import * as tf from '@tensorflow/tfjs-core'; import { toNetInput } from '../dom'; import { FaceFeatureExtractor } from '../faceFeatureExtractor/FaceFeatureExtractor'; import { FaceProcessor } from '../faceProcessor/FaceProcessor'; import { FaceExpressions } from './FaceExpressions'; export class FaceExpressionNet extends FaceProcessor { constructor(faceFeatureExtractor = new FaceFeatureExtractor()) { super('FaceExpressionNet', faceFeatureExtractor); } forwardInput(input) { return tf.tidy(() => tf.softmax(this.runNet(input))); } async forward(input) { return this.forwardInput(await toNetInput(input)); } async predictExpressions(input) { const netInput = await toNetInput(input); const out = await this.forwardInput(netInput); const probabilitesByBatch = await Promise.all(tf.unstack(out).map(async (t) => { const data = await t.data(); t.dispose(); return data; })); out.dispose(); const predictionsByBatch = probabilitesByBatch .map(probabilites => new FaceExpressions(probabilites)); return netInput.isBatchInput ? predictionsByBatch : predictionsByBatch[0]; } getDefaultModelName() { return 'face_expression_model'; } getClassifierChannelsIn() { return 256; } getClassifierChannelsOut() { return 7; } } //# sourceMappingURL=FaceExpressionNet.js.map