"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.detectLandmarks = exports.locateFaces = exports.loadFaceDetectionModel = exports.loadAgeGenderModel = exports.loadFaceExpressionModel = exports.loadFaceRecognitionModel = exports.loadFaceLandmarkTinyModel = exports.loadFaceLandmarkModel = exports.loadTinyYolov2Model = exports.loadTinyFaceDetectorModel = exports.predictAgeAndGender = exports.recognizeFaceExpressions = exports.computeFaceDescriptor = exports.detectFaceLandmarksTiny = exports.detectFaceLandmarks = exports.tinyFaceDetector = exports.nets = void 0; const AgeGenderNet_1 = require("../ageGenderNet/AgeGenderNet"); const FaceExpressionNet_1 = require("../faceExpressionNet/FaceExpressionNet"); const FaceLandmark68Net_1 = require("../faceLandmarkNet/FaceLandmark68Net"); const FaceLandmark68TinyNet_1 = require("../faceLandmarkNet/FaceLandmark68TinyNet"); const FaceRecognitionNet_1 = require("../faceRecognitionNet/FaceRecognitionNet"); const TinyFaceDetector_1 = require("../tinyFaceDetector/TinyFaceDetector"); const tinyYolov2_1 = require("../tinyYolov2"); exports.nets = { tinyFaceDetector: new TinyFaceDetector_1.TinyFaceDetector(), tinyYolov2: new tinyYolov2_1.TinyYolov2(), faceLandmark68Net: new FaceLandmark68Net_1.FaceLandmark68Net(), faceLandmark68TinyNet: new FaceLandmark68TinyNet_1.FaceLandmark68TinyNet(), faceRecognitionNet: new FaceRecognitionNet_1.FaceRecognitionNet(), faceExpressionNet: new FaceExpressionNet_1.FaceExpressionNet(), ageGenderNet: new AgeGenderNet_1.AgeGenderNet() }; /** * Attempts to detect all faces in an image using the Tiny Face Detector. * * @param input The input image. * @param options (optional, default: see TinyFaceDetectorOptions constructor for default parameters). * @returns Bounding box of each face with score. */ exports.tinyFaceDetector = (input, options) => exports.nets.tinyFaceDetector.locateFaces(input, options); /** * Detects the 68 point face landmark positions of the face shown in an image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ exports.detectFaceLandmarks = (input) => exports.nets.faceLandmark68Net.detectLandmarks(input); /** * Detects the 68 point face landmark positions of the face shown in an image * using a tinier version of the 68 point face landmark model, which is slightly * faster at inference, but also slightly less accurate. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns 68 point face landmarks or array thereof in case of batch input. */ exports.detectFaceLandmarksTiny = (input) => exports.nets.faceLandmark68TinyNet.detectLandmarks(input); /** * Computes a 128 entry vector (face descriptor / face embeddings) from the face shown in an image, * which uniquely represents the features of that persons face. The computed face descriptor can * be used to measure the similarity between faces, by computing the euclidean distance of two * face descriptors. * * @param inputs The face image extracted from the aligned bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Face descriptor with 128 entries or array thereof in case of batch input. */ exports.computeFaceDescriptor = (input) => exports.nets.faceRecognitionNet.computeFaceDescriptor(input); /** * Recognizes the facial expressions from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Facial expressions with corresponding probabilities or array thereof in case of batch input. */ exports.recognizeFaceExpressions = (input) => exports.nets.faceExpressionNet.predictExpressions(input); /** * Predicts age and gender from a face image. * * @param inputs The face image extracted from the bounding box of a face. Can * also be an array of input images, which will be batch processed. * @returns Predictions with age, gender and gender probability or array thereof in case of batch input. */ exports.predictAgeAndGender = (input) => exports.nets.ageGenderNet.predictAgeAndGender(input); exports.loadTinyFaceDetectorModel = (url) => exports.nets.tinyFaceDetector.load(url); exports.loadTinyYolov2Model = (url) => exports.nets.tinyYolov2.load(url); exports.loadFaceLandmarkModel = (url) => exports.nets.faceLandmark68Net.load(url); exports.loadFaceLandmarkTinyModel = (url) => exports.nets.faceLandmark68TinyNet.load(url); exports.loadFaceRecognitionModel = (url) => exports.nets.faceRecognitionNet.load(url); exports.loadFaceExpressionModel = (url) => exports.nets.faceExpressionNet.load(url); exports.loadAgeGenderModel = (url) => exports.nets.ageGenderNet.load(url); // backward compatibility exports.loadFaceDetectionModel = exports.loadTinyFaceDetectorModel; exports.locateFaces = TinyFaceDetector_1.TinyFaceDetector; exports.detectLandmarks = exports.detectFaceLandmarks; //# sourceMappingURL=nets.js.map