"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.extractFaceTensors = void 0; const tf = require("@tensorflow/tfjs-core"); const FaceDetection_1 = require("../classes/FaceDetection"); const utils_1 = require("../utils"); /** * Extracts the tensors of the image regions containing the detected faces. * Useful if you want to compute the face descriptors for the face images. * Using this method is faster then extracting a canvas for each face and * converting them to tensors individually. * * @param imageTensor The image tensor that face detection has been performed on. * @param detections The face detection results or face bounding boxes for that image. * @returns Tensors of the corresponding image region for each detected face. */ async function extractFaceTensors(imageTensor, detections) { if (!utils_1.isTensor3D(imageTensor) && !utils_1.isTensor4D(imageTensor)) { throw new Error('extractFaceTensors - expected image tensor to be 3D or 4D'); } if (utils_1.isTensor4D(imageTensor) && imageTensor.shape[0] > 1) { throw new Error('extractFaceTensors - batchSize > 1 not supported'); } return tf.tidy(() => { const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(utils_1.isTensor4D(imageTensor) ? 1 : 0); const boxes = detections.map(det => det instanceof FaceDetection_1.FaceDetection ? det.forSize(imgWidth, imgHeight).box : det) .map(box => box.clipAtImageBorders(imgWidth, imgHeight)); const faceTensors = boxes.map(({ x, y, width, height }) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels])); return faceTensors; }); } exports.extractFaceTensors = extractFaceTensors; //# sourceMappingURL=extractFaceTensors.js.map