"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.TinyXception = void 0; const tf = require("@tensorflow/tfjs-core"); const common_1 = require("../common"); const dom_1 = require("../dom"); const NeuralNetwork_1 = require("../NeuralNetwork"); const ops_1 = require("../ops"); const utils_1 = require("../utils"); const extractParams_1 = require("./extractParams"); const extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap"); function conv(x, params, stride) { return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias); } function reductionBlock(x, params, isActivateInput = true) { let out = isActivateInput ? tf.relu(x) : x; out = common_1.depthwiseSeparableConv(out, params.separable_conv0, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = tf.maxPool(out, [3, 3], [2, 2], 'same'); out = tf.add(out, conv(x, params.expansion_conv, [2, 2])); return out; } function mainBlock(x, params) { let out = common_1.depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]); out = common_1.depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]); out = tf.add(out, x); return out; } class TinyXception extends NeuralNetwork_1.NeuralNetwork { constructor(numMainBlocks) { super('TinyXception'); this._numMainBlocks = numMainBlocks; } forwardInput(input) { const { params } = this; if (!params) { throw new Error('TinyXception - load model before inference'); } return tf.tidy(() => { const batchTensor = input.toBatchTensor(112, true); const meanRgb = [122.782, 117.001, 104.298]; const normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(256)); let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2])); out = reductionBlock(out, params.entry_flow.reduction_block_0, false); out = reductionBlock(out, params.entry_flow.reduction_block_1); utils_1.range(this._numMainBlocks, 0, 1).forEach((idx) => { out = mainBlock(out, params.middle_flow[`main_block_${idx}`]); }); out = reductionBlock(out, params.exit_flow.reduction_block); out = tf.relu(common_1.depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1])); return out; }); } async forward(input) { return this.forwardInput(await dom_1.toNetInput(input)); } getDefaultModelName() { return 'tiny_xception_model'; } extractParamsFromWeigthMap(weightMap) { return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap, this._numMainBlocks); } extractParams(weights) { return extractParams_1.extractParams(weights, this._numMainBlocks); } } exports.TinyXception = TinyXception; //# sourceMappingURL=TinyXception.js.map