"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.FaceFeatureExtractor = void 0; const tf = require("@tensorflow/tfjs-core"); const dom_1 = require("../dom"); const NeuralNetwork_1 = require("../NeuralNetwork"); const ops_1 = require("../ops"); const denseBlock_1 = require("./denseBlock"); const extractParams_1 = require("./extractParams"); const extractParamsFromWeigthMap_1 = require("./extractParamsFromWeigthMap"); class FaceFeatureExtractor extends NeuralNetwork_1.NeuralNetwork { constructor() { super('FaceFeatureExtractor'); } forwardInput(input) { const { params } = this; if (!params) { throw new Error('FaceFeatureExtractor - load model before inference'); } return tf.tidy(() => { const batchTensor = input.toBatchTensor(112, true); const meanRgb = [122.782, 117.001, 104.298]; const normalized = ops_1.normalize(batchTensor, meanRgb).div(tf.scalar(255)); let out = denseBlock_1.denseBlock4(normalized, params.dense0, true); out = denseBlock_1.denseBlock4(out, params.dense1); out = denseBlock_1.denseBlock4(out, params.dense2); out = denseBlock_1.denseBlock4(out, params.dense3); out = tf.avgPool(out, [7, 7], [2, 2], 'valid'); return out; }); } async forward(input) { return this.forwardInput(await dom_1.toNetInput(input)); } getDefaultModelName() { return 'face_feature_extractor_model'; } extractParamsFromWeigthMap(weightMap) { return extractParamsFromWeigthMap_1.extractParamsFromWeigthMap(weightMap); } extractParams(weights) { return extractParams_1.extractParams(weights); } } exports.FaceFeatureExtractor = FaceFeatureExtractor; //# sourceMappingURL=FaceFeatureExtractor.js.map