsflags",sT=class{constructor(a){this.global=a,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(a,u){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${u}.`),this.platformName=a,this.platform=u}registerFlag(a,u,h){if(this.flagRegistry[a]={evaluationFn:u,setHook:h},this.urlFlags[a]!=null){let d=this.urlFlags[a];console.warn(`Setting feature override from URL ${a}: ${d}.`),this.set(a,d)}}async getAsync(a){return a in this.flags?this.flags[a]:(this.flags[a]=await this.evaluateFlag(a),this.flags[a])}get(a){if(a in this.flags)return this.flags[a];let u=this.evaluateFlag(a);if(Sg(u))throw new Error(`Flag ${a} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[a]=u,this.flags[a]}getNumber(a){return this.get(a)}getBool(a){return this.get(a)}getFlags(){return this.flags}get features(){return this.flags}set(a,u){if(this.flagRegistry[a]==null)throw new Error(`Cannot set flag ${a} as it has not been registered.`);this.flags[a]=u,this.flagRegistry[a].setHook!=null&&this.flagRegistry[a].setHook(u)}evaluateFlag(a){if(this.flagRegistry[a]==null)throw new Error(`Cannot evaluate flag '${a}': no evaluation function found.`);return this.flagRegistry[a].evaluationFn()}setFlags(a){this.flags=Object.assign({},a)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let a=DQ(this.global.location.search);if(HE in a){let u=a[HE].split(",");u.forEach(h=>{let[d,g]=h.split(":");this.urlFlags[d]=AQ(d,g)})}}};function DQ(i){let a={};return i.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(u,...h)=>(FQ(a,h[0],h[1]),h.join("="))),a}function FQ(i,a,u){i[decodeURIComponent(a)]=decodeURIComponent(u||"")}function AQ(i,a){if(a=a.toLowerCase(),a==="true"||a==="false")return a==="true";if(`${+a}`===a)return+a;throw new Error(`Could not parse value flag value ${a} for flag ${i}.`)}function Me(){return jE}var jE=null;function KE(i){jE=i}var iT;function aT(){if(iT==null){let i;if(typeof window!="undefined")i=window;else if(typeof global!="undefined")i=global;else if(typeof process!="undefined")i=process;else if(typeof self!="undefined")i=self;else throw new Error("Could not find a global object");iT=i}return iT}function RQ(){let i=aT();return i._tfGlobals==null&&(i._tfGlobals=new Map),i._tfGlobals}function cT(i,a){let u=RQ();if(u.has(i))return u.get(i);{let h=a();return u.set(i,h),u.get(i)}}var $g="Abs",Ig="Acos",Eg="Acosh",Rl="Add",XE="AddN",YE="All",JE="Any",Dg="ArgMax",Ag="ArgMin",Fg="Asin",Rg="Asinh",Pg="Atan",Og="Atanh",Lg="Atan2",Mg="AvgPool",ZE="AvgPoolBackprop",QE="AvgPool3D",t2="AvgPool3DBackprop",Bg="BatchMatMul",zg="BatchToSpaceND",Wg="BroadcastTo",Pl="Cast",Vg="Ceil",Gg="ClipByValue",e2="Complex",Ug="Concat",qg="Conv2D",n2="Conv2DBackpropFilter",Hg="Conv2DBackpropInput",r2="Conv3D",o2="Conv3DBackpropFilterV2",s2="Conv3DBackpropInputV2",jg="Cos",Kg="Cosh",Xg="Cumsum",i2="CropAndResize",a2="DepthToSpace",Yg="DepthwiseConv2dNative",c2="DepthwiseConv2dNativeBackpropFilter",l2="DepthwiseConv2dNativeBackpropInput",Jg="Dilation2D",u2="Dilation2DBackpropInput",p2="Dilation2DBackpropFilter",Zg="Div",Qg="Elu",h2="EluGrad",ty="Erf",f2="Equal",ey="Exp",ny="Expm1",d2="FFT",m2="Fill",g2="FlipLeftRight",ry="Floor",oy="FloorDiv",sy="FusedBatchNorm",iy="GatherV2",y2="Greater",ay="GreaterEqual",cy="Identity",b2="IFFT",x2="Imag",ly="IsFinite",uy="IsInf",py="IsNan",w2="Less",v2="LessEqual",hy="Log",fy="Log1p",T2="LogicalAnd",k2="LogicalNot",N2="LogicalOr",dy="LogSoftmax",my="LRN",_2="LRNBackprop",gy="Max",yy="Maximum",by="MaxPool",C2="MaxPoolBackprop",S2="MaxPool3D",$2="MaxPool3DBackprop",I2="Mean",xy="Min",wy="Minimum",vy="MirrorPad",Ty="Mod",ky="Multiply",Ny="Negate",E2="NotEqual",D2="NonMaxSuppressionV3",A2="NonMaxSuppressionV4",F2="NonMaxSuppressionV5",_y="OnesLike",Cy="OneHot",Sy="PadV2",$y="Pow",Iy="Prelu",R2="Prod",P2="Range",O2="Real",Ey="Reciprocal",Dy="Relu",Ay="Reshape",Fy="ResizeNearestNeighbor",L2="ResizeNearestNeighborGrad",Ry="ResizeBilinear",M2="ResizeBilinearGrad",Py="Relu6",Oy="Reverse",Ly="Round",My="Rsqrt",By="SelectV2",zy="Selu",Wy="Slice",Vy="Sin",Gy="Sinh",Uy="Sign",qy="Sigmoid",Hy="Softplus",jy="Sqrt",Ky="Sum",Xy="SpaceToBatchND",Yy="SplitV",Jy="Softmax",Zy="SquaredDifference",B2="Square",Qy="Sub",z2="StridedSlice",tb="Tan",eb="Tanh",nb="Tile",W2="TopK",rb="Transpose",V2="Unique",ob="Unpack",sb="UnsortedSegmentSum",ib="ZerosLike",ab="Step",lT="FromPixels",G2="RotateWithOffset";var U2=cT("kernelRegistry",()=>new Map),uT=cT("gradRegistry",()=>new Map);function cb(i,a){let u=PQ(i,a);return U2.get(u)}function pT(i){return uT.get(i)}function hT(i){let a=U2.entries(),u=[];for(;;){let{done:h,value:d}=a.next();if(h)break;let[g,x]=d,[w]=g.split("_");w===i&&u.push(x)}return u}function q2(i){let{kernelName:a}=i;uT.has(a)&&(Me().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${a}'`)),uT.set(a,i)}function PQ(i,a){return`${a}_${i}`}function OQ(i,a){return i instanceof Float32Array&&a==="float32"||i instanceof Int32Array&&a==="int32"||i instanceof Uint8Array&&a==="bool"}function lb(i,a){if(a==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(i)&&(i=Pa(i)),Me().getBool("DEBUG")&&WE(i,a),OQ(i,a))return i;if(a==null||a==="float32"||a==="complex64")return new Float32Array(i);if(a==="int32")return new Int32Array(i);if(a==="bool"){let u=new Uint8Array(i.length);for(let h=0;h{d=h()},x=this.backendTimer.time(g);for(let k=0;k{LQ($,C.dtype,a)})}let w={kernelName:a,outputs:d,inputs:u,timeMs:x.then(k=>k.kernelMs),extraInfo:x.then(k=>k.getExtraProfileInfo!=null?k.getExtraProfileInfo():"")};return w}logKernelProfile(a){let{kernelName:u,outputs:h,timeMs:d,inputs:g,extraInfo:x}=a;h.forEach(w=>{Promise.all([w.data(),d,x]).then(k=>{this.logger.logKernelProfile(u,w,k[0],k[1],g,k[2])})})}};function LQ(i,a,u){if(a!=="float32")return!1;for(let h=0;h0?tt:""} `}}console.log(`%c${k} %c${w} %c${C}D ${F} %c${$} %c${_} %c${x}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function K2(i,a,u){let h={},d={};for(let k=0;kh[tt.id]=!0),W=!0,d[C.id]=!0;break}if(W)break}}let g={};g[u.id]=!0;let x={};for(let k=i.length-1;k>=0;k--){let C=i[k],$=C.inputs;for(let F=0;F=0;d--){let g=a[d],x=[];if(g.outputs.forEach(k=>{let C=i[k.id];C!=null?x.push(C):x.push(null)}),g.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${g.kernelName}.`);let w=g.gradient(x);for(let k in g.inputs){if(!(k in w))throw new Error(`Cannot backprop through input ${k}. Available gradients found: ${Object.keys(w)}.`);let C=u(()=>w[k]());if(C.dtype!=="float32")throw new Error(`Error in gradient for op ${g.kernelName}. The gradient of input ${k} must have 'float32' dtype, but has '${C.dtype}'`);let $=g.inputs[k];if(!Os(C.shape,$.shape))throw new Error(`Error in gradient for op ${g.kernelName}. The gradient of input '${k}' has shape '${C.shape}', which does not match the shape of the input '${$.shape}'`);if(i[$.id]==null)i[$.id]=C;else{let F=i[$.id];i[$.id]=h(F,C),F.dispose()}}}}var Y2=20,Th=3,gT=7;function J2(i,a,u,h){let d=vh(a),g=MQ(i,a,u,d),x=a.length,w=ub(i,a,u,d,g),k=["Tensor"];return h&&(k.push(` dtype: ${u}`),k.push(` rank: ${x}`),k.push(` shape: [${a}]`),k.push(" values:")),k.push(w.map(C=>" "+C).join(` `)),k.join(` `)}function MQ(i,a,u,h){let d=an(a),g=h[h.length-1],x=new Array(g).fill(0),w=a.length,k=u==="complex64"?Nh(i):i;if(w>1)for(let C=0;CY2){let G=Th*x,mt=Array.from(i.slice(0,G)),lt=Array.from(i.slice((w-Th)*x,w*x));return u==="complex64"&&(mt=Nh(mt),lt=Nh(lt)),["["+mt.map((gt,_t)=>kh(gt,d[_t],u)).join(", ")+", ..., "+lt.map((gt,_t)=>kh(gt,d[w-Th+_t],u)).join(", ")+"]"]}let tt=u==="complex64"?Nh(i):Array.from(i);return["["+tt.map((G,mt)=>kh(G,d[mt],u)).join(", ")+"]"]}let C=a.slice(1),$=h.slice(1),F=h[0]*x,_=[];if(w>Y2){for(let tt=0;tt`Length of values '${d}' does not match the size inferred by the shape '${this.size}'.`)}if(u==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=h||zE(u,this.size),this.strides=vh(a)}set(a,...u){u.length===0&&(u=[0]),U(u.length===this.rank,()=>`The number of provided coordinates (${u.length}) must match the rank (${this.rank})`);let h=this.locToIndex(u);this.values[h]=a}get(...a){a.length===0&&(a=[0]);let u=0;for(let d of a){if(d<0||d>=this.shape[u]){let g=`Requested out of range element at ${a}. Buffer shape=${this.shape}`;throw new Error(g)}u++}let h=a[a.length-1];for(let d=0;ddT(h))}catch(h){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return a}dataSync(){this.throwIfDisposed();let a=es().readSync(this.dataId);if(this.dtype==="string")try{return a.map(u=>dT(u))}catch(u){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return a}async bytes(){this.throwIfDisposed();let a=await es().read(this.dataId);return this.dtype==="string"?a:new Uint8Array(a.buffer)}dispose(){if(this.isDisposed)return;es().disposeTensor(this),this.isDisposedInternal=!0}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(a=!1){return Ol.print(this,a)}clone(){return this.throwIfDisposed(),Ol.clone(this)}toString(a=!1){let u=this.dataSync();return J2(u,this.shape,this.dtype,a)}cast(a){return this.throwIfDisposed(),Ol.cast(this,a)}variable(a=!0,u,h){return this.throwIfDisposed(),es().makeVariable(this,a,u,h)}};Object.defineProperty(z,Symbol.hasInstance,{value:i=>!!i&&i.data!=null&&i.dataSync!=null&&i.throwIfDisposed!=null});var _h=class extends z{constructor(a,u,h,d){super(a.shape,a.dtype,a.dataId,d);this.trainable=u,this.name=h}assign(a){if(a.dtype!==this.dtype)throw new Error(`dtype of the new value (${a.dtype}) and previous value (${this.dtype}) must match`);if(!Os(a.shape,this.shape))throw new Error(`shape of the new value (${a.shape}) and previous value (${this.shape}) must match`);es().disposeTensor(this),this.dataId=a.dataId,es().incRef(this,null)}dispose(){es().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_h,Symbol.hasInstance,{value:i=>i instanceof z&&i.assign!=null&&i.assign instanceof Function});var nD;(function(i){i.R0="R0",i.R1="R1",i.R2="R2",i.R3="R3",i.R4="R4",i.R5="R5",i.R6="R6"})(nD||(nD={}));var bT;(function(i){i.float32="float32",i.int32="int32",i.bool="int32",i.complex64="complex64"})(bT||(bT={}));var xT;(function(i){i.float32="float32",i.int32="int32",i.bool="bool",i.complex64="complex64"})(xT||(xT={}));var wT;(function(i){i.float32="float32",i.int32="float32",i.bool="float32",i.complex64="complex64"})(wT||(wT={}));var vT;(function(i){i.float32="complex64",i.int32="complex64",i.bool="complex64",i.complex64="complex64"})(vT||(vT={}));var zQ={float32:wT,int32:bT,bool:xT,complex64:vT};function rD(i,a){if(i==="string"||a==="string"){if(i==="string"&&a==="string")return"string";throw new Error(`Can not upcast ${i} with ${a}`)}return zQ[i][a]}function he(i,a){if(i.dtype===a.dtype)return[i,a];let u=rD(i.dtype,a.dtype);return[i.cast(u),a.cast(u)]}function pb(i){let a=[],u=new Set;return oD(i,a,u),a}function oD(i,a,u){if(i==null)return;if(i instanceof z){a.push(i);return}if(!WQ(i))return;let h=i;for(let d in h){let g=h[d];u.has(g)||(u.add(g),oD(g,a,u))}}function WQ(i){return Array.isArray(i)||typeof i=="object"}var TT=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null}}dispose(){for(let a in this.registeredVariables)this.registeredVariables[a].dispose()}},La=class{constructor(a){this.ENV=a,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new TT}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let a=this.getSortedBackends();for(let u=0;u{u.setupFunc!=null&&u.setupFunc(this.backendInstance)})}disposeRegisteredKernels(a){let u=hT(a);u.forEach(h=>{h.disposeFunc!=null&&h.disposeFunc(this.registry[a])})}initializeBackend(a){let u=this.registryFactory[a];if(u==null)throw new Error(`Cannot initialize backend ${a}, no registration found.`);try{let h=u.factory();if(h&&!(h instanceof nT)&&typeof h.then=="function"){let d=++this.pendingBackendInitId,g=h.then(x=>d(dthis.registryFactory[u].priority-this.registryFactory[a].priority)}initializeBackendsAndReturnBest(){let a=this.getSortedBackends();for(let u=0;uthis.startScope(h),()=>this.endScope(d),()=>(d=u(),d instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),d))}scopedRun(a,u,h){a();try{let d=h();return u(),d}catch(d){throw u(),d}}nextTensorId(){return La.nextTensorId++}nextVariableId(){return La.nextVariableId++}clone(a){let u=this.makeTensorFromDataId(a.dataId,a.shape,a.dtype),h={x:a},d=x=>({x:()=>{let w="float32",k={x},C={dtype:w};return V.runKernelFunc($=>$.cast(x,w),k,null,Pl,C)}}),g=[];return this.addTapeNode(this.state.activeScope.name,h,[u],d,g,{}),u}runKernel(a,u,h,d,g){let x=null,w=null;return this.runKernelFunc(x,u,w,a,h,d,g)}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(a,u,h){let d=this.backend.numDataIds(),g=0;h.forEach(k=>{g+=k.dtype==="complex64"?3:1});let x=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],w=d-u-g-x;if(w>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${w} data ids) after running '${a}'`)}runKernelFunc(a,u,h,d,g,x,w){let k,C=[],$=this.isTapeOn();d==null&&(d=this.state.activeScope!=null?this.state.activeScope.name:"");let F=this.state.numBytes,_=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let W,et=cb(d,this.backendName),tt;if(et!=null)W=()=>{let mt=this.backend.numDataIds();tt=et.kernelFunc({inputs:u,attrs:g,backend:this.backend});let lt=Array.isArray(tt)?tt:[tt];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,mt,lt);let gt=lt.map(({dataId:_t,shape:Gt,dtype:se})=>this.makeTensorFromDataId(_t,Gt,se));if($){let _t=this.getTensorsForGradient(d,u,gt);if(_t==null){w==null&&(w=[]);let Gt=gt.filter((se,fe)=>w[fe]);_t=(x||[]).slice().concat(Gt)}C=this.saveTensorsForBackwardMode(_t)}return gt};else{let mt=lt=>{if(!$)return;C=lt.map(gt=>this.keep(this.clone(gt)))};W=()=>{let lt=this.backend.numDataIds();tt=this.tidy(()=>a(this.backend,mt));let gt=Array.isArray(tt)?tt:[tt];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,lt,gt),gt}}let G;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?k=W():(G=this.profiler.profileKernel(d,u,()=>W()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(G),k=G.outputs)}),$&&this.addTapeNode(d,u,k,h,C,g),this.state.profiling&&this.state.activeProfile.kernels.push({name:d,bytesAdded:this.state.numBytes-F,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-_,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(mt=>u[mt]!=null?u[mt].shape:null),outputShapes:k.map(mt=>mt.shape),kernelTimeMs:G.timeMs,extraInfo:G.extraInfo}),Array.isArray(tt)?k:k[0]}saveTensorsForBackwardMode(a){let u=a.map(h=>this.keep(this.clone(h)));return u}getTensorsForGradient(a,u,h){let d=pT(a);if(d!=null){let g=d.inputsToSave||[],x=d.outputsToSave||[],w;d.saveAllInputs?(U(Array.isArray(u),()=>"saveAllInputs is true, expected inputs to be an array."),w=Object.keys(u).map(C=>u[C])):w=g.map(C=>u[C]);let k=h.filter((C,$)=>x[$]);return w.concat(k)}return null}makeTensor(a,u,h,d){if(a==null)throw new Error("Values passed to engine.makeTensor() are null");h=h||"float32",d=d||this.backend;let g=a;h==="string"&&xh(a[0])&&(g=a.map(k=>H2(k)));let x=d.write(g,u,h),w=new z(u,h,x,this.nextTensorId());if(this.incRef(w,d),h==="string"){let k=this.state.tensorInfo.get(x),C=UE(g);this.state.numBytes+=C-k.bytes,k.bytes=C}return w}makeTensorFromDataId(a,u,h,d){h=h||"float32";let g=new z(u,h,a,this.nextTensorId());return this.incRef(g,d),g}makeVariable(a,u=!0,h,d){h=h||this.nextVariableId().toString(),d!=null&&d!==a.dtype&&(a=a.cast(d));let g=new _h(a,u,h,this.nextTensorId());if(this.state.registeredVariables[g.name]!=null)throw new Error(`Variable with name ${g.name} was already registered`);return this.state.registeredVariables[g.name]=g,this.incRef(g,this.backend),g}incRef(a,u){let h=this.state.tensorInfo.has(a.dataId)?this.state.tensorInfo.get(a.dataId).refCount:0;if(this.state.numTensors++,a.dtype==="string"&&this.state.numStringTensors++,h===0){this.state.numDataBuffers++;let d=0;a.dtype!=="complex64"&&a.dtype!=="string"&&(d=a.size*GE(a.dtype)),this.state.tensorInfo.set(a.dataId,{backend:u||this.backend,dtype:a.dtype,shape:a.shape,bytes:d,refCount:0}),this.state.numBytes+=d}this.state.tensorInfo.get(a.dataId).refCount++,a instanceof _h||this.track(a)}disposeTensor(a){if(!this.state.tensorInfo.has(a.dataId))return;this.state.numTensors--,a.dtype==="string"&&this.state.numStringTensors--;let u=this.state.tensorInfo.get(a.dataId),h=u.refCount;h<=1?(a.dtype!=="complex64"&&(this.state.numBytes-=u.bytes),this.state.numDataBuffers--,u.backend.disposeData(a.dataId),this.state.tensorInfo.delete(a.dataId)):this.state.tensorInfo.get(a.dataId).refCount--}disposeVariables(){for(let a in this.state.registeredVariables){let u=this.state.registeredVariables[a];this.disposeVariable(u)}}disposeVariable(a){this.disposeTensor(a),this.state.registeredVariables[a.name]!=null&&delete this.state.registeredVariables[a.name]}memory(){let a=this.backend.memory();return a.numTensors=this.state.numTensors,a.numDataBuffers=this.state.numDataBuffers,a.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(a.unreliable=!0,a.reasons==null&&(a.reasons=[]),a.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),a}async profile(a){this.state.profiling=!0;let u=this.state.numBytes,h=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await a(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(d=>d.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-u,this.state.activeProfile.newTensors=this.state.numTensors-h;for(let d of this.state.activeProfile.kernels)d.kernelTimeMs=await d.kernelTimeMs,d.extraInfo=await d.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(a,u,h,d,g,x){let w={id:this.state.nextTapeNodeId++,kernelName:a,inputs:u,outputs:h,saved:g},k=pT(a);k!=null&&(d=k.gradFunc),d!=null&&(w.gradient=C=>(C=C.map(($,F)=>{if($==null){let _=h[F],W=Oa(_.size,_.dtype);return this.makeTensor(W,_.shape,_.dtype)}return $}),d(C.length>1?C:C[0],g,x))),this.state.activeTape.push(w)}keep(a){return a.kept=!0,a}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(a){let u={track:[],name:"unnamed scope",id:this.state.nextScopeId++};a&&(u.name=a),this.state.scopeStack.push(u),this.state.activeScope=u}endScope(a){let u=pb(a),h=new Set(u.map(g=>g.id));for(let g=0;g{!g.kept&&g.scopeId===d.id&&this.track(g)})}gradients(a,u,h,d=!1){if(U(u.length>0,()=>"gradients() received an empty list of xs."),h!=null&&h.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${h.dtype}'`);let g=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",a));U(g instanceof z,()=>"The result y returned by f() must be a tensor.");let x=K2(this.state.activeTape,u,g);if(!d&&x.length===0&&u.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let w={};w[g.id]=h==null?VQ(g.shape):h,X2(w,x,C=>this.tidy(C),GQ);let k=u.map(C=>w[C.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(C=>{for(let $ of C.saved)$.dispose()}),this.state.activeTape=null),{value:g,grads:k}})}customGrad(a){return U(rT(a),()=>"The f passed in customGrad(f) must be a function."),(...u)=>{U(u.every(g=>g instanceof z),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let h,d={};return u.forEach((g,x)=>{d[x]=g}),this.runKernelFunc((g,x)=>(h=a(...u,x),U(h.value instanceof z,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),U(rT(h.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),h.value),d,(g,x)=>{let w=h.gradFunc(g,x),k=Array.isArray(w)?w:[w];U(k.length===u.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),U(k.every($=>$ instanceof z),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let C={};return k.forEach(($,F)=>{C[F]=()=>$}),C})}}readSync(a){let u=this.state.tensorInfo.get(a);return u.backend.readSync(a)}read(a){let u=this.state.tensorInfo.get(a);return u.backend.read(a)}async time(a){let u=fT(),h=await this.backend.time(a);return h.wallMs=fT()-u,h}track(a){return this.state.activeScope!=null&&(a.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(a)),a}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new TT;for(let a in this.registry)this.disposeRegisteredKernels(a),this.registry[a].dispose(),delete this.registry[a];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};La.nextTensorId=0;La.nextVariableId=0;function VQ(i){let a=_g(an(i),"float32");return V.makeTensor(a,i,"float32")}function kT(){let i=aT();if(i._tfengine==null){let a=new sT(i);i._tfengine=new La(a)}return KE(i._tfengine.ENV),Q2(()=>i._tfengine),i._tfengine}var V=kT();function GQ(i,a){let u={a:i,b:a};return V.runKernelFunc((h,d)=>{let g=h.add(i,a);return d([i,a]),g},u,null,Rl)}function sD(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ls=Me();Ls.registerFlag("DEBUG",()=>!1,i=>{i&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ls.registerFlag("IS_BROWSER",()=>sD());Ls.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ls.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ls.registerFlag("PROD",()=>!1);Ls.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ls.getBool("DEBUG"));Ls.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ls.registerFlag("IS_TEST",()=>!1);function Ms(i,a){let u=i;if(Vr(i))return a==="string"?[]:[i.length];if(!Array.isArray(i))return[];let h=[];for(;Array.isArray(u)||Vr(u)&&a!=="string";)h.push(u.length),u=u[0];return Array.isArray(i)&&Me().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&iD(i,h,[]),h}function iD(i,a,u){if(u=u||[],!Array.isArray(i)&&!Vr(i)){U(a.length===0,()=>`Element arr[${u.join("][")}] is a primitive, but should be an array/TypedArray of ${a[0]} elements`);return}U(a.length>0,()=>`Element arr[${u.join("][")}] should be a primitive, but is an array of ${i.length} elements`),U(i.length===a[0],()=>`Element arr[${u.join("][")}] should have ${a[0]} elements, but has ${i.length} elements`);let h=a.slice(1);for(let d=0;d=0&&(d=h),aD(h,d,a,u),i==null||!Vr(i)&&!Array.isArray(i)&&typeof i!="number"&&typeof i!="boolean"&&typeof i!="string"){let k=i==null?"null":i.constructor.name;throw new Error(`Argument '${a}' passed to '${u}' must be a Tensor or TensorLike, but got '${k}'`)}let g=Ms(i,d);!Vr(i)&&!Array.isArray(i)&&(i=[i]);let x=!0,w=d!=="string"?lb(i,d):Pa(i,[],x);return V.makeTensor(w,g,d)}function hb(i,a,u,h="numeric"){if(!Array.isArray(i))throw new Error(`Argument ${a} passed to ${u} must be a \`Tensor[]\` or \`TensorLike[]\``);let d=i;return d.map((g,x)=>R(g,`${a}[${x}]`,u),h)}var cD="__op";function O(i){let a=Object.keys(i);if(a.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${a.length} keys.`);let u=a[0],h=i[u];u.endsWith("_")&&(u=u.substring(0,u.length-1)),u=u+cD;let d=(...g)=>{V.startScope(u);try{let x=h(...g);return Sg(x)&&console.error("Cannot return a Promise inside of tidy."),V.endScope(x),x}catch(x){throw V.endScope(null),x}};return Object.defineProperty(d,"name",{value:u,configurable:!0}),d}function UQ(i,a){let u=R(i,"real","complex"),h=R(a,"imag","complex");ae(u.shape,h.shape,`real and imag shapes, ${u.shape} and ${h.shape}, must match in call to tf.complex().`);let d=x=>x.complex(u,h),g={real:u,imag:h};return V.runKernelFunc(d,g,null,e2)}var so=O({complex_:UQ});function ns(i,a,u,h){if(h==null&&(h=wh(i)),h==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Vr(i)&&!Array.isArray(i)&&typeof i!="number"&&typeof i!="boolean"&&typeof i!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(a!=null){Cg(a);let d=an(a),g=an(u);U(d===g,()=>`Based on the provided shape, [${a}], the tensor should have ${d} values but has ${g}`);for(let x=0;x`Error creating a new Tensor. Inferred shape (${u}) does not match the provided shape (${a}). `)}}return!Vr(i)&&!Array.isArray(i)&&(i=[i]),a=a||u,i=h!=="string"?lb(i,h):Pa(i,[],!0),V.makeTensor(i,a,h)}function NT(i,a,u){let h=Ms(i,u);return ns(i,a,h,u)}var _T=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function lD(i){return _T?Buffer.byteLength(i):new Blob([i]).size}function uD(i){if(_T)return Buffer.from(i).toString("base64");let a=new Uint8Array(i),u="";for(let h=0,d=a.length;h{let w=x(a,h);w!==null&&d.push(w)}),d}};var CT="tensorflowjs",ST=1,Ma="models_store",Oi="model_info_store";function hD(){if(!Me().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let i=typeof window=="undefined"?self:window,a=i.indexedDB||i.mozIndexedDB||i.webkitIndexedDB||i.msIndexedDB||i.shimIndexedDB;if(a==null)throw new Error("The current browser does not appear to support IndexedDB.");return a}function $T(i){let a=i.result;a.createObjectStore(Ma,{keyPath:"modelPath"}),a.createObjectStore(Oi,{keyPath:"modelPath"})}var Bs=class{constructor(a){if(this.indexedDB=hD(),a==null||!a)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=a}async save(a){if(a.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,a)}async load(){return this.databaseAction(this.modelPath)}databaseAction(a,u){return new Promise((h,d)=>{let g=this.indexedDB.open(CT,ST);g.onupgradeneeded=()=>$T(g),g.onsuccess=()=>{let x=g.result;if(u==null){let w=x.transaction(Ma,"readonly"),k=w.objectStore(Ma),C=k.get(this.modelPath);C.onsuccess=()=>{if(C.result==null)return x.close(),d(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));h(C.result.modelArtifacts)},C.onerror=$=>(x.close(),d(C.error)),w.oncomplete=()=>x.close()}else{let w=fb(u),k=x.transaction(Oi,"readwrite"),C=k.objectStore(Oi),$=C.put({modelPath:this.modelPath,modelArtifactsInfo:w}),F;$.onsuccess=()=>{F=x.transaction(Ma,"readwrite");let _=F.objectStore(Ma),W=_.put({modelPath:this.modelPath,modelArtifacts:u,modelArtifactsInfo:w});W.onsuccess=()=>h({modelArtifactsInfo:w}),W.onerror=et=>{C=k.objectStore(Oi);let tt=C.delete(this.modelPath);tt.onsuccess=()=>(x.close(),d(W.error)),tt.onerror=G=>(x.close(),d(W.error))}},$.onerror=_=>(x.close(),d($.error)),k.oncomplete=()=>{F==null?x.close():F.oncomplete=()=>x.close()}}},g.onerror=x=>d(g.error)})}};Bs.URL_SCHEME="indexeddb://";var fD=i=>Me().getBool("IS_BROWSER")&&(!Array.isArray(i)&&i.startsWith(Bs.URL_SCHEME))?qQ(i.slice(Bs.URL_SCHEME.length)):null;An.registerSaveRouter(fD);An.registerLoadRouter(fD);function qQ(i){return new Bs(i)}function HQ(i){return i.startsWith(Bs.URL_SCHEME)?i.slice(Bs.URL_SCHEME.length):i}var IT=class{constructor(){this.indexedDB=hD()}async listModels(){return new Promise((a,u)=>{let h=this.indexedDB.open(CT,ST);h.onupgradeneeded=()=>$T(h),h.onsuccess=()=>{let d=h.result,g=d.transaction(Oi,"readonly"),x=g.objectStore(Oi),w=x.getAll();w.onsuccess=()=>{let k={};for(let C of w.result)k[C.modelPath]=C.modelArtifactsInfo;a(k)},w.onerror=k=>(d.close(),u(w.error)),g.oncomplete=()=>d.close()},h.onerror=d=>u(h.error)})}async removeModel(a){return a=HQ(a),new Promise((u,h)=>{let d=this.indexedDB.open(CT,ST);d.onupgradeneeded=()=>$T(d),d.onsuccess=()=>{let g=d.result,x=g.transaction(Oi,"readwrite"),w=x.objectStore(Oi),k=w.get(a),C;k.onsuccess=()=>{if(k.result==null)return g.close(),h(new Error(`Cannot find model with path '${a}' in IndexedDB.`));{let $=w.delete(a),F=()=>{C=g.transaction(Ma,"readwrite");let _=C.objectStore(Ma),W=_.delete(a);W.onsuccess=()=>u(k.result.modelArtifactsInfo),W.onerror=et=>h(k.error)};$.onsuccess=F,$.onerror=_=>(F(),g.close(),h(k.error))}},k.onerror=$=>(g.close(),h(k.error)),x.oncomplete=()=>{C==null?g.close():C.oncomplete=()=>g.close()}},d.onerror=g=>h(d.error)})}};var zs="/",Ll="tensorflowjs_models",dD="info",jQ="model_topology",KQ="weight_specs",XQ="weight_data",YQ="model_metadata";function mD(i){return{info:[Ll,i,dD].join(zs),topology:[Ll,i,jQ].join(zs),weightSpecs:[Ll,i,KQ].join(zs),weightData:[Ll,i,XQ].join(zs),modelMetadata:[Ll,i,YQ].join(zs)}}function JQ(i){let a=i.split(zs);if(a.length<3)throw new Error(`Invalid key format: ${i}`);return a.slice(1,a.length-1).join(zs)}function ZQ(i){return i.startsWith(Ws.URL_SCHEME)?i.slice(Ws.URL_SCHEME.length):i}var Ws=class{constructor(a){if(!Me().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,a==null||!a)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=a,this.keys=mD(this.modelPath)}async save(a){if(a.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let u=JSON.stringify(a.modelTopology),h=JSON.stringify(a.weightSpecs),d=fb(a);try{return this.LS.setItem(this.keys.info,JSON.stringify(d)),this.LS.setItem(this.keys.topology,u),this.LS.setItem(this.keys.weightSpecs,h),this.LS.setItem(this.keys.weightData,uD(a.weightData)),this.LS.setItem(this.keys.modelMetadata,JSON.stringify({format:a.format,generatedBy:a.generatedBy,convertedBy:a.convertedBy,userDefinedMetadata:a.userDefinedMetadata})),{modelArtifactsInfo:d}}catch(g){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${d.modelTopologyBytes}, weightSpecsBytes=${d.weightSpecsBytes}, weightDataBytes=${d.weightDataBytes}.`)}}}async load(){let a=JSON.parse(this.LS.getItem(this.keys.info));if(a==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(a.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let u={},h=JSON.parse(this.LS.getItem(this.keys.topology));if(h==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);u.modelTopology=h;let d=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(d==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);u.weightSpecs=d;let g=this.LS.getItem(this.keys.modelMetadata);if(g!=null){let w=JSON.parse(g);u.format=w.format,u.generatedBy=w.generatedBy,u.convertedBy=w.convertedBy,u.userDefinedMetadata=w.userDefinedMetadata}let x=this.LS.getItem(this.keys.weightData);if(x==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return u.weightData=pD(x),u}};Ws.URL_SCHEME="localstorage://";var gD=i=>Me().getBool("IS_BROWSER")&&(!Array.isArray(i)&&i.startsWith(Ws.URL_SCHEME))?QQ(i.slice(Ws.URL_SCHEME.length)):null;An.registerSaveRouter(gD);An.registerLoadRouter(gD);function QQ(i){return new Ws(i)}var ET=class{constructor(){U(Me().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),U(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let a={},u=Ll+zs,h=zs+dD;for(let d=0;d"scheme must not be undefined or null."),a.endsWith(yD)&&(a=a.slice(0,a.indexOf(yD))),U(a.length>0,()=>"scheme must not be an empty string.");let h=rs.getInstance();U(h.managers[a]==null,()=>`A model store manager is already registered for scheme '${a}'.`),h.managers[a]=u}static getManager(a){let u=this.getInstance().managers[a];if(u==null)throw new Error(`Cannot find model manager for scheme '${a}'`);return u}static getSchemes(){return Object.keys(this.getInstance().managers)}};var bD=class{fetch(a,u){return fetch(a,u)}now(){return performance.now()}encode(a,u){if(u!=="utf-8"&&u!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${u}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(a)}decode(a,u){return new TextDecoder(u).decode(a)}};if(Me().get("IS_BROWSER")){Me().setPlatform("browser",new bD);try{rs.registerManager(Ws.URL_SCHEME,new ET)}catch(i){}try{rs.registerManager(Bs.URL_SCHEME,new IT)}catch(i){}}var ttt={importFetch:()=>xD()},DT,wD=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(a,u){return Me().global.fetch!=null?Me().global.fetch(a,u):(DT==null&&(DT=ttt.importFetch()),DT(a,u))}now(){let a=process.hrtime();return a[0]*1e3+a[1]/1e6}encode(a,u){if(u!=="utf-8"&&u!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${u}`);return this.textEncoder.encode(a)}decode(a,u){return a.length===0?"":new this.util.TextDecoder(u).decode(a)}};Me().get("IS_NODE")&&Me().setPlatform("node",new wD);function Ch(i,a="float32",u){return a=a||"float32",Cg(i),new yT(i,a,u)}function ett(i,a){let u=R(i,"x","cast");if(!VE(a))throw new Error(`Failed to cast to unknown dtype ${a}`);if(a==="string"&&u.dtype!=="string"||a!=="string"&&u.dtype==="string")throw new Error("Only strings can be casted to strings");let h={x:u},d={dtype:a};return V.runKernelFunc(g=>g.cast(u,a),h,null,Pl,d)}var wt=O({cast_:ett});function ntt(i){let a=R(i,"x","clone",null),u=()=>V.makeTensorFromDataId(a.dataId,a.shape,a.dtype),h={x:a};return V.runKernelFunc(u,h,null,cy)}var Do=O({clone_:ntt});function AT(i,a=!1){console.log(i.toString(a))}kT();var rtt={buffer:Ch,cast:wt,clone:Do,print:AT};tD(rtt);function ott(i,a){let u=R(i,"x","reshape",null),h={x:u},d={shape:a},g=(x,w)=>(a=ME(a,u.size),U(u.size===an(a),()=>"new shape and old shape must have the same number of elements."),w([u]),x.reshape(u,a));return V.runKernelFunc(g,h,null,Ay,d)}var K=O({reshape_:ott});function stt(i,a,u=!1,h=!1){let d=R(i,"a","matMul"),g=R(a,"b","matMul");[d,g]=he(d,g);let x=(C,$)=>{$([d,g]);let F=u?d.shape[d.rank-2]:d.shape[d.rank-1],_=h?g.shape[g.rank-1]:g.shape[g.rank-2],W=u?d.shape[d.rank-1]:d.shape[d.rank-2],et=h?g.shape[g.rank-2]:g.shape[g.rank-1],tt=d.shape.slice(0,-2),G=g.shape.slice(0,-2),mt=an(tt),lt=an(G),gt=mt===lt||mt===1||lt===1;U(d.rank>=2&&g.rank>=2&>,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${tt}) and (${G}).`),U(F===_,()=>`Error in matMul: inner shapes (${F}) and (${_}) of Tensors with shapes ${d.shape} and ${g.shape} and transposeA=${u} and transposeB=${h} must match.`);let _t=mt>lt?tt:G,Gt=_t.concat([W,et]),se=u?K(d,[mt,F,W]):K(d,[mt,W,F]),fe=h?K(g,[lt,et,_]):K(g,[lt,_,et]),_e=C.batchMatMul(se,fe,u,h);return K(_e,Gt)},w={a:d,b:g},k={transposeA:u,transposeB:h};return V.runKernelFunc(x,w,null,Bg,k)}var Ge=O({matMul_:stt});function itt(i,a,u=1,h=0){if(a<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${a}`);let d=R(i,"indices","oneHot","int32"),g=[...d.shape,a],x=(C,$)=>($([d]),K(C.oneHot(K(d,[d.size]),a,u,h),g)),w={indices:d},k={depth:a,onValue:u,offValue:h};return V.runKernelFunc(x,w,null,Cy,k)}var FT=O({oneHot_:itt});function att(i,a){let u=R(i,"x","transpose");if(a==null&&(a=u.shape.map((g,x)=>x).reverse()),U(u.rank===a.length,()=>`Error in transpose: rank of input ${u.rank} must match length of perm ${a}.`),a.forEach(g=>{U(g>=0&&g`All entries in 'perm' must be between 0 and ${u.rank-1} but got ${a}`)}),u.rank<=1)return u.clone();let h={x:u},d={perm:a};return V.runKernelFunc(g=>g.transpose(u,a),h,null,rb,d)}var Ie=O({transpose_:att}),PT={};mh(PT,{fromPixels:()=>utt,toPixels:()=>ltt});function RT(i,a,u){if(Al(i),a!=null&&a.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let h=Ms(i,u);if(h.length!==3&&h.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(h.length===1&&a==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ns(i,a,h,u)}var Ml;function ctt(i,a=3){if(a>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(i==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let u=!1,h=!1,d=!1,g=!1,x=!1;if(i.data instanceof Uint8Array)u=!0;else if(typeof ImageData!="undefined"&&i instanceof ImageData)h=!0;else if(typeof HTMLVideoElement!="undefined"&&i instanceof HTMLVideoElement)d=!0;else if(typeof HTMLImageElement!="undefined"&&i instanceof HTMLImageElement)g=!0;else if(i.getContext!=null)x=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${i.constructor.name}`);if(d){let W=2;if(d&&i.readyState element.")}let w=cb(lT,V.backendName);if(w!=null){let W={pixels:i},et={numChannels:a};return V.runKernel(lT,W,et)}let[k,C]=d?[i.videoWidth,i.videoHeight]:[i.width,i.height],$;x?$=i.getContext("2d").getImageData(0,0,k,C).data:h||u?$=i.data:(g||d)&&(Ml==null&&(Ml=document.createElement("canvas").getContext("2d")),Ml.canvas.width=k,Ml.canvas.height=C,Ml.drawImage(i,0,0,k,C),$=Ml.getImageData(0,0,k,C).data);let F;if(a===4)F=new Int32Array($);else{let W=k*C;F=new Int32Array(W*a);for(let et=0;et4||g===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${g}`);if(u.dtype!=="float32"&&u.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${u.dtype}. Please use float32 or int32 tensors.`);let x=await u.data(),w=u.dtype==="float32"?255:1,k=new Uint8ClampedArray(d*h*4);for(let C=0;C1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${W}.`)}else if(u.dtype==="int32"&&(W<0||W>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${W}.`);g===1?($[0]=W*w,$[1]=W*w,$[2]=W*w):$[_]=W*w}let F=C*4;k[F+0]=Math.round($[0]),k[F+1]=Math.round($[1]),k[F+2]=Math.round($[2]),k[F+3]=Math.round($[3])}if(a!=null){a.width=d,a.height=h;let C=a.getContext("2d"),$=new ImageData(k,d,h);C.putImageData($,0,0)}return u!==i&&u.dispose(),k}var utt=O({fromPixels_:ctt});function vD(i,a,u){let h=i.shape.length;U(h===a.length,()=>`Error in slice${h}D: Length of begin ${a} must match the rank of the array (${h}).`),U(h===u.length,()=>`Error in slice${h}D: Length of size ${u} must match the rank of the array (${h}).`);for(let d=0;d`Error in slice${h}D: begin[${d}] + size[${d}] (${a[d]+u[d]}) would overflow input.shape[${d}] (${i.shape[d]})`)}function db(i){let a=[],u=0;for(;i>0;)i&1&&a.push(u),i/=2,u++;return a}function TD(i,a,u){let h=[];for(let d=0;d0){let W=a[0],et=u+1;$=htt(x,W,et,h,i),F=ftt(w,W,et,d,i),_=ptt(g,W,et,i)}else for(let W=0;W-1)g[w]=0;else{let k=kD(a,u,w),C=h[k];i&1<-1)g[w]=Number.MAX_SAFE_INTEGER;else{let k=kD(a,u,w),C=h[k];i&1<0?x=Number.MIN_SAFE_INTEGER:x=Number.MAX_SAFE_INTEGER);let k=h[d];return x<0&&(x+=k),x=bh(0,x,k-1),x}function gtt(i,a,u,h,d,g){let x=a[d],w=u[d]||1;(i&1<0?x=Number.MAX_SAFE_INTEGER:x=Number.MIN_SAFE_INTEGER);let k=h[d];return x<0&&(x+=k),w>0?x=bh(0,x,k):x=bh(-1,x,k-1),x}function mb(i,a,u){let h,d=i.shape.length;typeof a=="number"?h=[a,...new Array(d-1).fill(0)]:a.length{U(x!==-1,()=>"slice() does not support negative begin indexing.")});let g;return u==null?g=new Array(d).fill(-1):typeof u=="number"?g=[u,...new Array(d-1).fill(-1)]:u.lengthx>=0?x:(U(x===-1,()=>`Negative size values should be exactly -1 but got ${x} for the slice() size at index ${w}.`),i.shape[w]-h[w])),[h,g]}function kn(i){Me().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(i+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}eD(kn);function CD(i,a){return V.tidy(i,a)}function SD(i){let a=pb(i);a.forEach(u=>u.dispose())}function ytt(i,a){let u=R(i,"a","add"),h=R(a,"b","add");[u,h]=he(u,h);let d=(x,w)=>{let k=x.add(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,Rl)}var Ne=O({add_:ytt});function btt(i,a){let u=R(i,"a","floorDiv"),h=R(a,"b","floorDiv");[u,h]=he(u,h);let d=(x,w)=>{let k=x.floorDiv(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,oy)}var Sh=O({floorDiv_:btt});function xtt(i,a){let u=R(i,"a","div"),h=R(a,"b","div");if([u,h]=he(u,h),u.dtype==="int32"&&h.dtype==="int32")return Sh(u,h);let d=(w,k)=>{let C=w.realDivide(u,h);return k([u,h]),C},g={a:u,b:h},x={};return V.runKernelFunc(d,g,null,Zg,x)}var Wt=O({div_:xtt});function wtt(i,a){let u=R(i,"a","mul"),h=R(a,"b","mul");[u,h]=he(u,h);let d=(x,w)=>{let k=x.multiply(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,ky)}var at=O({mul_:wtt});function vtt(i){let a=R(i,"x","abs"),u={x:a};return V.runKernelFunc((h,d)=>(d([a]),a.dtype==="complex64"?h.complexAbs(a):h.abs(a)),u,null,$g)}var zn=O({abs_:vtt});function Ttt(i){let a=R(i,"x","acos"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.acos(a);return d([a]),g},u,null,Ig)}var OT=O({acos_:Ttt});function ktt(i){let a=R(i,"x","acosh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.acosh(a);return d([a]),g},u,null,Eg)}var LT=O({acosh_:ktt});function Ntt(i,a){for(let u=0;ui[g]);return[u,d]}function dn(i,a){let u=a.map(h=>1);return _tt(i,u,a)}function Nn(i,a){if(Ntt(i,a))return null;let u=[];for(let h=0;hu.push(h)),u}function Bl(i){return i.map((a,u)=>[u,a]).sort((a,u)=>a[1]-u[1]).map(a=>a[0])}function Wn(i,a){let u=[];for(let h=a-i;h{let k=Zt(a,h.shape),C=k,$=Nn(C,h.rank);$!=null&&(h=Ie(h,$),C=Wn(C.length,h.rank));let F=w.all(h,C);if(u){let _=dn(F.shape,k);return K(F,_)}return F},g={x:h},x={axis:a,keepDims:u};return V.runKernelFunc(d,g,null,YE,x)}var MT=O({all_:Ctt});function Stt(i,a=null,u=!1){let h=R(i,"x","any","bool"),d=w=>{let k=Zt(a,h.shape),C=k,$=Nn(C,h.rank);$!=null&&(h=Ie(h,$),C=Wn(C.length,h.rank));let F=w.any(h,C);if(u){let _=dn(F.shape,k);return K(F,_)}return F},g={x:h},x={axis:a,keepDims:u};return V.runKernelFunc(d,g,null,JE,x)}var BT=O({any_:Stt});function $tt(i,a=0){let u=R(i,"x","argMax"),h=(x,w)=>{w([u]);let k=Zt(a,u.shape),C=Nn(k,u.rank);return C!=null&&(u=Ie(u,C),k=Wn(k.length,u.rank)),x.argMax(u,k[0])},d={x:u},g={axis:a};return V.runKernelFunc(h,d,null,Dg,g)}var zT=O({argMax_:$tt});function Itt(i,a=0){let u=R(i,"x","argMin"),h=(x,w)=>{w([u]),a==null&&(a=0);let k=Zt(a,u.shape),C=Nn(k,u.rank);return C!=null&&(u=Ie(u,C),k=Wn(k.length,u.rank)),x.argMin(u,k[0])},d={x:u},g={axis:a};return V.runKernelFunc(h,d,null,Ag,g)}var WT=O({argMin_:Itt});function Ett(i){let a=R(i,"x","asin"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.asin(a);return d([a]),g},u,null,Fg)}var VT=O({asin_:Ett});function Dtt(i){let a=R(i,"x","asinh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.asinh(a);return d([a]),g},u,null,Rg)}var GT=O({asinh_:Dtt});function Att(i){let a=R(i,"x","atan"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.atan(a);return d([a]),g},u,null,Pg)}var UT=O({atan_:Att});function Ftt(i,a){let u=R(i,"a","atan2"),h=R(a,"b","atan2");[u,h]=he(u,h);let d=(x,w)=>{let k=x.atan2(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,Lg)}var qT=O({atan2_:Ftt});function Rtt(i){let a=R(i,"x","atanh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.atanh(a);return d([a]),g},u,null,Og)}var HT=O({atanh_:Rtt});function os(i,a,u,h,d,g,x="channelsLast"){let[w,k]=gb(a),C;if(x==="channelsLast")C=[w,k,i[3],i[3]];else if(x==="channelsFirst")C=[w,k,i[1],i[1]];else throw new Error(`Unknown dataFormat ${x}`);return Gr(i,C,u,h,d,g,!1,x)}function yb(i,a,u,h,d,g,x="NDHWC"){let[w,k,C]=jT(a),$,F;if(x==="NDHWC")F="channelsLast",$=[w,k,C,i[4],i[4]];else if(x==="NCDHW")F="channelsFirst",$=[w,k,C,i[1],i[1]];else throw new Error(`Unknown dataFormat ${x}`);return $h(i,$,u,h,d,!1,F,g)}function Gr(i,a,u,h,d,g,x=!1,w="channelsLast"){let[k,C,$,F]=[-1,-1,-1,-1];if(w==="channelsLast")[k,C,$,F]=i;else if(w==="channelsFirst")[k,F,C,$]=i;else throw new Error(`Unknown dataFormat ${w}`);let[_,W,,et]=a,[tt,G]=gb(u),[mt,lt]=gb(h),gt=zl(_,mt),_t=zl(W,lt),{padInfo:Gt,outHeight:se,outWidth:fe}=Ptt(d,C,$,tt,G,gt,_t,g,w),_e=x?et*F:et,Ue;return w==="channelsFirst"?Ue=[k,_e,se,fe]:w==="channelsLast"&&(Ue=[k,se,fe,_e]),{batchSize:k,dataFormat:w,inHeight:C,inWidth:$,inChannels:F,outHeight:se,outWidth:fe,outChannels:_e,padInfo:Gt,strideHeight:tt,strideWidth:G,filterHeight:_,filterWidth:W,effectiveFilterHeight:gt,effectiveFilterWidth:_t,dilationHeight:mt,dilationWidth:lt,inShape:i,outShape:Ue,filterShape:a}}function $h(i,a,u,h,d,g=!1,x="channelsLast",w){let[k,C,$,F,_]=[-1,-1,-1,-1,-1];if(x==="channelsLast")[k,C,$,F,_]=i;else if(x==="channelsFirst")[k,_,C,$,F]=i;else throw new Error(`Unknown dataFormat ${x}`);let[W,et,tt,,G]=a,[mt,lt,gt]=jT(u),[_t,Gt,se]=jT(h),fe=zl(W,_t),_e=zl(et,Gt),Ue=zl(tt,se),{padInfo:Vt,outDepth:ln,outHeight:Ce,outWidth:or}=Ott(d,C,$,F,mt,lt,gt,fe,_e,Ue,w),ti=g?G*_:G,ei;return x==="channelsFirst"?ei=[k,ti,ln,Ce,or]:x==="channelsLast"&&(ei=[k,ln,Ce,or,ti]),{batchSize:k,dataFormat:x,inDepth:C,inHeight:$,inWidth:F,inChannels:_,outDepth:ln,outHeight:Ce,outWidth:or,outChannels:ti,padInfo:Vt,strideDepth:mt,strideHeight:lt,strideWidth:gt,filterDepth:W,filterHeight:et,filterWidth:tt,effectiveFilterDepth:fe,effectiveFilterHeight:_e,effectiveFilterWidth:Ue,dilationDepth:_t,dilationHeight:Gt,dilationWidth:se,inShape:i,outShape:ei,filterShape:a}}function Ltt(i,a,u,h,d){h==null&&(h=ID(i,a,u));let g=i[0],x=i[1],w=Ba((g-a+2*h)/u+1,d);U(ke(w),()=>`The output # of rows (${w}) must be an integer. Change the stride and/or zero pad parameters`);let k=Ba((x-a+2*h)/u+1,d);return U(ke(k),()=>`The output # of columns (${k}) must be an integer. Change the stride and/or zero pad parameters`),[w,k]}function Mtt(i,a,u,h,d,g){d==null&&(d=ID(i,a,h));let x=i[0],w=i[1],k=i[2],C=Ba((x-a+2*d)/h+1,g);U(ke(C),()=>`The output # of depths (${C}) must be an integer. Change the stride and/or zero pad parameters`);let $=Ba((w-a+2*d)/h+1,g);U(ke($),()=>`The output # of rows (${$}) must be an integer. Change the stride and/or zero pad parameters`);let F=Ba((k-a+2*d)/h+1,g);return U(ke(F),()=>`The output # of columns (${F}) must be an integer. Change the stride and/or zero pad parameters`),[C,$,F,u]}function ID(i,a,u,h=1){let d=zl(a,h);return Math.floor((i[0]*(u-1)-u+d)/2)}function gb(i){return typeof i=="number"?[i,i,i]:i.length===2?[i[0],i[1],1]:i}function jT(i){return typeof i=="number"?[i,i,i]:i}function zl(i,a){return a<=1?i:i+(i-1)*(a-1)}function Ptt(i,a,u,h,d,g,x,w,k){let C,$,F;if(typeof i=="number"){let _=i===0?"VALID":"NUMBER";C={top:i,bottom:i,left:i,right:i,type:_};let W=Ltt([a,u],g,h,i,w);$=W[0],F=W[1]}else if(i==="same"){$=Math.ceil(a/h),F=Math.ceil(u/d);let _=Math.max(0,($-1)*h+g-a),W=Math.max(0,(F-1)*d+x-u),et=Math.floor(_/2),tt=_-et,G=Math.floor(W/2),mt=W-G;C={top:et,bottom:tt,left:G,right:mt,type:"SAME"}}else if(i==="valid")C={top:0,bottom:0,left:0,right:0,type:"VALID"},$=Math.ceil((a-g+1)/h),F=Math.ceil((u-x+1)/d);else if(typeof i=="object"){let _=k==="channelsLast"?i[1][0]:i[2][0],W=k==="channelsLast"?i[1][1]:i[2][1],et=k==="channelsLast"?i[2][0]:i[3][0],tt=k==="channelsLast"?i[2][1]:i[3][1],G=_===0&&W===0&&et===0&&tt===0?"VALID":"EXPLICIT";C={top:_,bottom:W,left:et,right:tt,type:G},$=Ba((a-g+_+W)/h+1,w),F=Ba((u-x+et+tt)/d+1,w)}else throw Error(`Unknown padding parameter: ${i}`);return{padInfo:C,outHeight:$,outWidth:F}}function Ott(i,a,u,h,d,g,x,w,k,C,$){let F,_,W,et;if(typeof i=="number"){let tt=i===0?"VALID":"NUMBER";F={top:i,bottom:i,left:i,right:i,front:i,back:i,type:tt};let G=Mtt([a,u,h,1],w,1,d,i,$);_=G[0],W=G[1],et=G[2]}else if(i==="same"){_=Math.ceil(a/d),W=Math.ceil(u/g),et=Math.ceil(h/x);let tt=(_-1)*d+w-a,G=(W-1)*g+k-u,mt=(et-1)*x+C-h,lt=Math.floor(tt/2),gt=tt-lt,_t=Math.floor(G/2),Gt=G-_t,se=Math.floor(mt/2),fe=mt-se;F={top:_t,bottom:Gt,left:se,right:fe,front:lt,back:gt,type:"SAME"}}else if(i==="valid")F={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},_=Math.ceil((a-w+1)/d),W=Math.ceil((u-k+1)/g),et=Math.ceil((h-C+1)/x);else throw Error(`Unknown padding parameter: ${i}`);return{padInfo:F,outDepth:_,outHeight:W,outWidth:et}}function Ba(i,a){if(!a)return i;switch(a){case"round":return Math.round(i);case"ceil":return Math.ceil(i);case"floor":return Math.floor(i);default:throw new Error(`Unknown roundingMode ${a}`)}}function Li(i){let[a,u,h]=gb(i);return a===1&&u===1&&h===1}function Vn(i,a){return Li(i)||Li(a)}function Wl(i){if(i==="NHWC")return"channelsLast";if(i==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${i}`)}function Btt(i,a,u,h,d){let g=R(i,"x","avgPool","float32"),x=1;U(Vn(u,x),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${u} and dilations '${x}'`);let w=g,k=!1;g.rank===3&&(k=!0,w=K(g,[1,g.shape[0],g.shape[1],g.shape[2]])),U(w.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${w.rank}.`),d!=null&&U(ke(h),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${d} but got pad ${h}.`);let C=(W,et)=>{let tt=os(w.shape,a,u,1,h,d);return et([w]),tt.filterWidth===1&&tt.filterHeight===1&&Os(tt.inShape,tt.outShape)?w.clone():W.avgPool(w,tt)},$={x:w},F={filterSize:a,strides:u,pad:h,dimRoundingMode:d},_=V.runKernelFunc(C,$,null,Mg,F);return _=wt(_,g.dtype),k?K(_,[_.shape[1],_.shape[2],_.shape[3]]):_}var Ih=O({avgPool_:Btt});function ED(i,a){let u=i[0].length;i.forEach((d,g)=>{U(d.length===u,()=>`Error in concat${u}D: rank of tensors[${g}] must be the same as the rank of the rest (${u})`)}),U(a>=0&&a`Error in concat${u}D: axis must be between 0 and ${u-1}.`);let h=i[0];i.forEach((d,g)=>{for(let x=0;x`Error in concat${u}D: Shape of tensors[${g}] (${d}) does not match the shape of the rest (${h}) along the non-concatenated axis ${g}.`)})}function DD(i,a){let u=i[0].slice();for(let h=1;h=1,()=>"Pass at least one tensor to concat");let u=hb(i,"tensors","concat");u[0].dtype==="complex64"&&u.forEach(x=>{if(x.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${x.dtype}. `)});let h=(x,w)=>{let k=Zt(a,u[0].shape)[0],C=DD(u.map(_=>_.shape),k);if(an(C)===0)return NT([],C);if(u=u.filter(_=>_.size>0),u.length===1)return u[0];let $=u.map(_=>_.shape);ED($,k);let F=x.concat(u,k);return w(u),F},d=u,g={axis:a};return V.runKernelFunc(h,d,null,Ug,g)}var mn=O({concat_:ztt});function Wtt(i){let a=R(i,"x","sigmoid"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.sigmoid(a);return d([g]),g},u,null,qy)}var za=O({sigmoid_:Wtt});function Vtt(i,a,u){let h=R(i,"x","slice");if(h.rank===0)throw new Error("Slicing scalar is not possible");let d=(w,k)=>{let[C,$]=mb(h,a,u);return vD(h,C,$),k([h]),w.slice(h,C,$)},g={x:h},x={begin:a,size:u};return V.runKernelFunc(d,g,null,Wy,x)}var ve=O({slice_:Vtt});function Gtt(i){let a=R(i,"x","tanh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.tanh(a);return d([g]),g},u,null,eb)}var KT=O({tanh_:Gtt});function Utt(i,a,u){let h=R(i,"x","batchToSpaceND"),d=a.reduce((k,C)=>k*C);U(h.rank>=1+a.length,()=>`input rank is ${h.rank} but should be > than blockShape.length ${a.length}`),U(u.length===a.length,()=>`crops.length is ${u.length} but should be equal to blockShape.length ${a.length}`),U(h.shape[0]%d===0,()=>`input tensor batch is ${h.shape[0]} but is not divisible by the product of the elements of blockShape ${a.join(" * ")} === ${d}`);let g=k=>k.batchToSpaceND(h,a,u),x={x:h},w={blockShape:a,crops:u};return V.runKernelFunc(g,x,null,zg,w)}var Wa=O({batchToSpaceND_:Utt});function AD(i){let a;return i.rank===0||i.rank===1?a=K(i,[1,1,1,i.size]):i.rank===2?a=K(i,[1,1,i.shape[0],i.shape[1]]):i.rank===3?a=K(i,[1,i.shape[0],i.shape[1],i.shape[2]]):a=i,a}function qtt(i,a,u,h,d,g){g==null&&(g=.001);let x=R(i,"x","batchNorm"),w=R(a,"mean","batchNorm"),k=R(u,"variance","batchNorm"),C;d!=null&&(C=R(d,"scale","batchNorm"));let $;h!=null&&($=R(h,"offset","batchNorm")),U(w.rank===k.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),U($==null||w.rank===$.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),U(C==null||w.rank===C.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let F=AD(x),_=(G,mt)=>(mt([F,w,k,C]),G.batchNorm(F,bb(w),bb(k),bb($),bb(C),g)),W={x:F,scale:C,offset:$,mean:w,variance:k},et={varianceEpsilon:g},tt=V.runKernelFunc(_,W,null,sy,et);return K(tt,x.shape)}function bb(i){return i==null?null:i.rank===0?K(i,[i.size]):i.rank===1?i:i.rank===2?K(i,[1,1,i.shape[0],i.shape[1]]):i.rank===3?K(i,[1,i.shape[0],i.shape[1],i.shape[2]]):i}var XT=O({batchNorm_:qtt});function Htt(i,a){let u=R(i,"broadcastTo","x"),h=u.shape;if(a.some($=>!($>0)||$%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${a}].`);if(a.lengthu.rank){let $=u.shape.slice();for(;$.length=0;$--)if(d[$]===a[$])g[$]=1;else if(u.shape[$]!==1)throw new Error(`broadcastTo(): [${h}] cannot be broadcast to [${a}].`);let x=g.map(($,F)=>$>1?F:-1).filter($=>$>=0);if(x.length===0)return Do(u);let w=$=>$.tile(u,g),k={x:u},C={shape:a,inputShape:d};return V.runKernelFunc(w,k,null,Wg,C)}var Vl=O({broadcastTo_:Htt});function jtt(i){let a=R(i,"x","ceil"),u={x:a};return V.runKernelFunc(h=>h.ceil(a),u,null,Vg)}var YT=O({ceil_:jtt});function Ktt(i,a,u){let h=R(i,"x","clipByValue");U(a<=u,()=>`Error in clip: min (${a}) must be less than or equal to max (${u}).`);let d={x:h},g={clipValueMin:a,clipValueMax:u};return V.runKernelFunc((x,w)=>{let k=x.clip(h,a,u);return w([h]),k},d,null,Gg,g)}var JT=O({clipByValue_:Ktt});function Xtt(i,a,u,h,d="NHWC",g=[1,1],x){let w=R(i,"x","conv2d"),k=R(a,"filter","conv2d"),C=w,$=!1;w.rank===3&&($=!0,C=K(w,[1,w.shape[0],w.shape[1],w.shape[2]])),U(C.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${C.rank}.`),U(k.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${k.rank}.`),x!=null&&U(ke(h),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${x} but got pad ${h}.`);let F=d==="NHWC"?C.shape[3]:C.shape[1];U(F===k.shape[2],()=>`Error in conv2d: depth of input (${F}) must match input depth for filter ${k.shape[2]}.`),U(Vn(u,g),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${u} and dilations '${g}'`);let _=(G,mt)=>{let lt=Wl(d),gt=Gr(C.shape,k.shape,u,g,h,x,!1,lt),_t=G.conv2d(C,k,gt);return mt([C,k]),_t},W={x:C,filter:k},et={strides:u,pad:h,dataFormat:d,dilations:g,dimRoundingMode:x},tt=V.runKernelFunc(_,W,null,qg,et);return $?K(tt,[tt.shape[1],tt.shape[2],tt.shape[3]]):tt}var Vs=O({conv2d_:Xtt});function Ytt(i,a,u,h,d="NWC",g=1,x){let w=R(i,"x","conv1d"),k=R(a,"filter","conv1d"),C=w,$=!1;w.rank===2&&($=!0,C=K(w,[1,w.shape[0],w.shape[1]])),U(C.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${C.rank}.`),U(k.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${k.rank}.`),x!=null&&U(ke(h),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${x} but got pad ${h}.`),U(C.shape[2]===k.shape[1],()=>`Error in conv1d: depth of input (${C.shape[2]}) must match input depth for filter ${k.shape[1]}.`),U(Vn(u,g),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${u} and dilation '${g}'`),U(d==="NWC",()=>`Error in conv1d: got dataFormat of ${d} but only NWC is currently supported.`);let F=K(k,[1,k.shape[0],k.shape[1],k.shape[2]]),_=K(C,[C.shape[0],1,C.shape[1],C.shape[2]]),W=[1,u],et=[1,g],tt="NHWC",G=Vs(_,F,W,h,tt,et,x);return $?K(G,[G.shape[2],G.shape[3]]):K(G,[G.shape[0],G.shape[2],G.shape[3]])}var ZT=O({conv1d_:Ytt});function Jtt(i,a,u,h,d,g="NHWC",x){U(i.length===a.rank,()=>`Length of inShape (${i.length}) and rank of dy (${a.rank}) must match`);let w=i,k=a,C=!1;a.rank===3&&(C=!0,k=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]),w=[1,i[0],i[1],i[2]]),U(w.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${w.length}.`),U(k.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${k.rank}`),U(u.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${u.rank}`);let $=g==="NHWC"?w[3]:w[1],F=g==="NHWC"?k.shape[3]:k.shape[1];U($===u.shape[2],()=>`Error in conv2dDerInput: depth of input (${$}) must match input depth for filter ${u.shape[2]}.`),U(F===u.shape[3],()=>`Error in conv2dDerInput: depth of output (${F}) must match output depth for filter ${u.shape[3]}.`),x!=null&&U(ke(d),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${x} but got pad ${d}.`);let _=(G,mt)=>{let lt=1,gt=Wl(g),_t=Gr(w,u.shape,h,lt,d,x,!1,gt),Gt=G.conv2dDerInput(k,u,_t);return mt([k,u]),Gt},W={dy:k,filter:u},et={strides:h,pad:d,dataFormat:g,dimRoundingMode:x,inputShape:w},tt=V.runKernelFunc(_,W,null,Hg,et);return C?K(tt,[tt.shape[1],tt.shape[2],tt.shape[3]]):tt}var xb=O({conv2DBackpropInput_:Jtt});function Ztt(i,a,u,h,d,g){let x=R(i,"x","conv2dTranspose"),w=R(a,"filter","conv2dTranspose");return xb(u,x,w,h,d,"NHWC",g)}var QT=O({conv2dTranspose_:Ztt});function Qtt(i,a,u,h,d){U(i.length===a.rank,()=>`Length of inShape (${i.length}) and rank of dy (${a.rank}) must match`);let g=i,x=a,w=!1;a.rank===4&&(w=!0,x=K(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),g=[1,i[0],i[1],i[2],i[3]]);let k=g[4],C=x.shape[4];U(g.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${g.length}.`),U(x.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${x.rank}`),U(u.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${u.rank}`),U(k===u.shape[3],()=>`Error in conv3dDerInput: depth of input (${k}) must match input depth for filter ${u.shape[3]}.`),U(C===u.shape[4],()=>`Error in conv3dDerInput: depth of output (${C}) must match output depth for filter ${u.shape[4]}.`);let $=et=>{let tt=1,G=$h(g,u.shape,h,tt,d);return et.conv3dDerInput(x,u,G)},F={dy:x,filter:u},_={pad:d,strides:h,inputShape:g},W=V.runKernelFunc($,F,null,s2,_);return w?K(W,[W.shape[1],W.shape[2],W.shape[3],W.shape[4]]):W}var FD=O({conv3DBackpropInput_:Qtt});function tet(i){let a=R(i,"x","cos"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.cos(a);return d([a]),g},u,null,jg)}var Va=O({cos_:tet});function eet(i){let a=R(i,"x","cosh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.cosh(a);return d([a]),g},u,null,Kg)}var Eh=O({cosh_:eet});function net(i,a=0,u=!1,h=!1){let d=R(i,"x","cumsum"),g=(k,C)=>{let $=Nn([a],d.rank),F=d;$!=null&&(F=Ie(d,$));let _=Wn(1,d.rank)[0],W=k.cumsum(F,_,u,h);if(C([d]),$!=null){let et=Bl($);W=Ie(W,et)}return W},x={x:d},w={axis:a,exclusive:u,reverse:h};return V.runKernelFunc(g,x,null,Xg,w)}var Dh=O({cumsum_:net});function ret(i,a,u="NHWC"){let h=R(i,"x","depthToSpace"),d=u==="NHWC"?h.shape[1]:h.shape[2],g=u==="NHWC"?h.shape[2]:h.shape[3],x=u==="NHWC"?h.shape[3]:h.shape[1];U(d*a>=0,()=>`Negative dimension size caused by overflow when multiplying ${d} and ${a} for depthToSpace with input shape ${h.shape}`),U(g*a>=0,()=>`Negative dimension size caused by overflow when multiplying ${g} and ${a} for depthToSpace with input shape ${h.shape}`),U(x%(a*a)===0,()=>`Dimension size must be evenly divisible by ${a*a} but is ${x} for depthToSpace with input shape ${h.shape}`);let w=$=>$.depthToSpace(h,a,u),k={x:h},C={blockSize:a,dataFormat:u};return V.runKernelFunc(w,k,null,a2,C)}var tk=O({depthToSpace_:ret});function oet(i,a,u,h,d="NHWC",g=[1,1],x){let w=R(i,"x","depthwiseConv2d"),k=R(a,"filter","depthwiseConv2d"),C=w,$=!1;w.rank===3&&($=!0,C=K(w,[1,w.shape[0],w.shape[1],w.shape[2]])),U(C.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${C.rank}.`),U(k.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${k.rank}.`),U(C.shape[3]===k.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${C.shape[3]}) must match the inChannels dimension in filter ${k.shape[2]}.`),x!=null&&U(ke(h),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${x} but got pad ${h}.`);let F=(tt,G)=>{g==null&&(g=[1,1]),U(Vn(u,g),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${g}'`);let mt=Gr(C.shape,k.shape,u,g,h,x,!0),lt=tt.depthwiseConv2D(C,k,mt);return G([C,k]),lt},_={x:C,filter:k},W={strides:u,pad:h,dataFormat:d,dilations:g,dimRoundingMode:x},et=V.runKernelFunc(F,_,null,Yg,W);return $?K(et,[et.shape[1],et.shape[2],et.shape[3]]):et}var Ga=O({depthwiseConv2d_:oet});function set(i,a,u,h,d=[1,1],g="NHWC"){let x=R(i,"x","dilation2d"),w=R(a,"filter","dilation2d");U(x.rank===3||x.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${x.rank}.`),U(w.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${w.rank}.`),U(g==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${g}`);let k=x,C=!1;x.rank===3&&(k=K(x,[1,x.shape[0],x.shape[1],x.shape[2]]),C=!0);let $={x:k,filter:w},F={strides:u,pad:h,dilations:d},_=V.runKernel(Jg,$,F);return C?K(_,[_.shape[1],_.shape[2],_.shape[3]]):_}var ek=O({dilation2d_:set});function Be(i,a){let u=[];for(let h=0;h1)&&u.unshift(g)}return u}function ne(i,a){let u=[],h=Math.max(i.length,a.length);for(let d=0;dx.equal(u,h),g={a:u,b:h};return V.runKernelFunc(d,g,null,f2)}var Gs=O({equal_:iet});function aet(i,a,u){let h=R(a,"a","where"),d=R(u,"b","where"),g=R(i,"condition","where","bool"),x=ne(h.shape,d.shape),w=Vl(h,x),k=Vl(d,x);g.rank===1&&U(g.shape[0]===h.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),g.rank!==1&&ae(g.shape,k.shape,"Error in where: ");let C=(F,_)=>{let W=F.select(g,w,k);return _([g]),W},$={condition:g,t:w,e:k};return V.runKernelFunc(C,$,null,By)}var _n=O({where_:aet});function cet(i){let a=R(i,"x","zerosLike"),u={x:a};return V.runKernelFunc(h=>h.zerosLike(a),u,null,ib)}var jt=O({zerosLike_:cet});function uet(i,a){let u=R(i,"a","div"),h=R(a,"b","div");[u,h]=he(u,h);let d=Wt(u,h),g=jt(d),x=Gs(h,g);return _n(x,g,d)}var nk=O({divNoNan_:uet});function pet(i,a){let u=R(i,"t1","dot"),h=R(a,"t2","dot");U((u.rank===1||u.rank===2)&&(h.rank===1||h.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${u.rank} and ${h.rank}.`);let d=u.rank===1?u.size:u.shape[1],g=h.rank===1?h.size:h.shape[0];if(U(d===g,()=>`Error in dot: inner dimensions of inputs must match, but got ${d} and ${g}.`),u.rank===1&&h.rank===1){let x=K(u,[1,-1]),w=K(h,[-1,1]),k=Ge(x,w);return K(k,[])}else if(u.rank===1&&h.rank===2){let x=K(u,[1,-1]),w=K(h,[h.shape[0],h.shape[1]]),k=Ge(x,w);return K(k,[k.size])}else if(u.rank===2&&h.rank===1){let x=K(h,[-1,1]),w=Ge(u,x);return K(w,[w.size])}else{let x=K(h,[h.shape[0],h.shape[1]]),w=Ge(u,x);return w}}var rk=O({dot_:pet});function het(i){let a=R(i,"x","elu"),u=(d,g)=>{let x=d.elu(a);return g([x]),x},h={x:a};return V.runKernelFunc(u,h,null,Qg)}var ok=O({elu_:het});function fet(i){let a=R(i,"x","erf");U(a.dtype==="int32"||a.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),a.dtype==="int32"&&(a=wt(a,"float32"));let u={x:a};return V.runKernelFunc((h,d)=>{let g=h.erf(a);return d([a]),g},u,null,ty)}var sk=O({erf_:fet});function det(i){let a=R(i,"x","exp"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.exp(a);return d([g]),g},u,null,ey)}var Cn=O({exp_:det});function met(i,a=0){let u=null,h=R(i,"x","expandDims",u);U(a<=h.rank,()=>"Axis must be <= rank of the tensor");let d=h.shape.slice();return a<0&&(U(-(h.rank+1)<=a,()=>`Axis must be in the interval [${-(h.rank+1)}, ${h.rank}]`),a=h.rank+a+1),d.splice(a,0,1),K(h,d)}var mr=O({expandDims_:met});function get(i){let a=R(i,"x","expm1"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.expm1(a);return d([a]),g},u,null,ny)}var ik=O({expm1_:get});function yet(i,a){let u=null,h=R(i,"x","tile",u);U(h.rank===a.length,()=>`Error in transpose: rank of input ${h.rank} must match length of reps ${a}.`);let d=(k,C)=>{let $=k.tile(h,a);return C([h]),$},g=[h],x={x:h},w={reps:a};return V.runKernelFunc(d,x,null,nb,w,g)}var Us=O({tile_:yet});function bet(i,a,u,h="float32"){a==null&&(a=i);let d=Ch([i,a],h),g=i<=a?i:a;for(let w=0;wd.fill(i,a,u),{},null,m2,h)}function xet(i){let a=R(i,"x","floor"),u={x:a};return V.runKernelFunc(h=>h.floor(a),u,null,ry)}var Ah=O({floor_:xet});function RD(i,a,u){let h=i.shape[u],d=[],g=1,x=1;for(let w=0;w{let $=Zt(u,h.shape)[0],F=RD(h,d,$),_=k.gather(h,K(d,[d.size]),$);return C([h,d]),K(_,F.outputShape)};return V.runKernelFunc(w,g,null,iy,x)}var Fh=O({gather_:wet});function vet(i,a){let u=R(i,"a","greater"),h=R(a,"b","greater");[u,h]=he(u,h),ne(u.shape,h.shape);let d=x=>x.greater(u,h),g={a:u,b:h};return V.runKernelFunc(d,g,null,y2)}var gr=O({greater_:vet});function Tet(i,a){let u=R(i,"a","greaterEqual"),h=R(a,"b","greaterEqual");[u,h]=he(u,h),ne(u.shape,h.shape);let d=(x,w)=>{let k=x.greaterEqual(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,ay)}var Ur=O({greaterEqual_:Tet});function ket(i){let a=R(i,"input","imag"),u=d=>d.imag(a),h={input:a};return V.runKernelFunc(u,h,null,x2)}var Ua=O({imag_:ket});function Net(i){let a=R(i,"x","isFinite"),u={x:a};return V.runKernelFunc(h=>h.isFinite(a),u,null,ly)}var lk=O({isFinite_:Net});function _et(i){let a=R(i,"x","isInf"),u={x:a};return V.runKernelFunc(h=>h.isInf(a),u,null,uy)}var uk=O({isInf_:_et});function Cet(i){let a=R(i,"x","isNaN"),u={x:a};return V.runKernelFunc(h=>h.isNaN(a),u,null,py)}var pk=O({isNaN_:Cet});function $et(i,a){let u=R(i,"a","maximum"),h=R(a,"b","maximum");[u,h]=he(u,h),u.dtype==="bool"&&(u=wt(u,"int32"),h=wt(h,"int32")),ne(u.shape,h.shape);let d=(x,w)=>{let k=x.maximum(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,yy)}var qs=O({maximum_:$et});function Ot(i,a){if((Vr(i)&&a!=="string"||Array.isArray(i))&&a!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(a==="string"&&Vr(i)&&!(i instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");let u=[],h=[];return ns(i,u,h,a)}function Iet(i,a=.2){let u=R(i,"x","leakyRelu");return qs(at(Ot(a),u),u)}var hk=O({leakyRelu_:Iet});function Eet(i,a){let u=R(i,"a","less"),h=R(a,"b","less");[u,h]=he(u,h),ne(u.shape,h.shape);let d=x=>x.less(u,h),g={a:u,b:h};return V.runKernelFunc(d,g,null,w2)}var qa=O({less_:Eet});function Det(i,a){let u=R(i,"a","lessEqual"),h=R(a,"b","lessEqual");[u,h]=he(u,h),ne(u.shape,h.shape);let d=(x,w)=>{let k=x.lessEqual(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,v2)}var qr=O({lessEqual_:Det});function Aet(i,a=5,u=1,h=1,d=.5){let g=R(i,"x","localResponseNormalization");U(g.rank===4||g.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${g.rank}.`),U(ke(a),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${a}.`);let x=g,w=!1;g.rank===3&&(w=!0,x=K(g,[1,g.shape[0],g.shape[1],g.shape[2]]));let k=(_,W)=>{let et=_.localResponseNormalization4D(x,a,u,h,d);return W([x,et]),et},C={x},$={depthRadius:a,bias:u,alpha:h,beta:d},F=V.runKernelFunc(k,C,null,my,$);return w?K(F,[F.shape[1],F.shape[2],F.shape[3]]):F}var fk=O({localResponseNormalization_:Aet});function Fet(i){let a=R(i,"x","log"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.log(a);return d([a]),g},u,null,hy)}var io=O({log_:Fet});function Ret(i){let a=R(i,"x","log1p"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.log1p(a);return d([a]),g},u,null,fy)}var Rh=O({log1p_:Ret});function Gl(i){return V.customGrad(i)}function Pet(i){let a=R(i,"x","neg"),u={x:a};return V.runKernelFunc(h=>h.neg(a),u,null,Ny)}var me=O({neg_:Pet});function Oet(i){let a=R(i,"x","softplus"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.softplus(a);return d([a]),g},u,null,Hy)}var Ph=O({softplus_:Oet});function Let(i){let a=R(i,"x","logSigmoid"),u=Gl(h=>{let d=me(Ph(me(h))),g=x=>{let w=at(x,za(me(h)));return w};return{value:d,gradFunc:g}});return u(a)}var dk=O({logSigmoid_:Let});function Met(i,a=null,u=!1){let h=R(i,"x","max"),d=(w,k)=>{let C=Zt(a,h.shape),$=C,F=Nn($,h.rank),_=h;F!=null&&(_=Ie(h,F),$=Wn($.length,_.rank));let W=w.max(_,$);F!=null&&_.dispose();let et=W;if(u){let tt=dn(et.shape,Zt(a,h.shape));et=K(et,tt),W.dispose()}return k([h,et]),et},g={x:h},x={reductionIndices:a,keepDims:u};return V.runKernelFunc(d,g,null,gy,x)}var Ao=O({max_:Met});function Bet(i,a){let u=R(i,"a","sub"),h=R(a,"b","sub");[u,h]=he(u,h);let d=(x,w)=>{let k=x.subtract(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,Qy)}var Pt=O({sub_:Bet});function zet(i,a=null,u=!1){let h=R(i,"x","sum");h.dtype==="bool"&&(h=wt(h,"int32"));let d=(w,k)=>{k([h]);let C=Zt(a,h.shape),$=Nn(C,h.rank),F=C,_=h;$!=null&&(_=Ie(h,$),F=Wn(F.length,h.rank));let W=w.sum(_,F);if(u){let et=dn(W.shape,C);W=K(W,et)}return W},g={x:h},x={axis:a,keepDims:u};return V.runKernelFunc(d,g,null,Ky,x)}var Ft=O({sum_:zet});function Wet(i,a=-1){let u=R(i,"logits","logSoftmax");if(a===-1&&(a=u.rank-1),a!==u.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${u.rank} and axis was ${a}`);let h=(x,w)=>{let k=!0,C=Ao(i,a,!0),$=Pt(i,C),F=Pt(wt($,"float32"),io(Ft(Cn($),a,k)));return w([F]),F},d={logits:u},g={axis:a};return V.runKernelFunc(h,d,null,dy,g)}var mk=O({logSoftmax_:Wet});function Vet(i,a=null,u=!1){let h=R(i,"x","logSumExp"),d=Zt(a,h.shape),g=Ao(h,d,!0),x=Pt(h,g),w=Cn(x),k=Ft(w,d),C=io(k),$=Ne(K(g,C.shape),C);if(u){let F=dn($.shape,d);return K($,F)}return $}var Oh=O({logSumExp_:Vet});function Get(i,a){let u=R(i,"a","logicalAnd","bool"),h=R(a,"b","logicalAnd","bool");ne(u.shape,h.shape);let d={a:u,b:h};return V.runKernelFunc(g=>g.logicalAnd(u,h),d,null,T2)}var ao=O({logicalAnd_:Get});function Uet(i){let a=R(i,"x","logicalNot","bool"),u={x:a};return V.runKernelFunc(h=>h.logicalNot(a),u,null,k2)}var Ha=O({logicalNot_:Uet});function qet(i,a){let u=R(i,"a","logicalOr","bool"),h=R(a,"b","logicalOr","bool");ne(u.shape,h.shape);let d={a:u,b:h};return V.runKernelFunc(g=>g.logicalOr(u,h),d,null,N2)}var Lh=O({logicalOr_:qet});function Het(i,a){let u=R(i,"a","logicalXor","bool"),h=R(a,"b","logicalXor","bool");return ne(u.shape,h.shape),ao(Lh(i,a),Ha(ao(i,a)))}var gk=O({logicalXor_:Het});function jet(i,a,u,h,d){let g=R(i,"x","maxPool"),x=1,w=g,k=!1;g.rank===3&&(k=!0,w=K(g,[1,g.shape[0],g.shape[1],g.shape[2]])),U(w.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${w.rank}.`),U(Vn(u,x),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${u} and dilations '${x}'`),d!=null&&U(ke(h),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${d} but got pad ${h}.`);let C=(W,et)=>{let tt=os(w.shape,a,u,1,h,d),G;return tt.filterWidth===1&&tt.filterHeight===1&&Os(tt.inShape,tt.outShape)?G=w.clone():G=W.maxPool(w,tt),et([w,G]),G},$={x:w},F={filterSize:a,strides:u,pad:h,dimRoundingMode:d},_=V.runKernelFunc(C,$,null,by,F);return k?K(_,[_.shape[1],_.shape[2],_.shape[3]]):_}var Mh=O({maxPool_:jet});function Hr(i,a="float32"){if(a==="complex64"){let h=Hr(i,"float32"),d=Hr(i,"float32");return so(h,d)}let u=Oa(an(i),a);return V.makeTensor(u,i,a)}function ss(i,a="float32"){if(a==="complex64"){let h=ss(i,"float32"),d=Hr(i,"float32");return so(h,d)}let u=_g(an(i),a);return V.makeTensor(u,i,a)}function Ket(i,a=null,u=!1){let h=R(i,"x","mean"),d=Zt(a,h.shape),g=$D(h.shape,d),x=g[1],w=an(x),k={x:h},C={axis:a,keepDims:u},$=()=>{let _=Ot(w),W=_.dtype===h.dtype?h:wt(h,_.dtype),et=Wt(W,_);return Ft(et,a,u)},F=Gl(_=>{let W=V.runKernelFunc($,k,null,I2,C),et=tt=>{let G=_.shape.slice();d.forEach(gt=>{G[gt]=1});let mt=K(tt,G),lt=Wt(at(mt,ss(_.shape,"float32")),w);return lt};return{value:W,gradFunc:et}});return F(h)}var Bh=O({mean_:Ket});function Xet(i,a=null,u=!1){let h=R(i,"x","min"),d=(w,k)=>{let C=Zt(a,h.shape),$=C,F=Nn($,h.rank),_=h;F!=null&&(_=Ie(h,F),$=Wn($.length,h.rank));let W=w.min(_,$);F!=null&&_.dispose();let et=W;if(u){let tt=dn(et.shape,C);et=K(W,tt),W.dispose()}return k([h,et]),et},g={x:h},x={axis:a,keepDims:u};return V.runKernelFunc(d,g,null,xy,x)}var Ul=O({min_:Xet});function Yet(i,a){let u=R(i,"a","minimum"),h=R(a,"b","minimum");[u,h]=he(u,h),u.dtype==="bool"&&(u=wt(u,"int32"),h=wt(h,"int32")),ne(u.shape,h.shape);let d=(x,w)=>{let k=x.minimum(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,wy)}var ja=O({minimum_:Yet});function Jet(i,a,u){U(u==="reflect"||u==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${u}.`);let h=R(i,"x","mirrorPad");if(h.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");U(a.length===h.rank,()=>`Padding doesn't match input. Must be ${h.rank}. Got ${a.length}.`);let d=u==="reflect"?1:0;for(let w=0;w"Invalid number of paddings. Must be length of 2 each."),U(a[w][0]>=0&&a[w][0]<=h.shape[w]-d&&a[w][1]>=0&&a[w][1]<=h.shape[w]-d,()=>`Padding in dimension ${w} cannot be greater than or equal to ${h.shape[w]-d} or less than 0 for input of shape ${h.shape}`);let g={paddings:a,mode:u},x={x:h};return V.runKernel(vy,x,g)}var yk=O({mirrorPad_:Jet});function Zet(i,a){let u=R(i,"a","mod"),h=R(a,"b","mod");[u,h]=he(u,h);let d=(x,w)=>{let k=x.mod(u,h);return w([u,h]),k},g={a:u,b:h};return V.runKernelFunc(d,g,null,Ty)}var zh=O({mod_:Zet});function Qet(i){let a=R(i,"x","square"),u={},h=[a],d=[];return V.runKernelFunc((g,x)=>(x([a]),g.square(a)),{x:a},null,"Square",u,h,d)}var be=O({square_:Qet});function tnt(i,a){let u=R(i,"a","notEqual"),h=R(a,"b","notEqual");[u,h]=he(u,h),ne(u.shape,h.shape);let d=x=>x.notEqual(u,h),g={a:u,b:h};return V.runKernelFunc(d,g,null,E2)}var Ka=O({notEqual_:tnt});function ent(i){let a=R(i,"input","real"),u=d=>d.real(a),h={input:a};return V.runKernelFunc(u,h,null,O2)}var Mi=O({real_:ent});function nnt(i){let a=R(i,"x","onesLike"),u=(d,g)=>{if(a.dtype==="complex64"){let x=wb(Mi(a)),w=jt(Ua(a));return so(x,w)}return d.onesLike(a)},h={x:a};return V.runKernelFunc(u,h,null,_y)}var wb=O({onesLike_:nnt});function rnt(i,a,u=0){let h=R(i,"x","pad");if(h.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let d=(w,k)=>(k([h]),w.pad(h,a,u)),g={paddings:a,constantValue:u},x={x:h};return V.runKernelFunc(d,x,null,Sy,g)}var Wh=O({pad_:rnt});function ont(i,a,u){let h=R(i,"x","spaceToBatchND");U(h.rank>=1+a.length,()=>`input rank ${h.rank} should be > than [blockShape] ${a.length}`),U(u.length===a.length,()=>`paddings.shape[0] ${u.length} must be equal to [blockShape] ${a.length}`),U(h.shape.reduce((w,k,C)=>C>0&&C<=a.length?w&&(k+u[C-1][0]+u[C-1][1])%a[C-1]===0:w,!0),()=>`input spatial dimensions ${h.shape.slice(1)} with paddings ${u.toString()} must be divisible by blockShapes ${a.toString()}`);let d=w=>w.spaceToBatchND(h,a,u),g={x:h},x={blockShape:a,paddings:u};return V.runKernelFunc(d,g,null,Xy,x)}var Xa=O({spaceToBatchND_:ont});function ant(i,a,u,h,d,g){d==null&&(d=[1,1]),g==null&&(g=1),h===0&&(h="valid");let x=R(i,"x","maxPool"),w=x,k=!1;x.rank===3&&(k=!0,w=K(x,[1,x.shape[0],x.shape[1],x.shape[2]])),U(Vn(g,d),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${g} and dilations '${d}'`);let C=os(w.shape,a,g,d,h),$=[C.dilationHeight,C.dilationWidth],F;h==="same"?F=int([C.filterHeight,C.filterWidth],$):F=[[0,0],[0,0]];let _=$[0]===1&&$[1]===1,[W,et]=snt([C.inHeight,C.inWidth],$,F),tt=_?h:"valid",G=_?w:Xa(w,$,W),mt=u==="avg"?()=>Ih(G,a,g,tt):()=>Mh(G,a,g,tt),lt=mt(),gt=_?lt:Wa(lt,$,et);return k?K(gt,[gt.shape[1],gt.shape[2],gt.shape[3]]):gt}function snt(i,a,u){let h=u.map($=>$[0]),d=u.map($=>$[1]),g=i.concat(h,d),x=a.map(($,F)=>($-g[F]%$)%$),w=d.map(($,F)=>$+x[F]),k=a.map(($,F)=>[h[F],w[F]]),C=a.map(($,F)=>[0,x[F]]);return[k,C]}function int(i,a){let u=i.map((x,w)=>x+(x-1)*(a[w]-1)),h=u.map(x=>x-1),d=h.map(x=>Math.floor(x/2)),g=h.map((x,w)=>x-d[w]);return h.map((x,w)=>[d[w],g[w]])}var bk=O({pool_:ant});function cnt(i,a){let u=R(i,"base","pow"),h=R(a,"exp","pow");[u,h]=he(u,h);let d={a:u,b:h},g=(x,w)=>{let k=x.pow(u,h);return w([u,h,k]),k};return V.runKernelFunc(g,d,null,$y)}var Fo=O({pow_:cnt});function lnt(i,a){let u=R(i,"x","prelu"),h=R(a,"alpha","prelu"),d=(x,w)=>{let k=x.prelu(u,h);return w([u,h]),k},g={x:u,alpha:h};return V.runKernelFunc(d,g,null,Iy)}var xk=O({prelu_:lnt});function unt(i,a=null,u=!1){let h=R(i,"x","prod");h.dtype==="bool"&&(h=wt(h,"int32"));let d=w=>{let k=Zt(a,h.shape),C=Nn(k,h.rank),$=k,F=h;C!=null&&(F=Ie(h,C),$=Wn($.length,h.rank));let _=w.prod(F,$);if(u){let W=dn(_.shape,k);_=K(_,W)}return _},g={x:h},x={axis:a,keepDims:u};return V.runKernelFunc(d,g,null,R2,x)}var wk=O({prod_:unt});function Bi(i,a){Al(i);let u=Ms(i,a);if(u.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");let h=null;return ns(i,h,u,a)}function vb(i,a,u=1,h="float32"){if(u===0)throw new Error("Cannot have a step of zero");let d=()=>{let x=i===a,w=i1;if(x||w||k)return Hr([0],h);let C=Math.abs(Math.ceil((a-i)/u)),$=Oa(C,h);a{let g=h.reciprocal(a);return d([a]),g},u,null,Ey)}var vk=O({reciprocal_:pnt});function hnt(i){let a=R(i,"x","relu"),u=(d,g)=>(g([a]),a.dtype==="bool"?wt(a,"int32"):d.relu(a)),h={x:a};return V.runKernelFunc(u,h,null,Dy)}var Ya=O({relu_:hnt});function fnt(i){let a=R(i,"x","relu6"),u=(d,g)=>(g([a]),a.dtype==="bool"?wt(a,"int32"):d.relu6(a)),h={x:a};return V.runKernelFunc(u,h,null,Py)}var Tk=O({relu6_:fnt});function dnt(i,a){let u=R(i,"x","reverse"),h=x=>{let w=Zt(a,u.shape);if(u.rank===0)return Do(u);let k=x.reverse(u,w);return K(k,u.shape)},d={x:u},g={dims:a};return V.runKernelFunc(h,d,null,Oy,g)}var zi=O({reverse_:dnt});function mnt(i){let a=R(i,"x","round"),u={x:a};return V.runKernelFunc(h=>h.round(a),u,null,Ly)}var kk=O({round_:mnt});function gnt(i){let a=R(i,"x","rsqrt"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.rsqrt(a);return d([a]),g},u,null,My)}var Vh=O({rsqrt_:gnt});function ynt(i){let a=R(i,"x","selu"),u=(d,g)=>{let x=d.selu(a);return g([a]),x},h={x:a};return V.runKernelFunc(u,h,null,zy)}var Nk=O({selu_:ynt});function bnt(i,a,u,h,d,g=[1,1],x="NHWC"){let w=R(i,"x","separableConv2d"),k=R(a,"depthwiseFilter","separableConv2d"),C=R(u,"pointwiseFilter","separableConv2d"),$=w,F=!1;if(w.rank===3&&(F=!0,$=K(w,[1,w.shape[0],w.shape[1],w.shape[2]])),x==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");U($.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${$.rank}.`),U(k.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${k.rank}.`),U(C.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${k.rank}.`),U(C.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${C.shape[0]}.`),U(C.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${C.shape[1]}.`);let _=k.shape[2],W=k.shape[3];U(C.shape[2]===_*W,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${_*W}, but got ${C.shape[2]}.`);let et=Ga($,k,h,d,x,g),tt=1,G=Vs(et,C,tt,"valid",x);return F?K(G,[G.shape[1],G.shape[2],G.shape[3]]):G}var _k=O({separableConv2d_:bnt});function xnt(i){let a=R(i,"x","sign"),u={x:a};return V.runKernelFunc(h=>h.sign(a),u,null,Uy)}var Ck=O({sign_:xnt});function wnt(i){let a=R(i,"x","sin"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.sin(a);return d([a]),g},u,null,Vy)}var Gh=O({sin_:wnt});function vnt(i){let a=R(i,"x","sinh"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.sinh(a);return d([a]),g},u,null,Gy)}var Uh=O({sinh_:vnt});function Tnt(i,a=-1){let u=R(i,"logits","softmax","float32");if(a===-1&&(a=u.rank-1),a!==u.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${u.rank} and dim was ${a}`);let h={logits:u},d={dim:a};return V.runKernelFunc((g,x)=>{let w=g.softmax(u,a);return x([w]),w},h,null,Jy,d)}var Sk=O({softmax_:Tnt});function knt(i){U(i.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${i.dtype}.`);let a={input:i};return V.runKernelFunc(u=>{let h=i.shape[i.shape.length-1],d=i.size/h,g=i.as2D(d,h),x=u.fft(g);return x.reshape(i.shape)},a,null,d2)}var Ja=O({fft_:knt});function Nnt(i){U(i.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${i.dtype}.`);let a={input:i};return V.runKernelFunc(u=>{let h=i.shape[i.shape.length-1],d=i.size/h,g=K(i,[d,h]),x=u.ifft(g);return K(x,i.shape)},a,null,b2)}var Wi=O({ifft_:Nnt});function _nt(i){let a=i.shape[i.shape.length-1],u=i.size/a,h;if(a<=2){let d=K(i,[u,a]);h=Wi(d)}else{let d=[u,2*(a-1)],g=K(Mi(i),[u,a]),x=K(Ua(i),[u,a]),w=zi(ve(g,[0,1],[u,a-2]),1),k=at(zi(ve(x,[0,1],[u,a-2]),1),Ot(-1)),C=mn([g,w],1),$=mn([x,k],1),F=K(so(C,$),[d[0],d[1]]);h=Wi(F)}if(h=Mi(h),i.rank===3&&i.shape[0]!==0){let d=h,g=i.shape[0];h=K(h,[g,h.shape[0]/g,h.shape[1]]),d.dispose()}return h}var qh=O({irfft_:_nt});function PD(i,a,u=0){let h=[];if(typeof a=="number")U(i.shape[u]%a===0,()=>"Number of splits must evenly divide the axis."),h=new Array(a).fill(i.shape[u]/a);else{let d=a.reduce((x,w)=>(w===-1&&(x+=1),x),0);U(d<=1,()=>"There should be only one negative value in split array.");let g=a.indexOf(-1);if(g!==-1){let x=a.reduce((w,k)=>k>0?w+k:w);a[g]=i.shape[u]-x}U(i.shape[u]===a.reduce((x,w)=>x+w),()=>"The sum of sizes must match the size of the axis dimension."),h=a}return h}function Cnt(i,a,u=0){let h=R(i,"x","split"),d=(w,k)=>{let C=Zt(u,h.shape)[0],$=PD(h,a,C);return w.split(h,$,C)},g={x:h},x={numOrSizeSplits:a,axis:u};return V.runKernelFunc(d,g,null,Yy,x)}var is=O({split_:Cnt});function Snt(i,a){U(i.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${i.dtype}`);let u=i.shape[i.shape.length-1],h=i.size/u,d;if(a!=null&&a0),tt=i.shape.map(G=>G);tt[i.shape.length-1]=a,d=ve(i,et,tt),u=a}else if(a!=null&&a>u){let et=i.shape.map(tt=>tt);et[i.shape.length-1]=a-u,d=mn([i,Hr(et)],i.shape.length-1),u=a}else d=i;let g=jt(d),x=K(so(d,g),[h,u]),w=Ja(x),k=Math.floor(u/2)+1,C=Mi(w),$=Ua(w),F=is(C,[k,u-k],C.shape.length-1),_=is($,[k,u-k],$.shape.length-1),W=d.shape.slice();return W[d.shape.length-1]=k,K(so(F[0],_[0]),W)}var Za=O({rfft_:Snt});function $nt(i){let a=R(i,"x","sqrt"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.sqrt(a);return d([a]),g},u,null,jy)}var tr=O({sqrt_:$nt});function Int(i,a){let u=R(i,"a","squaredDifference"),h=R(a,"b","squaredDifference");[u,h]=he(u,h),ne(u.shape,h.shape);let d=(w,k)=>{let C=w.squaredDifference(u,h);return k([u,h]),C},g={a:u,b:h},x={};return V.runKernelFunc(d,g,null,Zy,x)}var Qa=O({squaredDifference_:Int});function Ent(i,a){let u=R(i,"x","squeeze");return K(u,BE(u.shape,a).newShape)}var Hh=O({squeeze_:Ent});function Dnt(i,a=0){let u=hb(i,"tensors","stack");if(U(u.length>=1,()=>"Pass at least one tensor to tf.stack"),u.length===1)return mr(u[0],a);let h=u[0].rank,d=u[0].shape,g=u[0].dtype;U(a<=h,()=>"Axis must be <= rank of the tensor"),u.forEach(w=>{ae(d,w.shape,"All tensors passed to stack must have matching shapes"),U(g===w.dtype,()=>"All tensors passed to stack must have matching dtypes")});let x=u.map(w=>mr(w,a));return mn(x,a)}var Sr=O({stack_:Dnt});function Ant(i,a=0){let u=R(i,"x","step"),h={x:u},d={alpha:a};return V.runKernelFunc(g=>g.step(u,a),h,null,ab,d)}var Hs=O({step_:Ant});function Fnt(i,a,u,h,d=0,g=0,x=0,w=0,k=0){let C=R(i,"x","stridedSlice"),$=W=>{h==null&&(h=new Array(a.length));let et=db(x);if(et.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(x!==0&&w!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(x!==0&&k!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let tt=C.rank-a.length,G=db(w),mt=C.shape.slice();G.forEach(Vt=>{a[Vt]=0,u[Vt]=1,mt.splice(Vt,0,1)}),C=K(C,mt);let{begin:lt,end:gt,strides:_t}=_D(C.shape,et,tt,a,u,h,d,g,x);a=lt,u=gt,h=_t;let Gt=db(k);Gt.forEach(Vt=>{u[Vt]=a[Vt]+1,h[Vt]=1});let se=TD(a,u,h),fe=se.filter((Vt,ln)=>Gt.indexOf(ln)===-1),_e=h.every(Vt=>Vt===1);if(_e)return K(ve(C,a,se),fe);let Ue=W.stridedSlice(C,a,u,h);return K(Ue,fe)},F={x:C},_={begin:a,end:u,strides:h,beginMask:d,endMask:g,ellipsisMask:x,newAxisMask:w,shrinkAxisMask:k};return V.runKernelFunc($,F,null,z2,_)}var $k=O({stridedSlice_:Fnt});function Rnt(i){let a=R(i,"x","tan"),u={x:a};return V.runKernelFunc((h,d)=>{let g=h.tan(a);return d([a]),g},u,null,tb)}var Ik=O({tan_:Rnt});function tc(i,a,u){if(Al(i),a!=null&&a.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let h=Ms(i,u);if(h.length!==2&&h.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(h.length===1&&a==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ns(i,a,h,u)}function Pnt(i,a=1,u=!0){let h=R(i,"x","topk");if(h.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let d=h.shape[h.shape.length-1];if(a>d)throw new Error(`'k' passed to topk() must be <= the last dimension (${d}) but got ${a}`);let g={x:h},x={k:a,sorted:u},[w,k]=V.runKernelFunc(C=>C.topk(h,a,u),g,null,W2,x);return{values:w,indices:k}}var Ek=O({topk_:Pnt});function Ont(i,a=0){let u=R(i,"x","unique",null);U(u.rank>0,()=>"The input tensor must be at least 1D");let h={x:u},d={axis:a},[g,x]=V.runKernel(V2,h,d);return{values:g,indices:x}}var Dk=O({unique_:Ont});function Lnt(i,a,u){let h=R(i,"x","unsortedSegmentSum"),d=R(a,"segmentIds","unsortedSegmentSum","int32");U(ke(u),()=>"numSegments must be of dtype int");let g={x:h,segmentIds:d},x={numSegments:u},w=(k,C)=>{let $=k.unsortedSegmentSum(h,d,u);return C([d]),$};return V.runKernelFunc(w,g,null,sb,x)}var jh=O({unsortedSegmentSum_:Lnt});function Mnt(i,a=0){let u=R(i,"x","unstack");U(a>=-u.shape.length&&a`Axis = ${a} is not in [-${u.shape.length}, ${u.shape.length})`),a<0&&(a+=u.shape.length);let h={value:u},d={axis:a},g=x=>x.unstack(u,a);return V.runKernelFunc(g,h,null,ob,d)}var ec=O({unstack_:Mnt});function Bnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","notEqualStrict"),h=R(a,"b","notEqualStrict");return ae(u.shape,h.shape,"Error in notEqualStrict: "),Ka(u,h)}function znt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","lessStrict"),h=R(a,"b","lessStrict");return ae(u.shape,h.shape,"Error in lessStrict: "),qa(u,h)}function Wnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","equalStrict"),h=R(a,"b","equalStrict");return ae(u.shape,h.shape,"Error in equalStrict: "),Gs(u,h)}function Vnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","lessEqualStrict"),h=R(a,"b","lessEqualStrict");return ae(u.shape,h.shape,"Error in lessEqualStrict: "),qr(u,h)}function Gnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","greaterStrict"),h=R(a,"b","greaterStrict");return ae(u.shape,h.shape,"Error in greaterStrict: "),gr(u,h)}function Unt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","greaterEqualStrict"),h=R(a,"b","greaterEqualStrict");return ae(u.shape,h.shape,"Error in greaterEqualStrict: "),Ur(u,h)}var OD=O({equalStrict_:Wnt}),LD=O({greaterEqualStrict_:Unt}),MD=O({greaterStrict_:Gnt}),BD=O({lessEqualStrict_:Vnt}),zD=O({lessStrict_:znt}),WD=O({notEqualStrict_:Bnt});function qnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","addStrict"),h=R(a,"b","addStrict");return ae(u.shape,h.shape,"Error in addStrict: "),Ne(u,h)}function Hnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","subStrict"),h=R(a,"b","subStrict");return ae(u.shape,h.shape,"Error in subStrict: "),Pt(u,h)}function jnt(i,a){return kn("strict variants of ops have been deprecated and will be removed in future"),ae(i.shape,a.shape,"Error in powStrict: "),Fo(i,a)}function Knt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","mul"),h=R(a,"b","mul");return ae(u.shape,h.shape,"Error in multiplyStrict: "),at(u,h)}function Xnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","div"),h=R(a,"b","div");return ae(u.shape,h.shape,"Error in divideStrict: "),Wt(u,h)}function Ynt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","modStrict"),h=R(a,"b","modStrict");return ae(u.shape,h.shape,"Error in modStrict: "),zh(u,h)}function Jnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","minimumStrict"),h=R(a,"b","minimumStrict");return ae(u.shape,h.shape,"Error in minimumStrict: "),ja(u,h)}function Znt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","maximumStrict"),h=R(a,"b","maximumStrict");return ae(u.shape,h.shape,"Error in maximumStrict: "),qs(u,h)}function Qnt(i,a){kn("strict variants of ops have been deprecated and will be removed in future");let u=R(i,"a","squaredDifferenceStrict"),h=R(a,"b","squaredDifferenceStrict");return ae(u.shape,h.shape,"Error in squaredDifferenceStrict: "),Qa(u,h)}var VD=O({addStrict_:qnt}),GD=O({divStrict_:Xnt}),UD=O({maximumStrict_:Znt}),qD=O({minimumStrict_:Jnt}),HD=O({modStrict_:Ynt}),jD=O({mulStrict_:Knt}),KD=O({powStrict_:jnt}),XD=O({squaredDifferenceStrict_:Qnt}),YD=O({subStrict_:Hnt});function trt(i,a="euclidean",u=null,h=!1){i=R(i,"x","norm");let d=JD(i,a,u),g=d.shape;if(h){let x=Zt(u,i.shape);g=dn(d.shape,x)}return K(d,g)}function JD(i,a,u=null){if(i.rank===0)return zn(i);if(i.rank!==1&&u===null)return JD(K(i,[-1]),a,u);if(i.rank===1||typeof u=="number"||Array.isArray(u)&&u.length===1){if(a===1)return Ft(zn(i),u);if(a===Infinity)return Ao(zn(i),u);if(a===-Infinity)return Ul(zn(i),u);if(a==="euclidean"||a===2)return tr(Ft(Fo(zn(i),Ot(2,"int32")),u));throw new Error(`Error in norm: invalid ord value: ${a}`)}if(Array.isArray(u)&&u.length===2){if(a===1)return Ao(Ft(zn(i),u[0]),u[1]-1);if(a===Infinity)return Ao(Ft(zn(i),u[1]),u[0]);if(a===-Infinity)return Ul(Ft(zn(i),u[1]),u[0]);if(a==="fro"||a==="euclidean")return tr(Ft(be(i),u));throw new Error(`Error in norm: invalid ord value: ${a}`)}throw new Error(`Error in norm: invalid axis: ${u}`)}var ql=O({norm_:trt});function ZD(i){return Math.floor(Math.pow(2,Math.ceil(Math.log(i)/Math.log(2))))}function Tb(i,a,u){let h=1-i%2,d=new Float32Array(i);for(let g=0;g`Error in conv2dDerFilter: input must be rank 4, but got shape ${w.shape}.`),U(k.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${k.shape}.`),U(u.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${u}.`);let C=g==="NHWC"?w.shape[3]:w.shape[1],$=g==="NHWC"?k.shape[3]:k.shape[1];U(C===u[2],()=>`Error in conv2dDerFilter: depth of input ${C}) must match input depth in filter (${u[2]}.`),U($===u[3],()=>`Error in conv2dDerFilter: depth of dy (${$}) must match output depth for filter (${u[3]}).`),x!=null&&U(ke(d),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${x} but got pad ${d}.`);let F=et=>{let tt=1,G=Wl(g),mt=Gr(w.shape,u,h,tt,d,x,!1,G);return et.conv2dDerFilter(w,k,mt)},_={x:w,dy:k},W={strides:h,pad:d,dataFormat:g,dimRoundingMode:x,filterShape:u};return V.runKernelFunc(F,_,null,n2,W)}var kb=O({conv2DBackpropFilter_:ert});function nrt(i,a,u,h,d,g=[1,1],x){let w=i;i.rank===3&&(w=K(i,[1,i.shape[0],i.shape[1],i.shape[2]]));let k=a;k.rank===3&&(k=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let C=_=>{let W=Gr(i.shape,u,h,g,d,x,!0);return _.depthwiseConv2DDerFilter(w,k,W)},$={x:w,dy:k},F={strides:h,pad:d,dimRoundingMode:x,dilations:g,filterShape:u};return V.runKernelFunc(C,$,null,c2,F)}var QD=O({depthwiseConv2dNativeBackpropFilter_:nrt});function rrt(i,a,u,h,d,g=[1,1],x){let w=a,k=!1;a.rank===3&&(k=!0,w=K(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let C=W=>{let et=Gr(i,u.shape,h,g,d,x,!0);return W.depthwiseConv2DDerInput(w,u,et)},$={dy:w,filter:u},F={strides:h,pad:d,dimRoundingMode:x,dilations:g,inputShape:i},_=V.runKernelFunc(C,$,null,l2,F);return k?K(_,[_.shape[1],_.shape[2],_.shape[3]]):_}var tA=O({depthwiseConv2dNativeBackpropInput_:rrt});function ort(i){return Tb(i,.54,.46)}var eA=O({hammingWindow_:ort});function srt(i){return Tb(i,.5,.5)}var Nb=O({hannWindow_:srt});function irt(i,a,u,h=!1,d=0){let g=0,x=[];for(;g+a<=i.size;)x.push(ve(i,g,a)),g+=u;if(h)for(;g`Error in cropAndResize: image must be rank 4,but got rank ${x.rank}.`),U(w.rank===2&&w.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${C},4] but had shape ${w.shape}.`),U(k.rank===1&&k.shape[0]===C,()=>`Error in cropAndResize: boxInd must be have size [${C}] but had shape ${w.shape}.`),U(h.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${h.length}.`),U(h[0]>=1&&h[1]>=1,()=>`cropSize must be atleast [1,1], but was ${h}`),U(d==="bilinear"||d==="nearest",()=>`method must be bilinear or nearest, but was ${d}`);let $=et=>et.cropAndResize(x,w,k,h,d,g),F={image:x,boxes:w,boxInd:k},_={method:d,extrapolationValue:g,cropSize:h},W=V.runKernelFunc($,F,null,i2,_);return W}var rA=O({cropAndResize_:crt});function lrt(i){let a=R(i,"image","flipLeftRight","float32");U(a.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${a.rank}.`);let u={image:a},h=V.runKernel(g2,u,{});return h}var oA=O({flipLeftRight_:lrt});function urt(i,a,u=0,h=.5){let d=R(i,"image","rotateWithOffset","float32");U(d.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${d.rank}.`);let g={image:d},x={radians:a,fillValue:u,center:h},w=V.runKernel(G2,g,x);return w}var sA=O({rotateWithOffset_:urt});function co(i,a,u,h,d,g){h==null&&(h=.5),d==null&&(d=Number.NEGATIVE_INFINITY),g==null&&(g=0);let x=i.shape[0];return u=Math.min(u,x),U(0<=h&&h<=1,()=>`iouThreshold must be in [0, 1], but was '${h}'`),U(i.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${i.rank}'`),U(i.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${i.shape[1]}`),U(a.rank===1,()=>"scores must be a 1D tensor"),U(a.shape[0]===x,()=>`scores has incompatible shape with boxes. Expected ${x}, but was ${a.shape[0]}`),U(0<=g&&g<=1,()=>`softNmsSigma must be in [0, 1], but was '${g}'`),{maxOutputSize:u,iouThreshold:h,scoreThreshold:d,softNmsSigma:g}}function prt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY){let g=R(i,"boxes","nonMaxSuppression"),x=R(a,"scores","nonMaxSuppression"),w=co(g,x,u,h,d);u=w.maxOutputSize,h=w.iouThreshold,d=w.scoreThreshold;let k={maxOutputSize:u,iouThreshold:h,scoreThreshold:d};return V.runKernelFunc(C=>C.nonMaxSuppression(g,x,u,h,d),{boxes:g,scores:x},null,D2,k)}var iA=O({nonMaxSuppression_:prt});function aA(i,a,u){let h=hrt(i,a,u),d=h<0?-(h+1):h;i.splice(d,0,a)}function hrt(i,a,u){return drt(i,a,u||frt)}function frt(i,a){return i>a?1:i>>1);let w=u(a,i[g]);w>0?h=g+1:(d=g,x=!w)}return x?h:-h-1}function cA(i,a,u,h,d){return Ak(i,a,u,h,d,0).selectedIndices}function lA(i,a,u,h,d,g){return Ak(i,a,u,h,d,0,!1,g,!0)}function uA(i,a,u,h,d,g){return Ak(i,a,u,h,d,g,!0)}function Ak(i,a,u,h,d,g,x=!1,w=!1,k=!1){let C=[];for(let G=0;Gd&&C.push({score:a[G],boxIndex:G,suppressBeginIndex:0});C.sort(pA);let $=g>0?-.5/g:0,F=[],_=[];for(;F.length0;){let G=C.pop(),{score:mt,boxIndex:lt,suppressBeginIndex:gt}=G;if(mt=gt;--Gt){let se=mrt(i,lt,F[Gt]);if(se>=h){_t=!0;break}if(G.score=G.score*grt(h,$,se),G.score<=d)break}G.suppressBeginIndex=F.length,_t||(G.score===mt?(F.push(lt),_.push(G.score)):G.score>d&&aA(C,G,pA))}let W=F.length,et=u-W;w&&et>0&&(F.push(...new Array(et).fill(0)),_.push(...new Array(et).fill(0)));let tt={selectedIndices:Bi(F,"int32")};return x&&(tt.selectedScores=Bi(_,"float32")),k&&(tt.validOutputs=Ot(W,"int32")),tt}function mrt(i,a,u){let h=i.subarray(a*4,a*4+4),d=i.subarray(u*4,u*4+4),g=Math.min(h[0],h[2]),x=Math.min(h[1],h[3]),w=Math.max(h[0],h[2]),k=Math.max(h[1],h[3]),C=Math.min(d[0],d[2]),$=Math.min(d[1],d[3]),F=Math.max(d[0],d[2]),_=Math.max(d[1],d[3]),W=(w-g)*(k-x),et=(F-C)*(_-$);if(W<=0||et<=0)return 0;let tt=Math.max(g,C),G=Math.max(x,$),mt=Math.min(w,F),lt=Math.min(k,_),gt=Math.max(mt-tt,0)*Math.max(lt-G,0);return gt/(W+et-gt)}function grt(i,a,u){let h=Math.exp(a*u*u);return u<=i?h:0}function pA(i,a){return i.score-a.score||i.score===a.score&&a.boxIndex-i.boxIndex}async function yrt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY){let g=R(i,"boxes","nonMaxSuppressionAsync"),x=R(a,"scores","nonMaxSuppressionAsync"),w=co(g,x,u,h,d);u=w.maxOutputSize,h=w.iouThreshold,d=w.scoreThreshold;let k=await Promise.all([g.data(),x.data()]),C=k[0],$=k[1],F=cA(C,$,u,h,d);return g!==i&&g.dispose(),x!==a&&x.dispose(),F}var hA=yrt;function brt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY,g=0){let x=R(i,"boxes","nonMaxSuppression"),w=R(a,"scores","nonMaxSuppression"),k=co(x,w,u,h,d,g);u=k.maxOutputSize,h=k.iouThreshold,d=k.scoreThreshold,g=k.softNmsSigma;let C={boxes:x,scores:w},$={maxOutputSize:u,iouThreshold:h,scoreThreshold:d,softNmsSigma:g},F=V.runKernel(F2,C,$);return{selectedIndices:F[0],selectedScores:F[1]}}var fA=O({nonMaxSuppressionWithScore_:brt});async function xrt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY,g=0){let x=R(i,"boxes","nonMaxSuppressionAsync"),w=R(a,"scores","nonMaxSuppressionAsync"),k=co(x,w,u,h,d,g);u=k.maxOutputSize,h=k.iouThreshold,d=k.scoreThreshold,g=k.softNmsSigma;let C=await Promise.all([x.data(),w.data()]),$=C[0],F=C[1],_=uA($,F,u,h,d,g);return x!==i&&x.dispose(),w!==a&&w.dispose(),_}var dA=xrt;function wrt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY,g=!1){let x=R(i,"boxes","nonMaxSuppression"),w=R(a,"scores","nonMaxSuppression"),k=co(x,w,u,h,d,null),C=k.maxOutputSize,$=k.iouThreshold,F=k.scoreThreshold,_={boxes:x,scores:w},W={maxOutputSize:C,iouThreshold:$,scoreThreshold:F,padToMaxOutputSize:g},et=V.runKernel(A2,_,W);return{selectedIndices:et[0],validOutputs:et[1]}}var mA=O({nonMaxSuppressionPadded_:wrt});async function vrt(i,a,u,h=.5,d=Number.NEGATIVE_INFINITY,g=!1){let x=R(i,"boxes","nonMaxSuppressionAsync"),w=R(a,"scores","nonMaxSuppressionAsync"),k=co(x,w,u,h,d,null),C=k.maxOutputSize,$=k.iouThreshold,F=k.scoreThreshold,[_,W]=await Promise.all([x.data(),w.data()]),et=lA(_,W,C,$,F,g);return x!==i&&x.dispose(),w!==a&&w.dispose(),et}var gA=vrt;function Trt(i,a,u=!1){let h=R(i,"images","resizeBilinear");U(h.rank===3||h.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${h.rank}.`),U(a.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${a}.`);let d=h,g=!1;h.rank===3&&(g=!0,d=K(h,[1,h.shape[0],h.shape[1],h.shape[2]]));let[x,w]=a,k=(_,W)=>(W([d]),_.resizeBilinear(d,x,w,u)),C={images:d},$={alignCorners:u,size:a},F=V.runKernelFunc(k,C,null,Ry,$);return g?K(F,[F.shape[1],F.shape[2],F.shape[3]]):F}var Cb=O({resizeBilinear_:Trt});function krt(i,a,u=!1){let h=R(i,"images","resizeNearestNeighbor");U(h.rank===3||h.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${h.rank}.`),U(a.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${a}.`),U(h.dtype==="float32"||h.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype");let d=h,g=!1;h.rank===3&&(g=!0,d=K(h,[1,h.shape[0],h.shape[1],h.shape[2]]));let[x,w]=a,k={images:d},C={alignCorners:u,size:a},$=(_,W)=>(W([d]),_.resizeNearestNeighbor(d,x,w,u)),F=V.runKernelFunc($,k,null,Fy,C);return g?K(F,[F.shape[1],F.shape[2],F.shape[3]]):F}var Sb=O({resizeNearestNeighbor_:krt});function Nrt(i,a,u){U(a%1===0,()=>`bandPart(): numLower must be an integer, got ${a}.`),U(u%1===0,()=>`bandPart(): numUpper must be an integer, got ${u}.`);let h=R(i,"a","bandPart");U(h.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${h.rank}.`);let d=h.shape,[g,x]=h.shape.slice(-2);if(!(a<=g))throw new Error(`bandPart(): numLower (${a}) must not be greater than the number of rows (${g}).`);if(!(u<=x))throw new Error(`bandPart(): numUpper (${u}) must not be greater than the number of columns (${x}).`);a<0&&(a=g),u<0&&(u=x);let w=K(vb(0,g,1,"int32"),[-1,1]),k=vb(0,x,1,"int32"),C=Pt(w,k),$=ao(qr(C,Ot(+a,"int32")),Ur(C,Ot(-u,"int32"))),F=Hr([g,x],h.dtype);return K(Sr(ec(K(h,[-1,g,x])).map(_=>_n($,_,F))),d)}var yA=O({bandPart_:Nrt});function _rt(i){let a;if(Array.isArray(i)){a=!1,U(i!=null&&i.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let d=i[0].shape[0];for(let g=1;g`Gram-Schmidt: Non-unique lengths found in the input vectors: (${i[g].shape[0]} vs. ${d})`)}else a=!0,i=is(i,i.shape[0],0).map(d=>Hh(d,[0]));U(i.length<=i[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${i.length}) exceeds number of dimensions (${i[0].shape[0]}).`);let u=[],h=i;for(let d=0;d{let g=h[d];if(d>0)for(let x=0;x=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${i.rank}`),i.rank===2)return xA(i,a);{let u=i.shape.slice(0,i.shape.length-2).reduce((k,C)=>k*C),h=ec(K(i,[u,i.shape[i.shape.length-2],i.shape[i.shape.length-1]]),0),d=[],g=[];h.forEach(k=>{let[C,$]=xA(k,a);d.push(C),g.push($)});let x=K(Sr(d,0),i.shape),w=K(Sr(g,0),i.shape);return[x,w]}}function xA(i,a=!1){return V.tidy(()=>{U(i.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${i.shape.length}D Tensor.`);let u=i.shape[0],h=i.shape[1],d=ak(u),g=Do(i),x=tc([[1]],[1,1]),w=Do(x),k=u>=h?h:u;for(let C=0;C{let W=ve(g,[C,C],[u-C,1]),et=ql(W),tt=ve(g,[C,C],[1,1]),G=_n(gr(tt,0),tc([[-1]]),tc([[1]])),mt=Pt(tt,at(G,et)),lt=Wt(W,mt);lt.shape[0]===1?w=Do(x):w=mn([x,ve(lt,[1,0],[lt.shape[0]-1,lt.shape[1]])],0);let gt=me(Wt(Ge(G,mt),et)),_t=ve(g,[C,0],[u-C,h]),Gt=at(gt,w),se=Ie(w);if(C===0)g=Pt(_t,Ge(Gt,Ge(se,_t)));else{let Ue=Pt(_t,Ge(Gt,Ge(se,_t)));g=mn([ve(g,[0,0],[C,h]),Ue],0)}let fe=Ie(Gt),_e=ve(d,[0,C],[u,d.shape[1]-C]);if(C===0)d=Pt(_e,Ge(Ge(_e,w),fe));else{let Ue=Pt(_e,Ge(Ge(_e,w),fe));d=mn([ve(d,[0,0],[u,C]),Ue],1)}return[w,g,d]}),SD([$,F,_])}return!a&&u>h&&(d=ve(d,[0,0],[u,h]),g=ve(g,[0,0],[h,h])),[d,g]})}var wA=O({qr_:Crt});var cn;(function(i){i[i.NONE=0]="NONE",i[i.MEAN=1]="MEAN",i[i.SUM=2]="SUM",i[i.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(cn||(cn={}));function Srt(i,a,u=cn.SUM_BY_NONZERO_WEIGHTS){let h=R(i,"losses","computeWeightedLoss"),d=null;a!=null&&(d=R(a,"weights","computeWeightedLoss"));let g=d==null?h:at(h,d);if(u===cn.NONE)return g;if(u===cn.SUM)return Ft(g);if(u===cn.MEAN){if(d==null)return Bh(g);{let x=h.size/d.size,w=Wt(Ft(g),Ft(d));return x>1?Wt(w,Ot(x)):w}}if(u===cn.SUM_BY_NONZERO_WEIGHTS){if(d==null)return Wt(Ft(g),Ot(h.size));{let x=at(d,ss(h.shape)),w=wt(Ft(Ka(x,Ot(0))),"float32");return Wt(Ft(g),w)}}throw Error(`Unknown reduction: ${u}`)}var Gn=O({computeWeightedLoss_:Srt});function $rt(i,a,u,h=cn.SUM_BY_NONZERO_WEIGHTS){let d=R(i,"labels","absoluteDifference"),g=R(a,"predictions","absoluteDifference"),x=null;u!=null&&(x=R(u,"weights","absoluteDifference")),ae(d.shape,g.shape,"Error in absoluteDifference: ");let w=zn(Pt(d,g));return Gn(w,x,h)}var vA=O({absoluteDifference_:$rt});function Irt(i,a,u,h,d=cn.SUM_BY_NONZERO_WEIGHTS){let g=R(i,"labels","cosineDistance"),x=R(a,"predictions","cosineDistance"),w=null;h!=null&&(w=R(h,"weights","cosineDistance")),ae(g.shape,x.shape,"Error in cosineDistance: ");let k=Ot(1),C=Pt(k,Ft(at(g,x),u,!0));return Gn(C,w,d)}var TA=O({cosineDistance_:Irt});function Ert(i,a,u,h=cn.SUM_BY_NONZERO_WEIGHTS){let d=R(i,"labels","hingeLoss"),g=R(a,"predictions","hingeLoss"),x=null;u!=null&&(x=R(u,"weights","hingeLoss")),ae(d.shape,g.shape,"Error in hingeLoss: ");let w=Ot(1);d=Pt(at(Ot(2),d),w);let k=Ya(Pt(w,at(d,g)));return Gn(k,x,h)}var kA=O({hingeLoss_:Ert});function Drt(i,a,u,h=1,d=cn.SUM_BY_NONZERO_WEIGHTS){let g=R(i,"labels","huberLoss"),x=R(a,"predictions","huberLoss"),w=null;u!=null&&(w=R(u,"weights","huberLoss")),ae(g.shape,x.shape,"Error in huberLoss: ");let k=Ot(h),C=zn(Pt(x,g)),$=ja(C,k),F=Pt(C,$),_=Ne(at(Ot(.5),be($)),at(k,F));return Gn(_,w,d)}var NA=O({huberLoss_:Drt});function Art(i,a,u,h=1e-7,d=cn.SUM_BY_NONZERO_WEIGHTS){let g=R(i,"labels","logLoss"),x=R(a,"predictions","logLoss"),w=null;u!=null&&(w=R(u,"weights","logLoss")),ae(g.shape,x.shape,"Error in logLoss: ");let k=Ot(1),C=Ot(h),$=me(at(g,io(Ne(x,C)))),F=at(Pt(k,g),io(Ne(Pt(k,x),C))),_=Pt($,F);return Gn(_,w,d)}var _A=O({logLoss_:Art});function Frt(i,a,u,h=cn.SUM_BY_NONZERO_WEIGHTS){let d=R(i,"labels","meanSquaredError"),g=R(a,"predictions","meanSquaredError"),x=null;u!=null&&(x=R(u,"weights","meanSquaredError")),ae(d.shape,g.shape,"Error in meanSquaredError: ");let w=Qa(d,g);return Gn(w,x,h)}var CA=O({meanSquaredError_:Frt});function Rrt(i,a){let u=R(i,"labels","sigmoidCrossEntropyWithLogits"),h=R(a,"logits","sigmoidCrossEntropyWithLogits");ae(u.shape,h.shape,"Error in sigmoidCrossEntropyWithLogits: ");let d=Ya(h),g=at(h,u),x=Rh(Cn(me(zn(h))));return Ne(Pt(d,g),x)}function Prt(i,a,u,h=0,d=cn.SUM_BY_NONZERO_WEIGHTS){let g=R(i,"multiClassLabels","sigmoidCrossEntropy"),x=R(a,"logits","sigmoidCrossEntropy"),w=null;if(u!=null&&(w=R(u,"weights","sigmoidCrossEntropy")),ae(g.shape,x.shape,"Error in sigmoidCrossEntropy: "),h>0){let C=Ot(h),$=Ot(1),F=Ot(.5);g=Ne(at(g,Pt($,C)),at(F,C))}let k=Rrt(g,x);return Gn(k,w,d)}var SA=O({sigmoidCrossEntropy_:Prt});function Ort(i,a,u=-1){if(u===-1&&(u=a.rank-1),u!==a.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${a.rank} and dim was ${u}`);let h=Gl((d,g,x)=>{let w=!0,k=Oh(g,[u],w),C=Pt(wt(g,"float32"),k);x([d,C]);let $=me(at(C,d)),F=Ft($,[u]),_=(W,et)=>{let[tt,G]=et,mt=dn(W.shape,[u]);return[at(K(W,mt),Pt(wt(tt,"float32"),Cn(G))),at(K(W,mt),Pt(Cn(G),wt(tt,"float32")))]};return{value:F,gradFunc:_}});return h(i,a)}function Lrt(i,a,u,h=0,d=cn.SUM_BY_NONZERO_WEIGHTS){let g=R(i,"onehotLabels","softmaxCrossEntropy"),x=R(a,"logits","softmaxCrossEntropy"),w=null;if(u!=null&&(w=R(u,"weights","softmaxCrossEntropy")),ae(g.shape,x.shape,"Error in softmaxCrossEntropy: "),h>0){let C=Ot(h),$=Ot(1),F=Ot(g.shape[1]);g=Ne(at(g,Pt($,C)),Wt(C,F))}let k=Ort(g,x);return Gn(k,w,d)}var $A=O({softmaxCrossEntropy_:Lrt});var kRt={fft:Ja,ifft:Wi,rfft:Za,irfft:qh},NRt={hammingWindow:eA,hannWindow:Nb,frame:_b,stft:nA},IA={flipLeftRight:oA,resizeNearestNeighbor:Sb,resizeBilinear:Cb,rotateWithOffset:sA,cropAndResize:rA,nonMaxSuppression:iA,nonMaxSuppressionAsync:hA,nonMaxSuppressionWithScore:fA,nonMaxSuppressionWithScoreAsync:dA,nonMaxSuppressionPadded:mA,nonMaxSuppressionPaddedAsync:gA},_Rt={bandPart:yA,gramSchmidt:bA,qr:wA},CRt={absoluteDifference:vA,computeWeightedLoss:Gn,cosineDistance:TA,hingeLoss:kA,huberLoss:NA,logLoss:_A,meanSquaredError:CA,sigmoidCrossEntropy:SA,softmaxCrossEntropy:$A};var EA=1.7580993408473768,DA=1.0507009873554805;var AA={kernelName:$g,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,Hs(wt(u,"float32"),-1))}}};var FA={kernelName:Ig,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>{let h=be(wt(u,"float32")),d=tr(Pt(Ot(1),h));return me(Wt(i,d))}}}};var RA={kernelName:Eg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>{let h=tr(Pt(be(wt(u,"float32")),1));return Wt(i,h)}}}};var PA={kernelName:Rl,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=i,k=Be(u.shape,d);return k.length>0&&(w=Ft(w,k)),K(w,u.shape)},x=()=>{let w=i,k=Be(h.shape,d);return k.length>0&&(w=Ft(w,k)),K(w,h.shape)};return{a:g,b:x}}};var OA={kernelName:XE,saveAllInputs:!0,gradFunc:(i,a)=>{let u={};return a.forEach((h,d)=>{u[d]=()=>i.clone()}),u}};var LA={kernelName:Dg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>jt(u)}}};var MA={kernelName:Ag,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>jt(u)}}};var BA={kernelName:Fg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,tr(Pt(Ot(1),be(wt(u,"float32")))))}}};var zA={kernelName:Rg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>{let h=tr(Ne(Ot(1),be(wt(u,"float32"))));return Wt(i,h)}}}};var WA={kernelName:Lg,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=Ne(be(u),be(h)),k=at(i,Wt(h,w)),C=Be(u.shape,d);return C.length>0&&(k=Ft(k,C)),K(k,u.shape)},x=()=>{let w=Ne(be(u),be(h)),k=me(at(i,Wt(u,w))),C=Be(h.shape,d);return C.length>0&&(k=Ft(k,C)),K(k,h.shape)};return{a:g,b:x}}};var VA={kernelName:Pg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,Ne(be(wt(u,"float32")),1))}}};var GA={kernelName:Og,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,Pt(Ot(1),be(wt(u,"float32"))))}}};function Mrt(i,a,u,h,d=[1,1,1],g,x){let w=R(i,"dy","avgPool3dBackprop"),k=R(a,"input","avgPool3dBackprop"),C=w,$=k,F=!1;k.rank===4&&(F=!0,C=K(w,[1,w.shape[0],w.shape[1],w.shape[2],w.shape[3]]),$=K(k,[1,k.shape[0],k.shape[1],k.shape[2],k.shape[3]])),U(C.rank===5,()=>`Error in avgPool3dBackprop: dy must be rank 5 but got rank ${C.rank}.`),U($.rank===5,()=>`Error in avgPool3dBackprop: input must be rank 5 but got rank ${$.rank}.`),U(Vn(h,d),()=>`Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides ${h} and dilations '${d}'`),x!=null&&U(ke(g),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${x} but got pad ${g}.`);let _=G=>{let mt=yb($.shape,u,h,d,g,x);return G.avgPool3dBackprop(C,$,mt)},W={dy:C,input:$},et={filterSize:u,strides:h,dilations:d,pad:g,dimRoundingMode:x},tt=V.runKernelFunc(_,W,null,t2,et);return F?K(tt,[tt.shape[1],tt.shape[2],tt.shape[3],tt.shape[4]]):tt}var UA=O({avgPool3dBackprop_:Mrt});var qA={kernelName:QE,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{filterSize:d,strides:g,dilations:x,pad:w,dimRoundingMode:k}=u,C=x==null?[1,1,1]:x;return{x:()=>UA(i,h,d,g,C,w,k)}}};function Brt(i,a,u,h,d){let g=R(i,"dy","avgPoolBackprop"),x=R(a,"input","avgPoolBackprop");U(x.rank===g.rank,()=>`Rank of input (${x.rank}) does not match rank of dy (${g.rank})`);let w=x,k=g,C=!1;x.rank===3&&(C=!0,w=K(x,[1,x.shape[0],x.shape[1],x.shape[2]]),k=K(g,[1,g.shape[0],g.shape[1],g.shape[2]])),U(k.rank===4,()=>`Error in avgPoolBackprop: dy must be rank 4 but got rank ${k.rank}.`),U(w.rank===4,()=>`Error in avgPoolBackprop: input must be rank 4 but got rank ${w.rank}.`);let $=et=>{let tt=os(w.shape,u,h,1,d);return et.avgPoolBackprop(k,w,tt)},F={dy:k,input:w},_={filterSize:u,strides:h,pad:d},W=V.runKernelFunc($,F,null,ZE,_);return C?K(W,[W.shape[1],W.shape[2],W.shape[3]]):W}var HA=O({avgPoolBackprop_:Brt});var jA={kernelName:Mg,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{filterSize:d,strides:g,pad:x}=u;return{x:()=>HA(i,h,d,g,x)}}};var KA={kernelName:Bg,inputsToSave:["a","b"],gradFunc:(i,a,u)=>{let[h,d]=a,{transposeA:g,transposeB:x}=u;return!g&&!x?{a:()=>Ge(i,d,!1,!0),b:()=>Ge(h,i,!0,!1)}:!g&&x?{a:()=>Ge(i,d,!1,!1),b:()=>Ge(i,h,!0,!1)}:g&&!x?{a:()=>Ge(d,i,!1,!0),b:()=>Ge(h,i,!1,!1)}:{a:()=>Ge(d,i,!0,!0),b:()=>Ge(i,h,!0,!0)}}};var XA={kernelName:zg,gradFunc:(i,a,u)=>{let{blockShape:h,crops:d}=u;return{x:()=>Xa(i,h,d)}}};var YA={kernelName:Wg,gradFunc:(i,a,u)=>{let h=u,d=h.inputShape,g=h.shape,x=Array.from(g);for(let k=d.length-1;k>=0;k--)if(d[k]===g[k])x[k]=1;else if(d[k]!==1)throw new Error(`broadcastTo(): [${d}] cannot be broadcast to [${g}].`);let w=[];for(let k=0;k1&&w.push(k);return{x:()=>Ft(i,w,!0)}}};var JA={kernelName:Pl,gradFunc:i=>({x:()=>i.clone()})};var ZA={kernelName:Vg,gradFunc:i=>({x:()=>jt(i)})};var QA={kernelName:Gg,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{clipValueMin:d,clipValueMax:g}=u;return{x:()=>_n(ao(Ur(h,d),qr(h,g)),i,jt(i))}}};var tF={kernelName:Ug,saveAllInputs:!0,gradFunc:(i,a,u)=>{let h=a.map(k=>k.shape),{axis:d}=u,g=Zt(d,a[0].shape)[0],x=h.map(k=>k[g]),w=is(i,x,g);return w.map(k=>()=>k)}};var eF={kernelName:qg,inputsToSave:["x","filter"],gradFunc:(i,a,u)=>{let[h,d]=a,{dilations:g,strides:x,pad:w,dataFormat:k}=u;return U(Li(g),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${g}'`),{x:()=>xb(h.shape,i,d,x,w,k),filter:()=>kb(h,i,d.shape,x,w,k)}}};var nF={kernelName:Hg,inputsToSave:["dy","filter"],gradFunc:(i,a,u)=>{let[h,d]=a,{strides:g,pad:x,dataFormat:w,dimRoundingMode:k}=u;return{dy:()=>Vs(i,d,g,x,w,1,k),filter:()=>kb(i,h,d.shape,g,x,w,k)}}};function zrt(i,a,u,h,d){let g=i;i.rank===4&&(g=K(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]));let x=a;x.rank===4&&(x=K(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),U(g.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${g.shape}.`),U(x.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${x.shape}.`),U(u.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${u}.`),U(g.shape[4]===u[3],()=>`Error in conv3dDerFilter: depth of input ${g.shape[4]}) must match input depth in filter (${u[3]}.`),U(x.shape[4]===u[4],()=>`Error in conv3dDerFilter: depth of dy (${x.shape[4]}) must match output depth for filter (${u[4]}).`);let w=$=>{let F=1,_=$h(g.shape,u,h,F,d);return $.conv3dDerFilter(g,x,_)},k={x:g,dy:x},C={strides:h,pad:d,filterShape:u};return V.runKernelFunc(w,k,null,o2,C)}var rF=O({conv3DBackpropFilter_:zrt});var oF={kernelName:r2,inputsToSave:["x","filter"],gradFunc:(i,a,u)=>{let{dilations:h,strides:d,pad:g}=u;U(Li(h),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${h}'`);let[x,w]=a;return{x:()=>FD(x.shape,i,w,d,g),filter:()=>rF(x,i,w.shape,d,g)}}};var sF={kernelName:jg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(me(Gh(wt(u,"float32"))),i)}}};var iF={kernelName:Kg,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(Uh(wt(u,"float32")),i)}}};var aF={kernelName:Xg,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{axis:d,exclusive:g,reverse:x}=u;return{x:()=>{let w=Nn([d],h.rank),k=Dh(i,d,g,!x);return w!=null&&(k=Ie(k,w)),k}}}};var cF={kernelName:Yg,inputsToSave:["x","filter"],gradFunc:(i,a,u)=>{let{dilations:h,strides:d,pad:g,dimRoundingMode:x}=u,w=h==null?[1,1]:h;U(Li(w),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${w}'`);let[k,C]=a;return U(k.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${k.rank}.`),U(C.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${C.rank}.`),U(k.shape[3]===C.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${k.shape[3]}) must match the inChannels dimension in filter ${C.shape[2]}.`),U(Vn(d,w),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${d} and dilations '${w}'.`),x!=null&&U(ke(g),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${x} but got pad ${g}.`),{x:()=>tA(k.shape,i,C,d,g,h,x),filter:()=>QD(k,i,C.shape,d,g,h,x)}}};var lF={kernelName:Jg,inputsToSave:["x","filter"],gradFunc:(i,a,u)=>{let[h,d]=a,g={x:h,filter:d,dy:i},x={x:h,filter:d,dy:i};return{x:()=>V.runKernel(u2,g,u),filter:()=>V.runKernel(p2,x,u)}}};var uF={kernelName:Zg,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=Wt(i,wt(h,"float32")),k=Be(u.shape,d);return k.length>0?K(Ft(w,k),u.shape):w},x=()=>{let w=at(i,wt(u,"float32")),k=Be(h.shape,d);k.length>0&&(w=K(Ft(w,k),h.shape));let C=be(h);return me(Wt(w,wt(C,"float32")))};return{a:g,b:x}}};var pF={kernelName:Qg,outputsToSave:[!0],gradFunc:(i,a)=>{let[u]=a,h=g=>g.eluDer(i,u),d={dy:i,y:u};return{x:()=>V.runKernelFunc(h,d,null,h2)}}};var hF={kernelName:ty,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a,h=at(Cn(me(be(u))),2/Math.sqrt(Math.PI));return{x:()=>at(i,h)}}};var fF={kernelName:ey,outputsToSave:[!0],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,u)}}};var dF={kernelName:ny,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,Cn(u))}}};var mF={kernelName:ry,gradFunc:i=>({x:()=>jt(i)})};var gF={kernelName:oy,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=Wt(i,wt(h,"float32")),k=Be(u.shape,d);return k.length>0?K(Ft(w,k),u.shape):w},x=()=>{let w=at(i,wt(u,"float32")),k=Be(h.shape,d);k.length>0&&(w=K(Ft(w,k),h.shape));let C=be(h);return me(Wt(w,wt(C,"float32")))};return{a:g,b:x}}};var yF={kernelName:sy,inputsToSave:["x","mean","variance","scale"],gradFunc:(i,a,u)=>{let{varianceEpsilon:h}=u,[d,g,x,w]=a,k=w==null?Ot(1):w,C=Be(g.shape,d.shape),$=[];if(g.rank===1){for(let _t=0;_tg.rank===1?K(at(at(i,Us(K(W,[1,1,1,g.shape[0]]),$)),k),d.shape):K(at(at(i,W),k),d.shape),G=()=>{let _t=at(at(W,Ot(-1)),_);return g.rank===1&&(_t=Ft(_t,C)),K(_t,g.shape)},mt=()=>{let _t=at(at(et,F),_);return g.rank===1&&(_t=Ft(_t,C)),K(_t,g.shape)},lt=()=>{let _t=at(F,W),Gt=at(i,_t);return g.rank===1&&(Gt=Ft(Gt,C)),K(Gt,g.shape)},gt=()=>{let _t=i;return g.rank===1&&(_t=Ft(_t,C)),K(_t,g.shape)};return{x:tt,mean:G,variance:mt,scale:lt,offset:gt}}};var wF={kernelName:iy,inputsToSave:["x","indices"],gradFunc:(i,a,u)=>{let[h,d]=a,{axis:g}=u,x=Zt(g,h.shape)[0],w=()=>{let k=h.shape,C=d.size,$=k.slice(0,x),F=$.length,_=k.slice(g,k.length).slice(1),W=_.length,et=bF(0,F),tt=bF(F+1,F+1+W),G=xF([$,[C],_]),mt=K(i,G),lt=K(d,[C]),gt=xF([[F],et,tt]),_t=Ie(mt,gt),Gt=jh(_t,lt,h.shape[x]),se=Bl(gt);return Gt=Ie(Gt,se),Gt};return{x:w,indices:()=>d}}};function bF(i,a){let u=[];for(let h=i;h{let[u,h]=a;return{a:()=>jt(u),b:()=>jt(h)}}};var TF={kernelName:cy,gradFunc:i=>({x:()=>wt(i,"float32")})};var kF={kernelName:ly,gradFunc:i=>({x:()=>jt(i)})};var NF={kernelName:uy,gradFunc:i=>({x:()=>jt(i)})};var _F={kernelName:py,gradFunc:i=>({x:()=>jt(i)})};var CF={kernelName:fy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,Ne(u,1))}}};var SF={kernelName:hy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,wt(u,"float32"))}}};var $F={kernelName:dy,inputsToSave:[],outputsToSave:[!0],gradFunc:(i,a,u)=>{let[h]=a,{axis:d}=u;return{logits:()=>{let g=!0,x=Cn(h);return Pt(i,at(Ft(i,d,g),x))}}}};function Wrt(i,a,u,h=5,d=1,g=1,x=.5){let w=$=>$.LRNGrad(u,i,a,h,d,g,x),k={x:i,y:a,dy:u},C={depthRadius:h,bias:d,alpha:g,beta:x};return V.runKernelFunc(w,k,null,_2,C)}var IF=O({localResponseNormalizationBackprop_:Wrt});var EF={kernelName:my,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(i,a,u)=>{let[h,d]=a,{depthRadius:g,bias:x,alpha:w,beta:k}=u;return{x:()=>IF(h,d,i,g,x,w,k)}}};function $b(i,a,u,h){return a.rank{let d=at(i,wt(Gs(u,a),i.dtype));return d}}}var Fk={kernelName:gy,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(i,a,u)=>{let h=u,{reductionIndices:d}=h,g=a[0],x=a[1],w=Zt(d,g.shape),k=$b(i,x,g,w);return{x:()=>k.x()}}};var DF={kernelName:yy,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=()=>at(i,wt(Ur(u,h),"float32")),g=()=>at(i,wt(qa(u,h),"float32"));return{a:d,b:g}}};function Vrt(i,a,u,h,d,g=[1,1,1],x,w){let k=R(i,"dy","maxPool3dBackprop"),C=R(a,"input","maxPool3dBackprop"),$=R(u,"output","maxPool3dBackprop"),F=k,_=C,W=$,et=!1;C.rank===4&&(et=!0,F=K(k,[1,k.shape[0],k.shape[1],k.shape[2],k.shape[3]]),_=K(C,[1,C.shape[0],C.shape[1],C.shape[2],C.shape[3]]),W=K($,[1,$.shape[0],$.shape[1],$.shape[2],$.shape[3]])),U(F.rank===5,()=>`Error in maxPool3dBackprop: dy must be rank 5 but got rank ${F.rank}.`),U(_.rank===5,()=>`Error in maxPool3dBackprop: input must be rank 5 but got rank ${_.rank}.`),U(W.rank===5,()=>`Error in maxPool3dBackprop: output must be rank 5 but got rank ${W.rank}.`),U(Vn(d,g),()=>`Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides ${d} and dilations '${g}'`),w!=null&&U(ke(x),()=>`Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode ${w} but got pad ${x}.`);let tt=gt=>{let _t=yb(_.shape,h,d,g,x,w);return gt.maxPool3dBackprop(F,_,W,_t)},G={dy:F,input:_,output:W},mt={filterSize:h,strides:d,dilations:g,pad:x,dimRoundingMode:w},lt=V.runKernelFunc(tt,G,null,$2,mt);return et?K(lt,[lt.shape[1],lt.shape[2],lt.shape[3],lt.shape[4]]):lt}var AF=O({maxPool3dBackprop_:Vrt});var FF={kernelName:S2,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(i,a,u)=>{let[h,d]=a,{filterSize:g,strides:x,dilations:w,pad:k,dimRoundingMode:C}=u,$=w==null?[1,1,1]:w;return{x:()=>AF(i,h,d,g,x,$,k,C)}}};function Grt(i,a,u,h,d,g,x){let w=R(i,"dy","maxPoolBackprop"),k=R(a,"input","maxPoolBackprop"),C=R(u,"output","maxPoolBackprop");U(k.rank===w.rank,()=>`Rank of input (${k.rank}) does not match rank of dy (${w.rank})`),U(w.rank===4,()=>`Error in maxPoolBackprop: dy must be rank 4 but got rank ${w.rank}.`),U(k.rank===4,()=>`Error in maxPoolBackprop: input must be rank 4 but got rank ${k.rank}.`),x!=null&&U(ke(g),()=>`Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode ${x} but got pad ${g}.`);let $=W=>{let et=os(k.shape,h,d,1,g,x);return W.maxPoolBackprop(w,k,C,et)},F={dy:w,input:k,output:C},_={filterSize:h,strides:d,pad:g,dimRoundingMode:x};return V.runKernelFunc($,F,null,C2,_)}var RF=O({maxPoolBackprop_:Grt});var PF={kernelName:by,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(i,a,u)=>{let[h,d]=a,{filterSize:g,strides:x,pad:w}=u;return{x:()=>RF(i,h,d,g,x,w)}}};var OF={kernelName:xy,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(i,a,u)=>{let h=u,{axis:d}=h,[g,x]=a,w=Zt(d,g.shape),k=$b(i,x,g,w);return{x:()=>k.x()}}};var LF={kernelName:wy,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=()=>at(i,wt(qr(u,h),"float32")),g=()=>at(i,wt(gr(u,h),"float32"));return{a:d,b:g}}};var MF={kernelName:vy,inputsToSave:["x"],gradFunc:(i,a,u)=>{let h=a[0],{paddings:d}=u,g=d.map(x=>x[0]);return{x:()=>ve(i,g,h.shape)}}};var BF={kernelName:Ty,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=Be(u.shape,d);return w.length>0?K(Ft(i,w),u.shape):i},x=()=>{let w=at(i,me(Ah(Wt(u,h)))),k=Be(h.shape,d);return k.length>0?K(Ft(w,k),h.shape):w};return{a:g,b:x}}};var zF={kernelName:ky,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=at(i,wt(h,"float32")),k=Be(u.shape,d);return k.length>0?K(Ft(w,k),u.shape):w},x=()=>{let w=at(i,wt(u,"float32")),k=Be(h.shape,d);return k.length>0?K(Ft(w,k),h.shape):w};return{a:g,b:x}}};var WF={kernelName:Ny,gradFunc:i=>({x:()=>me(i)})};var VF={kernelName:Cy,inputsToSave:["indices"],gradFunc:(i,a)=>{let u=a[0];return{indices:()=>Hr(u.shape,"float32")}}};var GF={kernelName:_y,gradFunc:i=>({x:()=>jt(i)})};var Rk={kernelName:Sy,inputsToSave:["x"],gradFunc:(i,a,u)=>{let h=a[0],{paddings:d}=u,g=d.map(x=>x[0]);return{x:()=>ve(i,g,h.shape)}}};var UF={kernelName:$y,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(i,a)=>{let[u,h,d]=a,g=u,x=h,w=ne(g.shape,x.shape),k=()=>{let $=wt(x,"float32"),F=at(i,at($,Fo(g,Pt($,Ot(1))))),_=Be(g.shape,w);return _.length>0&&(F=Ft(F,_)),K(F,g.shape)},C=()=>{let $=gr(g,0),F=_n($,io(g),jt(g)),_=at(i,at(d,F)),W=Be(x.shape,w);return W.length>0&&(_=Ft(_,W)),K(_,x.shape)};return{a:k,b:C}}};var qF={kernelName:Iy,inputsToSave:["x","alpha"],gradFunc:(i,a)=>{let[u,h]=a,d=gr(u,0);return{x:()=>_n(d,i,at(i,h)),alpha:()=>{let g=_n(d,jt(i),at(i,u)),x=Be(h.shape,i.shape);return x.length>0&&(g=Ft(g,x)),K(g,h.shape)}}}};var HF={kernelName:Ey,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,me(be(u)))}}};var jF={kernelName:Py,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a,h=at(qr(u,6),Hs(u));return{x:()=>at(i,wt(h,"float32"))}}};var KF={kernelName:Dy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,wt(Hs(u),"float32"))}}};var XF={kernelName:Ay,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>K(i,u.shape)}}};var YF={kernelName:Ry,inputsToSave:["images"],gradFunc:(i,a,u)=>{let[h]=a,d=w=>{let{alignCorners:k}=u;return w.resizeBilinearBackprop(i,h,k)},g={images:h},x=()=>V.runKernelFunc(d,g,null,M2,u);return{images:x}}};var JF={kernelName:Fy,inputsToSave:["images"],gradFunc:(i,a,u)=>{let[h]=a,d=w=>{let{alignCorners:k}=u;return w.resizeNearestNeighborBackprop(i,h,k)},g={images:h},x=()=>V.runKernelFunc(d,g,null,L2,u);return{images:x}}};var ZF={kernelName:Oy,gradFunc:(i,a,u)=>{let{dims:h}=u,d=Zt(h,i.shape);return{x:()=>zi(i,d)}}};var QF={kernelName:Ly,gradFunc:i=>({x:()=>jt(i)})};var tR={kernelName:My,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>me(Wt(i,at(Fo(u,1.5),2)))}}};var eR={kernelName:By,inputsToSave:["condition"],gradFunc:(i,a)=>{let[u]=a;return{condition:()=>wt(jt(u),"float32"),t:()=>at(i,wt(u,i.dtype)),e:()=>at(i,wt(Ha(u),i.dtype))}}};var nR={kernelName:zy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>{let h=gr(u,Ot(0)),d=Ot(EA),g=Ot(DA),x=at(i,g),w=at(at(i,d),Cn(wt(u,"float32")));return _n(h,x,w)}}}};var rR={kernelName:qy,outputsToSave:[!0],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,at(u,Pt(Ot(1),u)))}}};var oR={kernelName:Uy,gradFunc:i=>({x:()=>jt(i)})};var sR={kernelName:Vy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(Va(wt(u,"float32")),i)}}};var iR={kernelName:Gy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(Eh(wt(u,"float32")),i)}}};var aR={kernelName:Wy,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{begin:d,size:g}=u,x=h.shape,[w,k]=mb(h,d,g),C=[];for(let $=0;$Wh(i,C)}}};var cR={kernelName:Jy,outputsToSave:[!0],gradFunc:(i,a,u)=>{let[h]=a,{dim:d}=u,g=!0,x=at(i,h);return{logits:()=>Pt(x,at(Ft(x,[d],g),h))}}};var lR={kernelName:Hy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,za(u))}}};var Pk={kernelName:Xy,gradFunc:(i,a,u)=>{let{blockShape:h,paddings:d}=u;return{x:()=>Wa(i,h,d)}}};var Ok={kernelName:Yy,gradFunc:(i,a,u)=>{let{axis:h}=u;return{x:()=>mn(i,h)}}};var uR={kernelName:jy,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,at(tr(wt(u,"float32")),2))}}};var pR={kernelName:B2,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(i,at(wt(u,"float32"),2))}}};var hR={kernelName:Zy,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=Ot(2),g=()=>at(i,at(d,Pt(u,h))),x=()=>at(i,at(d,Pt(h,u)));return{a:g,b:x}}};var fR={kernelName:ab,gradFunc:i=>({x:()=>jt(i)})};var dR={kernelName:Qy,inputsToSave:["a","b"],gradFunc:(i,a)=>{let[u,h]=a,d=ne(u.shape,h.shape),g=()=>{let w=i,k=Be(u.shape,d);return k.length>0&&(w=Ft(w,k)),K(w,u.shape)},x=()=>{let w=i,k=Be(h.shape,d);return k.length>0&&(w=Ft(w,k)),K(me(w),h.shape)};return{a:g,b:x}}};var mR={kernelName:Ky,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,d=h.shape.slice(),{axis:g}=u,x=Zt(g,h.shape);x.forEach(C=>{d[C]=1});let w=K(i,d),k=at(w,ss(h.shape,"float32"));return{x:()=>k}}};var gR={kernelName:tb,inputsToSave:["x"],gradFunc:(i,a)=>{let[u]=a;return{x:()=>Wt(i,be(Va(u)))}}};var yR={kernelName:eb,outputsToSave:[!0],gradFunc:(i,a)=>{let[u]=a;return{x:()=>at(Pt(Ot(1),be(u)),i)}}};var bR={kernelName:nb,inputsToSave:["x"],gradFunc:(i,a,u)=>{let[h]=a,{reps:d}=u,g=()=>{let x=jt(h);if(h.rank===1)for(let w=0;w{let h=u,{perm:d}=h,g=Bl(d);return{x:()=>Ie(i,g)}}};var wR={kernelName:ob,gradFunc:(i,a,u)=>{let h=u,{axis:d}=h;return{value:()=>Sr(i,d)}}};var vR={kernelName:sb,inputsToSave:["segmentIds"],gradFunc:(i,a)=>{let[u]=a,h=()=>Urt(i,u);return{x:h}}};function Urt(i,a){let u=qs(a,jt(a)),h=Fh(i,u),d=Ur(a,Ot(0,"int32")),g=h.rank-d.rank;for(let w=0;w({x:()=>jt(i)})};var qrt=[AA,FA,RA,PA,OA,LA,MA,BA,zA,WA,VA,GA,qA,jA,KA,XA,YA,JA,ZA,QA,tF,nF,eF,oF,sF,iF,aF,cF,lF,uF,pF,hF,fF,dF,gF,mF,yF,wF,vF,TF,kF,NF,_F,CF,SF,$F,EF,Fk,Fk,DF,FF,PF,OF,LF,MF,BF,zF,WF,VF,GF,Rk,Rk,UF,qF,HF,jF,KF,XF,YF,JF,ZF,QF,tR,eR,nR,rR,oR,sR,iR,aR,cR,lR,Pk,Pk,Ok,Ok,uR,hR,pR,fR,dR,mR,gR,yR,bR,xR,wR,vR,TR];for(let i of qrt)q2(i);z.prototype.abs=function(){return this.throwIfDisposed(),zn(this)};z.prototype.acos=function(){return this.throwIfDisposed(),OT(this)};z.prototype.acosh=function(){return this.throwIfDisposed(),LT(this)};z.prototype.addStrict=function(i){return this.throwIfDisposed(),VD(this,i)};z.prototype.add=function(i){return this.throwIfDisposed(),Ne(this,i)};z.prototype.all=function(i,a){return this.throwIfDisposed(),MT(this,i,a)};z.prototype.any=function(i,a){return this.throwIfDisposed(),BT(this,i,a)};z.prototype.argMax=function(i){return this.throwIfDisposed(),zT(this,i)};z.prototype.argMin=function(i){return this.throwIfDisposed(),WT(this,i)};z.prototype.asScalar=function(){return this.throwIfDisposed(),U(this.size===1,()=>"The array must have only 1 element."),K(this,[])};z.prototype.asType=function(i){return this.throwIfDisposed(),wt(this,i)};z.prototype.as1D=function(){return this.throwIfDisposed(),K(this,[this.size])};z.prototype.as2D=function(i,a){return this.throwIfDisposed(),K(this,[i,a])};z.prototype.as3D=function(i,a,u){return this.throwIfDisposed(),K(this,[i,a,u])};z.prototype.as4D=function(i,a,u,h){return this.throwIfDisposed(),K(this,[i,a,u,h])};z.prototype.as5D=function(i,a,u,h,d){return this.throwIfDisposed(),K(this,[i,a,u,h,d])};z.prototype.asin=function(){return this.throwIfDisposed(),VT(this)};z.prototype.asinh=function(){return this.throwIfDisposed(),GT(this)};z.prototype.atan=function(){return this.throwIfDisposed(),UT(this)};z.prototype.atan2=function(i){return this.throwIfDisposed(),qT(this,i)};z.prototype.atanh=function(){return this.throwIfDisposed(),HT(this)};z.prototype.avgPool=function(i,a,u,h){return this.throwIfDisposed(),Ih(this,i,a,u,h)};z.prototype.batchToSpaceND=function(i,a){return this.throwIfDisposed(),Wa(this,i,a)};z.prototype.batchNorm=function(i,a,u,h,d){return this.throwIfDisposed(),XT(this,i,a,u,h,d)};z.prototype.broadcastTo=function(i){return this.throwIfDisposed(),Vl(this,i)};z.prototype.cast=function(i){return this.throwIfDisposed(),wt(this,i)};z.prototype.ceil=function(){return this.throwIfDisposed(),YT(this)};z.prototype.clipByValue=function(i,a){return this.throwIfDisposed(),JT(this,i,a)};z.prototype.concat=function(i,a){return this.throwIfDisposed(),i instanceof z&&(i=[i]),mn([this,...i],a)};z.prototype.conv1d=function(i,a,u,h,d,g){return this.throwIfDisposed(),ZT(this,i,a,u,h,d,g)};z.prototype.conv2dTranspose=function(i,a,u,h,d){return this.throwIfDisposed(),QT(this,i,a,u,h,d)};z.prototype.conv2d=function(i,a,u,h,d,g){return this.throwIfDisposed(),Vs(this,i,a,u,h,d,g)};z.prototype.cos=function(){return this.throwIfDisposed(),Va(this)};z.prototype.cosh=function(){return this.throwIfDisposed(),Eh(this)};z.prototype.cumsum=function(i,a,u){return this.throwIfDisposed(),Dh(this,i,a,u)};z.prototype.depthToSpace=function(i,a){return this.throwIfDisposed(),tk(this,i,a)};z.prototype.depthwiseConv2D=function(i,a,u,h,d,g){return kn("depthwiseConv2D is deprecated, use depthwiseConv2d instead"),this.throwIfDisposed(),Ga(this,i,a,u,h,d,g)};z.prototype.depthwiseConv2d=function(i,a,u,h,d,g){return this.throwIfDisposed(),Ga(this,i,a,u,h,d,g)};z.prototype.dilation2d=function(i,a,u,h,d){return this.throwIfDisposed(),ek(this,i,a,u,h,d)};z.prototype.divNoNan=function(i){return this.throwIfDisposed(),nk(this,i)};z.prototype.divStrict=function(i){return this.throwIfDisposed(),GD(this,i)};z.prototype.div=function(i){return this.throwIfDisposed(),Wt(this,i)};z.prototype.dot=function(i){return this.throwIfDisposed(),rk(this,i)};z.prototype.elu=function(){return this.throwIfDisposed(),ok(this)};z.prototype.equalStrict=function(i){return this.throwIfDisposed(),OD(this,i)};z.prototype.equal=function(i){return this.throwIfDisposed(),Gs(this,i)};z.prototype.erf=function(){return this.throwIfDisposed(),sk(this)};z.prototype.exp=function(){return this.throwIfDisposed(),Cn(this)};z.prototype.expandDims=function(i){return this.throwIfDisposed(),mr(this,i)};z.prototype.expm1=function(){return this.throwIfDisposed(),ik(this)};z.prototype.fft=function(){return this.throwIfDisposed(),Ja(this)};z.prototype.flatten=function(){return this.throwIfDisposed(),K(this,[this.size])};z.prototype.floor=function(){return this.throwIfDisposed(),Ah(this)};z.prototype.floorDiv=function(i){return this.throwIfDisposed(),Sh(this,i)};z.prototype.gather=function(i,a){return this.throwIfDisposed(),Fh(this,i,a)};z.prototype.greaterEqualStrict=function(i){return this.throwIfDisposed(),LD(this,i)};z.prototype.greaterEqual=function(i){return this.throwIfDisposed(),Ur(this,i)};z.prototype.greaterStrict=function(i){return this.throwIfDisposed(),MD(this,i)};z.prototype.greater=function(i){return this.throwIfDisposed(),gr(this,i)};z.prototype.ifft=function(){return this.throwIfDisposed(),Wi(this)};z.prototype.irfft=function(){return this.throwIfDisposed(),qh(this)};z.prototype.isFinite=function(){return this.throwIfDisposed(),lk(this)};z.prototype.isInf=function(){return this.throwIfDisposed(),uk(this)};z.prototype.isNaN=function(){return this.throwIfDisposed(),pk(this)};z.prototype.leakyRelu=function(i){return this.throwIfDisposed(),hk(this,i)};z.prototype.lessEqualStrict=function(i){return this.throwIfDisposed(),BD(this,i)};z.prototype.lessEqual=function(i){return this.throwIfDisposed(),qr(this,i)};z.prototype.lessStrict=function(i){return this.throwIfDisposed(),zD(this,i)};z.prototype.less=function(i){return this.throwIfDisposed(),qa(this,i)};z.prototype.localResponseNormalization=function(i,a,u,h){return this.throwIfDisposed(),fk(this,i,a,u,h)};z.prototype.logSigmoid=function(){return this.throwIfDisposed(),dk(this)};z.prototype.logSoftmax=function(i){return this.throwIfDisposed(),mk(this,i)};z.prototype.logSumExp=function(i,a){return this.throwIfDisposed(),Oh(this,i,a)};z.prototype.log=function(){return this.throwIfDisposed(),io(this)};z.prototype.log1p=function(){return this.throwIfDisposed(),Rh(this)};z.prototype.logicalAnd=function(i){return this.throwIfDisposed(),ao(this,i)};z.prototype.logicalNot=function(){return this.throwIfDisposed(),Ha(this)};z.prototype.logicalOr=function(i){return this.throwIfDisposed(),Lh(this,i)};z.prototype.logicalXor=function(i){return this.throwIfDisposed(),gk(this,i)};z.prototype.matMul=function(i,a,u){return this.throwIfDisposed(),Ge(this,i,a,u)};z.prototype.maxPool=function(i,a,u,h){return this.throwIfDisposed(),Mh(this,i,a,u,h)};z.prototype.max=function(i,a){return this.throwIfDisposed(),Ao(this,i,a)};z.prototype.maximumStrict=function(i){return this.throwIfDisposed(),UD(this,i)};z.prototype.maximum=function(i){return this.throwIfDisposed(),qs(this,i)};z.prototype.mean=function(i,a){return this.throwIfDisposed(),Bh(this,i,a)};z.prototype.min=function(i,a){return this.throwIfDisposed(),Ul(this,i,a)};z.prototype.minimumStrict=function(i){return this.throwIfDisposed(),qD(this,i)};z.prototype.minimum=function(i){return this.throwIfDisposed(),ja(this,i)};z.prototype.mirrorPad=function(i,a){return this.throwIfDisposed(),yk(this,i,a)};z.prototype.modStrict=function(i){return this.throwIfDisposed(),HD(this,i)};z.prototype.mod=function(i){return this.throwIfDisposed(),zh(this,i)};z.prototype.mulStrict=function(i){return this.throwIfDisposed(),jD(this,i)};z.prototype.mul=function(i){return this.throwIfDisposed(),at(this,i)};z.prototype.neg=function(){return this.throwIfDisposed(),me(this)};z.prototype.norm=function(i,a,u){return this.throwIfDisposed(),ql(this,i,a,u)};z.prototype.notEqualStrict=function(i){return this.throwIfDisposed(),WD(this,i)};z.prototype.notEqual=function(i){return this.throwIfDisposed(),Ka(this,i)};z.prototype.oneHot=function(i,a=1,u=0){return this.throwIfDisposed(),FT(this,i,a,u)};z.prototype.onesLike=function(){return this.throwIfDisposed(),wb(this)};z.prototype.pad=function(i,a){return this.throwIfDisposed(),Wh(this,i,a)};z.prototype.pool=function(i,a,u,h,d){return this.throwIfDisposed(),bk(this,i,a,u,h,d)};z.prototype.powStrict=function(i){return this.throwIfDisposed(),KD(this,i)};z.prototype.pow=function(i){return this.throwIfDisposed(),Fo(this,i)};z.prototype.prelu=function(i){return this.throwIfDisposed(),xk(this,i)};z.prototype.prod=function(i,a){return this.throwIfDisposed(),wk(this,i,a)};z.prototype.reciprocal=function(){return this.throwIfDisposed(),vk(this)};z.prototype.relu=function(){return this.throwIfDisposed(),Ya(this)};z.prototype.relu6=function(){return this.throwIfDisposed(),Tk(this)};z.prototype.reshapeAs=function(i){return this.throwIfDisposed(),K(this,i.shape)};z.prototype.reshape=function(i){return this.throwIfDisposed(),K(this,i)};z.prototype.resizeBilinear=function(i,a){return this.throwIfDisposed(),Cb(this,i,a)};z.prototype.resizeNearestNeighbor=function(i,a){return this.throwIfDisposed(),Sb(this,i,a)};z.prototype.reverse=function(i){return this.throwIfDisposed(),zi(this,i)};z.prototype.rfft=function(){return this.throwIfDisposed(),Za(this)};z.prototype.round=function(){return this.throwIfDisposed(),kk(this)};z.prototype.rsqrt=function(){return this.throwIfDisposed(),Vh(this)};z.prototype.selu=function(){return this.throwIfDisposed(),Nk(this)};z.prototype.separableConv2d=function(i,a,u,h,d,g){return this.throwIfDisposed(),_k(this,i,a,u,h,d,g)};z.prototype.sigmoid=function(){return this.throwIfDisposed(),za(this)};z.prototype.sign=function(){return this.throwIfDisposed(),Ck(this)};z.prototype.sin=function(){return this.throwIfDisposed(),Gh(this)};z.prototype.sinh=function(){return this.throwIfDisposed(),Uh(this)};z.prototype.slice=function(i,a){return this.throwIfDisposed(),ve(this,i,a)};z.prototype.softmax=function(i){return this.throwIfDisposed(),Sk(this,i)};z.prototype.softplus=function(){return this.throwIfDisposed(),Ph(this)};z.prototype.spaceToBatchND=function(i,a){return this.throwIfDisposed(),Xa(this,i,a)};z.prototype.split=function(i,a){return this.throwIfDisposed(),is(this,i,a)};z.prototype.sqrt=function(){return this.throwIfDisposed(),tr(this)};z.prototype.square=function(){return this.throwIfDisposed(),be(this)};z.prototype.squaredDifference=function(i){return this.throwIfDisposed(),Qa(this,i)};z.prototype.squaredDifferenceStrict=function(i){return this.throwIfDisposed(),XD(this,i)};z.prototype.squeeze=function(i){return this.throwIfDisposed(),Hh(this,i)};z.prototype.stack=function(i,a){this.throwIfDisposed();let u=i instanceof z?[this,i]:[this,...i];return Sr(u,a)};z.prototype.step=function(i){return this.throwIfDisposed(),Hs(this,i)};z.prototype.stridedSlice=function(i,a,u,h,d,g,x,w){return this.throwIfDisposed(),$k(this,i,a,u,h,d,g,x,w)};z.prototype.subStrict=function(i){return this.throwIfDisposed(),YD(this,i)};z.prototype.sub=function(i){return this.throwIfDisposed(),Pt(this,i)};z.prototype.sum=function(i,a){return this.throwIfDisposed(),Ft(this,i,a)};z.prototype.tan=function(){return this.throwIfDisposed(),Ik(this)};z.prototype.tanh=function(){return this.throwIfDisposed(),KT(this)};z.prototype.tile=function(i){return this.throwIfDisposed(),Us(this,i)};z.prototype.toBool=function(){return this.throwIfDisposed(),wt(this,"bool")};z.prototype.toFloat=function(){return this.throwIfDisposed(),wt(this,"float32")};z.prototype.toInt=function(){return this.throwIfDisposed(),wt(this,"int32")};z.prototype.topk=function(i,a){return this.throwIfDisposed(),Ek(this,i,a)};z.prototype.transpose=function(i){return this.throwIfDisposed(),Ie(this,i)};z.prototype.unique=function(i){return this.throwIfDisposed(),Dk(this,i)};z.prototype.unsortedSegmentSum=function(i,a){return this.throwIfDisposed(),jh(this,i,a)};z.prototype.unstack=function(i){return this.throwIfDisposed(),ec(this,i)};z.prototype.where=function(i,a){return this.throwIfDisposed(),_n(i,this,a)};z.prototype.zerosLike=function(){return this.throwIfDisposed(),jt(this)};function Ib(i,a,u=!1){let{Image:h,Canvas:d}=$e.getEnv();if(!(i instanceof h||i instanceof d))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let g=Pi(i),x=a/Math.max(g.height,g.width),w=x*g.width,k=x*g.height,C=Ra({width:a,height:a}),$=i instanceof d?i:Dl(i),F=Math.abs(w-k)/2,_=u&&w{if(Rs(h)){this._imageTensors[d]=h,this._inputDimensions[d]=h.shape;return}if(Wr(h)){let x=h.shape[0];if(x!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${x} passed, but not supported in input array`);this._imageTensors[d]=h,this._inputDimensions[d]=h.shape.slice(1);return}let g=h instanceof $e.getEnv().Canvas?h:Dl(h);this._canvases[d]=g,this._inputDimensions[d]=[g.height,g.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return Jo(this.batchSize,0,1).map((a,u)=>this.getReshapedInputDimensions(u))}getInput(a){return this.canvases[a]||this.imageTensors[a]}getInputDimensions(a){return this._inputDimensions[a]}getInputHeight(a){return this._inputDimensions[a][0]}getInputWidth(a){return this._inputDimensions[a][1]}getReshapedInputDimensions(a){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let u=this.getInputWidth(a),h=this.getInputHeight(a);return H1({width:u,height:h},this.inputSize)}toBatchTensor(a,u=!0){return this._inputSize=a,CD(()=>{let h=Jo(this.batchSize,0,1).map(g=>{let x=this.getInput(g);if(x instanceof z){let w=Wr(x)?x:x.expandDims();return w=bg(w,u),(w.shape[1]!==a||w.shape[2]!==a)&&(w=IA.resizeBilinear(w,[a,a])),w.as3D(a,a,3)}if(x instanceof $e.getEnv().Canvas)return PT.fromPixels(Ib(x,a,u));throw new Error(`toBatchTensor - at batchIdx ${g}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${x}`)}),d=Sr(h.map(g=>wt(g,"float32"))).as4D(this.batchSize,a,a,3);return d})}};async function ze(i){if(i instanceof as)return i;let a=Array.isArray(i)?i:[i];if(!a.length)throw new Error("toNetInput - empty array passed as input");let u=d=>Array.isArray(i)?` at input index ${d}:`:"",h=a.map(Fi);return h.forEach((d,g)=>{if(!yh(d)&&!Rs(d)&&!Wr(d))throw typeof a[g]=="string"?new Error(`toNetInput -${u(g)} string passed, but could not resolve HTMLElement for element id ${a[g]}`):new Error(`toNetInput -${u(g)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(Wr(d)){let x=d.shape[0];if(x!==1)throw new Error(`toNetInput -${u(g)} tf.Tensor4D with batchSize ${x} passed, but not supported in input array`)}}),await Promise.all(h.map(d=>yh(d)&&vg(d))),new as(h,Array.isArray(i))}async function nc(i,a){let{Canvas:u}=$e.getEnv(),h=i;if(!(i instanceof u)){let x=await ze(i);if(x.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let w=x.getInput(0);h=w instanceof u?w:await Ng(w)}let d=Qn(h),g=a.map(x=>x instanceof Ve?x.forSize(h.width,h.height).box.floor():x).map(x=>x.clipAtImageBorders(h.width,h.height));return g.map(({x,y:w,width:k,height:C})=>{let $=Ra({width:k,height:C});return Qn($).putImageData(d.getImageData(x,w,k,C),0,0),$})}var Eb=te(ee());async function rc(i,a){if(!Rs(i)&&!Wr(i))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(Wr(i)&&i.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Eb.tidy(()=>{let[u,h,d]=i.shape.slice(Wr(i)?1:0),g=a.map(w=>w instanceof Ve?w.forSize(h,u).box:w).map(w=>w.clipAtImageBorders(h,u)),x=g.map(({x:w,y:k,width:C,height:$})=>Eb.slice3d(i.as3D(u,h,d),[k,w,0],[$,C,d]));return x})}async function Vi(i,a){let u=$e.getEnv().fetch,h=await u(i,a);if(!(h.status<400))throw new Error(`failed to fetch: (${h.status}) ${h.statusText}, from url: ${h.url}`);return h}async function kR(i){let a=await Vi(i),u=await a.blob();if(!u.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${u.type}, for url: ${a.url}`);return Tg(u)}async function Db(i){return(await Vi(i)).json()}async function NR(i){return new Float32Array(await(await Vi(i)).arrayBuffer())}var _R=te(ee());function Ab(i,a){let u=`${a}-weights_manifest.json`;if(!i)return{modelBaseUri:"",manifestUri:u};if(i==="/")return{modelBaseUri:"/",manifestUri:`/${u}`};let h=i.startsWith("http://")?"http://":i.startsWith("https://")?"https://":"";i=i.replace(h,"");let d=i.split("/").filter(w=>w),g=i.endsWith(".json")?d[d.length-1]:u,x=h+(i.endsWith(".json")?d.slice(0,d.length-1):d).join("/");return x=i.startsWith("/")?`/${x}`:x,{modelBaseUri:x,manifestUri:x==="/"?`/${g}`:`${x}/${g}`}}async function Fb(i,a){let{manifestUri:u,modelBaseUri:h}=Ab(i,a),d=await Db(u);return _R.io.loadWeights(d,h)}function CR(i,a,u=!1){let{width:h,height:d}=u?Pi(a):a;return i.width=h,i.height=d,{width:h,height:d}}var Ui=te(ee()),js=te(ee()),Fn=class{constructor(a){this._name=a;this._params=void 0;this._paramMappings=[]}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(a){let{obj:u,objProp:h}=this.traversePropertyPath(a);return u[h]}reassignParamFromPath(a,u){let{obj:h,objProp:d}=this.traversePropertyPath(a);h[d].dispose(),h[d]=u}getParamList(){return this._paramMappings.map(({paramPath:a})=>({path:a,tensor:this.getParamFromPath(a)}))}getTrainableParams(){return this.getParamList().filter(a=>a.tensor instanceof js.Variable)}getFrozenParams(){return this.getParamList().filter(a=>!(a.tensor instanceof js.Variable))}variable(){this.getFrozenParams().forEach(({path:a,tensor:u})=>{this.reassignParamFromPath(a,u.variable())})}freeze(){this.getTrainableParams().forEach(({path:a,tensor:u})=>{let h=js.tensor(u.dataSync());u.dispose(),this.reassignParamFromPath(a,h)})}dispose(a=!0){this.getParamList().forEach(u=>{if(a&&u.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${u.path}`);u.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:a})=>Array.from(a.dataSync())).reduce((a,u)=>a.concat(u)))}async load(a){if(a instanceof Float32Array){this.extractWeights(a);return}await this.loadFromUri(a)}async loadFromUri(a){if(a&&typeof a!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let u=await Fb(a,this.getDefaultModelName());this.loadFromWeightMap(u)}async loadFromDisk(a){if(a&&typeof a!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:u}=$e.getEnv(),{manifestUri:h,modelBaseUri:d}=Ab(a,this.getDefaultModelName()),g=C=>Promise.all(C.map($=>u($).then(F=>F.buffer))),x=js.io.weightsLoaderFactory(g),w=JSON.parse((await u(h)).toString()),k=await x(w,d);this.loadFromWeightMap(k)}loadFromWeightMap(a){let{paramMappings:u,params:h}=this.extractParamsFromWeigthMap(a);this._paramMappings=u,this._params=h}extractWeights(a){let{paramMappings:u,params:h}=this.extractParams(a);this._paramMappings=u,this._params=h}traversePropertyPath(a){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let u=a.split("/").reduce((g,x)=>{if(!g.nextObj.hasOwnProperty(x))throw new Error(`traversePropertyPath - object does not have property ${x}, for path ${a}`);return{obj:g.nextObj,objProp:x,nextObj:g.nextObj[x]}},{nextObj:this.params}),{obj:h,objProp:d}=u;if(!h||!d||!(h[d]instanceof js.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${a}`);return{obj:h,objProp:d}}},qe=te(ee()),Hl=te(ee());function yr(i,a,u){return Hl.tidy(()=>{let h=Hl.separableConv2d(i,a.depthwise_filter,a.pointwise_filter,u,"same");return h=Hl.add(h,a.bias),h})}function Rb(i,a,u=!1){return qe.tidy(()=>{let h=qe.relu(u?qe.add(qe.conv2d(i,a.conv0.filters,[2,2],"same"),a.conv0.bias):yr(i,a.conv0,[2,2])),d=yr(h,a.conv1,[1,1]),g=qe.relu(qe.add(h,d)),x=yr(g,a.conv2,[1,1]);return qe.relu(qe.add(h,qe.add(d,x)))})}function Kh(i,a,u=!1,h=!0){return qe.tidy(()=>{let d=qe.relu(u?qe.add(qe.conv2d(i,a.conv0.filters,h?[2,2]:[1,1],"same"),a.conv0.bias):yr(i,a.conv0,h?[2,2]:[1,1])),g=yr(d,a.conv1,[1,1]),x=qe.relu(qe.add(d,g)),w=yr(x,a.conv2,[1,1]),k=qe.relu(qe.add(d,qe.add(g,w))),C=yr(k,a.conv3,[1,1]);return qe.relu(qe.add(d,qe.add(g,qe.add(w,C))))})}var Gi=te(ee());function oc(i,a,u="same",h=!1){return Gi.tidy(()=>{let d=Gi.add(Gi.conv2d(i,a.filters,[1,1],u),a.bias);return h?Gi.relu(d):d})}function er(i,a){Object.keys(i).forEach(u=>{a.some(h=>h.originalPath===u)||i[u].dispose()})}var Pb=te(ee());function jl(i,a){return function(u,h,d,g){let x=Pb.tensor4d(i(u*h*d*d),[d,d,u,h]),w=Pb.tensor1d(i(h));return a.push({paramPath:`${g}/filters`},{paramPath:`${g}/bias`}),{filters:x,bias:w}}}var Ob=te(ee());function Lb(i,a){return function(u,h,d){let g=Ob.tensor2d(i(u*h),[u,h]),x=Ob.tensor1d(i(h));return a.push({paramPath:`${d}/weights`},{paramPath:`${d}/bias`}),{weights:g,bias:x}}}var Xh=te(ee()),Mb=class{constructor(a,u,h){this.depthwise_filter=a;this.pointwise_filter=u;this.bias=h}};function Kl(i,a){return function(u,h,d){let g=Xh.tensor4d(i(3*3*u),[3,3,u,1]),x=Xh.tensor4d(i(u*h),[1,1,u,h]),w=Xh.tensor1d(i(h));return a.push({paramPath:`${d}/depthwise_filter`},{paramPath:`${d}/pointwise_filter`},{paramPath:`${d}/bias`}),new Mb(g,x,w)}}function Xl(i){return function(a){let u=i(`${a}/depthwise_filter`,4),h=i(`${a}/pointwise_filter`,4),d=i(`${a}/bias`,1);return new Mb(u,h,d)}}function $r(i,a){return function(u,h,d){let g=i[u];if(!$a(g,h))throw new Error(`expected weightMap[${u}] to be a Tensor${h}D, instead have ${g}`);return a.push({originalPath:u,paramPath:d||u}),g}}function nr(i){let a=i;function u(d){let g=a.slice(0,d);return a=a.slice(d),g}function h(){return a}return{extractWeights:u,getRemainingWeights:h}}function Bb(i,a){let u=jl(i,a),h=Kl(i,a);function d(x,w,k,C=!1){let $=C?u(x,w,3,`${k}/conv0`):h(x,w,`${k}/conv0`),F=h(w,w,`${k}/conv1`),_=h(w,w,`${k}/conv2`);return{conv0:$,conv1:F,conv2:_}}function g(x,w,k,C=!1){let{conv0:$,conv1:F,conv2:_}=d(x,w,k,C),W=h(w,w,`${k}/conv3`);return{conv0:$,conv1:F,conv2:_,conv3:W}}return{extractDenseBlock3Params:d,extractDenseBlock4Params:g}}function SR(i){let a=[],{extractWeights:u,getRemainingWeights:h}=nr(i),{extractDenseBlock4Params:d}=Bb(u,a),g=d(3,32,"dense0",!0),x=d(32,64,"dense1"),w=d(64,128,"dense2"),k=d(128,256,"dense3");if(h().length!==0)throw new Error(`weights remaing after extract: ${h().length}`);return{paramMappings:a,params:{dense0:g,dense1:x,dense2:w,dense3:k}}}function zb(i){return function(a){let u=i(`${a}/filters`,4),h=i(`${a}/bias`,1);return{filters:u,bias:h}}}function Wb(i,a){let u=$r(i,a),h=zb(u),d=Xl(u);function g(w,k=!1){let C=k?h(`${w}/conv0`):d(`${w}/conv0`),$=d(`${w}/conv1`),F=d(`${w}/conv2`);return{conv0:C,conv1:$,conv2:F}}function x(w,k=!1){let C=k?h(`${w}/conv0`):d(`${w}/conv0`),$=d(`${w}/conv1`),F=d(`${w}/conv2`),_=d(`${w}/conv3`);return{conv0:C,conv1:$,conv2:F,conv3:_}}return{extractDenseBlock3Params:g,extractDenseBlock4Params:x}}function $R(i){let a=[],{extractDenseBlock4Params:u}=Wb(i,a),h={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2"),dense3:u("dense3")};return er(i,a),{params:h,paramMappings:a}}var Yh=class extends Fn{constructor(){super("FaceFeatureExtractor")}forwardInput(a){let{params:u}=this;if(!u)throw new Error("FaceFeatureExtractor - load model before inference");return Ui.tidy(()=>{let h=Ui.cast(a.toBatchTensor(112,!0),"float32"),d=[122.782,117.001,104.298],g=oo(h,d).div(Ui.scalar(255)),x=Kh(g,u.dense0,!0);return x=Kh(x,u.dense1),x=Kh(x,u.dense2),x=Kh(x,u.dense3),x=Ui.avgPool(x,[7,7],[2,2],"valid"),x})}async forward(a){return this.forwardInput(await ze(a))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeigthMap(a){return $R(a)}extractParams(a){return SR(a)}},DR=te(ee()),Yl=te(ee());function Jh(i,a){return Yl.tidy(()=>Yl.add(Yl.matMul(i,a.weights),a.bias))}function IR(i,a,u){let h=[],{extractWeights:d,getRemainingWeights:g}=nr(i),x=Lb(d,h),w=x(a,u,"fc");if(g().length!==0)throw new Error(`weights remaing after extract: ${g().length}`);return{paramMappings:h,params:{fc:w}}}function ER(i){let a=[],u=$r(i,a);function h(g){let x=u(`${g}/weights`,2),w=u(`${g}/bias`,1);return{weights:x,bias:w}}let d={fc:h("fc")};return er(i,a),{params:d,paramMappings:a}}function Vb(i){let a={},u={};return Object.keys(i).forEach(h=>{let d=h.startsWith("fc")?u:a;d[h]=i[h]}),{featureExtractorMap:a,classifierMap:u}}var Zh=class extends Fn{constructor(a,u){super(a);this._faceFeatureExtractor=u}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(a){let{params:u}=this;if(!u)throw new Error(`${this._name} - load model before inference`);return DR.tidy(()=>{let h=a instanceof as?this.faceFeatureExtractor.forwardInput(a):a;return Jh(h.as2D(h.shape[0],-1),u.fc)})}dispose(a=!0){this.faceFeatureExtractor.dispose(a),super.dispose(a)}loadClassifierParams(a){let{params:u,paramMappings:h}=this.extractClassifierParams(a);this._params=u,this._paramMappings=h}extractClassifierParams(a){return IR(a,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeigthMap(a){let{featureExtractorMap:u,classifierMap:h}=Vb(a);return this.faceFeatureExtractor.loadFromWeightMap(u),ER(h)}extractParams(a){let u=this.getClassifierChannelsIn(),h=this.getClassifierChannelsOut(),d=h*u+h,g=a.slice(0,a.length-d),x=a.slice(a.length-d);return this.faceFeatureExtractor.extractWeights(g),this.extractClassifierParams(x)}},Gb=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ks=class{constructor(a){if(a.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${a.length}`);Gb.forEach((u,h)=>{this[u]=a[h]})}asSortedArray(){return Gb.map(a=>({expression:a,probability:this[a]})).sort((a,u)=>u.probability-a.probability)}},Qh=class extends Zh{constructor(a=new Yh){super("FaceExpressionNet",a)}forwardInput(a){return Jl.tidy(()=>Jl.softmax(this.runNet(a)))}async forward(a){return this.forwardInput(await ze(a))}async predictExpressions(a){let u=await ze(a),h=await this.forwardInput(u),d=await Promise.all(Jl.unstack(h).map(async x=>{let w=await x.data();return x.dispose(),w}));h.dispose();let g=d.map(x=>new Ks(x));return u.isBatchInput?g:g[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Ub(i){return i.expressions instanceof Ks}function tf(i,a){let u={expressions:a};return Object.assign({},i,u)}function Hrt(i,a,u=.1,h){let d=Array.isArray(a)?a:[a];d.forEach(g=>{let x=g instanceof Ks?g:Ub(g)?g.expressions:void 0;if(!x)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let w=x.asSortedArray(),k=w.filter(F=>F.probability>u),C=Eo(g)?g.detection.box.bottomLeft:h||new Yt(0,0),$=new Ri(k.map(F=>`${F.expression} (${Ia(F.probability)})`),C);$.draw(i)})}function qi(i){return Eo(i)&&i.landmarks instanceof Cr&&i.unshiftedLandmarks instanceof Cr&&i.alignedRect instanceof Ve}function sc(i,a){let{box:u}=i.detection,h=a.shiftBy(u.x,u.y),d=h.align(),{imageDims:g}=i.detection,x=new Ve(i.detection.score,d.rescale(g.reverse()),g),w={landmarks:h,unshiftedLandmarks:a,alignedRect:x};return Object.assign({},i,w)}var Lk=class{constructor(a={}){let{drawLines:u=!0,drawPoints:h=!0,lineWidth:d,lineColor:g,pointSize:x,pointColor:w}=a;this.drawLines=u,this.drawPoints=h,this.lineWidth=d||1,this.pointSize=x||2,this.lineColor=g||"rgba(0, 255, 255, 1)",this.pointColor=w||"rgba(255, 0, 255, 1)"}},Mk=class{constructor(a,u={}){this.faceLandmarks=a,this.options=new Lk(u)}draw(a){let u=Qn(a),{drawLines:h,drawPoints:d,lineWidth:g,lineColor:x,pointSize:w,pointColor:k}=this.options;if(h&&this.faceLandmarks instanceof Fa&&(u.strokeStyle=x,u.lineWidth=g,Fs(u,this.faceLandmarks.getJawOutline()),Fs(u,this.faceLandmarks.getLeftEyeBrow()),Fs(u,this.faceLandmarks.getRightEyeBrow()),Fs(u,this.faceLandmarks.getNose()),Fs(u,this.faceLandmarks.getLeftEye(),!0),Fs(u,this.faceLandmarks.getRightEye(),!0),Fs(u,this.faceLandmarks.getMouth(),!0)),d){u.strokeStyle=k,u.fillStyle=k;let C=$=>{u.beginPath(),u.arc($.x,$.y,w,0,2*Math.PI),u.fill()};this.faceLandmarks.positions.forEach(C)}}};function jrt(i,a){let u=Array.isArray(a)?a:[a];u.forEach(h=>{let d=h instanceof Cr?h:qi(h)?h.landmarks:void 0;if(!d)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Mk(d).draw(i)})}var ls=te(ee()),pn=te(ee());function Krt(i,a){let u=jl(i,a),h=Kl(i,a);function d(x,w,k){let C=h(x,w,`${k}/separable_conv0`),$=h(w,w,`${k}/separable_conv1`),F=u(x,w,1,`${k}/expansion_conv`);return{separable_conv0:C,separable_conv1:$,expansion_conv:F}}function g(x,w){let k=h(x,x,`${w}/separable_conv0`),C=h(x,x,`${w}/separable_conv1`),$=h(x,x,`${w}/separable_conv2`);return{separable_conv0:k,separable_conv1:C,separable_conv2:$}}return{extractConvParams:u,extractSeparableConvParams:h,extractReductionBlockParams:d,extractMainBlockParams:g}}function AR(i,a){let u=[],{extractWeights:h,getRemainingWeights:d}=nr(i),{extractConvParams:g,extractSeparableConvParams:x,extractReductionBlockParams:w,extractMainBlockParams:k}=Krt(h,u),C=g(3,32,3,"entry_flow/conv_in"),$=w(32,64,"entry_flow/reduction_block_0"),F=w(64,128,"entry_flow/reduction_block_1"),_={conv_in:C,reduction_block_0:$,reduction_block_1:F},W={};Jo(a,0,1).forEach(mt=>{W[`main_block_${mt}`]=k(128,`middle_flow/main_block_${mt}`)});let et=w(128,256,"exit_flow/reduction_block"),tt=x(256,512,"exit_flow/separable_conv"),G={reduction_block:et,separable_conv:tt};if(d().length!==0)throw new Error(`weights remaing after extract: ${d().length}`);return{paramMappings:u,params:{entry_flow:_,middle_flow:W,exit_flow:G}}}function Xrt(i,a){let u=$r(i,a),h=zb(u),d=Xl(u);function g(w){let k=d(`${w}/separable_conv0`),C=d(`${w}/separable_conv1`),$=h(`${w}/expansion_conv`);return{separable_conv0:k,separable_conv1:C,expansion_conv:$}}function x(w){let k=d(`${w}/separable_conv0`),C=d(`${w}/separable_conv1`),$=d(`${w}/separable_conv2`);return{separable_conv0:k,separable_conv1:C,separable_conv2:$}}return{extractConvParams:h,extractSeparableConvParams:d,extractReductionBlockParams:g,extractMainBlockParams:x}}function FR(i,a){let u=[],{extractConvParams:h,extractSeparableConvParams:d,extractReductionBlockParams:g,extractMainBlockParams:x}=Xrt(i,u),w=h("entry_flow/conv_in"),k=g("entry_flow/reduction_block_0"),C=g("entry_flow/reduction_block_1"),$={conv_in:w,reduction_block_0:k,reduction_block_1:C},F={};Jo(a,0,1).forEach(tt=>{F[`main_block_${tt}`]=x(`middle_flow/main_block_${tt}`)});let _=g("exit_flow/reduction_block"),W=d("exit_flow/separable_conv"),et={reduction_block:_,separable_conv:W};return er(i,u),{params:{entry_flow:$,middle_flow:F,exit_flow:et},paramMappings:u}}function RR(i,a,u){return pn.add(pn.conv2d(i,a.filters,u,"same"),a.bias)}function Bk(i,a,u=!0){let h=u?pn.relu(i):i;return h=yr(h,a.separable_conv0,[1,1]),h=yr(pn.relu(h),a.separable_conv1,[1,1]),h=pn.maxPool(h,[3,3],[2,2],"same"),h=pn.add(h,RR(i,a.expansion_conv,[2,2])),h}function Yrt(i,a){let u=yr(pn.relu(i),a.separable_conv0,[1,1]);return u=yr(pn.relu(u),a.separable_conv1,[1,1]),u=yr(pn.relu(u),a.separable_conv2,[1,1]),u=pn.add(u,i),u}var zk=class extends Fn{constructor(a){super("TinyXception");this._numMainBlocks=a}forwardInput(a){let{params:u}=this;if(!u)throw new Error("TinyXception - load model before inference");return pn.tidy(()=>{let h=pn.cast(a.toBatchTensor(112,!0),"float32"),d=[122.782,117.001,104.298],g=oo(h,d).div(pn.scalar(256)),x=pn.relu(RR(g,u.entry_flow.conv_in,[2,2]));return x=Bk(x,u.entry_flow.reduction_block_0,!1),x=Bk(x,u.entry_flow.reduction_block_1),Jo(this._numMainBlocks,0,1).forEach(w=>{x=Yrt(x,u.middle_flow[`main_block_${w}`])}),x=Bk(x,u.exit_flow.reduction_block),x=pn.relu(yr(x,u.exit_flow.separable_conv,[1,1])),x})}async forward(a){return this.forwardInput(await ze(a))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeigthMap(a){return FR(a,this._numMainBlocks)}extractParams(a){return AR(a,this._numMainBlocks)}};function PR(i){let a=[],{extractWeights:u,getRemainingWeights:h}=nr(i),d=Lb(u,a),g=d(512,1,"fc/age"),x=d(512,2,"fc/gender");if(h().length!==0)throw new Error(`weights remaing after extract: ${h().length}`);return{paramMappings:a,params:{fc:{age:g,gender:x}}}}function OR(i){let a=[],u=$r(i,a);function h(g){let x=u(`${g}/weights`,2),w=u(`${g}/bias`,1);return{weights:x,bias:w}}let d={fc:{age:h("fc/age"),gender:h("fc/gender")}};return er(i,a),{params:d,paramMappings:a}}var cs;(function(i){i.FEMALE="female",i.MALE="male"})(cs||(cs={}));var ef=class extends Fn{constructor(a=new zk(2)){super("AgeGenderNet");this._faceFeatureExtractor=a}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(a){let{params:u}=this;if(!u)throw new Error(`${this._name} - load model before inference`);return ls.tidy(()=>{let h=a instanceof as?this.faceFeatureExtractor.forwardInput(a):a,d=ls.avgPool(h,[7,7],[2,2],"valid").as2D(h.shape[0],-1),g=Jh(d,u.fc.age).as1D(),x=Jh(d,u.fc.gender);return{age:g,gender:x}})}forwardInput(a){return ls.tidy(()=>{let{age:u,gender:h}=this.runNet(a);return{age:u,gender:ls.softmax(h)}})}async forward(a){return this.forwardInput(await ze(a))}async predictAgeAndGender(a){let u=await ze(a),h=await this.forwardInput(u),d=ls.unstack(h.age),g=ls.unstack(h.gender),x=d.map((k,C)=>({ageTensor:k,genderTensor:g[C]})),w=await Promise.all(x.map(async({ageTensor:k,genderTensor:C})=>{let $=(await k.data())[0],F=(await C.data())[0],_=F>.5,W=_?cs.MALE:cs.FEMALE,et=_?F:1-F;return k.dispose(),C.dispose(),{age:$,gender:W,genderProbability:et}}));return h.age.dispose(),h.gender.dispose(),u.isBatchInput?w:w[0]}getDefaultModelName(){return"age_gender_model"}dispose(a=!0){this.faceFeatureExtractor.dispose(a),super.dispose(a)}loadClassifierParams(a){let{params:u,paramMappings:h}=this.extractClassifierParams(a);this._params=u,this._paramMappings=h}extractClassifierParams(a){return PR(a)}extractParamsFromWeigthMap(a){let{featureExtractorMap:u,classifierMap:h}=Vb(a);return this.faceFeatureExtractor.loadFromWeightMap(u),OR(h)}extractParams(a){let u=512*1+1+(512*2+2),h=a.slice(0,a.length-u),d=a.slice(a.length-u);return this.faceFeatureExtractor.extractWeights(h),this.extractClassifierParams(d)}};var Ir=te(ee()),nf=class extends Zh{postProcess(a,u,h){let d=h.map(({width:x,height:w})=>{let k=u/Math.max(w,x);return{width:x*k,height:w*k}}),g=d.length;return Ir.tidy(()=>{let x=(F,_)=>Ir.stack([Ir.fill([68],F,"float32"),Ir.fill([68],_,"float32")],1).as2D(1,136).as1D(),w=(F,_)=>{let{width:W,height:et}=d[F];return _(W,et)?Math.abs(W-et)/2:0},k=F=>w(F,(_,W)=>_w(F,(_,W)=>W<_),$=a.mul(Ir.fill([g,136],u,"float32")).sub(Ir.stack(Array.from(Array(g),(F,_)=>x(k(_),C(_))))).div(Ir.stack(Array.from(Array(g),(F,_)=>x(d[_].width,d[_].height))));return $})}forwardInput(a){return Ir.tidy(()=>{let u=this.runNet(a);return this.postProcess(u,a.inputSize,a.inputDimensions.map(([h,d])=>({height:h,width:d})))})}async forward(a){return this.forwardInput(await ze(a))}async detectLandmarks(a){let u=await ze(a),h=Ir.tidy(()=>Ir.unstack(this.forwardInput(u))),d=await Promise.all(h.map(async(g,x)=>{let w=Array.from(await g.data()),k=w.filter(($,F)=>fg(F)),C=w.filter(($,F)=>!fg(F));return new Fa(Array(68).fill(0).map(($,F)=>new Yt(k[F],C[F])),{height:u.getInputHeight(x),width:u.getInputWidth(x)})}));return h.forEach(g=>g.dispose()),u.isBatchInput?d:d[0]}getClassifierChannelsOut(){return 136}},ic=class extends nf{constructor(a=new Yh){super("FaceLandmark68Net",a)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Hi=te(ee());function LR(i){let a=[],{extractDenseBlock3Params:u}=Wb(i,a),h={dense0:u("dense0",!0),dense1:u("dense1"),dense2:u("dense2")};return er(i,a),{params:h,paramMappings:a}}function MR(i){let a=[],{extractWeights:u,getRemainingWeights:h}=nr(i),{extractDenseBlock3Params:d}=Bb(u,a),g=d(3,32,"dense0",!0),x=d(32,64,"dense1"),w=d(64,128,"dense2");if(h().length!==0)throw new Error(`weights remaing after extract: ${h().length}`);return{paramMappings:a,params:{dense0:g,dense1:x,dense2:w}}}var Wk=class extends Fn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(a){let{params:u}=this;if(!u)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Hi.tidy(()=>{let h=Hi.cast(a.toBatchTensor(112,!0),"float32"),d=[122.782,117.001,104.298],g=oo(h,d).div(Hi.scalar(255)),x=Rb(g,u.dense0,!0);return x=Rb(x,u.dense1),x=Rb(x,u.dense2),x=Hi.avgPool(x,[14,14],[2,2],"valid"),x})}async forward(a){return this.forwardInput(await ze(a))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeigthMap(a){return LR(a)}extractParams(a){return MR(a)}},rf=class extends nf{constructor(a=new Wk){super("FaceLandmark68TinyNet",a)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}},Vk=class extends ic{};var jr=te(ee()),Zl=te(ee()),Hb=te(ee());function BR(i,a){return Hb.add(Hb.mul(i,a.weights),a.biases)}function Gk(i,a,u,h,d="same"){let{filters:g,bias:x}=a.conv,w=Zl.conv2d(i,g,u,d);return w=Zl.add(w,x),w=BR(w,a.scale),h?Zl.relu(w):w}function zR(i,a){return Gk(i,a,[1,1],!0)}function Uk(i,a){return Gk(i,a,[1,1],!1)}function jb(i,a){return Gk(i,a,[2,2],!0,"valid")}var Er=te(ee());function Jrt(i,a){function u(w,k,C){let $=i(w),F=$.length/(k*C*C);if(q1(F))throw new Error(`depth has to be an integer: ${F}, weights.length: ${$.length}, numFilters: ${k}, filterSize: ${C}`);return Er.tidy(()=>Er.transpose(Er.tensor4d($,[k,F,C,C]),[2,3,1,0]))}function h(w,k,C,$){let F=u(w,k,C),_=Er.tensor1d(i(k));return a.push({paramPath:`${$}/filters`},{paramPath:`${$}/bias`}),{filters:F,bias:_}}function d(w,k){let C=Er.tensor1d(i(w)),$=Er.tensor1d(i(w));return a.push({paramPath:`${k}/weights`},{paramPath:`${k}/biases`}),{weights:C,biases:$}}function g(w,k,C,$){let F=h(w,k,C,`${$}/conv`),_=d(k,`${$}/scale`);return{conv:F,scale:_}}function x(w,k,C,$,F=!1){let _=g((F?.5:1)*w,k,C,`${$}/conv1`),W=g(w,k,C,`${$}/conv2`);return{conv1:_,conv2:W}}return{extractConvLayerParams:g,extractResidualLayerParams:x}}function WR(i){let{extractWeights:a,getRemainingWeights:u}=nr(i),h=[],{extractConvLayerParams:d,extractResidualLayerParams:g}=Jrt(a,h),x=d(4704,32,7,"conv32_down"),w=g(9216,32,3,"conv32_1"),k=g(9216,32,3,"conv32_2"),C=g(9216,32,3,"conv32_3"),$=g(36864,64,3,"conv64_down",!0),F=g(36864,64,3,"conv64_1"),_=g(36864,64,3,"conv64_2"),W=g(36864,64,3,"conv64_3"),et=g(147456,128,3,"conv128_down",!0),tt=g(147456,128,3,"conv128_1"),G=g(147456,128,3,"conv128_2"),mt=g(589824,256,3,"conv256_down",!0),lt=g(589824,256,3,"conv256_1"),gt=g(589824,256,3,"conv256_2"),_t=g(589824,256,3,"conv256_down_out"),Gt=Er.tidy(()=>Er.transpose(Er.tensor2d(a(256*128),[128,256]),[1,0]));if(h.push({paramPath:"fc"}),u().length!==0)throw new Error(`weights remaing after extract: ${u().length}`);let se={conv32_down:x,conv32_1:w,conv32_2:k,conv32_3:C,conv64_down:$,conv64_1:F,conv64_2:_,conv64_3:W,conv128_down:et,conv128_1:tt,conv128_2:G,conv256_down:mt,conv256_1:lt,conv256_2:gt,conv256_down_out:_t,fc:Gt};return{params:se,paramMappings:h}}function Zrt(i,a){let u=$r(i,a);function h(x){let w=u(`${x}/scale/weights`,1),k=u(`${x}/scale/biases`,1);return{weights:w,biases:k}}function d(x){let w=u(`${x}/conv/filters`,4),k=u(`${x}/conv/bias`,1),C=h(x);return{conv:{filters:w,bias:k},scale:C}}function g(x){return{conv1:d(`${x}/conv1`),conv2:d(`${x}/conv2`)}}return{extractConvLayerParams:d,extractResidualLayerParams:g}}function VR(i){let a=[],{extractConvLayerParams:u,extractResidualLayerParams:h}=Zrt(i,a),d=u("conv32_down"),g=h("conv32_1"),x=h("conv32_2"),w=h("conv32_3"),k=h("conv64_down"),C=h("conv64_1"),$=h("conv64_2"),F=h("conv64_3"),_=h("conv128_down"),W=h("conv128_1"),et=h("conv128_2"),tt=h("conv256_down"),G=h("conv256_1"),mt=h("conv256_2"),lt=h("conv256_down_out"),gt=i.fc;if(a.push({originalPath:"fc",paramPath:"fc"}),!U1(gt))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${gt}`);let _t={conv32_down:d,conv32_1:g,conv32_2:x,conv32_3:w,conv64_down:k,conv64_1:C,conv64_2:$,conv64_3:F,conv128_down:_,conv128_1:W,conv128_2:et,conv256_down:tt,conv256_1:G,conv256_2:mt,conv256_down_out:lt,fc:gt};return er(i,a),{params:_t,paramMappings:a}}var rr=te(ee());function Ro(i,a){let u=zR(i,a.conv1);return u=Uk(u,a.conv2),u=rr.add(u,i),u=rr.relu(u),u}function of(i,a){let u=jb(i,a.conv1);u=Uk(u,a.conv2);let h=rr.avgPool(i,2,2,"valid"),d=rr.zeros(h.shape),g=h.shape[3]!==u.shape[3],x=h.shape[1]!==u.shape[1]||h.shape[2]!==u.shape[2];if(x){let w=[...u.shape];w[1]=1;let k=rr.zeros(w);u=rr.concat([u,k],1);let C=[...u.shape];C[2]=1;let $=rr.zeros(C);u=rr.concat([u,$],2)}return h=g?rr.concat([h,d],3):h,u=rr.add(h,u),u=rr.relu(u),u}var ac=class extends Fn{constructor(){super("FaceRecognitionNet")}forwardInput(a){let{params:u}=this;if(!u)throw new Error("FaceRecognitionNet - load model before inference");return jr.tidy(()=>{let h=jr.cast(a.toBatchTensor(150,!0),"float32"),d=[122.782,117.001,104.298],g=oo(h,d).div(jr.scalar(256)),x=jb(g,u.conv32_down);x=jr.maxPool(x,3,2,"valid"),x=Ro(x,u.conv32_1),x=Ro(x,u.conv32_2),x=Ro(x,u.conv32_3),x=of(x,u.conv64_down),x=Ro(x,u.conv64_1),x=Ro(x,u.conv64_2),x=Ro(x,u.conv64_3),x=of(x,u.conv128_down),x=Ro(x,u.conv128_1),x=Ro(x,u.conv128_2),x=of(x,u.conv256_down),x=Ro(x,u.conv256_1),x=Ro(x,u.conv256_2),x=of(x,u.conv256_down_out);let w=x.mean([1,2]),k=jr.matMul(w,u.fc);return k})}async forward(a){return this.forwardInput(await ze(a))}async computeFaceDescriptor(a){let u=await ze(a),h=jr.tidy(()=>jr.unstack(this.forwardInput(u))),d=await Promise.all(h.map(g=>g.data()));return h.forEach(g=>g.dispose()),u.isBatchInput?d:d[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeigthMap(a){return VR(a)}extractParams(a){return WR(a)}};function GR(i){let a=new ac;return a.extractWeights(i),a}function sf(i,a){let u={descriptor:a};return Object.assign({},i,u)}function UR(i){return typeof i.age=="number"}function af(i,a){let u={age:a};return Object.assign({},i,u)}function qR(i){return(i.gender===cs.MALE||i.gender===cs.FEMALE)&&Cl(i.genderProbability)}function cf(i,a,u){let h={gender:a,genderProbability:u};return Object.assign({},i,h)}var Oo=te(ee()),Po=te(ee());function Qrt(i,a){function u(k,C){let $=Po.tensor4d(i(3*3*k),[3,3,k,1]),F=Po.tensor1d(i(k)),_=Po.tensor1d(i(k)),W=Po.tensor1d(i(k)),et=Po.tensor1d(i(k));return a.push({paramPath:`${C}/filters`},{paramPath:`${C}/batch_norm_scale`},{paramPath:`${C}/batch_norm_offset`},{paramPath:`${C}/batch_norm_mean`},{paramPath:`${C}/batch_norm_variance`}),{filters:$,batch_norm_scale:F,batch_norm_offset:_,batch_norm_mean:W,batch_norm_variance:et}}function h(k,C,$,F,_){let W=Po.tensor4d(i(k*C*$*$),[$,$,k,C]),et=Po.tensor1d(i(C));return a.push({paramPath:`${F}/filters`},{paramPath:`${F}/${_?"batch_norm_offset":"bias"}`}),{filters:W,bias:et}}function d(k,C,$,F){let{filters:_,bias:W}=h(k,C,$,F,!0);return{filters:_,batch_norm_offset:W}}function g(k,C,$){let F=u(k,`${$}/depthwise_conv`),_=d(k,C,1,`${$}/pointwise_conv`);return{depthwise_conv:F,pointwise_conv:_}}function x(){let k=d(3,32,3,"mobilenetv1/conv_0"),C=g(32,64,"mobilenetv1/conv_1"),$=g(64,128,"mobilenetv1/conv_2"),F=g(128,128,"mobilenetv1/conv_3"),_=g(128,256,"mobilenetv1/conv_4"),W=g(256,256,"mobilenetv1/conv_5"),et=g(256,512,"mobilenetv1/conv_6"),tt=g(512,512,"mobilenetv1/conv_7"),G=g(512,512,"mobilenetv1/conv_8"),mt=g(512,512,"mobilenetv1/conv_9"),lt=g(512,512,"mobilenetv1/conv_10"),gt=g(512,512,"mobilenetv1/conv_11"),_t=g(512,1024,"mobilenetv1/conv_12"),Gt=g(1024,1024,"mobilenetv1/conv_13");return{conv_0:k,conv_1:C,conv_2:$,conv_3:F,conv_4:_,conv_5:W,conv_6:et,conv_7:tt,conv_8:G,conv_9:mt,conv_10:lt,conv_11:gt,conv_12:_t,conv_13:Gt}}function w(){let k=d(1024,256,1,"prediction_layer/conv_0"),C=d(256,512,3,"prediction_layer/conv_1"),$=d(512,128,1,"prediction_layer/conv_2"),F=d(128,256,3,"prediction_layer/conv_3"),_=d(256,128,1,"prediction_layer/conv_4"),W=d(128,256,3,"prediction_layer/conv_5"),et=d(256,64,1,"prediction_layer/conv_6"),tt=d(64,128,3,"prediction_layer/conv_7"),G=h(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),mt=h(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),lt=h(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),gt=h(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),_t=h(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),Gt=h(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),se=h(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),fe=h(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),_e=h(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Ue=h(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Vt=h(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),ln=h(128,18,1,"prediction_layer/box_predictor_5/class_predictor"),Ce={box_encoding_predictor:G,class_predictor:mt},or={box_encoding_predictor:lt,class_predictor:gt},ti={box_encoding_predictor:_t,class_predictor:Gt},ei={box_encoding_predictor:se,class_predictor:fe},gc={box_encoding_predictor:_e,class_predictor:Ue},gn={box_encoding_predictor:Vt,class_predictor:ln};return{conv_0:k,conv_1:C,conv_2:$,conv_3:F,conv_4:_,conv_5:W,conv_6:et,conv_7:tt,box_predictor_0:Ce,box_predictor_1:or,box_predictor_2:ti,box_predictor_3:ei,box_predictor_4:gc,box_predictor_5:gn}}return{extractMobilenetV1Params:x,extractPredictionLayerParams:w}}function HR(i){let a=[],{extractWeights:u,getRemainingWeights:h}=nr(i),{extractMobilenetV1Params:d,extractPredictionLayerParams:g}=Qrt(u,a),x=d(),w=g(),k=Po.tensor3d(u(5118*4),[1,5118,4]),C={extra_dim:k};if(a.push({paramPath:"output_layer/extra_dim"}),h().length!==0)throw new Error(`weights remaing after extract: ${h().length}`);return{params:{mobilenetv1:x,prediction_layer:w,output_layer:C},paramMappings:a}}function tot(i,a){let u=$r(i,a);function h(C,$,F){let _=u(`${C}/Conv2d_${$}_pointwise/weights`,4,`${F}/filters`),W=u(`${C}/Conv2d_${$}_pointwise/convolution_bn_offset`,1,`${F}/batch_norm_offset`);return{filters:_,batch_norm_offset:W}}function d(C){let $=`mobilenetv1/conv_${C}`,F=`MobilenetV1/Conv2d_${C}_depthwise`,_=`${$}/depthwise_conv`,W=`${$}/pointwise_conv`,et=u(`${F}/depthwise_weights`,4,`${_}/filters`),tt=u(`${F}/BatchNorm/gamma`,1,`${_}/batch_norm_scale`),G=u(`${F}/BatchNorm/beta`,1,`${_}/batch_norm_offset`),mt=u(`${F}/BatchNorm/moving_mean`,1,`${_}/batch_norm_mean`),lt=u(`${F}/BatchNorm/moving_variance`,1,`${_}/batch_norm_variance`);return{depthwise_conv:{filters:et,batch_norm_scale:tt,batch_norm_offset:G,batch_norm_mean:mt,batch_norm_variance:lt},pointwise_conv:h("MobilenetV1",C,W)}}function g(){return{conv_0:h("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:d(1),conv_2:d(2),conv_3:d(3),conv_4:d(4),conv_5:d(5),conv_6:d(6),conv_7:d(7),conv_8:d(8),conv_9:d(9),conv_10:d(10),conv_11:d(11),conv_12:d(12),conv_13:d(13)}}function x(C,$){let F=u(`${C}/weights`,4,`${$}/filters`),_=u(`${C}/biases`,1,`${$}/bias`);return{filters:F,bias:_}}function w(C){let $=x(`Prediction/BoxPredictor_${C}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${C}/box_encoding_predictor`),F=x(`Prediction/BoxPredictor_${C}/ClassPredictor`,`prediction_layer/box_predictor_${C}/class_predictor`);return{box_encoding_predictor:$,class_predictor:F}}function k(){return{conv_0:h("Prediction",0,"prediction_layer/conv_0"),conv_1:h("Prediction",1,"prediction_layer/conv_1"),conv_2:h("Prediction",2,"prediction_layer/conv_2"),conv_3:h("Prediction",3,"prediction_layer/conv_3"),conv_4:h("Prediction",4,"prediction_layer/conv_4"),conv_5:h("Prediction",5,"prediction_layer/conv_5"),conv_6:h("Prediction",6,"prediction_layer/conv_6"),conv_7:h("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:w(0),box_predictor_1:w(1),box_predictor_2:w(2),box_predictor_3:w(3),box_predictor_4:w(4),box_predictor_5:w(5)}}return{extractMobilenetV1Params:g,extractPredictionLayerParams:k}}function jR(i){let a=[],{extractMobilenetV1Params:u,extractPredictionLayerParams:h}=tot(i,a),d=i["Output/extra_dim"];if(a.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Rs(d))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${d}`);let g={mobilenetv1:u(),prediction_layer:h(),output_layer:{extra_dim:d}};return er(i,a),{params:g,paramMappings:a}}var Xs=te(ee()),ji=te(ee());function lo(i,a,u){return ji.tidy(()=>{let h=ji.conv2d(i,a.filters,u,"same");return h=ji.add(h,a.batch_norm_offset),ji.clipByValue(h,0,6)})}var eot=.0010000000474974513;function not(i,a,u){return Xs.tidy(()=>{let h=Xs.depthwiseConv2d(i,a.filters,u,"same");return h=Xs.batchNorm(h,a.batch_norm_mean,a.batch_norm_variance,a.batch_norm_offset,a.batch_norm_scale,eot),Xs.clipByValue(h,0,6)})}function rot(i){return[2,4,6,12].some(a=>a===i)?[2,2]:[1,1]}function KR(i,a){return Xs.tidy(()=>{let u,h=lo(i,a.conv_0,[2,2]),d=[a.conv_1,a.conv_2,a.conv_3,a.conv_4,a.conv_5,a.conv_6,a.conv_7,a.conv_8,a.conv_9,a.conv_10,a.conv_11,a.conv_12,a.conv_13];if(d.forEach((g,x)=>{let w=x+1,k=rot(w);h=not(h,g.depthwise_conv,k),h=lo(h,g.pointwise_conv,[1,1]),w===11&&(u=h)}),u===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:h,conv11:u}})}function XR(i,a,u,h,d){let g=i.shape[0],x=Math.min(u,g),w=a.map(($,F)=>({score:$,boxIndex:F})).filter($=>$.score>d).sort(($,F)=>F.score-$.score),k=$=>$<=h?1:0,C=[];return w.forEach($=>{if(C.length>=x)return;let F=$.score;for(let _=C.length-1;_>=0;--_){let W=oot(i,$.boxIndex,C[_]);if(W===0)continue;if($.score*=k(W),$.score<=d)break}F===$.score&&C.push($.boxIndex)}),C}function oot(i,a,u){let h=i.arraySync(),d=Math.min(h[a][0],h[a][2]),g=Math.min(h[a][1],h[a][3]),x=Math.max(h[a][0],h[a][2]),w=Math.max(h[a][1],h[a][3]),k=Math.min(h[u][0],h[u][2]),C=Math.min(h[u][1],h[u][3]),$=Math.max(h[u][0],h[u][2]),F=Math.max(h[u][1],h[u][3]),_=(x-d)*(w-g),W=($-k)*(F-C);if(_<=0||W<=0)return 0;let et=Math.max(d,k),tt=Math.max(g,C),G=Math.min(x,$),mt=Math.min(w,F),lt=Math.max(G-et,0)*Math.max(mt-tt,0);return lt/(_+W-lt)}var Mt=te(ee());function sot(i){let a=Mt.unstack(Mt.transpose(i,[1,0])),u=[Mt.sub(a[2],a[0]),Mt.sub(a[3],a[1])],h=[Mt.add(a[0],Mt.div(u[0],Mt.scalar(2))),Mt.add(a[1],Mt.div(u[1],Mt.scalar(2)))];return{sizes:u,centers:h}}function iot(i,a){let{sizes:u,centers:h}=sot(i),d=Mt.unstack(Mt.transpose(a,[1,0])),g=Mt.div(Mt.mul(Mt.exp(Mt.div(d[2],Mt.scalar(5))),u[0]),Mt.scalar(2)),x=Mt.add(Mt.mul(Mt.div(d[0],Mt.scalar(10)),u[0]),h[0]),w=Mt.div(Mt.mul(Mt.exp(Mt.div(d[3],Mt.scalar(5))),u[1]),Mt.scalar(2)),k=Mt.add(Mt.mul(Mt.div(d[1],Mt.scalar(10)),u[1]),h[1]);return Mt.transpose(Mt.stack([Mt.sub(x,g),Mt.sub(k,w),Mt.add(x,g),Mt.add(k,w)]),[1,0])}function YR(i,a,u){return Mt.tidy(()=>{let h=i.shape[0],d=iot(Mt.reshape(Mt.tile(u.extra_dim,[h,1,1]),[-1,4]),Mt.reshape(i,[-1,4]));d=Mt.reshape(d,[h,d.shape[0]/h,4]);let g=Mt.sigmoid(Mt.slice(a,[0,0,1],[-1,-1,-1])),x=Mt.slice(g,[0,0,0],[-1,-1,1]);x=Mt.reshape(x,[h,x.shape[1]]);let w=Mt.unstack(d),k=Mt.unstack(x);return{boxes:w,scores:k}})}var uf=te(ee()),lf=te(ee());function cc(i,a){return lf.tidy(()=>{let u=i.shape[0],h=lf.reshape(oc(i,a.box_encoding_predictor),[u,-1,1,4]),d=lf.reshape(oc(i,a.class_predictor),[u,-1,3]);return{boxPredictionEncoding:h,classPrediction:d}})}function JR(i,a,u){return uf.tidy(()=>{let h=lo(i,u.conv_0,[1,1]),d=lo(h,u.conv_1,[2,2]),g=lo(d,u.conv_2,[1,1]),x=lo(g,u.conv_3,[2,2]),w=lo(x,u.conv_4,[1,1]),k=lo(w,u.conv_5,[2,2]),C=lo(k,u.conv_6,[1,1]),$=lo(C,u.conv_7,[2,2]),F=cc(a,u.box_predictor_0),_=cc(i,u.box_predictor_1),W=cc(d,u.box_predictor_2),et=cc(x,u.box_predictor_3),tt=cc(k,u.box_predictor_4),G=cc($,u.box_predictor_5),mt=uf.concat([F.boxPredictionEncoding,_.boxPredictionEncoding,W.boxPredictionEncoding,et.boxPredictionEncoding,tt.boxPredictionEncoding,G.boxPredictionEncoding],1),lt=uf.concat([F.classPrediction,_.classPrediction,W.classPrediction,et.classPrediction,tt.classPrediction,G.classPrediction],1);return{boxPredictions:mt,classPredictions:lt}})}var Kr=class{constructor({minConfidence:a,maxResults:u}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=a||.5,this._maxResults=u||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}},Ki=class extends Fn{constructor(){super("SsdMobilenetv1")}forwardInput(a){let{params:u}=this;if(!u)throw new Error("SsdMobilenetv1 - load model before inference");return Oo.tidy(()=>{let h=Oo.cast(a.toBatchTensor(512,!1),"float32"),d=Oo.sub(Oo.mul(h,Oo.scalar(.007843137718737125)),Oo.scalar(1)),g=KR(d,u.mobilenetv1),{boxPredictions:x,classPredictions:w}=JR(g.out,g.conv11,u.prediction_layer);return YR(x,w,u.output_layer)})}async forward(a){return this.forwardInput(await ze(a))}async locateFaces(a,u={}){let{maxResults:h,minConfidence:d}=new Kr(u),g=await ze(a),{boxes:x,scores:w}=this.forwardInput(g),k=x[0],C=w[0];for(let gt=1;gt{let[_t,Gt]=[Math.max(0,mt[gt][0]),Math.min(1,mt[gt][2])].map(_e=>_e*G),[se,fe]=[Math.max(0,mt[gt][1]),Math.min(1,mt[gt][3])].map(_e=>_e*tt);return new Ve($[gt],new Aa(se,_t,fe-se,Gt-_t),{height:g.getInputHeight(0),width:g.getInputWidth(0)})});return k.dispose(),C.dispose(),lt}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeigthMap(a){return jR(a)}extractParams(a){return HR(a)}};function qk(i){let a=new Ki;return a.extractWeights(i),a}function ZR(i){return qk(i)}var Hk=class extends Ki{},QR=.4,tP=[new Yt(.738768,.874946),new Yt(2.42204,2.65704),new Yt(4.30971,7.04493),new Yt(10.246,4.59428),new Yt(12.6868,11.8741)],eP=[new Yt(1.603231,2.094468),new Yt(6.041143,7.080126),new Yt(2.882459,3.518061),new Yt(4.266906,5.178857),new Yt(9.041765,10.66308)],nP=[117.001,114.697,97.404],rP="tiny_yolov2_model",oP="tiny_yolov2_separable_conv_model",He=te(ee()),Kb=i=>typeof i=="number";function Xb(i){if(!i)throw new Error(`invalid config: ${i}`);if(typeof i.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${i.withSeparableConvs}`);if(!Kb(i.iouThreshold)||i.iouThreshold<0||i.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${i.iouThreshold}`);if(!Array.isArray(i.classes)||!i.classes.length||!i.classes.every(a=>typeof a=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(i.classes)}`);if(!Array.isArray(i.anchors)||!i.anchors.length||!i.anchors.map(a=>a||{}).every(a=>Kb(a.x)&&Kb(a.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(i.anchors)}`);if(i.meanRgb&&(!Array.isArray(i.meanRgb)||i.meanRgb.length!==3||!i.meanRgb.every(Kb)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(i.meanRgb)}`)}var po=te(ee()),uo=te(ee());function Ql(i){return uo.tidy(()=>{let a=uo.mul(i,uo.scalar(.10000000149011612));return uo.add(uo.relu(uo.sub(i,a)),a)})}function Ys(i,a){return po.tidy(()=>{let u=po.pad(i,[[0,0],[1,1],[1,1],[0,0]]);return u=po.conv2d(u,a.conv.filters,[1,1],"valid"),u=po.sub(u,a.bn.sub),u=po.mul(u,a.bn.truediv),u=po.add(u,a.conv.bias),Ql(u)})}var Xi=te(ee());function Js(i,a){return Xi.tidy(()=>{let u=Xi.pad(i,[[0,0],[1,1],[1,1],[0,0]]);return u=Xi.separableConv2d(u,a.depthwise_filter,a.pointwise_filter,[1,1],"valid"),u=Xi.add(u,a.bias),Ql(u)})}var jk=te(ee());function aot(i,a){let u=jl(i,a);function h(x,w){let k=jk.tensor1d(i(x)),C=jk.tensor1d(i(x));return a.push({paramPath:`${w}/sub`},{paramPath:`${w}/truediv`}),{sub:k,truediv:C}}function d(x,w,k){let C=u(x,w,3,`${k}/conv`),$=h(w,`${k}/bn`);return{conv:C,bn:$}}let g=Kl(i,a);return{extractConvParams:u,extractConvWithBatchNormParams:d,extractSeparableConvParams:g}}function sP(i,a,u,h){let{extractWeights:d,getRemainingWeights:g}=nr(i),x=[],{extractConvParams:w,extractConvWithBatchNormParams:k,extractSeparableConvParams:C}=aot(d,x),$;if(a.withSeparableConvs){let[F,_,W,et,tt,G,mt,lt,gt]=h,_t=a.isFirstLayerConv2d?w(F,_,3,"conv0"):C(F,_,"conv0"),Gt=C(_,W,"conv1"),se=C(W,et,"conv2"),fe=C(et,tt,"conv3"),_e=C(tt,G,"conv4"),Ue=C(G,mt,"conv5"),Vt=lt?C(mt,lt,"conv6"):void 0,ln=gt?C(lt,gt,"conv7"):void 0,Ce=w(gt||lt||mt,5*u,1,"conv8");$={conv0:_t,conv1:Gt,conv2:se,conv3:fe,conv4:_e,conv5:Ue,conv6:Vt,conv7:ln,conv8:Ce}}else{let[F,_,W,et,tt,G,mt,lt,gt]=h,_t=k(F,_,"conv0"),Gt=k(_,W,"conv1"),se=k(W,et,"conv2"),fe=k(et,tt,"conv3"),_e=k(tt,G,"conv4"),Ue=k(G,mt,"conv5"),Vt=k(mt,lt,"conv6"),ln=k(lt,gt,"conv7"),Ce=w(gt,5*u,1,"conv8");$={conv0:_t,conv1:Gt,conv2:se,conv3:fe,conv4:_e,conv5:Ue,conv6:Vt,conv7:ln,conv8:Ce}}if(g().length!==0)throw new Error(`weights remaing after extract: ${g().length}`);return{params:$,paramMappings:x}}function cot(i,a){let u=$r(i,a);function h(w){let k=u(`${w}/sub`,1),C=u(`${w}/truediv`,1);return{sub:k,truediv:C}}function d(w){let k=u(`${w}/filters`,4),C=u(`${w}/bias`,1);return{filters:k,bias:C}}function g(w){let k=d(`${w}/conv`),C=h(`${w}/bn`);return{conv:k,bn:C}}let x=Xl(u);return{extractConvParams:d,extractConvWithBatchNormParams:g,extractSeparableConvParams:x}}function iP(i,a){let u=[],{extractConvParams:h,extractConvWithBatchNormParams:d,extractSeparableConvParams:g}=cot(i,u),x;if(a.withSeparableConvs){let w=a.filterSizes&&a.filterSizes.length||9;x={conv0:a.isFirstLayerConv2d?h("conv0"):g("conv0"),conv1:g("conv1"),conv2:g("conv2"),conv3:g("conv3"),conv4:g("conv4"),conv5:g("conv5"),conv6:w>7?g("conv6"):void 0,conv7:w>8?g("conv7"):void 0,conv8:h("conv8")}}else x={conv0:d("conv0"),conv1:d("conv1"),conv2:d("conv2"),conv3:d("conv3"),conv4:d("conv4"),conv5:d("conv5"),conv6:d("conv6"),conv7:d("conv7"),conv8:h("conv8")};return er(i,u),{params:x,paramMappings:u}}var Yb;(function(i){i[i.XS=224]="XS",i[i.SM=320]="SM",i[i.MD=416]="MD",i[i.LG=608]="LG"})(Yb||(Yb={}));var Lo=class{constructor({inputSize:a,scoreThreshold:u}={}){this._name="TinyYolov2Options";if(this._inputSize=a||416,this._scoreThreshold=u||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}},Kk=class extends Fn{constructor(a){super("TinyYolov2");Xb(a),this._config=a}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(a,u){let h=Ys(a,u.conv0);return h=He.maxPool(h,[2,2],[2,2],"same"),h=Ys(h,u.conv1),h=He.maxPool(h,[2,2],[2,2],"same"),h=Ys(h,u.conv2),h=He.maxPool(h,[2,2],[2,2],"same"),h=Ys(h,u.conv3),h=He.maxPool(h,[2,2],[2,2],"same"),h=Ys(h,u.conv4),h=He.maxPool(h,[2,2],[2,2],"same"),h=Ys(h,u.conv5),h=He.maxPool(h,[2,2],[1,1],"same"),h=Ys(h,u.conv6),h=Ys(h,u.conv7),oc(h,u.conv8,"valid",!1)}runMobilenet(a,u){let h=this.config.isFirstLayerConv2d?Ql(oc(a,u.conv0,"valid",!1)):Js(a,u.conv0);return h=He.maxPool(h,[2,2],[2,2],"same"),h=Js(h,u.conv1),h=He.maxPool(h,[2,2],[2,2],"same"),h=Js(h,u.conv2),h=He.maxPool(h,[2,2],[2,2],"same"),h=Js(h,u.conv3),h=He.maxPool(h,[2,2],[2,2],"same"),h=Js(h,u.conv4),h=He.maxPool(h,[2,2],[2,2],"same"),h=Js(h,u.conv5),h=He.maxPool(h,[2,2],[1,1],"same"),h=u.conv6?Js(h,u.conv6):h,h=u.conv7?Js(h,u.conv7):h,oc(h,u.conv8,"valid",!1)}forwardInput(a,u){let{params:h}=this;if(!h)throw new Error("TinyYolov2 - load model before inference");return He.tidy(()=>{let d=He.cast(a.toBatchTensor(u,!1),"float32");return d=this.config.meanRgb?oo(d,this.config.meanRgb):d,d=d.div(He.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(d,h):this.runTinyYolov2(d,h)})}async forward(a,u){return await this.forwardInput(await ze(a),u)}async detect(a,u={}){let{inputSize:h,scoreThreshold:d}=new Lo(u),g=await ze(a),x=await this.forwardInput(g,h),w=He.tidy(()=>He.unstack(x)[0].expandDims()),k={width:g.getInputWidth(0),height:g.getInputHeight(0)},C=await this.extractBoxes(w,g.getReshapedInputDimensions(0),d);x.dispose(),w.dispose();let $=C.map(G=>G.box),F=C.map(G=>G.score),_=C.map(G=>G.classScore),W=C.map(G=>this.config.classes[G.label]),et=yg($.map(G=>G.rescale(h)),F,this.config.iouThreshold,!0),tt=et.map(G=>new Ps(F[G],_[G],W[G],$[G],k));return tt}getDefaultModelName(){return""}extractParamsFromWeigthMap(a){return iP(a,this.config)}extractParams(a){let u=this.config.filterSizes||Kk.DEFAULT_FILTER_SIZES,h=u?u.length:void 0;if(h!==7&&h!==8&&h!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${h} filterSizes in config`);return sP(a,this.config,this.boxEncodingSize,u)}async extractBoxes(a,u,h){let{width:d,height:g}=u,x=Math.max(d,g),w=x/d,k=x/g,C=a.shape[1],$=this.config.anchors.length,[F,_,W]=He.tidy(()=>{let mt=a.reshape([C,C,$,this.boxEncodingSize]),lt=mt.slice([0,0,0,0],[C,C,$,4]),gt=mt.slice([0,0,0,4],[C,C,$,1]),_t=this.withClassScores?He.softmax(mt.slice([0,0,0,5],[C,C,$,this.config.classes.length]),3):He.scalar(0);return[lt,gt,_t]}),et=[],tt=await _.array(),G=await F.array();for(let mt=0;mth){let Gt=(lt+Sl(G[mt][lt][gt][0]))/C*w,se=(mt+Sl(G[mt][lt][gt][1]))/C*k,fe=Math.exp(G[mt][lt][gt][2])*this.config.anchors[gt].x/C*w,_e=Math.exp(G[mt][lt][gt][3])*this.config.anchors[gt].y/C*k,Ue=Gt-fe/2,Vt=se-_e/2,ln={row:mt,col:lt,anchor:gt},{classScore:Ce,label:or}=this.withClassScores?await this.extractPredictedClass(W,ln):{classScore:1,label:0};et.push({box:new Da(Ue,Vt,Ue+fe,Vt+_e),score:_t,classScore:_t*Ce,label:or,...ln})}}return F.dispose(),_.dispose(),W.dispose(),et}async extractPredictedClass(a,u){let{row:h,col:d,anchor:g}=u,x=await a.array();return Array(this.config.classes.length).fill(0).map((w,k)=>x[h][d][g][k]).map((w,k)=>({classScore:w,label:k})).reduce((w,k)=>w.classScore>k.classScore?w:k)}},tu=Kk;tu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var lc=class extends tu{constructor(a=!0){let u=Object.assign({},{withSeparableConvs:a,iouThreshold:QR,classes:["face"]},a?{anchors:eP,meanRgb:nP}:{anchors:tP,withClassScores:!0});super(u)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(a,u){let h=await this.detect(a,u);return h.map(d=>new Ve(d.score,d.relativeBox,{width:d.imageWidth,height:d.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?oP:rP}extractParamsFromWeigthMap(a){return super.extractParamsFromWeigthMap(a)}};function aP(i,a=!0){let u=new lc(a);return u.extractWeights(i),u}var pf=class extends Lo{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}},Xr=class{async then(a){return a(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}},ff=te(ee()),Xk=te(ee());async function uc(i,a,u,h,d=({alignedRect:g})=>g){let g=i.map(k=>qi(k)?d(k):k.detection),x=h||(a instanceof Xk.Tensor?await rc(a,g):await nc(a,g)),w=await u(x);return x.forEach(k=>k instanceof Xk.Tensor&&k.dispose()),w}async function eu(i,a,u,h,d){return uc([i],a,async g=>u(g[0]),h,d)}var cP=.4,lP=[new Yt(1.603231,2.094468),new Yt(6.041143,7.080126),new Yt(2.882459,3.518061),new Yt(4.266906,5.178857),new Yt(9.041765,10.66308)],uP=[117.001,114.697,97.404],pc=class extends tu{constructor(){let a={withSeparableConvs:!0,iouThreshold:cP,classes:["face"],anchors:lP,meanRgb:uP,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(a)}get anchors(){return this.config.anchors}async locateFaces(a,u){let h=await this.detect(a,u);return h.map(d=>new Ve(d.score,d.relativeBox,{width:d.imageWidth,height:d.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeigthMap(a){return super.extractParamsFromWeigthMap(a)}},Te={ssdMobilenetv1:new Ki,tinyFaceDetector:new pc,tinyYolov2:new lc,faceLandmark68Net:new ic,faceLandmark68TinyNet:new rf,faceRecognitionNet:new ac,faceExpressionNet:new Qh,ageGenderNet:new ef},Yk=(i,a)=>Te.ssdMobilenetv1.locateFaces(i,a),pP=(i,a)=>Te.tinyFaceDetector.locateFaces(i,a),hP=(i,a)=>Te.tinyYolov2.locateFaces(i,a),Jk=i=>Te.faceLandmark68Net.detectLandmarks(i),fP=i=>Te.faceLandmark68TinyNet.detectLandmarks(i),dP=i=>Te.faceRecognitionNet.computeFaceDescriptor(i),mP=i=>Te.faceExpressionNet.predictExpressions(i),gP=i=>Te.ageGenderNet.predictAgeAndGender(i),Zk=i=>Te.ssdMobilenetv1.load(i),yP=i=>Te.tinyFaceDetector.load(i),bP=i=>Te.tinyYolov2.load(i),xP=i=>Te.faceLandmark68Net.load(i),wP=i=>Te.faceLandmark68TinyNet.load(i),vP=i=>Te.faceRecognitionNet.load(i),TP=i=>Te.faceExpressionNet.load(i),kP=i=>Te.ageGenderNet.load(i),NP=Zk,_P=Yk,CP=Jk,Qk=class extends Xr{constructor(a,u,h){super();this.parentTask=a;this.input=u;this.extractedFaces=h}},ou=class extends Qk{async run(){let a=await this.parentTask,u=await uc(a,this.input,async h=>await Promise.all(h.map(d=>Te.faceExpressionNet.predictExpressions(d))),this.extractedFaces);return a.map((h,d)=>tf(h,u[d]))}withAgeAndGender(){return new nu(this,this.input)}},su=class extends Qk{async run(){let a=await this.parentTask;if(!a)return;let u=await eu(a,this.input,h=>Te.faceExpressionNet.predictExpressions(h),this.extractedFaces);return tf(a,u)}withAgeAndGender(){return new ru(this,this.input)}},dc=class extends ou{withAgeAndGender(){return new hc(this,this.input)}withFaceDescriptors(){return new Zs(this,this.input)}},mc=class extends su{withAgeAndGender(){return new fc(this,this.input)}withFaceDescriptor(){return new Qs(this,this.input)}},tN=class extends Xr{constructor(a,u,h){super();this.parentTask=a;this.input=u;this.extractedFaces=h}},nu=class extends tN{async run(){let a=await this.parentTask,u=await uc(a,this.input,async h=>await Promise.all(h.map(d=>Te.ageGenderNet.predictAgeAndGender(d))),this.extractedFaces);return a.map((h,d)=>{let{age:g,gender:x,genderProbability:w}=u[d];return af(cf(h,x,w),g)})}withFaceExpressions(){return new ou(this,this.input)}},ru=class extends tN{async run(){let a=await this.parentTask;if(!a)return;let{age:u,gender:h,genderProbability:d}=await eu(a,this.input,g=>Te.ageGenderNet.predictAgeAndGender(g),this.extractedFaces);return af(cf(a,h,d),u)}withFaceExpressions(){return new su(this,this.input)}},hc=class extends nu{withFaceExpressions(){return new dc(this,this.input)}withFaceDescriptors(){return new Zs(this,this.input)}},fc=class extends ru{withFaceExpressions(){return new mc(this,this.input)}withFaceDescriptor(){return new Qs(this,this.input)}},hf=class extends Xr{constructor(a,u){super();this.parentTask=a;this.input=u}},Zs=class extends hf{async run(){let a=await this.parentTask,u=await uc(a,this.input,h=>Promise.all(h.map(d=>Te.faceRecognitionNet.computeFaceDescriptor(d))),null,h=>h.landmarks.align(null,{useDlibAlignment:!0}));return u.map((h,d)=>sf(a[d],h))}withFaceExpressions(){return new dc(this,this.input)}withAgeAndGender(){return new hc(this,this.input)}},Qs=class extends hf{async run(){let a=await this.parentTask;if(!a)return;let u=await eu(a,this.input,h=>Te.faceRecognitionNet.computeFaceDescriptor(h),null,h=>h.landmarks.align(null,{useDlibAlignment:!0}));return sf(a,u)}withFaceExpressions(){return new mc(this,this.input)}withAgeAndGender(){return new fc(this,this.input)}},df=class extends Xr{constructor(a,u,h){super();this.parentTask=a;this.input=u;this.useTinyLandmarkNet=h}get landmarkNet(){return this.useTinyLandmarkNet?Te.faceLandmark68TinyNet:Te.faceLandmark68Net}},mf=class extends df{async run(){let a=await this.parentTask,u=a.map(g=>g.detection),h=this.input instanceof ff.Tensor?await rc(this.input,u):await nc(this.input,u),d=await Promise.all(h.map(g=>this.landmarkNet.detectLandmarks(g)));return h.forEach(g=>g instanceof ff.Tensor&&g.dispose()),a.map((g,x)=>sc(g,d[x]))}withFaceExpressions(){return new dc(this,this.input)}withAgeAndGender(){return new hc(this,this.input)}withFaceDescriptors(){return new Zs(this,this.input)}},gf=class extends df{async run(){let a=await this.parentTask;if(!a)return;let{detection:u}=a,h=this.input instanceof ff.Tensor?await rc(this.input,[u]):await nc(this.input,[u]),d=await this.landmarkNet.detectLandmarks(h[0]);return h.forEach(g=>g instanceof ff.Tensor&&g.dispose()),sc(a,d)}withFaceExpressions(){return new mc(this,this.input)}withAgeAndGender(){return new fc(this,this.input)}withFaceDescriptor(){return new Qs(this,this.input)}},yf=class extends Xr{constructor(a,u=new Kr){super();this.input=a;this.options=u}},iu=class extends yf{async run(){let{input:a,options:u}=this,h=u instanceof pf?d=>Te.tinyFaceDetector.locateFaces(d,u):u instanceof Kr?d=>Te.ssdMobilenetv1.locateFaces(d,u):u instanceof Lo?d=>Te.tinyYolov2.locateFaces(d,u):null;if(!h)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return h(a)}runAndExtendWithFaceDetections(){return new Promise(async a=>{let u=await this.run();return a(u.map(h=>Ai({},h)))})}withFaceLandmarks(a=!1){return new mf(this.runAndExtendWithFaceDetections(),this.input,a)}withFaceExpressions(){return new ou(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new nu(this.runAndExtendWithFaceDetections(),this.input)}},bf=class extends yf{async run(){let a=await new iu(this.input,this.options),u=a[0];return a.forEach(h=>{h.score>u.score&&(u=h)}),u}runAndExtendWithFaceDetection(){return new Promise(async a=>{let u=await this.run();return a(u?Ai({},u):void 0)})}withFaceLandmarks(a=!1){return new gf(this.runAndExtendWithFaceDetection(),this.input,a)}withFaceExpressions(){return new su(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ru(this.runAndExtendWithFaceDetection(),this.input)}};function SP(i,a=new Kr){return new bf(i,a)}function xf(i,a=new Kr){return new iu(i,a)}async function eN(i,a){return console.warn("allFacesSsdMobilenetv1 is deprecated and will be removed soon, use the high level api instead"),await xf(i,new Kr(a?{minConfidence:a}:{})).withFaceLandmarks().withFaceDescriptors()}async function $P(i,a={}){return console.warn("allFacesTinyYolov2 is deprecated and will be removed soon, use the high level api instead"),await xf(i,new Lo(a)).withFaceLandmarks().withFaceDescriptors()}var IP=eN;function Jb(i,a){if(i.length!==a.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let u=Array.from(i),h=Array.from(a);return Math.sqrt(u.map((d,g)=>d-h[g]).reduce((d,g)=>d+Math.pow(g,2),0))}var wf=class{constructor(a,u=.6){this._distanceThreshold=u;let h=Array.isArray(a)?a:[a];if(!h.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let d=1,g=()=>`person ${d++}`;this._labeledDescriptors=h.map(x=>{if(x instanceof Qo)return x;if(x instanceof Float32Array)return new Qo(g(),[x]);if(x.descriptor&&x.descriptor instanceof Float32Array)return new Qo(g(),[x.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(a,u){return u.map(h=>Jb(h,a)).reduce((h,d)=>h+d,0)/(u.length||1)}matchDescriptor(a){return this.labeledDescriptors.map(({descriptors:u,label:h})=>new $l(h,this.computeMeanDistance(a,u))).reduce((u,h)=>u.distancea.toJSON())}}static fromJSON(a){let u=a.labeledDescriptors.map(h=>Qo.fromJSON(h));return new wf(u,a.distanceThreshold)}};function EP(i){let a=new pc;return a.extractWeights(i),a}function nN(i,a){let{width:u,height:h}=new jn(a.width,a.height);if(u<=0||h<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:u,height:h})}`);if(Array.isArray(i))return i.map(d=>nN(d,{width:u,height:h}));if(qi(i)){let d=i.detection.forSize(u,h),g=i.unshiftedLandmarks.forSize(d.box.width,d.box.height);return sc(Ai(i,d),g)}return Eo(i)?Ai(i,i.detection.forSize(u,h)):i instanceof Cr||i instanceof Ve?i.forSize(u,h):i}var DP="0.8.8",uot=typeof process!="undefined",pot=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",FP={faceapi:DP,node:uot,browser:pot};return lot;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */ //# sourceMappingURL=face-api.js.map