/* Face-API homepage: author: ' */ var faceapi=(()=>{var Z1=Object.defineProperty;var YA=e=>Z1(e,"__esModule",{value:!0});var ZA=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Fp=(e,t)=>{YA(e);for(var n in t)Z1(e,n,{get:t[n],enumerable:!0})};var cue={};Fp(cue,{AgeGenderNet:()=>Hm,BoundingBox:()=>Pu,Box:()=>ut,ComposableTask:()=>Ar,ComputeAllFaceDescriptorsTask:()=>Aa,ComputeFaceDescriptorsTaskBase:()=>Qm,ComputeSingleFaceDescriptorTask:()=>Da,DetectAllFaceLandmarksTask:()=>tg,DetectAllFacesTask:()=>ap,DetectFaceLandmarksTaskBase:()=>eg,DetectFacesTaskBase:()=>rg,DetectSingleFaceLandmarksTask:()=>ng,DetectSingleFaceTask:()=>sg,Dimensions:()=>An,FACE_EXPRESSION_LABELS:()=>I1,FaceDetection:()=>vt,FaceDetectionNet:()=>zE,FaceExpressionNet:()=>Um,FaceExpressions:()=>Ea,FaceLandmark68Net:()=>Gu,FaceLandmark68TinyNet:()=>jm,FaceLandmarkNet:()=>_E,FaceLandmarks:()=>gr,FaceLandmarks5:()=>hE,FaceLandmarks68:()=>Mu,FaceMatch:()=>qd,FaceMatcher:()=>og,FaceRecognitionNet:()=>Hu,Gender:()=>zs,LabeledBox:()=>Kd,LabeledFaceDescriptors:()=>Ms,NetInput:()=>Ls,NeuralNetwork:()=>hn,ObjectDetection:()=>Na,Point:()=>Pe,PredictedBox:()=>fE,Rect:()=>Ou,SsdMobilenetv1:()=>Ai,SsdMobilenetv1Options:()=>Er,TinyFaceDetector:()=>Yu,TinyFaceDetectorOptions:()=>Jm,TinyYolov2:()=>Ku,TinyYolov2Options:()=>bs,allFaces:()=>aue,allFacesSsdMobilenetv1:()=>tA,allFacesTinyYolov2:()=>sue,awaitMediaLoaded:()=>b1,bufferToImage:()=>y1,computeFaceDescriptor:()=>Gce,createCanvas:()=>Ti,createCanvasFromMedia:()=>Jd,createFaceDetectionNet:()=>Mce,createFaceRecognitionNet:()=>Tce,createSsdMobilenetv1:()=>BE,createTinyFaceDetector:()=>oue,createTinyYolov2:()=>zce,detectAllFaces:()=>ag,detectFaceLandmarks:()=>QE,detectFaceLandmarksTiny:()=>Uce,detectLandmarks:()=>nue,detectSingleFace:()=>rue,draw:()=>N1,env:()=>Je,euclideanDistance:()=>M1,extendWithAge:()=>Xm,extendWithFaceDescriptor:()=>Km,extendWithFaceDetection:()=>Ii,extendWithFaceExpressions:()=>Gm,extendWithFaceLandmarks:()=>Uu,extendWithGender:()=>Ym,extractFaceTensors:()=>Bu,extractFaces:()=>Lu,fetchImage:()=>hce,fetchJson:()=>w1,fetchNetWeights:()=>fce,fetchOrThrow:()=>Bs,fetchVideo:()=>mce,getContext2dOrThrow:()=>Un,getMediaDimensions:()=>Ci,imageTensorToCanvas:()=>v1,imageToSquare:()=>x1,inverseSigmoid:()=>oce,iou:()=>i1,isMediaElement:()=>Rm,isMediaLoaded:()=>Zd,isWithAge:()=>Nce,isWithFaceDetection:()=>ms,isWithFaceExpressions:()=>S1,isWithFaceLandmarks:()=>_i,isWithGender:()=>_ce,loadAgeGenderModel:()=>Qce,loadFaceDetectionModel:()=>eue,loadFaceExpressionModel:()=>Jce,loadFaceLandmarkModel:()=>Xce,loadFaceLandmarkTinyModel:()=>Yce,loadFaceRecognitionModel:()=>Zce,loadSsdMobilenetv1Model:()=>eA,loadTinyFaceDetectorModel:()=>qce,loadTinyYolov2Model:()=>Kce,loadWeightMap:()=>k1,locateFaces:()=>tue,matchDimensions:()=>gce,minBbox:()=>c1,nets:()=>Qe,nonMaxSuppression:()=>u1,normalize:()=>Kr,padToSquare:()=>l1,predictAgeAndGender:()=>jce,recognizeFaceExpressions:()=>Hce,resizeResults:()=>nA,resolveInput:()=>Si,shuffleArray:()=>ace,sigmoid:()=>jd,ssdMobilenetv1:()=>JE,tf:()=>n1,tinyFaceDetector:()=>Wce,tinyYolov2:()=>Vce,toNetInput:()=>gt,utils:()=>o1,validateConfig:()=>$1,version:()=>iue});var n1={};Fp(n1,{Abs:()=>ji,Acos:()=>qi,Acosh:()=>Ki,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>bf,Add:()=>Js,AddN:()=>Ba,All:()=>Xi,Any:()=>Yi,ArgMax:()=>za,ArgMin:()=>bl,Asin:()=>Zi,Asinh:()=>Ji,Atan:()=>Qi,Atan2:()=>tc,Atanh:()=>ec,AvgPool:()=>Wa,AvgPool3D:()=>yl,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>zp,BackendWasm:()=>lE,BatchMatMul:()=>Va,BatchToSpaceND:()=>nc,Bincount:()=>Vp,BroadcastArgs:()=>Up,BroadcastTo:()=>g0,Callback:()=>aC,CallbackList:()=>ZI,Cast:()=>Ua,Ceil:()=>Ga,ClipByValue:()=>Qs,Complex:()=>Gp,ComplexAbs:()=>vl,Concat:()=>rc,Conv2D:()=>Ha,Conv2DBackpropFilter:()=>Hp,Conv2DBackpropInput:()=>ja,Conv3D:()=>xl,Conv3DBackpropFilterV2:()=>jp,Conv3DBackpropInputV2:()=>qp,Cos:()=>qa,Cosh:()=>Ka,CropAndResize:()=>sc,Cumsum:()=>Xa,CustomCallback:()=>QI,DataStorage:()=>Pp,DenseBincount:()=>Kp,DepthToSpace:()=>ac,DepthwiseConv2dNative:()=>Ya,DepthwiseConv2dNativeBackpropFilter:()=>Xp,DepthwiseConv2dNativeBackpropInput:()=>Yp,Diag:()=>Zp,Dilation2D:()=>wl,Dilation2DBackpropFilter:()=>Qp,Dilation2DBackpropInput:()=>Jp,ENV:()=>Ob,EarlyStopping:()=>iC,Einsum:()=>eh,Elu:()=>Ja,EluGrad:()=>th,Environment:()=>f0,Equal:()=>ic,Erf:()=>oc,Exp:()=>Qa,ExpandDims:()=>cc,Expm1:()=>uc,FFT:()=>nh,Fill:()=>kl,FlipLeftRight:()=>lc,Floor:()=>eo,FloorDiv:()=>to,FromPixels:()=>Ih,FusedBatchNorm:()=>no,FusedConv2D:()=>Mo,FusedDepthwiseConv2D:()=>Lo,GPGPUContext:()=>aN,GatherNd:()=>pc,GatherV2:()=>dc,GraphModel:()=>BC,Greater:()=>hc,GreaterEqual:()=>ro,History:()=>JI,IFFT:()=>rh,Identity:()=>so,Imag:()=>sh,InputSpec:()=>Bt,IsFinite:()=>fc,IsInf:()=>mc,IsNan:()=>gc,KernelBackend:()=>fl,LRN:()=>Cl,LRNGrad:()=>oh,LayerVariable:()=>jI,LayersModel:()=>Ds,LeakyRelu:()=>ao,Less:()=>bc,LessEqual:()=>yc,LinSpace:()=>ah,Log:()=>oo,Log1p:()=>vc,LogSoftmax:()=>b0,LogicalAnd:()=>xc,LogicalNot:()=>Il,LogicalOr:()=>Sl,MathBackendWebGL:()=>ym,Max:()=>io,MaxPool:()=>uo,MaxPool3D:()=>Tl,MaxPool3DGrad:()=>ch,MaxPoolGrad:()=>ih,MaxPoolWithArgmax:()=>uh,Maximum:()=>co,Mean:()=>lo,Min:()=>po,Minimum:()=>ho,MirrorPad:()=>fo,Mod:()=>wc,MomentumOptimizer:()=>yf,Multinomial:()=>lh,Multiply:()=>mo,Neg:()=>kc,NonMaxSuppressionV3:()=>Sc,NonMaxSuppressionV4:()=>Cc,NonMaxSuppressionV5:()=>Tc,NotEqual:()=>Ic,OP_SCOPE_SUFFIX:()=>F0,OneHot:()=>go,OnesLike:()=>Nc,Optimizer:()=>_s,OptimizerConstructors:()=>ha,Pack:()=>_c,PadV2:()=>bo,Pool:()=>XD,Pow:()=>yo,Prelu:()=>vo,Prod:()=>Ec,RMSPropOptimizer:()=>vf,RNN:()=>ds,Range:()=>Nl,Rank:()=>Ub,Real:()=>dh,RealDiv:()=>Za,Reciprocal:()=>Ac,Reduction:()=>Sn,Relu:()=>xo,Relu6:()=>ko,Reshape:()=>Dc,ResizeBilinear:()=>wo,ResizeBilinearGrad:()=>hh,ResizeNearestNeighbor:()=>_l,ResizeNearestNeighborGrad:()=>ph,Reverse:()=>Io,RotateWithOffset:()=>jc,Round:()=>So,Rsqrt:()=>Co,SGDOptimizer:()=>sd,ScatterNd:()=>Fc,Select:()=>$c,Selu:()=>Rc,Sequential:()=>mu,Sigmoid:()=>No,Sign:()=>Mc,Sin:()=>To,Sinh:()=>Oc,Slice:()=>Pc,Softmax:()=>Ao,Softplus:()=>Lc,SpaceToBatchND:()=>Bc,SparseFillEmptyRows:()=>fh,SparseReshape:()=>mh,SparseSegmentMean:()=>gh,SparseSegmentSum:()=>bh,SparseToDense:()=>yh,SplitV:()=>zc,Sqrt:()=>_o,Square:()=>El,SquaredDifference:()=>Do,Step:()=>ta,StridedSlice:()=>Wc,StringNGrams:()=>vh,StringSplit:()=>xh,StringToHashBucketFast:()=>wh,Sub:()=>Fo,Sum:()=>Eo,SymbolicTensor:()=>Vr,Tan:()=>$o,Tanh:()=>Ro,Tensor:()=>Ee,TensorBuffer:()=>Ut,Tile:()=>ea,TopK:()=>Vc,Transform:()=>Uc,Transpose:()=>Po,Unique:()=>kh,Unpack:()=>Gc,UnsortedSegmentSum:()=>Al,Variable:()=>ra,ZerosLike:()=>Hc,_FusedMatMul:()=>Oo,abs:()=>Lt,acos:()=>yy,acosh:()=>vy,add:()=>Y,addN:()=>mk,all:()=>Mh,any:()=>Ul,argMax:()=>qo,argMin:()=>xy,asin:()=>wy,asinh:()=>ky,atan:()=>Iy,atan2:()=>Sy,atanh:()=>Cy,avgPool:()=>ir,avgPool3d:()=>_y,backend:()=>fk,backend_util:()=>E,basicLSTMCell:()=>zR,batchNorm:()=>Cs,batchNorm2d:()=>vk,batchNorm3d:()=>xk,batchNorm4d:()=>wk,batchToSpaceND:()=>Hl,bincount:()=>Ey,booleanMaskAsync:()=>j3,broadcastArgs:()=>kk,broadcastTo:()=>eu,browser:()=>Go,buffer:()=>ze,callbacks:()=>oG,cast:()=>ce,ceil:()=>Ay,clipByValue:()=>en,clone:()=>Is,complex:()=>sa,concat:()=>Ze,concat1d:()=>Ik,concat2d:()=>Sk,concat3d:()=>Ck,concat4d:()=>Tk,constraints:()=>CI,conv1d:()=>Bh,conv2d:()=>Rt,conv2dTranspose:()=>zh,conv3d:()=>Fy,conv3dTranspose:()=>_k,copyRegisteredKernels:()=>JD,cos:()=>jl,cosh:()=>Wh,cosineWindow:()=>sv,cumsum:()=>Vh,customGrad:()=>rs,data:()=>zC,denseBincount:()=>Ek,deprecationWarn:()=>by,depthToSpace:()=>$y,depthwiseConv2d:()=>ua,deregisterOp:()=>cG,device_util:()=>zl,diag:()=>gP,dilation2d:()=>Ry,disableDeprecationWarnings:()=>J$,dispose:()=>De,disposeVariables:()=>Q$,div:()=>ge,divNoNan:()=>Py,dot:()=>Ak,dropout:()=>Zk,einsum:()=>Dk,elu:()=>tu,enableDebugMode:()=>Z$,enableProdMode:()=>Y$,enclosingPowerOfTwo:()=>Jk,engine:()=>Ss,env:()=>J,equal:()=>Kn,erf:()=>Oy,exp:()=>bn,expandDims:()=>yn,expm1:()=>My,eye:()=>Ly,fft:()=>td,fill:()=>In,findBackend:()=>oR,findBackendFactory:()=>iR,floor:()=>nu,floorDiv:()=>Oh,forceHalfFloat:()=>mN,fused:()=>pa,gather:()=>Yo,gatherND:()=>Yk,gather_util:()=>uy,getBackend:()=>sR,getGradient:()=>Bb,getKernel:()=>Sh,getKernelsForBackend:()=>Ch,getThreadsCount:()=>jie,gpgpu_util:()=>V2,grad:()=>jP,grads:()=>qP,greater:()=>Mn,greaterEqual:()=>la,ifft:()=>iu,imag:()=>Uh,image:()=>Qn,inTopKAsync:()=>rM,initializers:()=>FI,input:()=>kS,io:()=>Jt,irfft:()=>rf,isFinite:()=>Fk,isInf:()=>$k,isNaN:()=>By,keep:()=>Qt,kernel_impls:()=>os,layers:()=>UI,leakyRelu:()=>ql,less:()=>Gh,lessEqual:()=>da,linalg:()=>lI,linspace:()=>Rk,loadGraphModel:()=>dH,loadLayersModel:()=>gV,localResponseNormalization:()=>zy,log:()=>Xn,log1p:()=>Kl,logSigmoid:()=>Ok,logSoftmax:()=>jh,logSumExp:()=>Uy,logicalAnd:()=>Ir,logicalNot:()=>Xl,logicalOr:()=>qh,logicalXor:()=>zk,losses:()=>BL,matMul:()=>Ae,math:()=>Y0,max:()=>kr,maxPool:()=>Pt,maxPool3d:()=>Gy,maxPoolWithArgmax:()=>Wk,maximum:()=>ss,mean:()=>Et,memory:()=>Rh,meshgrid:()=>mO,metrics:()=>nC,min:()=>Yl,minimum:()=>ru,mirrorPad:()=>Hy,mod:()=>jy,model:()=>fV,models:()=>rC,moments:()=>Kh,movingAverage:()=>X3,mul:()=>V,multiRNNCell:()=>IO,multinomial:()=>Vk,neg:()=>kt,nextFrame:()=>dI,norm:()=>cf,notEqual:()=>Qo,oneHot:()=>Jc,ones:()=>Yn,onesLike:()=>Zn,op:()=>W,outerProduct:()=>_O,pad:()=>ur,pad1d:()=>DO,pad2d:()=>$O,pad3d:()=>PO,pad4d:()=>MO,pool:()=>Uk,pow:()=>Ts,prelu:()=>Jl,print:()=>G0,prod:()=>Xh,profile:()=>eR,rand:()=>jO,randomGamma:()=>YO,randomNormal:()=>Gk,randomUniform:()=>su,range:()=>au,ready:()=>rR,real:()=>Ql,reciprocal:()=>Xy,registerBackend:()=>Ph,registerCallbackConstructor:()=>bV,registerGradient:()=>y0,registerKernel:()=>Fl,registerOp:()=>iG,regularizers:()=>sC,relu:()=>je,relu6:()=>Yh,removeBackend:()=>aR,reshape:()=>U,reverse:()=>Jn,reverse1d:()=>a3,reverse2d:()=>i3,reverse3d:()=>u3,reverse4d:()=>d3,rfft:()=>nd,round:()=>Zh,rsqrt:()=>Jh,scalar:()=>Se,scatterND:()=>Xk,scatter_util:()=>ly,selu:()=>Qh,separableConv2d:()=>ei,sequential:()=>mV,serialization:()=>ie,setBackend:()=>nR,setPlatform:()=>cR,setThreadsCount:()=>Hie,setWasmPath:()=>Uie,setWasmPaths:()=>Gie,setWebGLContext:()=>p2,setdiff1dAsync:()=>Hk,sigmoid:()=>cr,sign:()=>Yy,signal:()=>LL,sin:()=>ef,sinh:()=>tf,slice:()=>We,slice1d:()=>nf,slice2d:()=>Zy,slice3d:()=>ou,slice4d:()=>ed,slice_util:()=>Gt,softmax:()=>Pr,softplus:()=>Zo,spaceToBatchND:()=>Zl,sparse:()=>rd,sparseToDense:()=>rv,spectral:()=>ML,split:()=>Ln,sqrt:()=>un,square:()=>ct,squaredDifference:()=>sf,squeeze:()=>as,stack:()=>Ot,step:()=>cu,stridedSlice:()=>Jy,string:()=>hf,sub:()=>fe,sum:()=>ve,sumOutType:()=>Ah,tan:()=>Qy,tanh:()=>Xo,tensor:()=>qn,tensor1d:()=>Ge,tensor2d:()=>Or,tensor3d:()=>$h,tensor4d:()=>Mr,tensor5d:()=>M3,tensor6d:()=>L3,tensor_util:()=>$r,test_util:()=>dk,tidy:()=>M,tile:()=>On,time:()=>tR,topk:()=>ev,train:()=>ti,transpose:()=>Re,truncatedNormal:()=>af,unique:()=>of,unregisterGradient:()=>ZD,unregisterKernel:()=>YD,unsortedSegmentSum:()=>tv,unstack:()=>pt,upcastType:()=>wr,util:()=>w,valueAndGrad:()=>KP,valueAndGrads:()=>XP,variable:()=>jk,variableGrads:()=>Pk,version:()=>rce,version_converter:()=>pH,version_core:()=>X$,version_layers:()=>Bv,version_wasm:()=>qie,version_webgl:()=>S9,webgl:()=>C9,webgl_util:()=>d2,where:()=>gn,whereAsync:()=>nv,zeros:()=>It,zerosLike:()=>Ue});var JA=Object.create,$p=Object.defineProperty,QA=Object.getOwnPropertyDescriptor,eD=Object.getOwnPropertyNames,tD=Object.getPrototypeOf,nD=Object.prototype.hasOwnProperty,J1=e=>$p(e,"__esModule",{value:!0}),dt=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},$e=(e,t)=>{J1(e);for(var n in t)$p(e,n,{get:t[n],enumerable:!0})},rD=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of eD(t))!nD.call(e,r)&&r!=="default"&&$p(e,r,{get:()=>t[r],enumerable:!(n=QA(t,r))||n.enumerable});return e},Oa=e=>rD(J1($p(e!=null?JA(tD(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),sD=dt({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=r;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function r(P,T,L){this.low=P|0,this.high=T|0,this.unsigned=!!L}r.prototype.__isLong__,Object.defineProperty(r.prototype,"__isLong__",{value:!0});function s(P){return(P&&P.__isLong__)===!0}r.isLong=s;var a={},o={};function i(P,T){var L,G,j;return T?(P>>>=0,(j=0<=P&&P<256)&&(G=o[P],G)?G:(L=l(P,(P|0)<0?-1:0,!0),j&&(o[P]=L),L)):(P|=0,(j=-128<=P&&P<128)&&(G=a[P],G)?G:(L=l(P,P<0?-1:0,!1),j&&(a[P]=L),L))}r.fromInt=i;function c(P,T){if(isNaN(P))return T?x:y;if(T){if(P<0)return x;if(P>=g)return F}else{if(P<=-b)return O;if(P+1>=b)return D}return P<0?c(-P,T).neg():l(P%m|0,P/m|0,T)}r.fromNumber=c;function l(P,T,L){return new r(P,T,L)}r.fromBits=l;var u=Math.pow;function d(P,T,L){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return y;if(typeof T=="number"?(L=T,T=!1):T=!!T,L=L||10,L<2||360)throw Error("interior hyphen");if(G===0)return d(P.substring(1),T,L).neg();for(var j=c(u(L,8)),q=y,K=0;K>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},$.toString=function(T){if(T=T||10,T<2||36>>0,ae=ne.toString(T);if(K=te,K.isZero())return ae+ee;for(;ae.length<6;)ae="0"+ae;ee=""+ae+ee}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,L=31;L>0&&(T&1<=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(T){return s(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},$.eq=$.equals,$.notEquals=function(T){return!this.eq(T)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(T){return this.comp(T)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(T){return this.comp(T)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(T){return this.comp(T)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(T){return this.comp(T)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(T){if(s(T)||(T=p(T)),this.eq(T))return 0;var L=this.isNegative(),G=T.isNegative();return L&&!G?-1:!L&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(k)},$.neg=$.negate,$.add=function(T){s(T)||(T=p(T));var L=this.high>>>16,G=this.high&65535,j=this.low>>>16,q=this.low&65535,K=T.high>>>16,ee=T.high&65535,te=T.low>>>16,ne=T.low&65535,ae=0,se=0,re=0,ue=0;return ue+=q+ne,re+=ue>>>16,ue&=65535,re+=j+te,se+=re>>>16,re&=65535,se+=G+ee,ae+=se>>>16,se&=65535,ae+=L+K,ae&=65535,l(re<<16|ue,ae<<16|se,this.unsigned)},$.subtract=function(T){return s(T)||(T=p(T)),this.add(T.neg())},$.sub=$.subtract,$.multiply=function(T){if(this.isZero())return y;if(s(T)||(T=p(T)),n){var L=n.mul(this.low,this.high,T.low,T.high);return l(L,n.get_high(),this.unsigned)}if(T.isZero())return y;if(this.eq(O))return T.isOdd()?O:y;if(T.eq(O))return this.isOdd()?O:y;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(v)&&T.lt(v))return c(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,ee=T.high>>>16,te=T.high&65535,ne=T.low>>>16,ae=T.low&65535,se=0,re=0,ue=0,de=0;return de+=K*ae,ue+=de>>>16,de&=65535,ue+=q*ae,re+=ue>>>16,ue&=65535,ue+=K*ne,re+=ue>>>16,ue&=65535,re+=j*ae,se+=re>>>16,re&=65535,re+=q*ne,se+=re>>>16,re&=65535,re+=K*te,se+=re>>>16,re&=65535,se+=G*ae+j*ne+q*te+K*ee,se&=65535,l(ue<<16|de,se<<16|re,this.unsigned)},$.mul=$.multiply,$.divide=function(T){if(s(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var L=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return l(L,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:y;var G,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return x;if(T.gt(this.shru(1)))return C;q=x}else{if(this.eq(O)){if(T.eq(k)||T.eq(N))return O;if(T.eq(O))return k;var K=this.shr(1);return G=K.div(T).shl(1),G.eq(y)?T.isNegative()?k:N:(j=this.sub(T.mul(G)),q=G.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?x:y;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=y}for(j=this;j.gte(T);){G=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var ee=Math.ceil(Math.log(G)/Math.LN2),te=ee<=48?1:u(2,ee-48),ne=c(G),ae=ne.mul(T);ae.isNegative()||ae.gt(j);)G-=te,ne=c(G,this.unsigned),ae=ne.mul(T);ne.isZero()&&(ne=k),q=q.add(ne),j=j.sub(ae)}return q},$.div=$.divide,$.modulo=function(T){if(s(T)||(T=p(T)),n){var L=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return l(L,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return l(~this.low,~this.high,this.unsigned)},$.and=function(T){return s(T)||(T=p(T)),l(this.low&T.low,this.high&T.high,this.unsigned)},$.or=function(T){return s(T)||(T=p(T)),l(this.low|T.low,this.high|T.high,this.unsigned)},$.xor=function(T){return s(T)||(T=p(T)),l(this.low^T.low,this.high^T.high,this.unsigned)},$.shiftLeft=function(T){return s(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?l(this.low<>>32-T,this.unsigned):l(0,this.low<>>T|this.high<<32-T,this.high>>T,this.unsigned):l(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(T){if(s(T)&&(T=T.toInt()),T&=63,T===0)return this;var L=this.high;if(T<32){var G=this.low;return l(G>>>T|L<<32-T,L>>>T,this.unsigned)}else return T===32?l(L,0,this.unsigned):l(L>>>T-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},$.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var T=this.high,L=this.low;return[L&255,L>>>8&255,L>>>16&255,L>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},$.toBytesBE=function(){var T=this.high,L=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,L>>>24,L>>>16&255,L>>>8&255,L&255]},r.fromBytes=function(T,L,G){return G?r.fromBytesLE(T,L):r.fromBytesBE(T,L)},r.fromBytesLE=function(T,L){return new r(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,L)},r.fromBytesBE=function(T,L){return new r(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],L)}}}),aD=dt({"(disabled):node_modules/.pnpm/node-fetch@2.6.6/node_modules/node-fetch/browser.js"(){}}),oD=dt({"(disabled):util"(){}}),iD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,r,s){function a(l){var u=this,d=c();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(l),u.s0<0&&(u.s0+=1),u.s1-=d(l),u.s1<0&&(u.s1+=1),u.s2-=d(l),u.s2<0&&(u.s2+=1),d=null}function o(l,u){return u.c=l.c,u.s0=l.s0,u.s1=l.s1,u.s2=l.s2,u}function i(l,u){var d=new a(l),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function c(){var l=4022871197,u=function(d){d=d.toString();for(var p=0;p>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),cD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var p=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^p^p>>>8},c===(c|0)?l.x=c:u+=c;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),uD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(p^p<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,c===(c|0)?l.x=c:u+=c;for(var d=0;d>>4),l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l.v=c.v,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),lD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.x,p=l.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,l.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h0;--h)d.next()}u(l,c)}function o(c,l){return l.x=c.x.slice(),l.i=c.i,l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),dD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.w,p=l.X,h=l.i,f,m;return l.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,l.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,b,v=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=v[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(v[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=v[m+34&127],h=v[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,v[m]=f^h;d.w=b,d.X=v,d.i=m}u(l,c)}function o(c,l){return l.i=c.i,l.w=c.w,l.X=c.X.slice(),l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),pD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.b,h=l.c,f=l.d,m=l.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,l.b=p=p<<20^p>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-p|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,c===Math.floor(c)?(l.a=c/4294967296|0,l.b=c|0):u+=c;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),Q1=dt({"(disabled):crypto"(){}}),hD=dt({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r){var s=this,a=256,o=6,i=52,c="random",l=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(k,C,N){var D=[];C=C==!0?{entropy:!0}:C||{};var F=v(b(C.entropy?[k,x(n)]:k==null?y():k,3),D),O=new m(D),$=function(){for(var P=O.g(o),T=l,L=0;P=d;)P/=2,T/=2,L>>>=1;return(P+L)/T};return $.int32=function(){return O.g(4)|0},$.quick=function(){return O.g(4)/4294967296},$.double=$,v(x(O.S),n),(C.pass||N||function(P,T,L,G){return G&&(G.S&&g(G,O),P.state=function(){return g(O,{})}),L?(r[c]=P,T):P})($,F,"global"in C?C.global:this==r,C.state)}r["seed"+c]=f;function m(k){var C,N=k.length,D=this,F=0,O=D.i=D.j=0,$=D.S=[];for(N||(k=[N++]);F>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var p=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^p^p>>>8},c===(c|0)?l.x=c:u+=c;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(p^p<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,c===(c|0)?l.x=c:u+=c;for(var d=0;d>>4),l.next()}function o(c,l){return l.x=c.x,l.y=c.y,l.z=c.z,l.w=c.w,l.v=c.v,l.d=c.d,l}function i(c,l){var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),bD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.x,p=l.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,l.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h0;--h)d.next()}u(l,c)}function o(c,l){return l.x=c.x.slice(),l.i=c.i,l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),yD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,r,s){function a(c){var l=this;l.next=function(){var d=l.w,p=l.X,h=l.i,f,m;return l.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,l.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,b,v=[],y=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,y=Math.max(y,p.length)),m=0,g=-32;g>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=v[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(v[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=v[m+34&127],h=v[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,v[m]=f^h;d.w=b,d.X=v,d.i=m}u(l,c)}function o(c,l){return l.i=c.i,l.w=c.w,l.X=c.X.slice(),l}function i(c,l){c==null&&(c=+new Date);var u=new a(c),d=l&&l.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),vD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,r,s){function a(c){var l=this,u="";l.next=function(){var p=l.b,h=l.c,f=l.d,m=l.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,l.b=p=p<<20^p>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-p|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,c===Math.floor(c)?(l.a=c/4294967296|0,l.b=c|0):u+=c;for(var d=0;d>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}r&&r.exports?r.exports=i:s&&s.amd?s(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),xD=dt({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,r,s){var a=256,o=6,i=52,c="random",l=s.pow(a,o),u=s.pow(2,i),d=u*2,p=a-1,h;function f(k,C,N){var D=[];C=C==!0?{entropy:!0}:C||{};var F=v(b(C.entropy?[k,x(r)]:k==null?y():k,3),D),O=new m(D),$=function(){for(var P=O.g(o),T=l,L=0;P=d;)P/=2,T/=2,L>>>=1;return(P+L)/T};return $.int32=function(){return O.g(4)|0},$.quick=function(){return O.g(4)/4294967296},$.double=$,v(x(O.S),r),(C.pass||N||function(P,T,L,G){return G&&(G.S&&g(G,O),P.state=function(){return g(O,{})}),L?(s[c]=P,T):P})($,F,"global"in C?C.global:this==s,C.state)}function m(k){var C,N=k.length,D=this,F=0,O=D.i=D.j=0,$=D.S=[];for(N||(k=[N++]);F1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof pl))throw S}),process.on("unhandledRejection",ys),b=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var G;try{G=wD()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=G.Worker}else k?(typeof read!="undefined"&&(F=function(_){return read(_)}),$=function(_){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer(_)):(B=read(_,"binary"),we(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(b=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(v||y)&&(y?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",x?(F=function(_,B){return T||(T=Rp()),L||(L=hl()),_=L.normalize(_),T.readFileSync(_,B?null:"utf8")},$=function(_){var B=F(_,!0);return B.buffer||(B=new Uint8Array(B)),we(B.buffer),B}):(F=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.send(null),_.responseText},y&&($=function(S){var _=new XMLHttpRequest;return _.open("GET",S,!1),_.responseType="arraybuffer",_.send(null),new Uint8Array(_.response)}),O=function(S,_,B){var X=new XMLHttpRequest;X.open("GET",S,!0),X.responseType="arraybuffer",X.onload=function(){if(X.status==200||X.status==0&&X.response){_(X.response);return}B()},X.onerror=B,X.send(null)}),P=function(S){document.title=S});x&&typeof performance=="undefined"&&(global.performance=kD().performance);var j=u.print||console.log.bind(console),q=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(b=u.quit);function K(S){K.shown||(K.shown={}),K.shown[S]||(K.shown[S]=1,q(S))}var ee=Atomics.load,te=Atomics.store,ne=Atomics.compareExchange,ae;u.wasmBinary&&(ae=u.wasmBinary);var se=u.noExitRuntime||!0;typeof WebAssembly!="object"&&ys("no native wasm support detected");var re,ue,de=!1,me;function we(S,_){S||ys("Assertion failed: "+_)}function Ce(S){var _=u["_"+S];return we(_,"Cannot call unknown function "+S+", make sure it is exported"),_}function _e(S,_,B,X,he){var le={string:function(xn){var Ui=0;if(xn!=null&&xn!==0){var Y1=(xn.length<<2)+1;Ui=zi(Y1),et(xn,Ui,Y1)}return Ui},array:function(xn){var Ui=zi(xn.length);return it(xn,Ui),Ui}};function pe(xn){return _==="string"?Ke(xn):_==="boolean"?Boolean(xn):xn}var ke=Ce(S),rt=[],Xt=0;if(X)for(var Vt=0;Vt=X);){var le=S[_++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var pe=S[_++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|pe);continue}var ke=S[_++]&63;if((le&240)==224?le=(le&15)<<12|pe<<6|ke:le=(le&7)<<18|pe<<12|ke<<6|S[_++]&63,le<65536)he+=String.fromCharCode(le);else{var rt=le-65536;he+=String.fromCharCode(55296|rt>>10,56320|rt&1023)}}return he}function Ke(S,_){return S?Be(o(),S,_):""}function st(S,_,B,X){if(!(X>0))return 0;for(var he=B,le=B+X-1,pe=0;pe=55296&&ke<=57343){var rt=S.charCodeAt(++pe);ke=65536+((ke&1023)<<10)|rt&1023}if(ke<=127){if(B>=le)break;_[B++]=ke}else if(ke<=2047){if(B+1>=le)break;_[B++]=192|ke>>6,_[B++]=128|ke&63}else if(ke<=65535){if(B+2>=le)break;_[B++]=224|ke>>12,_[B++]=128|ke>>6&63,_[B++]=128|ke&63}else{if(B+3>=le)break;_[B++]=240|ke>>18,_[B++]=128|ke>>12&63,_[B++]=128|ke>>6&63,_[B++]=128|ke&63}}return _[B]=0,B-he}function et(S,_,B){return st(S,o(),_,B)}function tt(S){for(var _=0,B=0;B=55296&&X<=57343&&(X=65536+((X&1023)<<10)|S.charCodeAt(++B)&1023),X<=127?++_:X<=2047?_+=2:X<=65535?_+=3:_+=4}return _}function it(S,_){a().set(S,_)}function lt(S,_){return S%_>0&&(S+=_-S%_),S}var xt,Nt,$n,an,Dr,vn,Hn,br,ar;function on(S){xt=S,u.HEAP8=Nt=new Int8Array(S),u.HEAP16=an=new Int16Array(S),u.HEAP32=vn=new Int32Array(S),u.HEAPU8=$n=new Uint8Array(S),u.HEAPU16=Dr=new Uint16Array(S),u.HEAPU32=Hn=new Uint32Array(S),u.HEAPF32=br=new Float32Array(S),u.HEAPF64=ar=new Float64Array(S)}var Yr=u.INITIAL_MEMORY||16777216;if(C)re=u.wasmMemory,xt=u.buffer;else if(u.wasmMemory)re=u.wasmMemory;else if(re=new WebAssembly.Memory({initial:Yr/65536,maximum:2147483648/65536,shared:!0}),!(re.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");re&&(xt=re.buffer),Yr=xt.byteLength,on(xt);var fn,Zr=[],Jr=[],Us=[],tl=[],Fr=[],op=!1,ig=!1;C||Jr.push({func:function(){Sp()}});function ip(){if(!C){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)cg(u.preRun.shift());Oi(Zr)}}function cp(){op=!0,!C&&Oi(Jr)}function up(){C||Oi(Us)}function Rn(){C||(ig=!0)}function lp(){if(!C){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)ug(u.postRun.shift());Oi(Fr)}}function cg(S){Zr.unshift(S)}function ug(S){Fr.unshift(S)}var yr=0,nl=null,Fa=null;function lg(S){we(!C,"addRunDependency cannot be used in a pthread worker"),yr++,u.monitorRunDependencies&&u.monitorRunDependencies(yr)}function dg(S){if(yr--,u.monitorRunDependencies&&u.monitorRunDependencies(yr),yr==0&&(nl!==null&&(clearInterval(nl),nl=null),Fa)){var _=Fa;Fa=null,_()}}u.preloadedImages={},u.preloadedAudios={};function ys(S){u.onAbort&&u.onAbort(S),C&&console.error("Pthread aborting at "+new Error().stack),S+="",q(S),de=!0,me=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var _=new WebAssembly.RuntimeError(S);throw p(_),_}function $a(S,_){return String.prototype.startsWith?S.startsWith(_):S.indexOf(_)===0}var pg="data:application/octet-stream;base64,";function dp(S){return $a(S,pg)}var hg="file://";function pp(S){return $a(S,hg)}var Pn="tfjs-backend-wasm-threaded-simd.wasm";dp(Pn)||(Pn=D(Pn));function hp(S){try{if(S==Pn&&ae)return new Uint8Array(ae);if($)return $(S);throw"both async and sync fetching of the wasm failed"}catch(_){ys(_)}}function fg(){if(!ae&&(v||y)){if(typeof fetch=="function"&&!pp(Pn))return fetch(Pn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+Pn+"'";return S.arrayBuffer()}).catch(function(){return hp(Pn)});if(O)return new Promise(function(S,_){O(Pn,function(B){S(new Uint8Array(B))},_)})}return Promise.resolve().then(function(){return hp(Pn)})}function mg(){var S={a:ib};function _(pe,ke){var rt=pe.exports;if(u.asm=rt,fn=u.asm.I,ue=ke,!C){var Xt=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(Vt){Te.loadWasmModuleToWorker(Vt,function(){--Xt||dg("wasm-instantiate")})})}}C||lg("wasm-instantiate");function B(pe){_(pe.instance,pe.module)}function X(pe){return fg().then(function(ke){return WebAssembly.instantiate(ke,S)}).then(pe,function(ke){q("failed to asynchronously prepare wasm: "+ke),ys(ke)})}function he(){return!ae&&typeof WebAssembly.instantiateStreaming=="function"&&!dp(Pn)&&!pp(Pn)&&typeof fetch=="function"?fetch(Pn,{credentials:"same-origin"}).then(function(pe){var ke=WebAssembly.instantiateStreaming(pe,S);return ke.then(B,function(rt){return q("wasm streaming compile failed: "+rt),q("falling back to ArrayBuffer instantiation"),X(B)})}):X(B)}if(u.instantiateWasm)try{var le=u.instantiateWasm(S,_);return le}catch(pe){return q("Module.instantiateWasm callback failed with error: "+pe),!1}return he().catch(p),{}}var gg={10520:function(){throw"Canceled!"},10538:function(S,_){setTimeout(function(){G1(S,_)},0)}};function fp(){Te.initRuntime()}function Oi(S){for(;S.length>0;){var _=S.shift();if(typeof _=="function"){_(u);continue}var B=_.func;typeof B=="number"?_.arg===void 0?fn.get(B)():fn.get(B)(_.arg):B(_.arg===void 0?null:_.arg)}}var Gs={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function rl(S,_){if(S<=0||S>a().length||S&!0||_<0)return-28;if(_==0)return 0;_>=2147483647&&(_=1/0);var B=Atomics.load(i(),Wi>>2),X=0;if(B==S){var he=Atomics.compareExchange(i(),Wi>>2,B,0);if(he==B&&(--_,X=1,_<=0))return 1}var le=Atomics.notify(i(),S>>2,_);if(le>=0)return le+X;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=rl;function bg(S){if(C)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";i()[S+12>>2]=0;var _=Te.pthreads[S];_.worker.terminate(),Te.freeThreadData(_),Te.runningWorkers.splice(Te.runningWorkers.indexOf(_.worker),1),_.worker.pthread=void 0}function yg(S){if(C)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var _=Te.pthreads[S];_.worker.postMessage({cmd:"cancel"})}function mp(S){if(C)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var _=Te.pthreads[S];if(_){i()[S+12>>2]=0;var B=_.worker;Te.returnWorkerToPool(B)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=8,_=0;_>2]=S;var B=S+152;i()[B>>2]=B;for(var X=Pa(512),_=0;_<128;++_)c()[X/4+_]=0;Atomics.store(c(),S+100>>2,X),Atomics.store(c(),S+40>>2,S),Ab(S,!y,1),V1(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();C&&Ks()&&W1()},runExitHandlersAndDeinitThread:function(S,_){Atomics.store(c(),S+56>>2,1),Atomics.store(c(),S+60>>2,0),Te.runExitHandlers(),Atomics.store(c(),S+4>>2,_),Atomics.store(c(),S+0>>2,1),rl(S+0,2147483647),Ab(0,0,0)},threadExit:function(S){var _=Ks();_&&(Te.runExitHandlersAndDeinitThread(_,S),C&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlersAndDeinitThread(Ks(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in Te.pthreads){var _=Te.pthreads[S];_&&_.worker&&Te.returnWorkerToPool(_.worker)}Te.pthreads={};for(var B=0;B>2];i()[S.threadInfoStruct+100>>2]=0,ll(_),ll(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&ll(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[S.pthread.threadInfoStruct],Te.unusedWorkers.push(S),Te.runningWorkers.splice(Te.runningWorkers.indexOf(S),1),Te.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){i()[X1>>2]=0;try{S()}finally{i()[X1>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,_){S.onmessage=function(B){var X=B.data,he=X.cmd;if(S.pthread&&(Te.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=Ks()){var le=Te.pthreads[X.targetThread];le?le.worker.postMessage(B.data,X.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")Ap();else if(he==="spawnThread")kp(B.data);else if(he==="cleanupThread")mp(X.thread);else if(he==="killThread")bg(X.thread);else if(he==="cancelThread")yg(X.thread);else if(he==="loaded")S.loaded=!0,_&&_(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(he==="print")j("Thread "+X.threadId+": "+X.text);else if(he==="printErr")q("Thread "+X.threadId+": "+X.text);else if(he==="alert")alert("Thread "+X.threadId+": "+X.text);else if(he==="exit"){var pe=S.pthread&&Atomics.load(c(),S.pthread.threadInfoStruct+64>>2);pe&&Te.returnWorkerToPool(S)}else if(he==="exitProcess")try{XA(X.returnCode)}catch(ke){if(ke instanceof pl)return;throw ke}else he==="cancelDone"?Te.returnWorkerToPool(S):he==="objectTransfer"?Te.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?S.postMessage(B.data):q("worker sent an unknown command "+he);Te.currentProxiedOperationCallerThread=void 0},S.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(S.on("message",function(B){S.onmessage({data:B})}),S.on("error",function(B){S.onerror(B)}),S.on("exit",function(B){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:re,wasmModule:ue})},allocateUnusedWorker:function(){var S=D("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(S){for(var _=performance.now()+S;performance.now()<_;);}};function vg(S,_){q1(S,_),Bi(S)}u.establishStackSpace=vg;function xg(){return se}u.getNoExitRuntime=xg;function wg(S,_){return fn.get(S)(_)}u.invokeEntryPoint=wg;function kg(S,_,B,X){ys("Assertion failed: "+Ke(S)+", at: "+[_?Ke(_):"unknown filename",B,X?Ke(X):"unknown function"])}function Ig(S,_){var B=_main(S,_)}var Ra;x?Ra=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:C?Ra=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ra=dateNow:Ra=function(){return performance.now()};function Sg(S){return i()[B1()>>2]=S,S}function Cg(S,_){if(C)return Hs(1,1,S,_)}function Tg(S,_){if(S==_)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var B=Te.pthreads[S],X=B&&B.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function Ng(){ys()}function _g(S,_,B){var X=Fg(_,B);return gg[S].apply(null,X)}function Eg(S,_){}function gp(S,_,B){if(S<=0||S>a().length||S&!0)return-28;if(v){if(Atomics.load(i(),S>>2)!=_)return-6;for(var he=performance.now(),le=he+B,pe=Atomics.exchange(i(),Wi>>2,S);;){if(he=performance.now(),he>le)return pe=Atomics.exchange(i(),Wi>>2,0),-73;if(pe=Atomics.exchange(i(),Wi>>2,0),pe==0)break;if(Ap(),Atomics.load(i(),S>>2)!=_)return-6;pe=Atomics.exchange(i(),Wi>>2,S)}return 0}else{var X=Atomics.wait(i(),S>>2,_,B);if(X==="timed-out")return-73;if(X==="not-equal")return-6;if(X==="ok")return 0;throw"Atomics.wait returned an unexpected value "+X}}function Ag(S,_,B){o().copyWithin(S,_,_+B)}function Dg(){return x?ID().cpus().length:navigator.hardwareConcurrency}function Hs(S,_){for(var B=arguments.length-2,X=dl(),he=B,le=zi(he*8),pe=le>>3,ke=0;ke>=2;B=o()[S++];){var X=B<105;X&&_&1&&_++,al.push(X?l()[_++>>1]:i()[_]),++_}return al}function $g(S,_,B){sl.length=_;for(var X=B>>3,he=0;he<_;he++)sl[he]=l()[X+he];var le=S<0,pe=le?gg[-S-1]:ob[S];return pe.apply(null,sl)}function Rg(){return o().length}function Pg(S){try{return re.grow(S-xt.byteLength+65535>>>16),on(re.buffer),1}catch(_){}}function Og(S){var _=Rg();if(S<=_)return!1;var B=2147483648;if(S>B)return!1;for(var X=1;X<=4;X*=2){var he=_*(1+.2/X);he=Math.min(he,S+100663296);var le=Math.min(B,lt(Math.max(S,he),65536)),pe=Pg(le);if(pe)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var S=Le.eventHandlers.length-1;S>=0;--S)Le._removeHandler(S);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(tl.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,_,B){function X(pe,ke){if(pe.length!=ke.length)return!1;for(var rt in pe)if(pe[rt]!=ke[rt])return!1;return!0}for(var he in Le.deferredCalls){var le=Le.deferredCalls[he];if(le.targetFunction==S&&X(le.argsList,B))return}Le.deferredCalls.push({targetFunction:S,precedence:_,argsList:B}),Le.deferredCalls.sort(function(pe,ke){return pe.precedence>2]=B,i()[pe+4>>2]=X,i()[pe+8>>2]=he,Eb(0,S,637534208,_,X,pe),Bi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Mg(S){var _=tt(S)+1,B=Pa(_);return et(S,B,_),B}function Lg(S,_,B,X){var he=dl(),le=zi(12),pe=0;_&&(pe=Mg(_)),i()[le>>2]=pe,i()[le+4>>2]=B,i()[le+8>>2]=X,Eb(0,S,657457152,0,pe,le),Bi(he)}function Bg(S,_,B,X){_=_?Ke(_):"",Lg(S,_,B,X)}function zg(S){return S>2?Ke(S):S}var Wg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Vg(S){S=zg(S);var _=Wg[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return _}function ol(S){return Vg(S)}function bp(S,_,B){var X=ol(S);if(!X)return-4;if(X.canvasSharedPtr&&(i()[X.canvasSharedPtr>>2]=_,i()[X.canvasSharedPtr+4>>2]=B),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var he=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var le=X.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===X.width&&le[3]===X.height}X.width=_,X.height=B,he&&X.GLctxObject.GLctx.viewport(0,0,_,B)}else if(X.canvasSharedPtr){var pe=i()[X.canvasSharedPtr+8>>2];return Bg(pe,S,_,B),1}else return-4;return 0}function yp(S,_,B){return C?Hs(2,1,S,_,B):bp(S,_,B)}function Ug(S,_,B){var X=ol(S);return X?bp(S,_,B):yp(S,_,B)}function Gg(S){}function Hg(S,_){}function jg(S){var _=S.getExtension("ANGLE_instanced_arrays");if(_)return S.vertexAttribDivisor=function(B,X){_.vertexAttribDivisorANGLE(B,X)},S.drawArraysInstanced=function(B,X,he,le){_.drawArraysInstancedANGLE(B,X,he,le)},S.drawElementsInstanced=function(B,X,he,le,pe){_.drawElementsInstancedANGLE(B,X,he,le,pe)},1}function qg(S){var _=S.getExtension("OES_vertex_array_object");if(_)return S.createVertexArray=function(){return _.createVertexArrayOES()},S.deleteVertexArray=function(B){_.deleteVertexArrayOES(B)},S.bindVertexArray=function(B){_.bindVertexArrayOES(B)},S.isVertexArray=function(B){return _.isVertexArrayOES(B)},1}function Kg(S){var _=S.getExtension("WEBGL_draw_buffers");if(_)return S.drawBuffers=function(B,X){_.drawBuffersWEBGL(B,X)},1}function Xg(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var nt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(_){nt.lastError||(nt.lastError=_)},getNewId:function(S){for(var _=nt.counter++,B=S.length;B<_;B++)S[B]=null;return _},getSource:function(S,_,B,X){for(var he="",le=0;le<_;++le){var pe=X?i()[X+le*4>>2]:-1;he+=Ke(i()[B+le*4>>2],pe<0?void 0:pe)}return he},createContext:function(S,_){var B=S.getContext("webgl",_);if(!B)return 0;var X=nt.registerContext(B,_);return X},registerContext:function(S,_){var B=Pa(8);i()[B+4>>2]=Ks();var X={handle:B,attributes:_,version:_.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=X),nt.contexts[B]=X,(typeof _.enableExtensionsByDefault=="undefined"||_.enableExtensionsByDefault)&&nt.initExtensions(X),B},makeContextCurrent:function(S){return nt.currentContext=nt.contexts[S],u.ctx=js=nt.currentContext&&nt.currentContext.GLctx,!(S&&!js)},getContext:function(S){return nt.contexts[S]},deleteContext:function(S){nt.currentContext===nt.contexts[S]&&(nt.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(nt.contexts[S].GLctx.canvas),nt.contexts[S]&&nt.contexts[S].GLctx.canvas&&(nt.contexts[S].GLctx.canvas.GLctxObject=void 0),ll(nt.contexts[S].handle),nt.contexts[S]=null},initExtensions:function(S){if(S||(S=nt.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var _=S.GLctx;jg(_),qg(_),Kg(_),_.disjointTimerQueryExt=_.getExtension("EXT_disjoint_timer_query"),Xg(_);var B=_.getSupportedExtensions()||[];B.forEach(function(X){X.indexOf("lose_context")<0&&X.indexOf("debug")<0&&_.getExtension(X)})}},populateUniformTable:function(S){for(var _=nt.programs[S],B=nt.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},X=B.uniforms,he=js.getProgramParameter(_,35718),le=0;le>2,X=i()[B+(24>>2)],he={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:Yg[X],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},le=ol(S);if(!le||he.explicitSwapControl)return 0;var pe=nt.createContext(le,he);return pe}function Jg(S,_){return Zg(S,_)}var Mi={mappings:{},buffers:[null,[],[]],printChar:function(S,_){var B=Mi.buffers[S];_===0||_===10?((S===1?j:q)(Be(B,0)),B.length=0):B.push(_)},varargs:void 0,get:function(){Mi.varargs+=4;var S=i()[Mi.varargs-4>>2];return S},getStr:function(S){var _=Ke(S);return _},get64:function(S,_){return S}};function vp(S){return C?Hs(3,1,S):0}function xp(S,_,B,X,he){if(C)return Hs(4,1,S,_,B,X,he)}function wp(S,_,B,X){if(C)return Hs(5,1,S,_,B,X);for(var he=0,le=0;le>2],ke=i()[_+(le*8+4)>>2],rt=0;rt>2]=he,0}function Qg(S){var _=Te.threadExitHandlers.pop();S&&_()}function eb(S,_){Te.threadExitHandlers.push(function(){fn.get(S)(_)})}function kp(S){if(C)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var _=Te.getNewWorker();if(_.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(_);for(var B=Pa(128*4),X=0;X<128;++X)i()[B+X*4>>2]=0;var he=S.stackBase+S.stackSize,le=Te.pthreads[S.pthread_ptr]={worker:_,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},pe=le.threadInfoStruct>>2;Atomics.store(c(),pe+(64>>2),S.detached),Atomics.store(c(),pe+(100>>2),B),Atomics.store(c(),pe+(40>>2),le.threadInfoStruct),Atomics.store(c(),pe+(80>>2),S.stackSize),Atomics.store(c(),pe+(76>>2),he),Atomics.store(c(),pe+(104>>2),S.stackSize),Atomics.store(c(),pe+(104+8>>2),he),Atomics.store(c(),pe+(104+12>>2),S.detached);var ke=z1(),rt=ke+40;Atomics.store(c(),pe+(172>>2),rt),_.pthread=le;var Xt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};_.runPthread=function(){Xt.time=performance.now(),_.postMessage(Xt,S.transferList)},_.loaded&&(_.runPthread(),delete _.runPthread)}function tb(S,_,B,X){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return q("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(C&&(he.length===0||le))return H1(687865856,S,_,B,X);if(le)return le;var pe=0,ke=0,rt=0;_&&_!=-1?(pe=i()[_>>2],pe+=81920,ke=i()[_+8>>2],rt=i()[_+12>>2]!==0):pe=2097152;var Xt=ke==0;Xt?ke=K1(16,pe):(ke-=pe,we(ke>0));for(var Vt=Pa(228),Xs=0;Xs<228>>2;++Xs)c()[(Vt>>2)+Xs]=0;i()[S>>2]=Vt,i()[Vt+12>>2]=Vt;var Vi=Vt+152;i()[Vi>>2]=Vi;var xn={stackBase:ke,stackSize:pe,allocatedOwnStack:Xt,detached:rt,startRoutine:B,pthread_ptr:Vt,arg:X,transferList:he};return C?(xn.cmd="spawnThread",postMessage(xn,he)):kp(xn),0}function nb(){if(!!C){var S=Ks();if(!!S){var _=Atomics.load(c(),S+56>>2);if(!_){var B=Atomics.load(c(),S+0>>2);if(B==2)throw"Canceled!"}}}}function rb(){x||y||K("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function sb(S,_,B){if(!S)return q("pthread_join attempted on a null thread pointer!"),Gs.ESRCH;if(C&&Ks()==S)return q("PThread "+S+" is attempting to join to itself!"),Gs.EDEADLK;if(!C&&U1()==S)return q("Main thread "+S+" is attempting to join to itself!"),Gs.EDEADLK;var X=i()[S+12>>2];if(X!==S)return q("pthread_join attempted on thread "+S+", which does not point to a valid thread, or does not exist anymore!"),Gs.ESRCH;var he=Atomics.load(c(),S+64>>2);if(he)return q("Attempted to join thread "+S+", which was already detached!"),Gs.EINVAL;for(B&&rb();;){var le=Atomics.load(c(),S+0>>2);if(le==1){var pe=Atomics.load(c(),S+4>>2);return _&&(i()[_>>2]=pe),Atomics.store(c(),S+64>>2,1),C?postMessage({cmd:"cleanupThread",thread:S}):mp(S),0}if(!B)return Gs.EBUSY;nb(),C||Ap(),gp(S+0,le,C?100:1)}}function ab(S,_){return sb(S,_,!0)}function Ip(S){if(C)return Hs(6,1,S);switch(S){case 30:return 16384;case 85:var _=2147483648;return _/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Sg(28),-1}C||Te.initMainThreadBlock();var js,ob=[null,Cg,yp,vp,xp,wp,Ip],ib={e:kg,r:Ig,x:Tg,b:Ng,y:_g,j:Eg,d:gp,c:rl,f:Ra,p:Ag,A:Dg,u:$g,q:Og,v:Ug,i:Gg,s:Hg,w:Jg,l:vp,n:xp,g:wp,o:fp,a:re||u.wasmMemory,z:Qg,k:eb,h:tb,m:ab,t:Ip},L1=mg(),Sp=u.___wasm_call_ctors=function(){return(Sp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},cb=u._init=function(){return(cb=u._init=u.asm.C).apply(null,arguments)},ub=u._init_with_threads_count=function(){return(ub=u._init_with_threads_count=u.asm.D).apply(null,arguments)},lb=u._get_threads_count=function(){return(lb=u._get_threads_count=u.asm.E).apply(null,arguments)},db=u._register_tensor=function(){return(db=u._register_tensor=u.asm.F).apply(null,arguments)},pb=u._dispose_data=function(){return(pb=u._dispose_data=u.asm.G).apply(null,arguments)},hb=u._dispose=function(){return(hb=u._dispose=u.asm.H).apply(null,arguments)},fb=u._Abs=function(){return(fb=u._Abs=u.asm.J).apply(null,arguments)},mb=u._Add=function(){return(mb=u._Add=u.asm.K).apply(null,arguments)},gb=u._AddN=function(){return(gb=u._AddN=u.asm.L).apply(null,arguments)},bb=u._All=function(){return(bb=u._All=u.asm.M).apply(null,arguments)},yb=u._Any=function(){return(yb=u._Any=u.asm.N).apply(null,arguments)},vb=u._ArgMax=function(){return(vb=u._ArgMax=u.asm.O).apply(null,arguments)},xb=u._AvgPool=function(){return(xb=u._AvgPool=u.asm.P).apply(null,arguments)},wb=u._BatchMatMul=function(){return(wb=u._BatchMatMul=u.asm.Q).apply(null,arguments)},kb=u._Ceil=function(){return(kb=u._Ceil=u.asm.R).apply(null,arguments)},Ib=u._ClipByValue=function(){return(Ib=u._ClipByValue=u.asm.S).apply(null,arguments)},Sb=u._Conv2D=function(){return(Sb=u._Conv2D=u.asm.T).apply(null,arguments)},Cb=u._Conv2DBackpropInput=function(){return(Cb=u._Conv2DBackpropInput=u.asm.U).apply(null,arguments)},Tb=u._Cos=function(){return(Tb=u._Cos=u.asm.V).apply(null,arguments)},Nb=u._Cosh=function(){return(Nb=u._Cosh=u.asm.W).apply(null,arguments)},Cp=u._CropAndResize=function(){return(Cp=u._CropAndResize=u.asm.X).apply(null,arguments)},Tp=u._Cumsum=function(){return(Tp=u._Cumsum=u.asm.Y).apply(null,arguments)},Np=u._DepthToSpace=function(){return(Np=u._DepthToSpace=u.asm.Z).apply(null,arguments)},il=u._DepthwiseConv2dNative=function(){return(il=u._DepthwiseConv2dNative=u.asm._).apply(null,arguments)},Li=u._Elu=function(){return(Li=u._Elu=u.asm.$).apply(null,arguments)},_b=u._Equal=function(){return(_b=u._Equal=u.asm.aa).apply(null,arguments)},cl=u._Exp=function(){return(cl=u._Exp=u.asm.ba).apply(null,arguments)},Z=u._FlipLeftRight=function(){return(Z=u._FlipLeftRight=u.asm.ca).apply(null,arguments)},oe=u._Floor=function(){return(oe=u._Floor=u.asm.da).apply(null,arguments)},ye=u._FloorDiv=function(){return(ye=u._FloorDiv=u.asm.ea).apply(null,arguments)},Ye=u._FusedBatchNorm=function(){return(Ye=u._FusedBatchNorm=u.asm.fa).apply(null,arguments)},Dt=u._FusedConv2D=function(){return(Dt=u._FusedConv2D=u.asm.ga).apply(null,arguments)},wt=u._FusedDepthwiseConv2D=function(){return(wt=u._FusedDepthwiseConv2D=u.asm.ha).apply(null,arguments)},Ve=u._Gather=function(){return(Ve=u._Gather=u.asm.ia).apply(null,arguments)},He=u._GatherNd=function(){return(He=u._GatherNd=u.asm.ja).apply(null,arguments)},cn=u._Greater=function(){return(cn=u._Greater=u.asm.ka).apply(null,arguments)},vs=u._GreaterEqual=function(){return(vs=u._GreaterEqual=u.asm.la).apply(null,arguments)},xs=u._LeakyRelu=function(){return(xs=u._LeakyRelu=u.asm.ma).apply(null,arguments)},_p=u._Less=function(){return(_p=u._Less=u.asm.na).apply(null,arguments)},ul=u._LessEqual=function(){return(ul=u._LessEqual=u.asm.oa).apply(null,arguments)},jn=u._Log=function(){return(jn=u._Log=u.asm.pa).apply(null,arguments)},qs=u._LogicalAnd=function(){return(qs=u._LogicalAnd=u.asm.qa).apply(null,arguments)},Ep=u._Max=function(){return(Ep=u._Max=u.asm.ra).apply(null,arguments)},rA=u._MaxPool=function(){return(rA=u._MaxPool=u.asm.sa).apply(null,arguments)},sA=u._Maximum=function(){return(sA=u._Maximum=u.asm.ta).apply(null,arguments)},aA=u._Mean=function(){return(aA=u._Mean=u.asm.ua).apply(null,arguments)},oA=u._Min=function(){return(oA=u._Min=u.asm.va).apply(null,arguments)},iA=u._Minimum=function(){return(iA=u._Minimum=u.asm.wa).apply(null,arguments)},cA=u._MirrorPad=function(){return(cA=u._MirrorPad=u.asm.xa).apply(null,arguments)},uA=u._Multiply=function(){return(uA=u._Multiply=u.asm.ya).apply(null,arguments)},lA=u._Neg=function(){return(lA=u._Neg=u.asm.za).apply(null,arguments)},dA=u._NonMaxSuppressionV3=function(){return(dA=u._NonMaxSuppressionV3=u.asm.Aa).apply(null,arguments)},pA=u._NonMaxSuppressionV4=function(){return(pA=u._NonMaxSuppressionV4=u.asm.Ba).apply(null,arguments)},hA=u._NonMaxSuppressionV5=function(){return(hA=u._NonMaxSuppressionV5=u.asm.Ca).apply(null,arguments)},fA=u._NotEqual=function(){return(fA=u._NotEqual=u.asm.Da).apply(null,arguments)},mA=u._OneHot=function(){return(mA=u._OneHot=u.asm.Ea).apply(null,arguments)},gA=u._PadV2=function(){return(gA=u._PadV2=u.asm.Fa).apply(null,arguments)},bA=u._Pow=function(){return(bA=u._Pow=u.asm.Ga).apply(null,arguments)},yA=u._Prelu=function(){return(yA=u._Prelu=u.asm.Ha).apply(null,arguments)},vA=u._Prod=function(){return(vA=u._Prod=u.asm.Ia).apply(null,arguments)},xA=u._RealDiv=function(){return(xA=u._RealDiv=u.asm.Ja).apply(null,arguments)},wA=u._Relu=function(){return(wA=u._Relu=u.asm.Ka).apply(null,arguments)},kA=u._Relu6=function(){return(kA=u._Relu6=u.asm.La).apply(null,arguments)},IA=u._ResizeBilinear=function(){return(IA=u._ResizeBilinear=u.asm.Ma).apply(null,arguments)},SA=u._Reverse=function(){return(SA=u._Reverse=u.asm.Na).apply(null,arguments)},CA=u._RotateWithOffset=function(){return(CA=u._RotateWithOffset=u.asm.Oa).apply(null,arguments)},TA=u._Round=function(){return(TA=u._Round=u.asm.Pa).apply(null,arguments)},NA=u._Rsqrt=function(){return(NA=u._Rsqrt=u.asm.Qa).apply(null,arguments)},_A=u._ScatterNd=function(){return(_A=u._ScatterNd=u.asm.Ra).apply(null,arguments)},EA=u._SelectV2=function(){return(EA=u._SelectV2=u.asm.Sa).apply(null,arguments)},AA=u._Sigmoid=function(){return(AA=u._Sigmoid=u.asm.Ta).apply(null,arguments)},DA=u._Sin=function(){return(DA=u._Sin=u.asm.Ua).apply(null,arguments)},FA=u._Softmax=function(){return(FA=u._Softmax=u.asm.Va).apply(null,arguments)},$A=u._Sqrt=function(){return($A=u._Sqrt=u.asm.Wa).apply(null,arguments)},RA=u._Square=function(){return(RA=u._Square=u.asm.Xa).apply(null,arguments)},PA=u._SquaredDifference=function(){return(PA=u._SquaredDifference=u.asm.Ya).apply(null,arguments)},OA=u._Step=function(){return(OA=u._Step=u.asm.Za).apply(null,arguments)},MA=u._StridedSlice=function(){return(MA=u._StridedSlice=u.asm._a).apply(null,arguments)},LA=u._Sub=function(){return(LA=u._Sub=u.asm.$a).apply(null,arguments)},BA=u._Sum=function(){return(BA=u._Sum=u.asm.ab).apply(null,arguments)},zA=u._Tan=function(){return(zA=u._Tan=u.asm.bb).apply(null,arguments)},WA=u._Tanh=function(){return(WA=u._Tanh=u.asm.cb).apply(null,arguments)},VA=u._Tile=function(){return(VA=u._Tile=u.asm.db).apply(null,arguments)},UA=u._TopK=function(){return(UA=u._TopK=u.asm.eb).apply(null,arguments)},GA=u._Transform=function(){return(GA=u._Transform=u.asm.fb).apply(null,arguments)},HA=u._Transpose=function(){return(HA=u._Transpose=u.asm.gb).apply(null,arguments)},jA=u.__FusedMatMul=function(){return(jA=u.__FusedMatMul=u.asm.hb).apply(null,arguments)},Pa=u._malloc=function(){return(Pa=u._malloc=u.asm.ib).apply(null,arguments)},ll=u._free=function(){return(ll=u._free=u.asm.jb).apply(null,arguments)},B1=u.___errno_location=function(){return(B1=u.___errno_location=u.asm.kb).apply(null,arguments)},z1=u._emscripten_get_global_libc=function(){return(z1=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},Ks=u._pthread_self=function(){return(Ks=u._pthread_self=u.asm.mb).apply(null,arguments)},W1=u.___pthread_tsd_run_dtors=function(){return(W1=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},Ap=u._emscripten_main_thread_process_queued_calls=function(){return(Ap=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},qA=u._emscripten_current_thread_process_queued_calls=function(){return(qA=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},V1=u._emscripten_register_main_browser_thread_id=function(){return(V1=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},U1=u._emscripten_main_browser_thread_id=function(){return(U1=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},G1=u.__emscripten_do_dispatch_to_thread=function(){return(G1=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},H1=u._emscripten_sync_run_in_main_thread_4=function(){return(H1=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},j1=u._emscripten_run_in_main_runtime_thread_js=function(){return(j1=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},Eb=u.__emscripten_call_on_thread=function(){return(Eb=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},KA=u._emscripten_tls_init=function(){return(KA=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Ab=u.__emscripten_thread_init=function(){return(Ab=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},dl=u.stackSave=function(){return(dl=u.stackSave=u.asm.yb).apply(null,arguments)},Bi=u.stackRestore=function(){return(Bi=u.stackRestore=u.asm.zb).apply(null,arguments)},zi=u.stackAlloc=function(){return(zi=u.stackAlloc=u.asm.Ab).apply(null,arguments)},q1=u._emscripten_stack_set_limits=function(){return(q1=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},K1=u._memalign=function(){return(K1=u._memalign=u.asm.Cb).apply(null,arguments)},X1=u.__emscripten_allow_main_runtime_queued_calls=10512,Wi=u.__emscripten_main_thread_futex=12148;u.cwrap=Me,u.PThread=Te,u.PThread=Te,u.wasmMemory=re,u.ExitStatus=pl;var Dp;function pl(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}Fa=function S(){Dp||Db(),Dp||(Fa=S)};function Db(S){if(S=S||m,yr>0)return;if(C){d(u),cp(),postMessage({cmd:"loaded"});return}if(ip(),yr>0)return;function _(){Dp||(Dp=!0,u.calledRun=!0,!de&&(cp(),up(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),lp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),_()},1)):_()}u.run=Db;function XA(S,_){if(!(_&&se&&S===0)){if(!_&&C)throw postMessage({cmd:"exitProcess",returnCode:S}),new pl(S);se||(Te.terminateAllThreads(),me=S,Rn(),u.onExit&&u.onExit(S),de=!0),b(S,new pl(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return C&&(se=!1,Te.initWorker()),Db(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),CD=dt({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.11.0_@tensorflow+tfjs-core@3.11.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(s){s=s||{};var a=typeof s!="undefined"?s:{},o,i;a.ready=new Promise(function(Z,oe){o=Z,i=oe});var c={},l;for(l in a)a.hasOwnProperty(l)&&(c[l]=a[l]);var u=[],d="./this.program",p=function(Z,oe){throw oe},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var b="";function v(Z){return a.locateFile?a.locateFile(Z,b):b+Z}var y,x,k,C,N,D;m?(f?b=hl().dirname(b)+"/":b=__dirname+"/",y=function(oe,ye){return N||(N=Rp()),D||(D=hl()),oe=D.normalize(oe),N.readFileSync(oe,ye?null:"utf8")},k=function(oe){var ye=y(oe,!0);return ye.buffer||(ye=new Uint8Array(ye)),j(ye.buffer),ye},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof _b))throw Z}),process.on("unhandledRejection",Fr),p=function(Z){process.exit(Z)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(y=function(oe){return read(oe)}),k=function(oe){var ye;return typeof readbuffer=="function"?new Uint8Array(readbuffer(oe)):(ye=read(oe,"binary"),j(typeof ye=="object"),ye)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?b=self.location.href:typeof document!="undefined"&&document.currentScript&&(b=document.currentScript.src),r&&(b=r),b.indexOf("blob:")!==0?b=b.substr(0,b.lastIndexOf("/")+1):b="",y=function(Z){var oe=new XMLHttpRequest;return oe.open("GET",Z,!1),oe.send(null),oe.responseText},f&&(k=function(Z){var oe=new XMLHttpRequest;return oe.open("GET",Z,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),x=function(Z,oe,ye){var Ye=new XMLHttpRequest;Ye.open("GET",Z,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){oe(Ye.response);return}ye()},Ye.onerror=ye,Ye.send(null)},C=function(Z){document.title=Z});var F=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(l in c)c.hasOwnProperty(l)&&(a[l]=c[l]);c=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var $;a.wasmBinary&&($=a.wasmBinary);var P=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Fr("no native wasm support detected");var T,L=!1,G;function j(Z,oe){Z||Fr("Assertion failed: "+oe)}function q(Z){var oe=a["_"+Z];return j(oe,"Cannot call unknown function "+Z+", make sure it is exported"),oe}function K(Z,oe,ye,Ye,Dt){var wt={string:function(jn){var qs=0;if(jn!=null&&jn!==0){var Ep=(jn.length<<2)+1;qs=il(Ep),re(jn,qs,Ep)}return qs},array:function(jn){var qs=il(jn.length);return ue(jn,qs),qs}};function Ve(jn){return oe==="string"?ae(jn):oe==="boolean"?Boolean(jn):jn}var He=q(Z),cn=[],vs=0;if(Ye)for(var xs=0;xs=Ye);)++Dt;if(Dt-oe>16&&Z.subarray&&te)return te.decode(Z.subarray(oe,Dt));for(var wt="";oe>10,56320|vs&1023)}}return wt}function ae(Z,oe){return Z?ne(Ce,Z,oe):""}function se(Z,oe,ye,Ye){if(!(Ye>0))return 0;for(var Dt=ye,wt=ye+Ye-1,Ve=0;Ve=55296&&He<=57343){var cn=Z.charCodeAt(++Ve);He=65536+((He&1023)<<10)|cn&1023}if(He<=127){if(ye>=wt)break;oe[ye++]=He}else if(He<=2047){if(ye+1>=wt)break;oe[ye++]=192|He>>6,oe[ye++]=128|He&63}else if(He<=65535){if(ye+2>=wt)break;oe[ye++]=224|He>>12,oe[ye++]=128|He>>6&63,oe[ye++]=128|He&63}else{if(ye+3>=wt)break;oe[ye++]=240|He>>18,oe[ye++]=128|He>>12&63,oe[ye++]=128|He>>6&63,oe[ye++]=128|He&63}}return oe[ye]=0,ye-Dt}function re(Z,oe,ye){return se(Z,Ce,oe,ye)}function ue(Z,oe){we.set(Z,oe)}function de(Z,oe){return Z%oe>0&&(Z+=oe-Z%oe),Z}var me,we,Ce,_e,Me,Be,Ke,st,et;function tt(Z){me=Z,a.HEAP8=we=new Int8Array(Z),a.HEAP16=_e=new Int16Array(Z),a.HEAP32=Be=new Int32Array(Z),a.HEAPU8=Ce=new Uint8Array(Z),a.HEAPU16=Me=new Uint16Array(Z),a.HEAPU32=Ke=new Uint32Array(Z),a.HEAPF32=st=new Float32Array(Z),a.HEAPF64=et=new Float64Array(Z)}var it=a.INITIAL_MEMORY||16777216,lt,xt=[],Nt=[],$n=[],an=[],Dr=!1;Nt.push({func:function(){fp()}});function vn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)on(a.preRun.shift());yr(xt)}function Hn(){Dr=!0,yr(Nt)}function br(){yr($n)}function ar(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)Yr(a.postRun.shift());yr(an)}function on(Z){xt.unshift(Z)}function Yr(Z){an.unshift(Z)}var fn=0,Zr=null,Jr=null;function Us(Z){fn++,a.monitorRunDependencies&&a.monitorRunDependencies(fn)}function tl(Z){if(fn--,a.monitorRunDependencies&&a.monitorRunDependencies(fn),fn==0&&(Zr!==null&&(clearInterval(Zr),Zr=null),Jr)){var oe=Jr;Jr=null,oe()}}a.preloadedImages={},a.preloadedAudios={};function Fr(Z){a.onAbort&&a.onAbort(Z),Z+="",O(Z),L=!0,G=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var oe=new WebAssembly.RuntimeError(Z);throw i(oe),oe}function op(Z,oe){return String.prototype.startsWith?Z.startsWith(oe):Z.indexOf(oe)===0}var ig="data:application/octet-stream;base64,";function ip(Z){return op(Z,ig)}var cp="file://";function up(Z){return op(Z,cp)}var Rn="tfjs-backend-wasm.wasm";ip(Rn)||(Rn=v(Rn));function lp(Z){try{if(Z==Rn&&$)return new Uint8Array($);if(k)return k(Z);throw"both async and sync fetching of the wasm failed"}catch(oe){Fr(oe)}}function cg(){if(!$&&(h||f)){if(typeof fetch=="function"&&!up(Rn))return fetch(Rn,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+Rn+"'";return Z.arrayBuffer()}).catch(function(){return lp(Rn)});if(x)return new Promise(function(Z,oe){x(Rn,function(ye){Z(new Uint8Array(ye))},oe)})}return Promise.resolve().then(function(){return lp(Rn)})}function ug(){var Z={a:mg};function oe(Ve,He){var cn=Ve.exports;a.asm=cn,T=a.asm.j,tt(T.buffer),lt=a.asm.r,tl("wasm-instantiate")}Us("wasm-instantiate");function ye(Ve){oe(Ve.instance)}function Ye(Ve){return cg().then(function(He){return WebAssembly.instantiate(He,Z)}).then(Ve,function(He){O("failed to asynchronously prepare wasm: "+He),Fr(He)})}function Dt(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!ip(Rn)&&!up(Rn)&&typeof fetch=="function"?fetch(Rn,{credentials:"same-origin"}).then(function(Ve){var He=WebAssembly.instantiateStreaming(Ve,Z);return He.then(ye,function(cn){return O("wasm streaming compile failed: "+cn),O("falling back to ArrayBuffer instantiation"),Ye(ye)})}):Ye(ye)}if(a.instantiateWasm)try{var wt=a.instantiateWasm(Z,oe);return wt}catch(Ve){return O("Module.instantiateWasm callback failed with error: "+Ve),!1}return Dt().catch(i),{}}function yr(Z){for(;Z.length>0;){var oe=Z.shift();if(typeof oe=="function"){oe(a);continue}var ye=oe.func;typeof ye=="number"?oe.arg===void 0?lt.get(ye)():lt.get(ye)(oe.arg):ye(oe.arg===void 0?null:oe.arg)}}function nl(){Fr()}function Fa(Z,oe,ye){Ce.copyWithin(Z,oe,oe+ye)}function lg(){return Ce.length}function dg(Z){try{return T.grow(Z-me.byteLength+65535>>>16),tt(T.buffer),1}catch(oe){}}function ys(Z){var oe=lg(),ye=2147483648;if(Z>ye)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Dt=oe*(1+.2/Ye);Dt=Math.min(Dt,Z+100663296);var wt=Math.min(ye,de(Math.max(Z,Dt),65536)),Ve=dg(wt);if(Ve)return!0}return!1}var $a={mappings:{},buffers:[null,[],[]],printChar:function(Z,oe){var ye=$a.buffers[Z];oe===0||oe===10?((Z===1?F:O)(ne(ye,0)),ye.length=0):ye.push(oe)},varargs:void 0,get:function(){$a.varargs+=4;var Z=Be[$a.varargs-4>>2];return Z},getStr:function(Z){var oe=ae(Z);return oe},get64:function(Z,oe){return Z}};function pg(Z){return 0}function dp(Z,oe,ye,Ye,Dt){}function hg(Z,oe,ye,Ye){for(var Dt=0,wt=0;wt>2],He=Be[oe+(wt*8+4)>>2],cn=0;cn>2]=Dt,0}function pp(){return 6}function Pn(){return 28}function hp(Z){return Be[Cp()>>2]=Z,Z}function fg(Z){switch(Z){case 30:return 16384;case 85:var oe=2147483648;return oe/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return hp(28),-1}var mg={a:nl,d:Fa,e:ys,f:pg,c:dp,b:hg,h:pp,g:Pn,i:fg},gg=ug(),fp=a.___wasm_call_ctors=function(){return(fp=a.___wasm_call_ctors=a.asm.k).apply(null,arguments)},Oi=a._init=function(){return(Oi=a._init=a.asm.l).apply(null,arguments)},Gs=a._init_with_threads_count=function(){return(Gs=a._init_with_threads_count=a.asm.m).apply(null,arguments)},rl=a._get_threads_count=function(){return(rl=a._get_threads_count=a.asm.n).apply(null,arguments)},bg=a._register_tensor=function(){return(bg=a._register_tensor=a.asm.o).apply(null,arguments)},yg=a._dispose_data=function(){return(yg=a._dispose_data=a.asm.p).apply(null,arguments)},mp=a._dispose=function(){return(mp=a._dispose=a.asm.q).apply(null,arguments)},Te=a._Abs=function(){return(Te=a._Abs=a.asm.s).apply(null,arguments)},vg=a._Add=function(){return(vg=a._Add=a.asm.t).apply(null,arguments)},xg=a._AddN=function(){return(xg=a._AddN=a.asm.u).apply(null,arguments)},wg=a._All=function(){return(wg=a._All=a.asm.v).apply(null,arguments)},kg=a._Any=function(){return(kg=a._Any=a.asm.w).apply(null,arguments)},Ig=a._ArgMax=function(){return(Ig=a._ArgMax=a.asm.x).apply(null,arguments)},Ra=a._AvgPool=function(){return(Ra=a._AvgPool=a.asm.y).apply(null,arguments)},Sg=a._BatchMatMul=function(){return(Sg=a._BatchMatMul=a.asm.z).apply(null,arguments)},Cg=a._Ceil=function(){return(Cg=a._Ceil=a.asm.A).apply(null,arguments)},Tg=a._ClipByValue=function(){return(Tg=a._ClipByValue=a.asm.B).apply(null,arguments)},Ng=a._Conv2D=function(){return(Ng=a._Conv2D=a.asm.C).apply(null,arguments)},_g=a._Conv2DBackpropInput=function(){return(_g=a._Conv2DBackpropInput=a.asm.D).apply(null,arguments)},Eg=a._Cos=function(){return(Eg=a._Cos=a.asm.E).apply(null,arguments)},gp=a._Cosh=function(){return(gp=a._Cosh=a.asm.F).apply(null,arguments)},Ag=a._CropAndResize=function(){return(Ag=a._CropAndResize=a.asm.G).apply(null,arguments)},Dg=a._Cumsum=function(){return(Dg=a._Cumsum=a.asm.H).apply(null,arguments)},Hs=a._DepthToSpace=function(){return(Hs=a._DepthToSpace=a.asm.I).apply(null,arguments)},sl=a._DepthwiseConv2dNative=function(){return(sl=a._DepthwiseConv2dNative=a.asm.J).apply(null,arguments)},al=a._Elu=function(){return(al=a._Elu=a.asm.K).apply(null,arguments)},Fg=a._Equal=function(){return(Fg=a._Equal=a.asm.L).apply(null,arguments)},$g=a._Exp=function(){return($g=a._Exp=a.asm.M).apply(null,arguments)},Rg=a._FlipLeftRight=function(){return(Rg=a._FlipLeftRight=a.asm.N).apply(null,arguments)},Pg=a._Floor=function(){return(Pg=a._Floor=a.asm.O).apply(null,arguments)},Og=a._FloorDiv=function(){return(Og=a._FloorDiv=a.asm.P).apply(null,arguments)},Le=a._FusedBatchNorm=function(){return(Le=a._FusedBatchNorm=a.asm.Q).apply(null,arguments)},Mg=a._FusedConv2D=function(){return(Mg=a._FusedConv2D=a.asm.R).apply(null,arguments)},Lg=a._FusedDepthwiseConv2D=function(){return(Lg=a._FusedDepthwiseConv2D=a.asm.S).apply(null,arguments)},Bg=a._Gather=function(){return(Bg=a._Gather=a.asm.T).apply(null,arguments)},zg=a._GatherNd=function(){return(zg=a._GatherNd=a.asm.U).apply(null,arguments)},Wg=a._Greater=function(){return(Wg=a._Greater=a.asm.V).apply(null,arguments)},Vg=a._GreaterEqual=function(){return(Vg=a._GreaterEqual=a.asm.W).apply(null,arguments)},ol=a._LeakyRelu=function(){return(ol=a._LeakyRelu=a.asm.X).apply(null,arguments)},bp=a._Less=function(){return(bp=a._Less=a.asm.Y).apply(null,arguments)},yp=a._LessEqual=function(){return(yp=a._LessEqual=a.asm.Z).apply(null,arguments)},Ug=a._Log=function(){return(Ug=a._Log=a.asm._).apply(null,arguments)},Gg=a._LogicalAnd=function(){return(Gg=a._LogicalAnd=a.asm.$).apply(null,arguments)},Hg=a._Max=function(){return(Hg=a._Max=a.asm.aa).apply(null,arguments)},jg=a._MaxPool=function(){return(jg=a._MaxPool=a.asm.ba).apply(null,arguments)},qg=a._Maximum=function(){return(qg=a._Maximum=a.asm.ca).apply(null,arguments)},Kg=a._Mean=function(){return(Kg=a._Mean=a.asm.da).apply(null,arguments)},Xg=a._Min=function(){return(Xg=a._Min=a.asm.ea).apply(null,arguments)},nt=a._Minimum=function(){return(nt=a._Minimum=a.asm.fa).apply(null,arguments)},Yg=a._MirrorPad=function(){return(Yg=a._MirrorPad=a.asm.ga).apply(null,arguments)},Zg=a._Multiply=function(){return(Zg=a._Multiply=a.asm.ha).apply(null,arguments)},Jg=a._Neg=function(){return(Jg=a._Neg=a.asm.ia).apply(null,arguments)},Mi=a._NonMaxSuppressionV3=function(){return(Mi=a._NonMaxSuppressionV3=a.asm.ja).apply(null,arguments)},vp=a._NonMaxSuppressionV4=function(){return(vp=a._NonMaxSuppressionV4=a.asm.ka).apply(null,arguments)},xp=a._NonMaxSuppressionV5=function(){return(xp=a._NonMaxSuppressionV5=a.asm.la).apply(null,arguments)},wp=a._NotEqual=function(){return(wp=a._NotEqual=a.asm.ma).apply(null,arguments)},Qg=a._OneHot=function(){return(Qg=a._OneHot=a.asm.na).apply(null,arguments)},eb=a._PadV2=function(){return(eb=a._PadV2=a.asm.oa).apply(null,arguments)},kp=a._Pow=function(){return(kp=a._Pow=a.asm.pa).apply(null,arguments)},tb=a._Prelu=function(){return(tb=a._Prelu=a.asm.qa).apply(null,arguments)},nb=a._Prod=function(){return(nb=a._Prod=a.asm.ra).apply(null,arguments)},rb=a._RealDiv=function(){return(rb=a._RealDiv=a.asm.sa).apply(null,arguments)},sb=a._Relu=function(){return(sb=a._Relu=a.asm.ta).apply(null,arguments)},ab=a._Relu6=function(){return(ab=a._Relu6=a.asm.ua).apply(null,arguments)},Ip=a._ResizeBilinear=function(){return(Ip=a._ResizeBilinear=a.asm.va).apply(null,arguments)},js=a._Reverse=function(){return(js=a._Reverse=a.asm.wa).apply(null,arguments)},ob=a._RotateWithOffset=function(){return(ob=a._RotateWithOffset=a.asm.xa).apply(null,arguments)},ib=a._Round=function(){return(ib=a._Round=a.asm.ya).apply(null,arguments)},L1=a._Rsqrt=function(){return(L1=a._Rsqrt=a.asm.za).apply(null,arguments)},Sp=a._ScatterNd=function(){return(Sp=a._ScatterNd=a.asm.Aa).apply(null,arguments)},cb=a._SelectV2=function(){return(cb=a._SelectV2=a.asm.Ba).apply(null,arguments)},ub=a._Sigmoid=function(){return(ub=a._Sigmoid=a.asm.Ca).apply(null,arguments)},lb=a._Sin=function(){return(lb=a._Sin=a.asm.Da).apply(null,arguments)},db=a._Softmax=function(){return(db=a._Softmax=a.asm.Ea).apply(null,arguments)},pb=a._Sqrt=function(){return(pb=a._Sqrt=a.asm.Fa).apply(null,arguments)},hb=a._Square=function(){return(hb=a._Square=a.asm.Ga).apply(null,arguments)},fb=a._SquaredDifference=function(){return(fb=a._SquaredDifference=a.asm.Ha).apply(null,arguments)},mb=a._Step=function(){return(mb=a._Step=a.asm.Ia).apply(null,arguments)},gb=a._StridedSlice=function(){return(gb=a._StridedSlice=a.asm.Ja).apply(null,arguments)},bb=a._Sub=function(){return(bb=a._Sub=a.asm.Ka).apply(null,arguments)},yb=a._Sum=function(){return(yb=a._Sum=a.asm.La).apply(null,arguments)},vb=a._Tan=function(){return(vb=a._Tan=a.asm.Ma).apply(null,arguments)},xb=a._Tanh=function(){return(xb=a._Tanh=a.asm.Na).apply(null,arguments)},wb=a._Tile=function(){return(wb=a._Tile=a.asm.Oa).apply(null,arguments)},kb=a._TopK=function(){return(kb=a._TopK=a.asm.Pa).apply(null,arguments)},Ib=a._Transform=function(){return(Ib=a._Transform=a.asm.Qa).apply(null,arguments)},Sb=a._Transpose=function(){return(Sb=a._Transpose=a.asm.Ra).apply(null,arguments)},Cb=a.__FusedMatMul=function(){return(Cb=a.__FusedMatMul=a.asm.Sa).apply(null,arguments)},Tb=a._malloc=function(){return(Tb=a._malloc=a.asm.Ta).apply(null,arguments)},Nb=a._free=function(){return(Nb=a._free=a.asm.Ua).apply(null,arguments)},Cp=a.___errno_location=function(){return(Cp=a.___errno_location=a.asm.Va).apply(null,arguments)},Tp=a.stackSave=function(){return(Tp=a.stackSave=a.asm.Wa).apply(null,arguments)},Np=a.stackRestore=function(){return(Np=a.stackRestore=a.asm.Xa).apply(null,arguments)},il=a.stackAlloc=function(){return(il=a.stackAlloc=a.asm.Ya).apply(null,arguments)};a.cwrap=ee;var Li;function _b(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}Jr=function Z(){Li||cl(),Li||(Jr=Z)};function cl(Z){if(Z=Z||u,fn>0||(vn(),fn>0))return;function oe(){Li||(Li=!0,a.calledRun=!0,!L&&(Hn(),br(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),ar()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),oe()},1)):oe()}if(a.run=cl,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return cl(),s.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),TD=1e-7,ND=1e-4,Pp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},fl=class{refCount(e){return vr("refCount")}incRef(e){return vr("incRef")}timerAvailable(){return!0}time(e){return vr("time")}read(e){return vr("read")}readSync(e){return vr("readSync")}numDataIds(){return vr("numDataIds")}disposeData(e,t){return vr("disposeData")}write(e,t,n){return vr("write")}move(e,t,n,r,s){return vr("move")}memory(){return vr("memory")}floatPrecision(){return vr("floatPrecision")}epsilon(){return this.floatPrecision()===32?TD:ND}dispose(){return vr("dispose")}};function vr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function r0(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Op(e,t,n)}function _D(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r=0;for(;n>0;)r=Math.random()*n|0,n--,Op(e,n,r),Op(t,n,r)}function ml(e,t,n){return Math.max(e,Math.min(t,n))}function ED(e){return e%2==0?e:e+1}function Op(e,t,n){let r=e[t];e[t]=e[n],e[n]=r}function AD(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function Ma(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function La(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||mn(e)&&!n)for(let r=0;r0,n){return new Promise((r,s)=>{let a=0,o=()=>{if(e()){r();return}a++;let i=t(a);if(n!=null&&a>=n){s();return}setTimeout(o,i)};o()})}function LD(e,t){let n=1,r=-1;for(let a=0;a=0)n*=e[a];else if(e[a]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${a}`);r=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let s=e.slice();return s[r]=t/n,s}function xr(e,t){let n=t.length;return e=e==null?t.map((r,s)=>s):[].concat(e),R(e.every(r=>r>=-n&&r`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(r=>Yt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function s0(e,t){let n=[],r=[],s=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||s?null:xr(t,e).sort(),o=0;for(let i=0;ii)&&e[i]===1&&(n.push(e[i]),r.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),r.push(i))}return{newShape:n,keptDims:r}}function a0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function o0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function i0(e,t){for(let n=0;nt+=n.length),t}function Ys(e){return typeof e=="string"||e instanceof String}function l0(e){return typeof e=="boolean"}function d0(e){return typeof e=="number"}function Mp(e){return Array.isArray(e)?Mp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":d0(e)?"float32":Ys(e)?"string":l0(e)?"bool":"float32"}function Zs(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Lp(e,t){for(let n=t;n=0;--r)n[r]=n[r+1]*e[r+1];return n}function p0(e,t,n,r=!1){let s=new Array;if(t.length===1){let a=t[0]*(r?2:1);for(let o=0;oc*l)*(r?2:1);for(let c=0;cs*a)*(n?2:1);if(r===0)return[];if(r!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return p0(0,e,t,n)}function $b(e,t){let n=Bp(e,t);for(let r=0;rr*s,1);if(t==null||t==="float32")return Hi(e,new Float32Array(n));if(t==="int32")return Hi(e,new Int32Array(n));if(t==="bool")return Hi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Rb(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function WD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let s=0;s{let[r,s]=n.split(":");this.urlFlags[r]=jD(r,s)})}};function GD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(HD(t,r[0],r[1]),r.join("="))),t}function HD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function jD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Ob}var Ob=null;function qD(e){Ob=e}var Mb;function m0(){if(Mb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Mb=e}return Mb}function KD(){let e=m0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Lb(e,t){let n=KD();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var ji="Abs",qi="Acos",Ki="Acosh",Js="Add",Ba="AddN",Xi="All",Yi="Any",za="ArgMax",bl="ArgMin",Zi="Asin",Ji="Asinh",Qi="Atan",ec="Atanh",tc="Atan2",Wa="AvgPool",zp="AvgPoolGrad",yl="AvgPool3D",Wp="AvgPool3DGrad",Va="BatchMatMul",nc="BatchToSpaceND",Vp="Bincount",g0="BroadcastTo",Up="BroadcastArgs",Ua="Cast",Ga="Ceil",Qs="ClipByValue",Gp="Complex",vl="ComplexAbs",rc="Concat",Ha="Conv2D",Hp="Conv2DBackpropFilter",ja="Conv2DBackpropInput",xl="Conv3D",jp="Conv3DBackpropFilterV2",qp="Conv3DBackpropInputV2",qa="Cos",Ka="Cosh",Xa="Cumsum",sc="CropAndResize",Kp="DenseBincount",ac="DepthToSpace",Ya="DepthwiseConv2dNative",Xp="DepthwiseConv2dNativeBackpropFilter",Yp="DepthwiseConv2dNativeBackpropInput",Zp="Diag",wl="Dilation2D",Jp="Dilation2DBackpropInput",Qp="Dilation2DBackpropFilter",Za="RealDiv",eh="Einsum",Ja="Elu",th="EluGrad",oc="Erf",ic="Equal",Qa="Exp",cc="ExpandDims",uc="Expm1",nh="FFT",kl="Fill",lc="FlipLeftRight",eo="Floor",to="FloorDiv",no="FusedBatchNorm",dc="GatherV2",pc="GatherNd",hc="Greater",ro="GreaterEqual",so="Identity",rh="IFFT",sh="Imag",fc="IsFinite",mc="IsInf",gc="IsNan",ao="LeakyRelu",bc="Less",yc="LessEqual",ah="LinSpace",oo="Log",vc="Log1p",xc="LogicalAnd",Il="LogicalNot",Sl="LogicalOr",b0="LogSoftmax",Cl="LRN",oh="LRNGrad",io="Max",co="Maximum",uo="MaxPool",ih="MaxPoolGrad",Tl="MaxPool3D",ch="MaxPool3DGrad",uh="MaxPoolWithArgmax",lo="Mean",po="Min",ho="Minimum",fo="MirrorPad",wc="Mod",lh="Multinomial",mo="Multiply",kc="Neg",Ic="NotEqual",Sc="NonMaxSuppressionV3",Cc="NonMaxSuppressionV4",Tc="NonMaxSuppressionV5",Nc="OnesLike",go="OneHot",_c="Pack",bo="PadV2",XD="Pool",yo="Pow",vo="Prelu",Ec="Prod",Nl="Range",dh="Real",Ac="Reciprocal",xo="Relu",Dc="Reshape",_l="ResizeNearestNeighbor",ph="ResizeNearestNeighborGrad",wo="ResizeBilinear",hh="ResizeBilinearGrad",ko="Relu6",Io="Reverse",So="Round",Co="Rsqrt",Fc="ScatterNd",$c="Select",Rc="Selu",Pc="Slice",To="Sin",Oc="Sinh",Mc="Sign",No="Sigmoid",Lc="Softplus",_o="Sqrt",Eo="Sum",Bc="SpaceToBatchND",zc="SplitV",Ao="Softmax",fh="SparseFillEmptyRows",mh="SparseReshape",gh="SparseSegmentMean",bh="SparseSegmentSum",yh="SparseToDense",Do="SquaredDifference",El="Square",Wc="StridedSlice",vh="StringNGrams",xh="StringSplit",wh="StringToHashBucketFast",Fo="Sub",$o="Tan",Ro="Tanh",ea="Tile",Vc="TopK",Uc="Transform",Po="Transpose",kh="Unique",Gc="Unpack",Al="UnsortedSegmentSum",Hc="ZerosLike",ta="Step",Ih="FromPixels",jc="RotateWithOffset",Oo="_FusedMatMul",Mo="FusedConv2D",Lo="FusedDepthwiseConv2D",qc=Lb("kernelRegistry",()=>new Map),Dl=Lb("gradRegistry",()=>new Map);function Sh(e,t){let n=zb(e,t);return qc.get(n)}function Bb(e){return Dl.get(e)}function Ch(e){let t=qc.entries(),n=[];for(;;){let{done:r,value:s}=t.next();if(r)break;let[a,o]=s,[i]=a.split("_");i===e&&n.push(o)}return n}function Fl(e){let{kernelName:t,backendName:n}=e,r=zb(t,n);qc.has(r)&&Qr(`The kernel '${t}' for backend '${n}' is already registered`),qc.set(r,e)}function y0(e){let{kernelName:t}=e;Dl.has(t)&&J().getBool("DEBUG")&&Qr(`Overriding the gradient for '${t}'`),Dl.set(t,e)}function YD(e,t){let n=zb(e,t);if(!qc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);qc.delete(n)}function ZD(e){if(!Dl.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Dl.delete(e)}function JD(e,t){Ch(e).forEach(r=>{let s=Object.assign({},r,{backendName:t});Fl(s)})}function zb(e,t){return`${t}_${e}`}var w={};$e(w,{arraysEqual:()=>ws,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Rb,assertNonNull:()=>Ma,assertShapesMatch:()=>wn,bytesFromStringArray:()=>u0,bytesPerElement:()=>Fb,checkConversionForErrors:()=>i0,clamp:()=>ml,computeStrides:()=>Gi,createScalarValue:()=>sF,createShuffledIndices:()=>OD,decodeString:()=>_h,distSquared:()=>FD,encodeString:()=>Pl,fetch:()=>oF,fingerPrint64:()=>rF,flatten:()=>La,getArrayFromDType:()=>o0,getTypedArrayFromDType:()=>a0,hasEncodingLoss:()=>BD,hexToLong:()=>$l,indexToLoc:()=>VD,inferDtype:()=>Mp,inferFromImplicitShape:()=>LD,isBoolean:()=>l0,isFunction:()=>Zs,isInt:()=>Yt,isNumber:()=>d0,isPromise:()=>Pb,isScalarShape:()=>$D,isString:()=>Ys,isTypedArray:()=>mn,isValidDtype:()=>c0,locToIndex:()=>WD,makeOnesTypedArray:()=>$b,makeZerosNestedTypedArray:()=>zD,makeZerosTypedArray:()=>Bp,nearestDivisor:()=>Lp,nearestLargerEven:()=>ED,now:()=>Rl,parseAxisParam:()=>xr,randUniform:()=>DD,repeatedTry:()=>MD,rightPad:()=>gl,shuffle:()=>r0,shuffleCombo:()=>_D,sizeFromShape:()=>$t,sizeToSquarishShape:()=>PD,squeezeShape:()=>s0,sum:()=>AD,swap:()=>Op,tanh:()=>RD,toNestedArray:()=>Hi,toTypedArray:()=>Nh});var v0=Oa(sD()),Bo=v0.default||v0;function $l(e){return Bo.fromString(e,!0,16)}var x0=$l("c3a5c85c97cb3127"),zo=$l("b492b66fbe98f273"),kn=$l("9ae16a3b2f90404f");function Wb(e){return e.xor(e.shru(47))}function w0(e,t,n){let r=e.slice(t,t+n);return Bo.fromBytes(Array.from(r),!0,!0)}function mt(e,t){return w0(e,t,8)}function k0(e,t){return w0(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function na(e,t,n=$l("9ddfea08eb382d69")){let r=e.xor(t).mul(n);r=r.xor(r.shru(47));let s=t.xor(r).mul(n);return s=s.xor(s.shru(47)),s=s.mul(n),s}function QD(e,t,n,r,s,a){s=s.add(e),a=Zt(a.add(s).add(r),21);let o=s;return s=s.add(t),s=s.add(n),a=a.add(Zt(s,44)),[s.add(r),a.add(o)]}function Th(e,t,n,r){return QD(mt(e,t),mt(e,t+8),mt(e,t+16),mt(e,t+24),n,r)}function eF(e,t=e.length){if(t>=8){let n=kn.add(t*2),r=mt(e,0).add(kn),s=mt(e,t-8),a=Zt(s,37).mul(n).add(r),o=Zt(r,25).add(s).mul(n);return na(a,o,n)}if(t>=4){let n=kn.add(t*2),r=k0(e,0);return na(r.shl(3).add(t),k0(e,t-4),n)}if(t>0){let n=e[0],r=e[t>>1],s=e[t-1],a=n+(r<<8),o=t+(s<<2);return Wb(kn.mul(a).xor(x0.mul(o))).mul(kn)}return kn}function tF(e,t=e.length){let n=kn.add(t*2),r=mt(e,0).mul(zo),s=mt(e,8),a=mt(e,t-8).mul(n),o=mt(e,t-16).mul(kn);return na(Zt(r.add(s),43).add(Zt(a,30)).add(o),r.add(Zt(s.add(kn),18)).add(a),n)}function nF(e,t=e.length){let n=kn.add(t*2),r=mt(e,0).mul(kn),s=mt(e,8),a=mt(e,t-8).mul(n),o=mt(e,t-16).mul(kn),i=Zt(r.add(s),43).add(Zt(a,30)).add(o),c=na(i,r.add(Zt(s.add(kn),18)).add(a),n),l=mt(e,16).mul(n),u=mt(e,24),d=i.add(mt(e,t-32)).mul(n),p=c.add(mt(e,t-24)).mul(n);return na(Zt(l.add(u),43).add(Zt(d,30)).add(p),l.add(Zt(u.add(r),18)).add(d),n)}function rF(e,t=e.length){let n=Bo.fromNumber(81,!0);if(t<=32)return t<=16?eF(e,t):tF(e,t);if(t<=64)return nF(e,t);let r=n,s=n.mul(zo).add(113),a=Wb(s.mul(kn).add(113)).mul(kn),o=[Bo.UZERO,Bo.UZERO],i=[Bo.UZERO,Bo.UZERO];r=r.mul(kn).add(mt(e,0));let c=0,l=(t-1>>6)*64,u=l+(t-1&63)-63;do r=Zt(r.add(s).add(o[0]).add(mt(e,c+8)),37).mul(zo),s=Zt(s.add(o[1]).add(mt(e,c+48)),42).mul(zo),r=r.xor(i[1]),s=s.add(o[0]).add(mt(e,c+40)),a=Zt(a.add(i[0]),33).mul(zo),o=Th(e,c,o[1].mul(zo),r.add(i[0])),i=Th(e,c+32,a.add(i[1]),s.add(mt(e,c+16))),[a,r]=[r,a],c+=64;while(c!==l);let d=zo.add(a.and(255).shl(1));return c=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),r=Zt(r.add(s).add(o[0]).add(mt(e,c+8)),37).mul(d),s=Zt(s.add(o[1]).add(mt(e,c+48)),42).mul(d),r=r.xor(i[1].mul(9)),s=s.add(o[0].mul(9).add(mt(e,c+40))),a=Zt(a.add(i[0]),33).mul(d),o=Th(e,c,o[1].mul(d),r.add(i[0])),i=Th(e,c+32,a.add(i[1]),s.add(mt(e,c+16))),[a,r]=[r,a],na(na(o[0],i[0],d).add(Wb(s).mul(x0)).add(a),na(o[1],i[1],d).add(r),d)}function sF(e,t){return t==="string"?Pl(e):Nh([e],t)}function aF(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Nh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=La(e)),J().getBool("DEBUG")&&i0(e,t),aF(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r{r=n()},a,o=Rl();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let c of r)c.dataSync();a=Promise.resolve({kernelMs:Rl()-o})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let c=0;c{cF(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:a.then(c=>c.kernelMs),extraInfo:a.then(c=>c.getExtraProfileInfo!=null?c.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:s,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),r,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],s,i[2])})})}};function cF(e,t,n){if(t!=="float32")return!1;for(let r=0;r0?f:""} `}}console.log(`%c${i} %c${o} %c${c}D ${u} %c${l} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function lF(e,t,n){let r={},s={};for(let c=0;cr[m.id]=!0),h=!0,s[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let c=e.length-1;c>=0;c--){let l=e[c],u=l.inputs;for(let d=0;d=0;s--){let a=t[s],o=[];if(a.outputs.forEach(c=>{let l=e[c.id];l!=null?o.push(l):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let c in a.inputs){if(!(c in i))throw new Error(`Cannot backprop through input ${c}. Available gradients found: ${Object.keys(i)}.`);let l=n(()=>i[c]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${c} must have 'float32' dtype, but has '${l.dtype}'`);let u=a.inputs[c];if(!ws(l.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${c}' has shape '${l.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=l;else{let d=e[u.id];e[u.id]=r(d,l),d.dispose()}}}}var I0=20,Ol=3,Vb=7;function pF(e,t,n,r){let s=Gi(t),a=hF(e,t,n,s),o=t.length,i=Eh(e,t,n,s,a),c=["Tensor"];return r&&(c.push(` dtype: ${n}`),c.push(` rank: ${o}`),c.push(` shape: [${t}]`),c.push(" values:")),c.push(i.map(l=>" "+l).join(` `)),c.join(` `)}function hF(e,t,n,r){let s=$t(t),a=r[r.length-1],o=new Array(a).fill(0),i=t.length,c=n==="complex64"?Ll(e):e;if(i>1)for(let l=0;lI0){let g=Ol*o,b=Array.from(e.slice(0,g)),v=Array.from(e.slice((i-Ol)*o,i*o));return n==="complex64"&&(b=Ll(b),v=Ll(v)),["["+b.map((y,x)=>Ml(y,s[x],n)).join(", ")+", ..., "+v.map((y,x)=>Ml(y,s[i-Ol+x],n)).join(", ")+"]"]}let m=n==="complex64"?Ll(e):Array.from(e);return["["+m.map((g,b)=>Ml(g,s[b],n)).join(", ")+"]"]}let l=t.slice(1),u=r.slice(1),d=r[0]*o,p=[];if(i>I0){for(let m=0;m`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||o0(t,this.size),this.strides=Gi(e)}set(e,...t){t.length===0&&(t=[0]),R(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let n=e[e.length-1];for(let r=0;r_h(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=es().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>_h(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await es().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(es().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Kc.print(this,e)}clone(){return this.throwIfDisposed(),Kc.clone(this)}toString(e=!1){let t=this.dataSync();return pF(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Kc.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),es().makeVariable(this,e,t,n)}};Object.defineProperty(Ee,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Q(){return Lb("Tensor",()=>Ee)}Q();var ra=class extends Ee{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ws(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);es().disposeTensor(this),this.dataId=e.dataId,es().incRef(this,null)}dispose(){es().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(ra,Symbol.hasInstance,{value:e=>e instanceof Ee&&e.assign!=null&&e.assign instanceof Function});var $r={};$e($r,{assertTypesMatch:()=>C0,getTensorsInContainer:()=>Kb,isTensorInList:()=>vF,makeTypesMatch:()=>_t});var Ub;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Ub||(Ub={}));var Gb;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Gb||(Gb={}));var Hb;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Hb||(Hb={}));var jb;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(jb||(jb={}));var qb;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(qb||(qb={}));var yF={float32:jb,int32:Gb,bool:Hb,complex64:qb};function wr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return yF[e][t]}function Ah(e){return wr(e,"int32")}function _t(e,t){if(e.dtype===t.dtype)return[e,t];let n=wr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function C0(e,t){R(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function vF(e,t){return t.some(n=>n.id===e.id)}function Kb(e){let t=[],n=new Set;return T0(e,t,n),t}function T0(e,t,n){if(e==null)return;if(e instanceof Ee){t.push(e);return}if(!xF(e))return;let r=e;for(let s in r){let a=r[s];n.has(a)||(n.add(a),T0(a,t,n))}}function xF(e){return Array.isArray(e)||typeof e=="object"}function Xb(e){return e.kernelName!=null}var N0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Bl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new N0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Ch(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof fl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,s=n.then(a=>r(rthis.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;tthis.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Bl.nextTensorId++}nextVariableId(){return Bl.nextVariableId++}clone(e){let t=z.runKernel(so,{x:e}),n={x:e},r=a=>({x:()=>{let o="float32",i={x:a},c={dtype:o};return z.runKernel(Ua,i,c)}}),s=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,s,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Sh(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),s=0;n.forEach(i=>{s+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=r-t-s-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,c=Xb(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Xb(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Sh(h,this.backendName);R(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let b=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let v=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,v);let y=v.map(x=>{if(x.rank!=null)return x;let{dataId:k,shape:C,dtype:N}=x;return this.makeTensorFromDataId(k,C,N)});if(r){let x=this.getTensorsForGradient(h,f,y);n=this.saveTensorsForBackwardMode(x)}return y}}else{let{forwardFunc:h}=e,f=m=>{!r||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(c,m,g),g}}let{inputs:l,attrs:u}=e,d=Xb(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(c,l,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),r&&this.addTapeNode(c,l,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:c,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let r=Bb(e);if(r!=null){let s=r.inputsToSave||[],a=r.outputsToSave||[],o;r.saveAllInputs?(R(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(c=>t[c])):o=s.map(c=>t[c]);let i=n.filter((c,l)=>a[l]);return o.concat(i)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let s=e;n==="string"&&Ys(e[0])&&(s=e.map(i=>Pl(i)));let a=r.write(s,t,n),o=new Ee(t,n,a,this.nextTensorId());if(this.trackTensor(o,r),n==="string"){let i=this.state.tensorInfo.get(a),c=u0(s);this.state.numBytes+=c-i.bytes,i.bytes=c}return o}makeTensorFromDataId(e,t,n,r){n=n||"float32";let s=new Ee(t,n,e,this.nextTensorId());return this.trackTensor(s,r),s}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let s=new ra(e,t,n,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Fb(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof ra||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Fb(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,s,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:s},i=Bb(e);i!=null&&(r=i.gradFunc),r!=null&&(o.gradient=c=>(c=c.map((l,u)=>{if(l==null){let d=n[u],p=Bp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return l}),r(c.length>1?c:c[0],s,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Kb(e),n=new Set(t.map(s=>s.id));for(let s=0;s{!s.kept&&s.scopeId===r.id&&this.track(s)})}gradients(e,t,n,r=!1){if(R(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));R(s instanceof Ee,()=>"The result y returned by f() must be a tensor.");let a=lF(this.state.activeTape,t,s);if(!r&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[s.id]=n==null?wF(s.shape):n,dF(o,a,c=>this.tidy(c),kF);let i=t.map(c=>o[c.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(c=>{for(let l of c.saved)l.dispose()}),this.state.activeTape=null),{value:s,grads:i}})}customGrad(e){return R(Zs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{R(t.every(o=>o instanceof Ee),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((o,i)=>{r[i]=o});let s=(o,i)=>(n=e(...t,i),R(n.value instanceof Ee,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),R(Zs(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let c=n.gradFunc(o,i),l=Array.isArray(c)?c:[c];R(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),R(l.every(d=>d instanceof Ee),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return l.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Rl(),n=await this.backend.time(e);return n.wallMs=Rl()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new N0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Bl.nextTensorId=0;Bl.nextVariableId=0;function wF(e){let t=$b($t(e),"float32");return z.makeTensor(t,e,"float32")}function _0(){let e=m0();if(e._tfengine==null){let t=new f0(e);e._tfengine=new Bl(t)}return qD(e._tfengine.ENV),mF(()=>e._tfengine),e._tfengine}var z=_0();function kF(e,t){let n={a:e,b:t};return z.runKernel(Js,n)}var zl={};$e(zl,{isBrowser:()=>E0,isMobile:()=>CF,mockIsMobile:()=>SF});function IF(){return typeof navigator!="undefined"&&navigator!=null}var Yb;function SF(e){Yb=e}function CF(e){if(Yb!==void 0)return Yb;if(e||IF()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function E0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Rr=J();Rr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Rr.registerFlag("IS_BROWSER",()=>E0());Rr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Rr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Rr.registerFlag("PROD",()=>!1);Rr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Rr.getBool("DEBUG"));Rr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Rr.registerFlag("IS_TEST",()=>!1);Rr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Rr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function ts(e,t){let n=e;if(mn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||mn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&A0(e,r,[]),r}function A0(e,t,n){if(n=n||[],!Array.isArray(e)&&!mn(e)){R(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}R(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),R(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let s=0;s=0&&(s=r),D0(r,s,t,n),e==null||!mn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let c=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${c}'`)}let a=ts(e,s);!mn(e)&&!Array.isArray(e)&&(e=[e]);let i=s!=="string"?Nh(e,s):La(e,[],!0);return z.makeTensor(i,a,s)}function Wl(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>A(a,`${t}[${o}]`,n,r))}var F0="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+F0;let s=(...a)=>{z.startScope(n);try{let o=r(...a);return Pb(o)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(o),o}catch(o){throw z.endScope(null),o}};return Object.defineProperty(s,"name",{value:n,configurable:!0}),s}function TF(e,t){let n=A(e,"real","complex"),r=A(t,"imag","complex");wn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let s={real:n,imag:r};return z.runKernel(Gp,s)}var sa=W({complex_:TF});function aa(e,t,n,r){if(r==null&&(r=Mp(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!mn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Rb(t);let s=$t(t),a=$t(n);R(s===a,()=>`Based on the provided shape, [${t}], the tensor should have ${s} values but has ${a}`);for(let o=0;o`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!mn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Nh(e,r):La(e,[],!0),z.makeTensor(e,t,r)}function qn(e,t,n){let r=ts(e,n);return aa(e,t,r,n)}var Zb={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Dh=4;async function NF(e,t){let n=[],r=[],s=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o{let p=await c.bytes(),h=p.reduce((g,b)=>g+b.length,0)+Dh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let r=new Uint8Array(t),s=0;return n.forEach(a=>{r.set(new Uint8Array(a.buffer),s),s+=a.byteLength}),r.buffer}var Jb=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function R0(e){return Jb?Buffer.byteLength(e):new Blob([e]).size}function EF(e){if(Jb)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,s=t.length;r{t+=s.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(s=>{n.set(new Uint8Array(s),r),r+=s.byteLength}),n.buffer}function P0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function O0(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function ey(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[r,s]=await t(e.weightsManifest);n.weightSpecs=r,n.weightData=s}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Vl(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:R0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:R0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function DF(){let e=n=>{let r=n<<13,s=0;for(;(r&8388608)==0;)s-=8388608,r<<=1;return r&=~8388608,s+=947912704,r|s},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function FF(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function $F(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function RF(){let e=DF(),t=FF(),n=$F();return r=>{let s=new ArrayBuffer(4*r.length),a=new Uint32Array(s);for(let o=0;o>10]+(i&1023)]+t[i>>10];a[o]=c}return new Float32Array(s)}}var Ft=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ft.instance==null&&(Ft.instance=new Ft),Ft.instance}static registerSaveRouter(e){Ft.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ft.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ft.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ft.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Ft.getInstance().loadRouters:Ft.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&r.push(o)}),r}},PF=e=>Ft.registerSaveRouter(e),OF=e=>Ft.registerLoadRouter(e),MF=e=>Ft.getSaveHandlers(e),LF=(e,t)=>Ft.getLoadHandlers(e,t),ty="tensorflowjs",ny=1,Wo="models_store",oa="model_info_store";function M0(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function ry(e){let t=e.result;t.createObjectStore(Wo,{keyPath:"modelPath"}),t.createObjectStore(oa,{keyPath:"modelPath"})}var Vo=class{constructor(e){if(this.indexedDB=M0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let s=this.indexedDB.open(ty,ny);s.onupgradeneeded=()=>ry(s),s.onsuccess=()=>{let a=s.result;if(t==null){let o=a.transaction(Wo,"readonly"),c=o.objectStore(Wo).get(this.modelPath);c.onsuccess=()=>{if(c.result==null)return a.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(c.result.modelArtifacts)},c.onerror=l=>(a.close(),r(c.error)),o.oncomplete=()=>a.close()}else{let o=Vl(t),i=a.transaction(oa,"readwrite"),c=i.objectStore(oa),l=c.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;l.onsuccess=()=>{u=a.transaction(Wo,"readwrite");let p=u.objectStore(Wo).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{c=i.objectStore(oa);let f=c.delete(this.modelPath);f.onsuccess=()=>(a.close(),r(p.error)),f.onerror=m=>(a.close(),r(p.error))}},l.onerror=d=>(a.close(),r(l.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},s.onerror=a=>r(s.error)})}};Vo.URL_SCHEME="indexeddb://";var L0=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Vo.URL_SCHEME)?BF(e.slice(Vo.URL_SCHEME.length)):null;Ft.registerSaveRouter(L0);Ft.registerLoadRouter(L0);function BF(e){return new Vo(e)}function zF(e){return e.startsWith(Vo.URL_SCHEME)?e.slice(Vo.URL_SCHEME.length):e}var WF=class{constructor(){this.indexedDB=M0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(ty,ny);n.onupgradeneeded=()=>ry(n),n.onsuccess=()=>{let r=n.result,s=r.transaction(oa,"readonly"),o=s.objectStore(oa).getAll();o.onsuccess=()=>{let i={};for(let c of o.result)i[c.modelPath]=c.modelArtifactsInfo;e(i)},o.onerror=i=>(r.close(),t(o.error)),s.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=zF(e),new Promise((t,n)=>{let r=this.indexedDB.open(ty,ny);r.onupgradeneeded=()=>ry(r),r.onsuccess=()=>{let s=r.result,a=s.transaction(oa,"readwrite"),o=a.objectStore(oa),i=o.get(e),c;i.onsuccess=()=>{if(i.result==null)return s.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=o.delete(e),u=()=>{c=s.transaction(Wo,"readwrite");let p=c.objectStore(Wo).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};l.onsuccess=u,l.onerror=d=>(u(),s.close(),n(i.error))}},i.onerror=l=>(s.close(),n(i.error)),a.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}},r.onerror=s=>n(r.error)})}},ks="/",Xc="tensorflowjs_models",B0="info",VF="model_topology",UF="weight_specs",GF="weight_data",HF="model_metadata";function z0(e){return{info:[Xc,e,B0].join(ks),topology:[Xc,e,VF].join(ks),weightSpecs:[Xc,e,UF].join(ks),weightData:[Xc,e,GF].join(ks),modelMetadata:[Xc,e,HF].join(ks)}}function W0(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function jF(e){let t=e.split(ks);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ks)}function qF(e){return e.startsWith(Uo.URL_SCHEME)?e.slice(Uo.URL_SCHEME.length):e}var Uo=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=z0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Vl(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,EF(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:r}}catch(s){throw W0(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let o=JSON.parse(s);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=AF(a),t}};Uo.URL_SCHEME="localstorage://";var V0=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Uo.URL_SCHEME)?KF(e.slice(Uo.URL_SCHEME.length)):null;Ft.registerSaveRouter(V0);Ft.registerLoadRouter(V0);function KF(e){return new Uo(e)}var XF=class{constructor(){R(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),R(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Xc+ks,n=ks+B0;for(let r=0;r"scheme must not be undefined or null."),e.endsWith(Yc)&&(e=e.slice(0,e.indexOf(Yc))),R(e.length>0,()=>"scheme must not be an empty string.");let n=or.getInstance();R(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Fh(e){if(e.indexOf(Yc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${or.getSchemes().join(",")}`);return{scheme:e.split(Yc)[0],path:e.split(Yc)[1]}}async function U0(e,t,n=!1){R(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Ft.getLoadHandlers(e);R(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),R(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let s=r[0],a=Ft.getSaveHandlers(t);R(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),R(a.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Fh(e).scheme,c=Fh(e).path,l=i===Fh(e).scheme,u=await s.load();n&&l&&await or.getManager(i).removeModel(c);let d=await o.save(u);return n&&!l&&await or.getManager(i).removeModel(c),d.modelArtifactsInfo}async function YF(){let e=or.getSchemes(),t={};for(let n of e){let r=await or.getManager(n).listModels();for(let s in r){let a=n+Yc+s;t[a]=r[s]}}return t}async function ZF(e){let t=Fh(e);return or.getManager(t.scheme).removeModel(t.path)}async function JF(e,t){return U0(e,t,!1)}async function QF(e,t){return U0(e,t,!0)}var e$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new e$);try{or.registerManager(Uo.URL_SCHEME,new XF)}catch(e){}try{or.registerManager(Vo.URL_SCHEME,new WF)}catch(e){}}var t$={importFetch:()=>aD()},sy,n$=class{constructor(){this.util=oD(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(sy==null&&(sy=t$.importFetch()),sy(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new n$);function ze(e,t="float32",n){return t=t||"float32",Rb(e),new Ut(e,t,n)}function r$(e,t){let n=A(e,"x","cast");if(!c0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},s={dtype:t};return z.runKernel(Ua,r,s)}var ce=W({cast_:r$});function s$(e){let n={x:A(e,"x","clone","string_or_numeric")};return z.runKernel(so,n)}var Is=W({clone_:s$});function G0(e,t=!1){console.log(e.toString(t))}_0();var a$={buffer:ze,cast:ce,clone:Is,print:G0};gF(a$);var Jt={};$e(Jt,{browserFiles:()=>p$,browserHTTPRequest:()=>b$,concatenateArrayBuffers:()=>Qb,copyModel:()=>JF,decodeWeights:()=>$0,encodeWeights:()=>NF,fromMemory:()=>v$,getLoadHandlers:()=>LF,getModelArtifactsForJSON:()=>ey,getModelArtifactsInfoForJSON:()=>Vl,getSaveHandlers:()=>MF,http:()=>iy,isHTTPScheme:()=>oy,listModels:()=>YF,loadWeights:()=>h$,moveModel:()=>QF,registerLoadRouter:()=>OF,registerSaveRouter:()=>PF,removeModel:()=>ZF,weightsLoaderFactory:()=>K0,withSaveHandler:()=>x$});var o$="model",i$=".json",c$=".weights.bin";function H0(e){return new Promise(t=>setTimeout(t)).then(e)}var Zc=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Zc.URL_SCHEME)&&(e=e.slice(Zc.URL_SCHEME.length)),(e==null||e.length===0)&&(e=o$),this.modelJsonFileName=e+i$,this.weightDataFileName=e+c$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r=O0(e,n),s=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=s,await H0(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await H0(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Vl(e)}}}};Zc.URL_SCHEME="downloads://";var u$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=r=>{let s=JSON.parse(r.target.result),a=s.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(s.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=ey(s,c=>this.loadWeights(c));e(i)},n.onerror=r=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let r=this.checkManifestAndWeightFiles(e),s=n.map(a=>this.loadWeightsFile(a,r[a]));return Promise.all(s).then(a=>[t,Qb(a)])}loadWeightsFile(e,t){return new Promise((n,r)=>{let s=new FileReader;s.onload=a=>{let o=a.target.result;n(o)},s.onerror=a=>r(`Failed to weights data from file of path '${e}'.`),s.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(s=>P0(s.name)),r={};for(let s of e)s.paths.forEach(a=>{let o=P0(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return r}},l$=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zc.URL_SCHEME)?d$(e.slice(Zc.URL_SCHEME.length)):null;Ft.registerSaveRouter(l$);function d$(e="model"){return new Zc(e)}function p$(e){return new u$(e)}function j0(e,t,n,r){o(e),n=n==null?0:n,r=r==null?1:r,i(n,r);let s=0,a=c=>(c.then(l=>{let u=n+ ++s/e.length*(r-n);return t(u),l}),c);function o(c){R(c!=null&&Array.isArray(c)&&c.length>0,()=>"promises must be a none empty array")}function i(c,l){R(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${c}`),R(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),R(l>=c,()=>`startFraction must be no more than endFraction, but got startFraction ${c} and endFraction ${l}`)}return Promise.all(e.map(a))}async function q0(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(d=>n(d,t.requestInit,{isBinary:!0})),s=0,a=.5,i=(t.onProgress==null?await Promise.all(r):await j0(r,t.onProgress,s,a)).map(d=>d.arrayBuffer()),c=.5,l=1;return t.onProgress==null?await Promise.all(i):await j0(i,t.onProgress,c,l)}async function h$(e,t="",n,r){return K0(o=>q0(o,{requestInit:r}))(e,t,n)}function K0(e){return async(t,n="",r)=>{let s=t.map(()=>!1),a={},o=r!=null?r.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,v=Zb[b]*$t(g.shape),y=()=>{s[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:v})};r!=null?r.forEach((x,k)=>{x===g.name&&(y(),o[k]=!0)}):y(),i.push(g.name),m+=v})}),!o.every(h=>h)){let h=r.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}. Manifest JSON has weights with names: ${i.join(", ")}.`)}let c=s.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];c.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let u=await e(l),d={},p=0;return c.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),C=$0(k,[x.manifestEntry]);for(let N in C)d[N]=C[N]}),p+=f}),d}}var f$="application/octet-stream",m$="application/json",ay=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(R(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,R(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&R(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r=O0(e,n);t.body.append("model.json",new Blob([JSON.stringify(r)],{type:m$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:f$}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Vl(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(s){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,r=t.weightsManifest;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return ey(t,s=>this.loadWeights(s))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=g$(t),s=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let o=[],i=[];for(let l of e)for(let u of l.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(s+u+r);this.weightUrlConverter&&o.push(...await Promise.all(i));let c=await q0(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Qb(c)]}};ay.URL_SCHEME_REGEX=/^https?:\/\//;function g$(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),s=n>t?e.substring(n):"";return[r+"/",s]}function oy(e){return e.match(ay.URL_SCHEME_REGEX)!=null}var X0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>oy(r)):n=oy(e),n)return iy(e,t)}return null};Ft.registerSaveRouter(X0);Ft.registerLoadRouter(X0);function iy(e,t){return new ay(e,t)}function b$(e,t){return iy(e,t)}var cy=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},y$=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function v$(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new cy(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cy({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new cy({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function x$(e){return new y$(e)}var Y0={};$e(Y0,{confusionMatrix:()=>C$});function w$(e,t,n=!1,r=!1){let s=A(e,"a","matMul"),a=A(t,"b","matMul");[s,a]=_t(s,a);let o={a:s,b:a},i={transposeA:n,transposeB:r};return z.runKernel(Va,o,i)}var Ae=W({matMul_:w$});function k$(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:A(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:r};return z.runKernel(go,a,o)}var Jc=W({oneHot_:k$});function I$(e,t){let n=A(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{R(a>=0&&a`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},s={perm:t};return z.runKernel(Po,r,s)}var Re=W({transpose_:I$});function S$(e,t,n){let r=A(e,"labels","confusionMatrix"),s=A(t,"predictions","confusionMatrix");R(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),R(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),R(s.rank===1,()=>`Expected the rank of predictions to be 1, but got ${s.rank}`),R(r.shape[0]===s.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${s.shape[0]}. Labels and predictions should have the same number of elements.`),R(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Jc(ce(r,"int32"),n),o=Jc(ce(s,"int32"),n),i=Re(a),c=Ae(i,o);return ce(c,"int32")}var C$=W({confusionMatrix_:S$}),Go={};$e(Go,{fromPixels:()=>F$,fromPixelsAsync:()=>A$,toPixels:()=>D$});function $h(e,t,n){if(Ma(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=ts(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return aa(e,t,r,n)}var Ho;function Z0(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,s=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)s=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(s){let f=2;if(s&&e.readyState element.")}if(Sh(Ih,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(Ih,f,m)}let[l,u]=s?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;if(o)d=e.getContext("2d").getImageData(0,0,l,u).data;else if(r||n)d=e.data;else if(a||s||i){if(Ho==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ho=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ho=document.createElement("canvas").getContext("2d");Ho.canvas.width=l,Ho.canvas.height=u,Ho.drawImage(e,0,0,l,u),d=Ho.getImageData(0,0,l,u).data}let p;if(t===4)p=new Int32Array(d);else{let f=l*u;p=new Int32Array(f*t);for(let m=0;m4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,c=new Uint8ClampedArray(s*r*4);for(let l=0;l1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=l*4;c[d+0]=Math.round(u[0]),c[d+1]=Math.round(u[1]),c[d+2]=Math.round(u[2]),c[d+3]=Math.round(u[3])}if(t!=null){t.width=s,t.height=r;let l=t.getContext("2d"),u=new ImageData(c,s,r);l.putImageData(u,0,0)}return n!==e&&n.dispose(),c}var F$=W({fromPixels_:Z0}),uy={};$e(uy,{prepareAndValidate:()=>J0});function J0(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if($t(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let s=t.shape,a=s[s.length-1],o=1;for(let d=0;dd/l),1].slice(0,a);return[c,o,l,u]}var ly={};$e(ly,{calculateShapes:()=>Q0,validateInput:()=>py,validateUpdateShape:()=>dy});function dy(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,s=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${s}.`;if(n.rank1?t.shape[r-1]:1,a=n.length,o=1;for(let d=s;dR$,computeFlatOffset:()=>B$,computeOutShape:()=>O$,getNormalizedAxes:()=>M$,isSliceContinous:()=>L$,maskToAxes:()=>P$,parseSliceParams:()=>ck,sliceInfo:()=>z$,startForAxis:()=>ok,startIndicesWithElidedDims:()=>rk,stopForAxis:()=>ik,stopIndicesWithElidedDims:()=>sk,stridesForAxis:()=>ak,stridesWithElidedDims:()=>ek});var hy=-2,$$=-1;function R$(e,t,n){let r=e.shape.length;R(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),R(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let s=0;s`Error in slice${r}D: begin[${s}] + size[${s}] (${t[s]+n[s]}) would overflow input.shape[${s}] (${e.shape[s]})`)}function P$(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function O$(e,t,n){let r=[];for(let s=0;s0){let h=t[0],f=n+1;u=rk(o,h,f,r,e),d=sk(i,h,f,s,e),p=ek(a,h,f,e)}else for(let h=0;h-1)a[i]=0;else{let c=tk(t,n,i),l=r[c];e&1<-1)a[i]=Number.MAX_SAFE_INTEGER;else{let c=tk(t,n,i),l=r[c];e&1<0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),o=ml(0,o,c-1),o}function ik(e,t,n,r,s,a){let o=t[s],i=n[s]||1;(e&1<0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let c=r[s];return o<0&&(o+=c),i>0?o=ml(0,o,c):o=ml(-1,o,c-1),o}function L$(e,t,n){let r=n.length;for(let s=0;s1){r=s;break}for(let s=r+1;s0||n[s]!==e[s])return!1;return!0}function B$(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r{R(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(s).fill(-1):typeof n=="number"?a=[n,...new Array(s-1).fill(-1)]:n.lengtho>=0?o:(R(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-r[i])),[r,a]}function z$(e,t,n,r,s,a,o,i,c){let l;if(r==null?(l=new Array(t.length),l.fill(1)):l=r,o!=null&&(o&o-1)!=0)throw new Error("Multiple ellipses in slice is not allowed.");let u=!1,d={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:c};for(let y=0;y0?0:-1,p.strides[y]>0?k:k-1];if(x&&p.strides[y]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&p.strides[y]===1;let D=!!(p.beginMask&1<=k)throw Error(`slice index ${p.begin[y]} of dimension ${y} out of bounds.`)}else p.begin[y]=uk(p.begin[y],0,p.strides[y],k,C,N),p.end[y]=uk(p.end[y],1,p.strides[y],k,C,N);let $=p.strides[y]===1&&p.begin[y]===0&&p.end[y]===k;h=h&&$,f=f&&(y===0&&p.strides[y]===1||$)}else h=h&&p.strides[y]===1&&D,f=f&&(y===0&&p.strides[y]===1||D);let F,O=!1;if(p.beginValid&&p.endValid?(F=p.end[y]-p.begin[y],O=!0):x?(F=1,O=!0):D&&k>=0&&(p.strides[y]<0?F=-k:F=k,O=!0),O){let $;F===0||F<0!=p.strides[y]<0?$=0:$=Math.trunc(F/p.strides[y])+(F%p.strides[y]!=0?1:0),g.push($)}else g.push(-1)}for(let y=0;y=0?b.push(g[x]):x===hy&&b.push(1)}return{finalShapeSparse:b.filter((y,x)=>p.finalShapeGatherIndices[x]!==hy),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:p.begin,end:p.end,strides:p.strides}}function W$(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let r=0;r0?a[t]:a[t+1&1];{let o=e<0?r+e:e;return oa[1]?a[1]:o}}var ie={};$e(ie,{Serializable:()=>lk,SerializationMap:()=>jo,registerClass:()=>ia});var lk=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},jo=class{constructor(){this.classNameMap={}}static getMap(){return jo.instance==null&&(jo.instance=new jo),jo.instance}static register(e){jo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ia(e){R(e.className!=null,()=>"Class being registered does not have the static className property defined."),R(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),R(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),jo.register(e)}var dk={};$e(dk,{TEST_EPSILON_FLOAT16:()=>pk,encodeStrings:()=>hk,expectArrayBuffersEqual:()=>K$,expectArraysClose:()=>U$,expectArraysEqual:()=>H$,expectNumbersClose:()=>j$,expectPromiseToFail:()=>G$,expectValuesInRange:()=>q$,testEpsilon:()=>fy});var V$=.001,pk=.1;function U$(e,t,n){return n==null&&(n=fy()),my(e,t,(r,s)=>gy(r,s,n))}function fy(){return z.backend.floatPrecision()===32?V$:pk}function my(e,t,n){let r=!0;if((mn(e)||mn(t))&&(r=!1),mn(e)&&mn(t)&&(r=!0),r){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=ts(e),i=ts(t);if(!ws(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let s=mn(e)?e:La(e),a=mn(t)?t:La(t);if(s.length!==a.length)throw new Error(`Arrays have different lengths actual: ${s.length} vs expected: ${a.length}. Actual: ${s}. Expected: ${a}.`);for(let o=0;ot.fail(),()=>t())}function H$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ys(e)||Ys(e[0])||Ys(t)||Ys(t[0])?my(e,n,(r,s)=>r==s):my(e,t,(r,s)=>gy(r,s,0))}function j$(e,t,n){if(n==null&&(n=fy()),!gy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function gy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function q$(e,t,n){for(let r=0;rn)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function K$(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function hk(e){for(let t=0;tn.dispose())}function Qt(e){return z.keep(e)}function tR(e){return z.time(e)}function nR(e){return z.setBackend(e)}function rR(){return z.ready()}function sR(){return z.backendName}function aR(e){z.removeBackend(e)}function oR(e){return z.findBackend(e)}function iR(e){return z.findBackendFactory(e)}function Ph(e,t,n=1){return z.registerBackend(e,t,n)}function fk(){return z.backend}function cR(e,t){J().setPlatform(e,t)}function uR(e,t){let n=A(e,"a","add"),r=A(t,"b","add");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(Js,s)}var Y=W({add_:uR});function lR(e,t){let n=A(e,"a","floorDiv"),r=A(t,"b","floorDiv");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(to,s)}var Oh=W({floorDiv_:lR});function dR(e,t){let n=A(e,"a","div"),r=A(t,"b","div");if([n,r]=_t(n,r),n.dtype==="int32"&&r.dtype==="int32")return Oh(n,r);let s={a:n,b:r},a={};return z.runKernel(Za,s,a)}var ge=W({div_:dR});function pR(e,t){let n=A(e,"a","mul"),r=A(t,"b","mul");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(mo,s)}var V=W({mul_:pR});function hR(e){let t=A(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(vl,n)}else{let n={x:t};return z.runKernel(ji,n)}}var Lt=W({abs_:hR});function fR(e){let n={x:A(e,"x","acos")};return z.runKernel(qi,n)}var yy=W({acos_:fR});function mR(e){let n={x:A(e,"x","acosh")};return z.runKernel(Ki,n)}var vy=W({acosh_:mR});function gR(e){R(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),R(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((s,a)=>A(s,`tensors${a}`,"addN")),n=t[0];t.forEach(s=>{if(s.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(s=>{if(!ws(s.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return z.runKernel(Ba,r)}var mk=W({addN_:gR});function bR(e,t=null,n=!1){let s={x:A(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(Xi,s,a)}var Mh=W({all_:bR});function yR(e,t=null,n=!1){let s={x:A(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(Yi,s,a)}var Ul=W({any_:yR});function vR(e,t=0){let r={x:A(e,"x","argMax")},s={axis:t};return z.runKernel(za,r,s)}var qo=W({argMax_:vR});function xR(e,t=0){let r={x:A(e,"x","argMin")},s={axis:t};return z.runKernel(bl,r,s)}var xy=W({argMin_:xR});function wR(e){let n={x:A(e,"x","asin")};return z.runKernel(Zi,n)}var wy=W({asin_:wR});function kR(e){let n={x:A(e,"x","asinh")};return z.runKernel(Ji,n)}var ky=W({asinh_:kR});function IR(e){let n={x:A(e,"x","atan")};return z.runKernel(Qi,n)}var Iy=W({atan_:IR});function SR(e,t){let n=A(e,"a","atan2"),r=A(t,"b","atan2");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(tc,s)}var Sy=W({atan2_:SR});function CR(e){let n={x:A(e,"x","atanh")};return z.runKernel(ec,n)}var Cy=W({atanh_:CR});function TR(e,t,n,r,s="NHWC",a){let o=e[3],i=[...t,o],c=yk(s);return Gl(e,i,n,a,r,null,null,c)}function gk(e,t,n,r,s,a,o="channelsLast"){let[i,c]=Lh(t),l;if(o==="channelsLast")l=[i,c,e[3],e[3]];else if(o==="channelsFirst")l=[i,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return Gl(e,l,n,r,s,a,!1,o)}function NR(e,t,n,r,s,a,o="NDHWC"){let[i,c,l]=Ny(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,c,l,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,c,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return bk(e,u,n,r,s,!1,d,a)}function Gl(e,t,n,r,s,a,o=!1,i="channelsLast"){let[c,l,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[c,l,u,d]=e;else if(i==="channelsFirst")[c,d,l,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=Lh(n),[b,v]=Lh(r),y=Qc(p,b),x=Qc(h,v),{padInfo:k,outHeight:C,outWidth:N}=AR(s,l,u,m,g,y,x,a,i),D=o?f*d:f,F;return i==="channelsFirst"?F=[c,D,C,N]:i==="channelsLast"&&(F=[c,C,N,D]),{batchSize:c,dataFormat:i,inHeight:l,inWidth:u,inChannels:d,outHeight:C,outWidth:N,outChannels:D,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:y,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:v,inShape:e,outShape:F,filterShape:t}}function bk(e,t,n,r,s,a=!1,o="channelsLast",i){let[c,l,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[c,l,u,d,p]=e;else if(o==="channelsFirst")[c,p,l,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[b,v,y]=Ny(n),[x,k,C]=Ny(r),N=Qc(h,x),D=Qc(f,k),F=Qc(m,C),{padInfo:O,outDepth:$,outHeight:P,outWidth:T}=DR(s,l,u,d,b,v,y,N,D,F,i),L=a?g*p:g,G;return o==="channelsFirst"?G=[c,L,$,P,T]:o==="channelsLast"&&(G=[c,$,P,T,L]),{batchSize:c,dataFormat:o,inDepth:l,inHeight:u,inWidth:d,inChannels:p,outDepth:$,outHeight:P,outWidth:T,outChannels:L,padInfo:O,strideDepth:b,strideHeight:v,strideWidth:y,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:D,effectiveFilterWidth:F,dilationDepth:x,dilationHeight:k,dilationWidth:C,inShape:e,outShape:G,filterShape:t}}function _R(e,t,n,r,s){r==null&&(r=Ty(e,t,n));let a=e[0],o=e[1],i=Ko((a-t+2*r)/n+1,s),c=Ko((o-t+2*r)/n+1,s);return[i,c]}function ER(e,t,n,r,s,a){s==null&&(s=Ty(e,t,r));let o=e[0],i=e[1],c=e[2],l=Ko((o-t+2*s)/r+1,a),u=Ko((i-t+2*s)/r+1,a),d=Ko((c-t+2*s)/r+1,a);return[l,u,d,n]}function Ty(e,t,n,r=1){let s=Qc(t,r);return Math.floor((e[0]*(n-1)-n+s)/2)}function Lh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Ny(e){return typeof e=="number"?[e,e,e]:e}function Qc(e,t){return t<=1?e:e+(e-1)*(t-1)}function AR(e,t,n,r,s,a,o,i,c){let l,u,d;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=_R([t,n],a,r,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/r),d=Math.ceil(n/s);let p=Math.max(0,(u-1)*r+a-t),h=Math.max(0,(d-1)*s+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/r),d=Math.ceil((n-o+1)/s);else if(typeof e=="object"){let p=c==="channelsLast"?e[1][0]:e[2][0],h=c==="channelsLast"?e[1][1]:e[2][1],f=c==="channelsLast"?e[2][0]:e[3][0],m=c==="channelsLast"?e[2][1]:e[3][1];l={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Ko((t-a+p+h)/r+1,i),d=Ko((n-o+f+m)/s+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:u,outWidth:d}}function DR(e,t,n,r,s,a,o,i,c,l,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=ER([t,n,r,1],i,1,s,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/s),h=Math.ceil(n/a),f=Math.ceil(r/o);let m=(p-1)*s+i-t,g=(h-1)*a+c-n,b=(f-1)*o+l-r,v=Math.floor(m/2),y=m-v,x=Math.floor(g/2),k=g-x,C=Math.floor(b/2),N=b-C;d={top:x,bottom:k,left:C,right:N,front:v,back:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/s),h=Math.ceil((n-c+1)/a),f=Math.ceil((r-l+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Ko(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ca(e){let[t,n,r]=Lh(e);return t===1&&n===1&&r===1}function ns(e,t){return ca(e)||ca(t)}function yk(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function FR(e,t){let r={x:A(e,"x","reshape","string_or_numeric")},s={shape:t};return z.runKernel(Dc,r,s)}var U=W({reshape_:FR});function $R(e,t,n,r,s){let a=A(e,"x","avgPool","float32"),o=1;R(ns(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,c=!1;a.rank===3&&(c=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),R(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),s!=null&&R(Yt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(Wa,l,u);return d=ce(d,a.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var ir=W({avgPool_:$R});function RR(e,t,n,r,s,a="NDHWC"){let o=A(e,"x","avgPool3d","float32"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),R(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&R(Yt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(yl,l,u);return d=ce(d,i.dtype),c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var _y=W({avgPool3d_:RR});function PR(e,t=0){R(e.length>=1,()=>"Pass at least one tensor to concat");let n=Wl(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor with dtype ${a.dtype}. `)}),n.length===1)return Is(n[0]);let r=n,s={axis:t};return z.runKernel(rc,r,s)}var Ze=W({concat_:PR});function OR(e){let n={x:A(e,"x","sigmoid","float32")};return z.runKernel(No,n)}var cr=W({sigmoid_:OR});function MR(e,t,n){let r=A(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let s={x:r},a={begin:t,size:n};return z.runKernel(Pc,s,a)}var We=W({slice_:MR});function LR(e){let n={x:A(e,"x","tanh","float32")};return z.runKernel(Ro,n)}var Xo=W({tanh_:LR});function BR(e,t,n,r,s,a){let o=A(e,"forgetBias","basicLSTMCell"),i=A(t,"lstmKernel","basicLSTMCell"),c=A(n,"lstmBias","basicLSTMCell"),l=A(r,"data","basicLSTMCell"),u=A(s,"c","basicLSTMCell"),d=A(a,"h","basicLSTMCell"),p=Ze([l,d],1),h=Ae(p,i),f=Y(h,c),m=f.shape[0],g=f.shape[1]/4,b=[m,g],v=We(f,[0,0],b),y=We(f,[0,g],b),x=We(f,[0,g*2],b),k=We(f,[0,g*3],b),C=Y(V(cr(v),Xo(y)),V(u,cr(Y(o,x)))),N=V(Xo(C),cr(k));return[C,N]}var zR=W({basicLSTMCell_:BR});function WR(e,t,n){let r=A(e,"x","batchToSpaceND"),s=t.reduce((i,c)=>i*c);R(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),R(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),R(r.shape[0]%s==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${s}`);let a={x:r},o={blockShape:t,crops:n};return z.runKernel(nc,a,o)}var Hl=W({batchToSpaceND_:WR});function VR(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function UR(e,t,n,r,s,a){a==null&&(a=.001);let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;r!=null&&(u=A(r,"offset","batchNorm")),R(i.rank===c.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),R(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),R(l==null||i.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:VR(o),scale:l,offset:u,mean:i,variance:c},h={varianceEpsilon:a},f=z.runKernel(no,p,h);return U(f,o.shape)}var Cs=W({batchNorm_:UR});function GR(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),R(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),R(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),R(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${c.rank}.`),l!=null&&R(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Cs(o,i,c,u,l,a)}var vk=W({batchNorm2d_:GR});function HR(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),R(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),R(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),R(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${c.rank}.`),l!=null&&R(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Cs(o,i,c,u,l,a)}var xk=W({batchNorm3d_:HR});function jR(e,t,n,r,s,a){let o=A(e,"x","batchNorm"),i=A(t,"mean","batchNorm"),c=A(n,"variance","batchNorm"),l;s!=null&&(l=A(s,"scale","batchNorm"));let u;return r!=null&&(u=A(r,"offset","batchNorm")),R(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),R(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),R(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${c.rank}.`),l!=null&&R(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&R(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Cs(o,i,c,u,l,a)}var wk=W({batchNorm4d_:jR});function qR(e,t,n){let r=A(e,"x","bincount"),s=A(t,"weights","bincount");R(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(s.size===r.size||s.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${s.shape}.`);let a={x:r,weights:s},o={size:n};return z.runKernel(Vp,a,o)}var Ey=W({bincount_:qR});function KR(e,t){let n=A(e,"s0","broadcastArgs","int32"),r=A(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(r.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${r.rank}`);let s={s0:n,s1:r};return z.runKernel(Up,s)}var kk=W({broadcastArgs_:KR});function XR(e,t){let n=A(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.lengthn.rank){let l=n.shape.slice();for(;l.length=0;l--)if(s[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(a.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Is(n);let i={x:n},c={reps:a};return z.runKernel(ea,i,c)}var eu=W({broadcastTo_:XR});function YR(e){let n={x:A(e,"x","ceil","float32")};return z.runKernel(Ga,n)}var Ay=W({ceil_:YR});function ZR(e,t,n){let r=A(e,"x","clipByValue");R(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let s={x:r},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Qs,s,a)}var en=W({clipByValue_:ZR});function JR(e){return Ze(e,0)}var Ik=W({concat1d_:JR});function QR(e,t){return Ze(e,t)}var Sk=W({concat2d_:QR});function eP(e,t){return Ze(e,t)}var Ck=W({concat3d_:eP});function tP(e,t){return Ze(e,t)}var Tk=W({concat4d_:tP});function nP(e,t,n,r,s="NHWC",a=[1,1],o){let i=A(e,"x","conv2d","float32"),c=A(t,"filter","conv2d","float32"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),R(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),R(c.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${c.rank}.`),o!=null&&R(Yt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d=s==="NHWC"?l.shape[3]:l.shape[1];R(d===c.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${c.shape[2]}.`),R(ns(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:l,filter:c},h={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},f=z.runKernel(Ha,p,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Rt=W({conv2d_:nP});function rP(e,t,n,r,s="NWC",a=1,o){let i=A(e,"x","conv1d"),c=A(t,"filter","conv1d"),l=i,u=!1;i.rank===2&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1]])),R(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),R(c.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${c.rank}.`),o!=null&&R(Yt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),R(l.shape[2]===c.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${c.shape[1]}.`),R(ns(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),R(s==="NWC",()=>`Error in conv1d: got dataFormat of ${s} but only NWC is currently supported.`);let d=U(c,[1,c.shape[0],c.shape[1],c.shape[2]]),p=U(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=Rt(p,d,[1,n],r,"NHWC",[1,a],o);return u?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var Bh=W({conv1d_:rP});function sP(e,t,n,r,s,a="NHWC",o){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,c=t,l=!1;t.rank===3&&(l=!0,c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),R(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),R(c.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${c.rank}`),R(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?c.shape[3]:c.shape[1];R(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),R(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&R(Yt(s),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let p={dy:c,filter:n},h={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,inputShape:i},f=z.runKernel(ja,p,h);return l?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Dy=W({conv2DBackpropInput_:sP});function aP(e,t,n,r,s,a){let o=A(e,"x","conv2dTranspose"),i=A(t,"filter","conv2dTranspose");return Dy(n,o,i,r,s,"NHWC",a)}var zh=W({conv2dTranspose_:aP});function oP(e,t,n,r,s="NDHWC",a=[1,1,1]){let o=A(e,"x","conv3d"),i=A(t,"filter","conv3d"),c=o,l=!1;o.rank===4&&(l=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(c.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${c.rank}.`),R(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),R(c.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${c.shape[4]}) must match input depth for filter ${i.shape[3]}.`),R(ns(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),R(s==="NDHWC",()=>`Error in conv3d: got dataFormat of ${s} but only NDHWC is currently supported.`);let u={x:c,filter:i},d={strides:n,pad:r,dataFormat:s,dilations:a},p=z.runKernel(xl,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Fy=W({conv3d_:oP});function iP(e,t,n,r,s){R(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let c=a[4],l=o.shape[4];R(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),R(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),R(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),R(c===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[3]}.`),R(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:s,strides:r,inputShape:a},p=z.runKernel(qp,u,d);return i?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Nk=W({conv3DBackpropInput_:iP});function cP(e,t,n,r,s){let a=A(e,"x","conv3dTranspose"),o=A(t,"filter","conv3dTranspose");return Nk(n,a,o,r,s)}var _k=W({conv3dTranspose_:cP});function uP(e){let n={x:A(e,"x","cos","float32")};return z.runKernel(qa,n)}var jl=W({cos_:uP});function lP(e){let n={x:A(e,"x","cosh","float32")};return z.runKernel(Ka,n)}var Wh=W({cosh_:lP});function dP(e,t=0,n=!1,r=!1){let a={x:A(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:r};return z.runKernel(Xa,a,o)}var Vh=W({cumsum_:dP});function pP(e,t,n,r=!1){let s=A(e,"x","denseBincount"),a=A(t,"weights","denseBincount");R(s.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${s.dtype}`),R(s.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${s.rank}.`),R(n>=0,()=>`size must be non-negative, but got ${n}.`),R(a.size===s.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${s.shape}, weights shape: ${a.shape}.`);let o={x:s,weights:a},i={size:n,binaryOutput:r};return z.runKernel(Kp,o,i)}var Ek=W({denseBincount_:pP});function hP(e,t,n="NHWC"){let r=A(e,"x","depthToSpace","float32"),s=n==="NHWC"?r.shape[1]:r.shape[2],a=n==="NHWC"?r.shape[2]:r.shape[3],o=n==="NHWC"?r.shape[3]:r.shape[1];R(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),R(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${s} and ${t} for depthToSpace with input shape ${r.shape}`),R(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying ${a} and ${t} for depthToSpace with input shape ${r.shape}`),R(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${r.shape}`);let i={x:r},c={blockSize:t,dataFormat:n};return z.runKernel(ac,i,c)}var $y=W({depthToSpace_:hP});function fP(e,t,n,r,s="NHWC",a=[1,1],o){let i=A(e,"x","depthwiseConv2d","float32"),c=A(t,"filter","depthwiseConv2d","float32"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),R(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),R(c.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),R(l.shape[3]===c.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),o!=null&&R(Yt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:l,filter:c},p={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o},h=z.runKernel(Ya,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ua=W({depthwiseConv2d_:fP});function mP(e){let n={x:A(e,"x","diag")};return z.runKernel(Zp,n)}var gP=W({diag_:mP});function bP(e,t,n,r,s=[1,1],a="NHWC"){let o=A(e,"x","dilation2d"),i=A(t,"filter","dilation2d");R(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),R(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),R(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let c=o,l=!1;o.rank===3&&(c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=!0);let u={x:c,filter:i},d={strides:n,pad:r,dilations:s},p=z.runKernel(wl,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ry=W({dilation2d_:bP});function yP(e,t){let n=e.length,r=[];for(let s=0;s1&&o===1&&r.unshift(a)}return r}function Ht(e,t){let n=[];for(let r=0;r1)&&n.unshift(a)}return n}function bt(e,t){let n=[],r=Math.max(e.length,t.length);for(let s=0;s`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let s=n.rank===1?n.size:n.shape[1],a=r.rank===1?r.size:r.shape[0];if(R(s===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${s} and ${a}.`),n.rank===1&&r.rank===1){let o=U(n,[1,-1]),i=U(r,[-1,1]),c=Ae(o,i);return U(c,[])}else if(n.rank===1&&r.rank===2){let o=U(n,[1,-1]),i=U(r,[r.shape[0],r.shape[1]]),c=Ae(o,i);return U(c,[c.size])}else if(n.rank===2&&r.rank===1){let o=U(r,[-1,1]),i=Ae(n,o);return U(i,[i.size])}else{let o=U(r,[r.shape[0],r.shape[1]]);return Ae(n,o)}}var Ak=W({dot_:IP});function SP(e,...t){let n=t.map((s,a)=>A(s,`tensors${a}`,"einsum")),r={equation:e};return z.runKernel(eh,n,r)}var Dk=W({einsum_:SP});function CP(e){let n={x:A(e,"x","elu","float32")};return z.runKernel(Ja,n)}var tu=W({elu_:CP});function TP(e){let t=A(e,"x","erf");R(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ce(t,"float32"));let n={x:t};return z.runKernel(oc,n)}var Oy=W({erf_:TP});function NP(e){let n={x:A(e,"x","exp")};return z.runKernel(Qa,n)}var bn=W({exp_:NP});function _P(e,t=0){let n=A(e,"x","expandDims","string_or_numeric");R(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},s={dim:t};return z.runKernel(cc,r,s)}var yn=W({expandDims_:_P});function EP(e){let n={x:A(e,"x","expm1")};return z.runKernel(uc,n)}var My=W({expm1_:EP});function AP(e,t){let n=A(e,"x","tile","string_or_numeric");R(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},s={reps:t};return z.runKernel(ea,r,s)}var On=W({tile_:AP});function DP(e,t,n,r="float32"){t==null&&(t=e);let s=ze([e,t],r),a=e<=t?e:t;for(let i=0;i`Error in localResponseNormalization: x must be rank 3 or 4 but got rank ${a.rank}.`),R(Yt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let c={x:o},l={depthRadius:t,bias:n,alpha:r,beta:s},u=z.runKernel(Cl,c,l);return i?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var zy=W({localResponseNormalization_:UP});function GP(e){let n={x:A(e,"x","log","float32")};return z.runKernel(oo,n)}var Xn=W({log_:GP});function HP(e){let n={x:A(e,"x","log1p")};return z.runKernel(vc,n)}var Kl=W({log1p_:HP});function jP(e){return R(Zs(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=A(t,"x","tf.grad","string_or_numeric"),s=n!=null?A(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(r),[r],s);return s!=null&&wn(a.shape,s.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Hh(o),o[0]})}}function qP(e){return R(Zs(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{R(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Wl(t,"args","tf.grads","string_or_numeric"),s=n!=null?A(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:o}=z.gradients(()=>e(...r),r,s);return s!=null&&wn(a.shape,s.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(o),o})}}function KP(e){return R(Zs(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{R(t instanceof Ee,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),R(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:s}=z.gradients(()=>e(t),[t],n);return Hh(r),{grad:r[0],value:s}}}function XP(e){return R(Zs(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{R(Array.isArray(t)&&t.every(s=>s instanceof Ee),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),R(n==null||n instanceof Ee,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=z.gradients(()=>e(...t),t,n);return n!=null&&wn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Hh(r.grads),r}}function Pk(e,t){R(Zs(e),()=>"The f passed in variableGrads(f) must be a function"),R(t==null||Array.isArray(t)&&t.every(l=>l instanceof ra),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in z.registeredVariables)t.push(z.registeredVariables[l])}let r=n?t.filter(l=>!l.trainable):null,s=t.length;t=t.filter(l=>l.trainable),R(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${s} variables is trainable.`);let a=!0,{value:o,grads:i}=z.gradients(e,t,null,a);R(i.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),R(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let c={};return t.forEach((l,u)=>{i[u]!=null&&(c[l.name]=i[u])}),r!=null&&r.forEach(l=>c[l.name]=null),{value:o,grads:c}}function rs(e){return z.customGrad(e)}function Hh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.`)}function YP(e){let n={x:A(e,"x","neg")};return z.runKernel(kc,n)}var kt=W({neg_:YP});function ZP(e){let n={x:A(e,"x","softplus")};return z.runKernel(Lc,n)}var Zo=W({softplus_:ZP});function JP(e){let t=A(e,"x","logSigmoid");return rs(r=>({value:kt(Zo(kt(r))),gradFunc:o=>V(o,cr(kt(r)))}))(t)}var Ok=W({logSigmoid_:JP});function QP(e,t=null,n=!1){let s={x:A(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(io,s,a)}var kr=W({max_:QP});function eO(e,t){let n=A(e,"a","sub"),r=A(t,"b","sub");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(Fo,s)}var fe=W({sub_:eO});function tO(e,t=null,n=!1){let r=A(e,"x","sum");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(Eo,s,a)}var ve=W({sum_:tO});function nO(e,t=-1){let n=A(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return rs((s,a)=>{let o=!0,i=kr(s,t,!0),c=fe(s,i),l=fe(ce(c,"float32"),Xn(ve(bn(c),t,o)));return a([l]),{value:l,gradFunc:(d,p)=>{let[h]=p,f=!0,m=bn(h);return fe(d,V(ve(d,t,f),m))}}})(n)}var jh=W({logSoftmax_:nO});function Wy(e,t){for(let n=0;ne[a]);return[n,s]}function Jo(e,t){let n=t.map(r=>1);return Mk(e,n,t)}function rO(e,t,n){R(Wy(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Bk(e,t){if(Wy(e,t))return null;let n=[];for(let r=0;rn.push(r)),n}function Vy(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function sO(e,t){let n=[];for(let r=t-e;r`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),R(ns(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),s!=null&&R(Yt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s},d=z.runKernel(uo,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Pt=W({maxPool_:lO});function dO(e,t=[1,1,1],n,r,s,a="NDHWC"){let o=A(e,"x","maxPool3d"),i=o,c=!1;o.rank===4&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),R(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),R(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),s!=null&&R(Yt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let l={x:i},u={filterSize:t,strides:n,pad:r,dimRoundingMode:s,dataFormat:a},d=z.runKernel(Tl,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Gy=W({maxPool3d_:dO});function pO(e,t,n,r,s=!1){let o={x:A(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:s},c=z.runKernel(uh,o,i);return{result:c[0],indexes:c[1]}}var Wk=W({maxPoolWithArgmax_:pO});function hO(e,t){let n=A(e,"a","maximum"),r=A(t,"b","maximum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),bt(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(co,s)}var ss=W({maximum_:hO});function fO(e,t=null,n=!1){let s={x:A(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(lo,s,a)}var Et=W({mean_:fO});function It(e,t="float32"){if(t==="complex64"){let r=It(e,"float32"),s=It(e,"float32");return sa(r,s)}let n=Bp($t(e),t);return z.makeTensor(n,e,t)}function Yn(e,t="float32"){if(t==="complex64"){let r=Yn(e,"float32"),s=It(e,"float32");return sa(r,s)}let n=$b($t(e),t);return z.makeTensor(n,e,t)}function mO(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let r=A(e,"x","meshgrid",e instanceof Ee?e.dtype:"float32");if(t===void 0)return[r];let s=A(t,"y","meshgrid",t instanceof Ee?t.dtype:"float32"),a=$t(r.shape),o=$t(s.shape);return n==="xy"?(r=U(r,[1,-1]),s=U(s,[-1,1]),[Ae(Yn([o,1],r.dtype),r),Ae(s,Yn([1,a],s.dtype))]):(r=U(r,[-1,1]),s=U(s,[1,-1]),[Ae(r,Yn([1,o],r.dtype)),Ae(Yn([a,1],s.dtype),s)])}function gO(e,t=null,n=!1){let s={x:A(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(po,s,a)}var Yl=W({min_:gO});function bO(e,t){let n=A(e,"a","minimum"),r=A(t,"b","minimum");[n,r]=_t(n,r),n.dtype==="bool"&&(n=ce(n,"int32"),r=ce(r,"int32")),bt(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(ho,s)}var ru=W({minimum_:bO});function yO(e,t,n){R(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=A(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");R(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let s=n==="reflect"?1:0;for(let i=0;i"Invalid number of paddings. Must be length of 2 each."),R(t[i][0]>=0&&t[i][0]<=r.shape[i]-s&&t[i][1]>=0&&t[i][1]<=r.shape[i]-s,()=>`Padding in dimension ${i} cannot be greater than or equal to ${r.shape[i]-s} or less than 0 for input of shape ${r.shape}`);let a={paddings:t,mode:n},o={x:r};return z.runKernel(fo,o,a)}var Hy=W({mirrorPad_:yO});function vO(e,t){let n=A(e,"a","mod"),r=A(t,"b","mod");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(wc,s)}var jy=W({mod_:vO});function xO(e){let t=A(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ct=W({square_:xO});function wO(e,t=null,n=!1){e=A(e,"x","moments");let r=xr(t,e.shape),s=Et(e,r,n),a=s.shape;n||(a=Jo(s.shape,r));let o=ct(fe(ce(e,"float32"),U(s,a))),i=Et(o,r,n);return{mean:s,variance:i}}var Kh=W({moments_:wO});function kO(e,t,n,r){let s=A(t,"data","multiRNNCell"),a=Wl(n,"c","multiRNNCell"),o=Wl(r,"h","multiRNNCell"),i=s,c=[];for(let d=0;d2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let c={logits:o===1?U(s,[1,-1]):s},l={numSamples:t,seed:n,normalized:r},u=z.runKernel(lh,c,l);return o===1?U(u,[u.size]):u}var Vk=W({multinomial_:SO});function CO(e,t){let n=A(e,"a","notEqual","string_or_numeric"),r=A(t,"b","notEqual","string_or_numeric");[n,r]=_t(n,r),bt(n.shape,r.shape);let s={a:n,b:r};return z.runKernel(Ic,s)}var Qo=W({notEqual_:CO});function TO(e){let n={x:A(e,"x","onesLike")};return z.runKernel(Nc,n)}var Zn=W({onesLike_:TO});function NO(e,t){let n=A(e,"v1","outerProduct"),r=A(t,"v2","outerProduct");R(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let s=U(n,[-1,1]),a=U(r,[1,-1]);return Ae(s,a)}var _O=W({outerProduct_:NO});function EO(e,t,n=0){let r=A(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let s={paddings:t,constantValue:n},a={x:r};return z.runKernel(bo,a,s)}var ur=W({pad_:EO});function AO(e,t,n=0){return R(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ur(e,[t],n)}var DO=W({pad1d_:AO});function FO(e,t,n=0){return R(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ur(e,t,n)}var $O=W({pad2d_:FO});function RO(e,t,n=0){return R(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ur(e,t,n)}var PO=W({pad3d_:RO});function OO(e,t,n=0){return R(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ur(e,t,n)}var MO=W({pad4d_:OO});function LO(e,t,n){let r=A(e,"x","spaceToBatchND");R(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),R(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),R(r.shape.reduce((o,i,c)=>c>0&&c<=t.length?o&&(i+n[c-1][0]+n[c-1][1])%t[c-1]==0:o,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let s={x:r},a={blockShape:t,paddings:n};return z.runKernel(Bc,s,a)}var Zl=W({spaceToBatchND_:LO});function BO(e,t,n,r,s,a){s==null&&(s=[1,1]),a==null&&(a=1),r===0&&(r="valid");let o=A(e,"x","maxPool"),i=o,c=!1;o.rank===3&&(c=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),R(ns(a,s),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${s}'`);let l=gk(i.shape,t,a,s,r),u=[l.dilationHeight,l.dilationWidth],d;r==="same"?d=WO([l.filterHeight,l.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=zO([l.inHeight,l.inWidth],u,d),m=p?r:"valid",g=p?i:Zl(i,u,h),v=(n==="avg"?()=>ir(g,t,a,m):()=>Pt(g,t,a,m))(),y=p?v:Hl(v,u,f);return c?U(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function zO(e,t,n){let r=n.map(u=>u[0]),s=n.map(u=>u[1]),a=e.concat(r,s),o=t.map((u,d)=>(u-a[d]%u)%u),i=s.map((u,d)=>u+o[d]),c=t.map((u,d)=>[r[d],i[d]]),l=t.map((u,d)=>[0,o[d]]);return[c,l]}function WO(e,t){let r=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),s=r.map(o=>Math.floor(o/2)),a=r.map((o,i)=>o-s[i]);return r.map((o,i)=>[s[i],a[i]])}var Uk=W({pool_:BO});function VO(e,t){let n=A(e,"base","pow"),r=A(t,"exp","pow");[n,r]=_t(n,r);let s={a:n,b:r};return z.runKernel(yo,s)}var Ts=W({pow_:VO});function UO(e,t){let n=A(e,"x","prelu"),r=A(t,"alpha","prelu"),s={x:n,alpha:r};return z.runKernel(vo,s)}var Jl=W({prelu_:UO});function GO(e,t=null,n=!1){let r=A(e,"x","prod");r.dtype==="bool"&&(r=ce(r,"int32"));let s={x:r},a={axis:t,keepDims:n};return z.runKernel(Ec,s,a)}var Xh=W({prod_:GO});function HO(e,t,n){let r=$t(e),s=null;if(n==null||n==="float32")s=new Float32Array(r);else if(n==="int32")s=new Int32Array(r);else if(n==="bool")s=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let a=0;a=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*r*o,t=this.mean+this.stdDev*s*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},qO=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let s=r||Math.random();this.randu=qy.alea(s.toString()),this.randn=new Ky(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,s,a;for(;;){do r=this.randn.nextValue(),a=1+this.c*r;while(a<=0);if(a*=a*a,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),sthis.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=qy.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function XO(e,t,n=1,r="float32",s){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let a=new qO(t,n,r,s),o=ze(e,r);for(let i=0;i`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Jn(t,0)}var a3=W({reverse1d_:s3});function o3(e,t){let n=A(e,"x","reverse");return R(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Jn(n,t)}var i3=W({reverse2d_:o3});function c3(e,t){let n=A(e,"x","reverse");return R(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Jn(n,t)}var u3=W({reverse3d_:c3});function l3(e,t){let n=A(e,"x","reverse");return R(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Jn(n,t)}var d3=W({reverse4d_:l3});function p3(e){let n={x:A(e,"x","round")};return z.runKernel(So,n)}var Zh=W({round_:p3});function h3(e){let n={x:A(e,"x","rsqrt","float32")};return z.runKernel(Co,n)}var Jh=W({rsqrt_:h3});function Se(e,t){if((mn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&mn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return aa(e,[],[],t)}function f3(e){let n={x:A(e,"x","selu")};return z.runKernel(Rc,n)}var Qh=W({selu_:f3});function m3(e,t,n,r,s,a=[1,1],o="NHWC"){let i=A(e,"x","separableConv2d"),c=A(t,"depthwiseFilter","separableConv2d"),l=A(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");R(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),R(c.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${c.rank}.`),R(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${c.rank}.`),R(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),R(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let p=c.shape[2],h=c.shape[3];R(l.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${l.shape[2]}.`);let f=ua(u,c,r,s,o,a),g=Rt(f,l,1,"valid",o);return d?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var ei=W({separableConv2d_:m3});async function g3(e,t){let n=A(e,"x","setdiff1d"),r=A(t,"y","setdiff1d");R(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),R(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),R(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let s=await n.data(),a=await r.data(),o=new Set(a),i=0;for(let u=0;u`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),We(r,[t],[n])}var nf=W({slice1d_:x3});function w3(e,t,n){let r=A(e,"x","slice2d");return R(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var Zy=W({slice2d_:w3});function k3(e,t,n){let r=A(e,"x","slice3d");return R(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var ou=W({slice3d_:k3});function I3(e,t,n){let r=A(e,"x","slice4d");return R(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),We(r,t,n)}var ed=W({slice4d_:I3});function S3(e,t=-1){let n=A(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},s={dim:t};return z.runKernel(Ao,r,s)}var Pr=W({softmax_:S3});function C3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(nh,t)}var td=W({fft_:C3});function T3(e){R(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(rh,t)}var iu=W({ifft_:T3});function N3(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let s=U(e,[n,t]);r=iu(s)}else{let s=[n,2*(t-1)],a=U(Ql(e),[n,t]),o=U(Uh(e),[n,t]),i=Jn(We(a,[0,1],[n,t-2]),1),c=V(Jn(We(o,[0,1],[n,t-2]),1),Se(-1)),l=Ze([a,i],1),u=Ze([o,c],1),d=U(sa(l,u),[s[0],s[1]]);r=iu(d)}if(r=Ql(r),e.rank===3&&e.shape[0]!==0){let s=r,a=e.shape[0];r=U(r,[a,r.shape[0]/a,r.shape[1]]),s.dispose()}return r}var rf=W({irfft_:N3});function _3(e,t,n=0){let s={x:A(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(zc,s,a)}var Ln=W({split_:_3});function E3(e,t){R(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,s;if(t!=null&&t0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,s=We(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,s=Ze([e,It(f)],e.shape.length-1),n=t}else s=e;let a=Ue(s),o=U(sa(s,a),[r,n]),i=td(o),c=Math.floor(n/2)+1,l=Ql(i),u=Uh(i),d=Ln(l,[c,n-c],l.shape.length-1),p=Ln(u,[c,n-c],u.shape.length-1),h=s.shape.slice();return h[s.shape.length-1]=c,U(sa(d[0],p[0]),h)}var nd=W({rfft_:E3});function A3(e){let n={x:A(e,"x","sqrt","float32")};return z.runKernel(_o,n)}var un=W({sqrt_:A3});function D3(e,t){let n=A(e,"a","squaredDifference"),r=A(t,"b","squaredDifference");[n,r]=_t(n,r),bt(n.shape,r.shape);let s={a:n,b:r},a={};return z.runKernel(Do,s,a)}var sf=W({squaredDifference_:D3});function F3(e,t){let n=A(e,"x","squeeze");return U(n,s0(n.shape,t).newShape)}var as=W({squeeze_:F3});function $3(e,t=0){let n=Wl(e,"tensors","stack","string_or_numeric");R(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&R(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,s={axis:t};return z.runKernel(_c,r,s)}var Ot=W({stack_:$3});function R3(e,t=0){let r={x:A(e,"x","step")},s={alpha:t};return z.runKernel(ta,r,s)}var cu=W({step_:R3});function P3(e,t,n,r,s=0,a=0,o=0,i=0,c=0){let u={x:A(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:r,beginMask:s,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:c};return z.runKernel(Wc,u,d)}var Jy=W({stridedSlice_:P3});function O3(e){let n={x:A(e,"x","tan","float32")};return z.runKernel($o,n)}var Qy=W({tan_:O3});function Ge(e,t){Ma(e);let n=ts(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return aa(e,null,n,t)}function Or(e,t,n){if(Ma(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=ts(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return aa(e,t,r,n)}function Mr(e,t,n){if(Ma(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=ts(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return aa(e,t,r,n)}function M3(e,t,n){if(Ma(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=ts(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return aa(e,t,r,n)}function L3(e,t,n){if(Ma(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=ts(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,aa(e,t,r,n)}function B3(e,t=1,n=!0){let r=A(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let s=r.shape[r.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>s)throw new Error(`'k' passed to topk() must be <= the last dimension (${s}) but got ${t}`);let a={x:r},o={k:t,sorted:n},[i,c]=z.runKernel(Vc,a,o);return{values:i,indices:c}}var ev=W({topk_:B3});function z3(e,t=0,n=1,r,s){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new Ky(t,n,r,!0,s),o=ze(e,r);for(let i=0;i0,()=>"The input tensor must be at least 1D");let r={x:n},s={axis:t},[a,o]=z.runKernel(kh,r,s);return{values:a,indices:o}}var of=W({unique_:W3});function V3(e,t,n){let r=A(e,"x","unsortedSegmentSum"),s=A(t,"segmentIds","unsortedSegmentSum","int32");R(Yt(n),()=>"numSegments must be of dtype int");let a={x:r,segmentIds:s},o={numSegments:n};return z.runKernel(Al,a,o)}var tv=W({unsortedSegmentSum_:V3});function U3(e,t=0){let n=A(e,"x","unstack","string_or_numeric");R(t>=-n.shape.length&&t`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},s={axis:t};return z.runKernel(Gc,r,s)}var pt=W({unstack_:U3});function jk(e,t=!0,n,r){return z.makeVariable(e,t,n,r)}function qk(e,t){let n=[];for(let a=0;a0,()=>"mask cannot be scalar"),wn(i.slice(a,a+o),s.shape,"mask's shape must match the first K dimensions of tensor's shape,");let c=1;for(let m=a;m"Shape mismatch in v and x");let c=Se(1),l=fe(c,i),u=V(fe(o,a),l);if(s){R(r!=null,()=>"When using zeroDebias: true, step is required.");let d=A(r,"step","movingAverage");u=ge(u,fe(c,Ts(i,d)))}return Y(a,u)}var X3=W({movingAverage_:K3});function Y3(e,t,n){let r=A(e,"indices","scatterND","int32"),s=A(t,"updates","scatterND");py(s,r,n);let a={indices:r,updates:s},o={shape:n};return z.runKernel(Fc,a,o)}var Xk=W({scatterND_:Y3});function Z3(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let s=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===s))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${s}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function J3(e,t,n,r=0){let s=A(e,"sparseIndices","sparseToDense","int32"),a=A(t,"sparseValues","sparseToDense"),o=A(r,"defaultValue","sparseToDense",a.dtype);Z3(s,a,n,o);let i={sparseIndices:s,sparseValues:a,defaultValue:o},c={outputShape:n};return z.runKernel(yh,i,c)}var rv=W({sparseToDense_:J3});function Q3(e,t){let n=A(t,"indices","gatherND","int32"),s={params:A(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(pc,s)}var Yk=W({gatherND_:Q3});function eM(e,t){if(t==null)return e.shape.slice();if(ws(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r`x has to be a floating point tensor since it's going to be scaled, but got a ${s.dtype} tensor instead.`),R(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ee?s.clone():s;let a=eM(s,n),o=1-t,i=ge(nu(Y(su(a,0,1,"float32",r),o)),o);return V(s,i)}var Zk=W({dropout_:tM});function Jk(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function sv(e,t,n){let r=1-e%2,s=new Float32Array(e);for(let a=0;a1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),R(r.rank-1===s.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${s.rank}`),wn(r.shape.slice(0,r.shape.length-1),s.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=r.shape[r.shape.length-1];R(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await r.data(),i=await s.data(),[c,l]=[o.length/a,a],u=a0("bool",c);for(let d=0;dg.value-m.value),u[d]=0;for(let m=0;moM,depthwiseConv2d:()=>lM,matMul:()=>pM});function sM(e,t,n,r,s,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),R(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),R(c.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${c.shape}.`),R(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?c.shape[3]:c.shape[1];R(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),R(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&R(Yt(s),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:i,dy:c},p={strides:r,pad:s,dataFormat:a,dimRoundingMode:o,filterShape:n};return z.runKernel(Hp,d,p)}var av=W({conv2DBackpropFilter_:sM});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,cu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function lf(e,t){let n=t,r=Ht(e.shape,t.shape);return r.length>0&&(n=ve(n,r)),U(n,e.shape)}function df(e,t,n,r){if(t==="linear")return e;if(t==="relu")return je(e);if(t==="elu")return tu(e);if(t==="relu6")return Yh(e);if(t==="prelu")return Jl(e,n);if(t==="leakyrelu")return ql(e,r);if(t==="sigmoid")return cr(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function aM({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:l,leakyreluAlpha:u}){if(c=c||"linear",pf(z.state.gradientDepth,c)===!1){let k=Rt(e,t,n,r,s,a,o);return i!=null&&(k=Y(k,i)),df(k,c,l,u)}let d=A(e,"x","conv2d","float32"),p=A(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),R(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&R(Yt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`),R(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),R(ns(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),R(s==="NHWC",()=>`Error in conv2d: got dataFormat of ${s} but only NHWC is currently supported.`);let m=Gl(h.shape,p.shape,n,a,r,o),g;i!=null&&(g=A(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let b;l!=null&&(b=A(l,"prelu weights","fused conv2d"));let v=(k,C)=>{let[N,D,F,O]=C,$=uf(k,F,c);R(ca(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let P=Dy(D.shape,$,N,n,r),T=av(D,$,N.shape,n,r),L=[P,T];if(O!=null){let G=lf(O,$);L.push(G)}return L},y={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:u};return i==null?rs((C,N,D)=>{let F=z.runKernel(Mo,y,x);return D([N,C,F]),f&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:v}})(h,p):rs((C,N,D,F)=>{let O=z.runKernel(Mo,y,x);return F([N,C,O,D]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:v}})(h,p,g)}var oM=W({fusedConv2d_:aM});function iM(e,t,n,r,s,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let c=t;c.rank===3&&(c=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:i,dy:c},u={strides:r,pad:s,dimRoundingMode:o,dilations:a,filterShape:n};return z.runKernel(Xp,l,u)}var Qk=W({depthwiseConv2dNativeBackpropFilter_:iM});function cM(e,t,n,r,s,a=[1,1],o){let i=t,c=!1;t.rank===3&&(c=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:i,filter:n},u={strides:r,pad:s,dimRoundingMode:o,dilations:a,inputShape:e},d=z.runKernel(Yp,l,u);return c?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var eI=W({depthwiseConv2dNativeBackpropInput_:cM});function uM({x:e,filter:t,strides:n,pad:r,dataFormat:s="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:c="linear",preluActivationWeights:l,leakyreluAlpha:u}){if(pf(z.state.gradientDepth,c)===!1){let k=ua(e,t,n,r,s,a,o);return i!=null&&(k=Y(k,i)),df(k,c,l,u)}let d=A(e,"x","depthwiseConv2d","float32"),p=A(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=U(d,[1,d.shape[0],d.shape[1],d.shape[2]])),R(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),R(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),R(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),R(ns(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&R(Yt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${r}.`);let m=Gl(h.shape,p.shape,n,a,r,o,!0),g;i!=null&&(g=A(i,"bias","fused conv2d"),[g]=_t(g,d),bt(m.outShape,g.shape));let b;l!=null&&(b=A(l,"prelu weights","fused depthwiseConv2d"));let v=(k,C)=>{R(ca(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[N,D,F,O]=C,$=uf(k,F,c),P=eI(D.shape,$,N,n,r,a,o),T=Qk(D,$,N.shape,n,r,a,o);if(O!=null){let L=lf(g,$);return[P,T,L]}return[P,T]},y={x:h,filter:p,bias:g,preluActivationWeights:b},x={strides:n,pad:r,dataFormat:s,dilations:a,dimRoundingMode:o,activation:c,leakyreluAlpha:u};return i==null?rs((C,N,D)=>{let F=z.runKernel(Lo,y,x);return D([N,C,F]),f&&(F=U(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:v}})(h,p):rs((C,N,D,F)=>{let O=z.runKernel(Lo,y,x);return F([N,C,O,D]),f&&(O=U(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:v}})(h,p,g)}var lM=W({fusedDepthwiseConv2d_:uM});function dM({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:s,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(z.state.gradientDepth,a)===!1){let O=Ae(e,t,n,r);return s!=null&&(O=Y(O,s)),df(O,a,o,i)}let c=A(e,"a","fused matMul"),l=A(t,"b","fused matMul");[c,l]=_t(c,l);let u=n?c.shape[c.rank-2]:c.shape[c.rank-1],d=r?l.shape[l.rank-1]:l.shape[l.rank-2],p=n?c.shape[c.rank-1]:c.shape[c.rank-2],h=r?l.shape[l.rank-2]:l.shape[l.rank-1],f=c.shape.slice(0,-2),m=l.shape.slice(0,-2),g=$t(f),b=$t(m);R(c.rank>=2&&l.rank>=2&&c.rank===l.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${c.rank} and ${l.rank}.`),R(ws(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${c.shape} and ${l.shape} must match.`),R(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${c.shape} and ${l.shape} and transposeA=${n} and transposeB=${r} must match.`);let v=c.shape.slice(0,-2).concat([p,h]),y=n?U(c,[g,u,p]):U(c,[g,p,u]),x=r?U(l,[b,h,d]):U(l,[b,d,h]),k;s!=null&&(k=A(s,"bias","fused matMul"),[k]=_t(k,c),bt(v,k.shape));let C;o!=null&&(C=A(o,"prelu weights","fused matMul"));let N=(O,$)=>{let[P,T,L,G]=$,j=uf(U(O,L.shape),L,a),q,K;if(!n&&!r?(q=Ae(j,T,!1,!0),K=Ae(P,j,!0,!1)):!n&&r?(q=Ae(j,T,!1,!1),K=Ae(j,P,!0,!1)):n&&!r?(q=Ae(T,j,!1,!0),K=Ae(P,j,!1,!1)):(q=Ae(T,j,!0,!0),K=Ae(j,P,!0,!0)),s!=null){let ee=lf(G,j);return[q,K,ee]}else return[q,K]},D={a:y,b:x,bias:k,preluActivationWeights:C},F={transposeA:n,transposeB:r,activation:a,leakyreluAlpha:i};return s==null?rs(($,P,T)=>{let L=z.runKernel(Oo,D,F);return T([$,P,L]),{value:U(L,v),gradFunc:N}})(y,x):rs(($,P,T,L)=>{let G=z.runKernel(Oo,D,F);return L([$,P,G,T]),{value:U(G,v),gradFunc:N}})(y,x,k)}var pM=W({fusedMatMul_:dM});function hM(e){return sv(e,.54,.46)}var fM=W({hammingWindow_:hM});function mM(e){return sv(e,.5,.5)}var tI=W({hannWindow_:mM});function gM(e,t,n,r=!1,s=0){let a=0,o=[];for(;a+t<=e.size;)o.push(We(e,a,t)),a+=n;if(r)for(;a`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),R(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${i.shape}.`),R(c.rank===1&&c.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${i.shape}.`),R(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),R(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),R(s==="bilinear"||s==="nearest",()=>`method must be bilinear or nearest, but was ${s}`);let u={image:o,boxes:i,boxInd:c},d={method:s,extrapolationValue:a,cropSize:r};return z.runKernel(sc,u,d)}var xM=W({cropAndResize_:vM});function wM(e){let t=A(e,"image","flipLeftRight","float32");R(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(lc,n,{})}var kM=W({flipLeftRight_:wM});function IM(e){let t=A(e,"image","grayscaleToRGB"),n=t.rank-1,r=t.shape[n];R(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),R(r===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${r}.`);let s=new Array(t.rank);return s.fill(1,0,n),s[n]=3,On(t,s)}var SM=W({grayscaleToRGB_:IM});function CM(e,t,n=0,r=.5){let s=A(e,"image","rotateWithOffset","float32");R(s.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${s.rank}.`);let a={image:s},o={radians:t,fillValue:n,center:r};return z.runKernel(jc,a,o)}var TM=W({rotateWithOffset_:CM});function uu(e,t,n,r,s,a){r==null&&(r=.5),s==null&&(s=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),R(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),R(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),R(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),R(t.rank===1,()=>"scores must be a 1D tensor"),R(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),R(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a}}function NM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=A(e,"boxes","nonMaxSuppression","float32"),o=A(t,"scores","nonMaxSuppression","float32"),i=uu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c={maxOutputSize:n,iouThreshold:r,scoreThreshold:s};return z.runKernel(Sc,{boxes:a,scores:o},c)}var _M=W({nonMaxSuppression_:NM});function EM(e,t,n){let r=AM(e,t,n),s=r<0?-(r+1):r;e.splice(s,0,t)}function AM(e,t,n){return FM(e,t,n||DM)}function DM(e,t){return e>t?1:e>>1);let i=n(t,e[a]);i>0?r=a+1:(s=a,o=!i)}return o?r:-r-1}function rI(e,t,n,r,s){return ov(e,t,n,r,s,0)}function sI(e,t,n,r,s,a){return ov(e,t,n,r,s,0,!1,a,!0)}function aI(e,t,n,r,s,a){return ov(e,t,n,r,s,a,!0)}function ov(e,t,n,r,s,a,o=!1,i=!1,c=!1){let l=[];for(let g=0;gs&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(oI);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length0;){let g=l.pop(),{score:b,boxIndex:v,suppressBeginIndex:y}=g;if(b=y;--k){let C=$M(e,v,d[k]);if(C>=r){x=!0;break}if(g.score=g.score*RM(r,u,C),g.score<=s)break}g.suppressBeginIndex=d.length,x||(g.score===b?(d.push(v),p.push(g.score)):g.score>s&&EM(l,g,oI))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),c&&(m.validOutputs=h),m}function $M(e,t,n){let r=e.subarray(t*4,t*4+4),s=e.subarray(n*4,n*4+4),a=Math.min(r[0],r[2]),o=Math.min(r[1],r[3]),i=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),l=Math.min(s[0],s[2]),u=Math.min(s[1],s[3]),d=Math.max(s[0],s[2]),p=Math.max(s[1],s[3]),h=(i-a)*(c-o),f=(d-l)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(o,u),b=Math.min(i,d),v=Math.min(c,p),y=Math.max(b-m,0)*Math.max(v-g,0);return y/(h+f-y)}function RM(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function oI(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function PM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY){let a=A(e,"boxes","nonMaxSuppressionAsync"),o=A(t,"scores","nonMaxSuppressionAsync"),i=uu(a,o,n,r,s);n=i.maxOutputSize,r=i.iouThreshold,s=i.scoreThreshold;let c=await Promise.all([a.data(),o.data()]),l=c[0],u=c[1],{selectedIndices:d}=rI(l,u,n,r,s);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ge(d,"int32")}var OM=PM;function MM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=A(e,"boxes","nonMaxSuppression"),i=A(t,"scores","nonMaxSuppression"),c=uu(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let l={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:s,softNmsSigma:a},d=z.runKernel(Tc,l,u);return{selectedIndices:d[0],selectedScores:d[1]}}var LM=W({nonMaxSuppressionWithScore_:MM});async function BM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=0){let o=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),c=uu(o,i,n,r,s,a);n=c.maxOutputSize,r=c.iouThreshold,s=c.scoreThreshold,a=c.softNmsSigma;let l=await Promise.all([o.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p,selectedScores:h}=aI(u,d,n,r,s,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ge(p,"int32"),selectedScores:Ge(h)}}var zM=BM;function WM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=A(e,"boxes","nonMaxSuppression"),i=A(t,"scores","nonMaxSuppression"),c=uu(o,i,n,r,s,null),l=c.maxOutputSize,u=c.iouThreshold,d=c.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:l,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=z.runKernel(Cc,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var VM=W({nonMaxSuppressionPadded_:WM});async function UM(e,t,n,r=.5,s=Number.NEGATIVE_INFINITY,a=!1){let o=A(e,"boxes","nonMaxSuppressionAsync"),i=A(t,"scores","nonMaxSuppressionAsync"),c=uu(o,i,n,r,s,null),l=c.maxOutputSize,u=c.iouThreshold,d=c.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=sI(p,h,l,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ge(f,"int32"),validOutputs:Se(m,"int32")}}var GM=UM;function HM(e,t,n=!1,r=!1){let s=A(e,"images","resizeBilinear");R(s.rank===3||s.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${s.rank}.`),R(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),R(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(wo,i,c);return o?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var iI=W({resizeBilinear_:HM});function jM(e,t,n=!1,r=!1){let s=A(e,"images","resizeNearestNeighbor");R(s.rank===3||s.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${s.rank}.`),R(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),R(s.dtype==="float32"||s.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),R(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=s,o=!1;s.rank===3&&(o=!0,a=U(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let[]=t,i={images:a},c={alignCorners:n,halfPixelCenters:r,size:t},l=z.runKernel(_l,i,c);return o?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var cI=W({resizeNearestNeighbor_:jM});function qM(e,t="binary",n=!1,r=.5){let s=A(e,"image","threshold"),a=.2989,o=.587,i=.114,c=s.shape[0]*s.shape[1],l=V(Ge([r]),255),u,d,p,h;if(R(s.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${s.rank}.`),R(s.shape[2]===3||s.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${s.shape[2]}.`),R(s.dtype==="int32"||s.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${s.dtype}.`),R(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),s.shape[2]===3){[u,d,p]=Ln(s,[1,1,1],-1);let g=V(u,a),b=V(d,o),v=V(p,i);h=Y(Y(g,b),v)}else h=e;if(t==="otsu"){let g=Ey(ce(Zh(h),"int32"),qn([]),256);l=KM(g,c)}let f=n?da(h,l):Mn(h,l);return ce(V(f,255),"int32")}function KM(e,t){let n=Ge([-1]),r=Ge([0]),s=Ge([0]),a,o,i,c,l,u;for(let d=0;d`Error in transform: image must be rank 4,but got rank ${o.rank}.`),R(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),R(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let c={image:o,transforms:i},l={interpolation:n,fillMode:r,fillValue:s,outputShape:a};return z.runKernel(Uc,c,l)}var ZM=W({transform_:YM});function JM(e,t,n){R(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),R(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=A(e,"a","bandPart");R(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let s=r.shape,[a,o]=r.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(au(0,a,1,"int32"),[-1,1]),c=au(0,o,1,"int32"),l=fe(i,c),u=Ir(da(l,Se(+t,"int32")),la(l,Se(-n,"int32"))),d=It([a,o],r.dtype);return U(Ot(pt(U(r,[-1,a,o])).map(p=>gn(u,p,d))),s)}var QM=W({bandPart_:JM});function eL(e){let t;if(Array.isArray(e)){t=!1,R(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let s=e[0].shape[0];for(let a=1;a`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${s})`)}else t=!0,e=Ln(e,e.shape[0],0).map(s=>as(s,[0]));R(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let s=0;s{let a=r[s];if(s>0)for(let o=0;o=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return uI(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((c,l)=>c*l),r=pt(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),s=[],a=[];r.forEach(c=>{let[l,u]=uI(c,t);s.push(l),a.push(u)});let o=U(Ot(s,0),e.shape),i=U(Ot(a,0),e.shape);return[o,i]}}function uI(e,t=!1){return z.tidy(()=>{R(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],s=Ly(n),a=Is(e),o=Or([[1]],[1,1]),i=Is(o),c=n>=r?r:n;for(let l=0;l{let h=We(a,[l,l],[n-l,1]),f=cf(h),m=We(a,[l,l],[1,1]),g=gn(Mn(m,0),Or([[-1]]),Or([[1]])),b=fe(m,V(g,f)),v=ge(h,b);v.shape[0]===1?i=Is(o):i=Ze([o,We(v,[1,0],[v.shape[0]-1,v.shape[1]])],0);let y=kt(ge(Ae(g,b),f)),x=We(a,[l,0],[n-l,r]),k=V(y,i),C=Re(i);if(l===0)a=fe(x,Ae(k,Ae(C,x)));else{let F=fe(x,Ae(k,Ae(C,x)));a=Ze([We(a,[0,0],[l,r]),F],0)}let N=Re(k),D=We(s,[0,l],[n,s.shape[1]-l]);if(l===0)s=fe(D,Ae(Ae(D,i),N));else{let F=fe(D,Ae(Ae(D,i),N));s=Ze([We(s,[0,0],[n,l]),F],1)}return[i,a,s]}),De([u,d,p])}return!t&&n>r&&(s=We(s,[0,0],[n,r]),a=We(a,[0,0],[r,r])),[s,a]})}var rL=W({qr_:nL}),Sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Sn||(Sn={}));function sL(e,t,n=Sn.SUM_BY_NONZERO_WEIGHTS){let r=A(e,"losses","computeWeightedLoss"),s=null;t!=null&&(s=A(t,"weights","computeWeightedLoss"));let a=s==null?r:V(r,s);if(n===Sn.NONE)return a;if(n===Sn.SUM)return ve(a);if(n===Sn.MEAN){if(s==null)return Et(a);{let o=r.size/s.size,i=ge(ve(a),ve(s));return o>1?ge(i,Se(o)):i}}if(n===Sn.SUM_BY_NONZERO_WEIGHTS){if(s==null)return ge(ve(a),Se(r.size));{let o=V(s,Yn(r.shape)),i=ce(ve(Qo(o,Se(0))),"float32");return ge(ve(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Ns=W({computeWeightedLoss_:sL});function aL(e,t,n,r=Sn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","absoluteDifference"),a=A(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=A(n,"weights","absoluteDifference")),wn(s.shape,a.shape,"Error in absoluteDifference: ");let i=Lt(fe(s,a));return Ns(i,o,r)}var oL=W({absoluteDifference_:aL});function iL(e,t,n,r,s=Sn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","cosineDistance"),o=A(t,"predictions","cosineDistance"),i=null;r!=null&&(i=A(r,"weights","cosineDistance")),wn(a.shape,o.shape,"Error in cosineDistance: ");let c=Se(1),l=fe(c,ve(V(a,o),n,!0));return Ns(l,i,s)}var cL=W({cosineDistance_:iL});function uL(e,t,n,r=Sn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","hingeLoss"),a=A(t,"predictions","hingeLoss"),o=null;n!=null&&(o=A(n,"weights","hingeLoss")),wn(s.shape,a.shape,"Error in hingeLoss: ");let i=Se(1);s=fe(V(Se(2),s),i);let c=je(fe(i,V(s,a)));return Ns(c,o,r)}var lL=W({hingeLoss_:uL});function dL(e,t,n,r=1,s=Sn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","huberLoss"),o=A(t,"predictions","huberLoss"),i=null;n!=null&&(i=A(n,"weights","huberLoss")),wn(a.shape,o.shape,"Error in huberLoss: ");let c=Se(r),l=Lt(fe(o,a)),u=ru(l,c),d=fe(l,u),p=Y(V(Se(.5),ct(u)),V(c,d));return Ns(p,i,s)}var pL=W({huberLoss_:dL});function hL(e,t,n,r=1e-7,s=Sn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"labels","logLoss"),o=A(t,"predictions","logLoss"),i=null;n!=null&&(i=A(n,"weights","logLoss")),wn(a.shape,o.shape,"Error in logLoss: ");let c=Se(1),l=Se(r),u=kt(V(a,Xn(Y(o,l)))),d=V(fe(c,a),Xn(Y(fe(c,o),l))),p=fe(u,d);return Ns(p,i,s)}var fL=W({logLoss_:hL});function mL(e,t,n,r=Sn.SUM_BY_NONZERO_WEIGHTS){let s=A(e,"labels","meanSquaredError"),a=A(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=A(n,"weights","meanSquaredError")),wn(s.shape,a.shape,"Error in meanSquaredError: ");let i=sf(s,a);return Ns(i,o,r)}var gL=W({meanSquaredError_:mL});function bL(e,t){let n=A(e,"labels","sigmoidCrossEntropyWithLogits"),r=A(t,"logits","sigmoidCrossEntropyWithLogits");wn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let s=je(r),a=V(r,n),o=Kl(bn(kt(Lt(r))));return Y(fe(s,a),o)}function yL(e,t,n,r=0,s=Sn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"multiClassLabels","sigmoidCrossEntropy"),o=A(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=A(n,"weights","sigmoidCrossEntropy")),wn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),r>0){let l=Se(r),u=Se(1),d=Se(.5);a=Y(V(a,fe(u,l)),V(d,l))}let c=bL(a,o);return Ns(c,i,s)}var vL=W({sigmoidCrossEntropy_:yL});function xL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return rs((s,a,o)=>{let c=Uy(a,[n],!0),l=fe(ce(a,"float32"),c);o([s,l]);let u=kt(V(l,s));return{value:ve(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=Jo(h.shape,[n]);return[V(U(h,b),fe(ce(m,"float32"),bn(g))),V(U(h,b),fe(bn(g),ce(m,"float32")))]}}})(e,t)}function wL(e,t,n,r=0,s=Sn.SUM_BY_NONZERO_WEIGHTS){let a=A(e,"onehotLabels","softmaxCrossEntropy"),o=A(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=A(n,"weights","softmaxCrossEntropy")),wn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),r>0){let l=Se(r),u=Se(1),d=Se(a.shape[1]);a=Y(V(a,fe(u,l)),ge(l,d))}let c=xL(a,o);return Ns(c,i,s)}var kL=W({softmaxCrossEntropy_:wL});function IL(e,t,n,r){let s=A(e,"indices","sparseFillEmptyRows"),a=A(t,"values","sparseFillEmptyRows"),o=A(n,"denseShape","sparseFillEmptyRows"),i=A(r,"defaultValue","sparseFillEmptyRows",a.dtype);if(s.rank!==2)throw new Error(`Indices should be Tensor2D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let c={indices:s,values:a,denseShape:o,defaultValue:i},l=z.runKernel(fh,c);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var SL=W({sparseFillEmptyRows_:IL});function CL(e,t,n){let r=A(e,"inputIndices","sparseReshape"),s=A(t,"inputShape","sparseReshape"),a=A(n,"newShape","sparseReshape");if(r.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:r,inputShape:s,newShape:a},i=z.runKernel(mh,o);return{outputIndices:i[0],outputShape:i[1]}}var TL=W({sparseReshape_:CL});function NL(e,t,n){let r=A(e,"data","sparseSegmentMean"),s=A(t,"indices","sparseSegmentMean"),a=A(n,"segmentIds","sparseSegmentMean");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(gh,o)}var _L=W({sparseSegmentMean_:NL});function EL(e,t,n){let r=A(e,"data","sparseSegmentSum"),s=A(t,"indices","sparseSegmentSum"),a=A(n,"segmentIds","sparseSegmentSum");if(r.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.rank!==1)throw new Error(`Indices should be Tensor1D but received shape ${s.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape ${a.shape}`);let o={data:r,indices:s,segmentIds:a};return z.runKernel(bh,o)}var AL=W({sparseSegmentSum_:EL});function DL(e,t,n,r,s,a,o,i){let c=A(e,"data","stringNGrams","string");if(c.dtype!=="string")throw new Error("Data must be of datatype string");if(c.shape.length!==1)throw new Error(`Data must be a vector, saw: ${c.shape}`);let l=A(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:r,leftPad:s,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:c,dataSplits:l},p=z.runKernel(vh,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var FL=W({stringNGrams_:DL});function $L(e,t,n=!0){let r=A(e,"input","stringSplit","string"),s=A(t,"delimiter","stringSplit","string");if(r.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${r.shape}`);if(s.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${s.shape}`);let a={skipEmpty:n},o={input:r,delimiter:s},i=z.runKernel(xh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var RL=W({stringSplit_:$L});function PL(e,t){let n=A(e,"input","stringToHashBucketFast","string"),r={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let s={input:n};return z.runKernel(wh,s,r)}var OL=W({stringToHashBucketFast_:PL}),ML={fft:td,ifft:iu,rfft:nd,irfft:rf},LL={hammingWindow:fM,hannWindow:tI,frame:nI,stft:yM},Qn={flipLeftRight:kM,grayscaleToRGB:SM,resizeNearestNeighbor:cI,resizeBilinear:iI,rotateWithOffset:TM,cropAndResize:xM,nonMaxSuppression:_M,nonMaxSuppressionAsync:OM,nonMaxSuppressionWithScore:LM,nonMaxSuppressionWithScoreAsync:zM,nonMaxSuppressionPadded:VM,nonMaxSuppressionPaddedAsync:GM,threshold:XM,transform:ZM},lI={bandPart:QM,gramSchmidt:tL,qr:rL},BL={absoluteDifference:oL,computeWeightedLoss:Ns,cosineDistance:cL,hingeLoss:lL,huberLoss:pL,logLoss:fL,meanSquaredError:gL,sigmoidCrossEntropy:vL,softmaxCrossEntropy:kL},rd={sparseFillEmptyRows:SL,sparseReshape:TL,sparseSegmentMean:_L,sparseSegmentSum:AL},hf={stringNGrams:FL,stringSplit:RL,stringToHashBucketFast:OL},_s=class extends lk{minimize(e,t=!1,n){let{value:r,grads:s}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:s[o.name]}));this.applyGradients(a)}else this.applyGradients(s);return De(s),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Pk(e,t)}dispose(){this.iterations_!=null&&De(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(_s,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends _s{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedGrads[r]==null&&(this.accumulatedGrads[r]={originalName:`${n}/accum_grad`,variable:M(()=>Ue(s).variable(a))}),this.accumulatedUpdates[r]==null&&(this.accumulatedUpdates[r]={originalName:`${n}/accum_var`,variable:M(()=>Ue(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[r].variable,c=this.accumulatedUpdates[r].variable;M(()=>{let l=Y(V(i,this.rho),V(ct(o),1-this.rho)),u=V(ge(un(Y(c,this.epsilon)),un(Y(i,this.epsilon))),o),d=Y(V(c,this.rho),V(ct(u),1-this.rho));i.assign(l),c.assign(d);let p=Y(V(u,-this.learningRate),s);s.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(De(this.accumulatedGrads.map(e=>e.variable)),De(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";ia(ff);var mf=class extends _s{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulatedGrads[r]==null){let i=!1;this.accumulatedGrads[r]={originalName:`${n}/accumulator`,variable:M(()=>In(s.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[r].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[r].variable;M(()=>{let i=Y(o,ct(a));o.assign(i);let c=Y(V(ge(a,un(Y(i,z.backend.epsilon()))),-this.learningRate),s);s.assign(c)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&De(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";ia(mf);var gf=class extends _s{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],M(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=fe(1,this.accBeta1),r=fe(1,this.accBeta2);t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:M(()=>Ue(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:M(()=>Ue(o).variable(i))});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let l=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=Y(V(l,this.beta1),V(c,1-this.beta1)),p=Y(V(u,this.beta2),V(ct(c),1-this.beta2)),h=ge(d,n),f=ge(p,r);l.assign(d),u.assign(p);let m=Y(V(ge(h,Y(un(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&De(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),M(()=>{this.accBeta1.assign(Ts(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ts(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";ia(gf);var bf=class extends _s{constructor(e,t,n,r=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],M(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),r==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);M(()=>{let n=fe(1,this.accBeta1),r=ge(-this.learningRate,Y(V(this.iteration,this.decay),1));t.forEach((s,a)=>{let o=z.registeredVariables[s],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ue(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ue(o).variable(i)});let c=Array.isArray(e)?e[a].tensor:e[s];if(c==null)return;let l=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=Y(V(l,this.beta1),V(c,1-this.beta1)),p=V(u,this.beta2),h=Lt(c),f=ss(p,h);l.assign(d),u.assign(f);let m=Y(V(ge(r,n),ge(d,Y(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(Y(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&De(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};bf.className="Adamax";ia(bf);var sd=class extends _s{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=Array.isArray(e)?e[r].tensor:e[n];if(s==null)return;let a=z.registeredVariables[n];M(()=>{let o=Y(V(this.c,s),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Qt(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};sd.className="SGD";ia(sd);var yf=class extends sd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n];if(this.accumulations[r]==null){let i=!1;this.accumulations[r]={originalName:`${n}/momentum`,variable:M(()=>Ue(s).variable(i))}}let a=this.accumulations[r].variable,o=Array.isArray(e)?e[r].tensor:e[n];o!=null&&M(()=>{let i,c=Y(V(this.m,a),o);this.useNesterov?i=Y(V(this.c,Y(o,V(c,this.m))),s):i=Y(V(this.c,c),s),a.assign(c),s.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&De(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";ia(yf);var vf=class extends _s{constructor(e,t=.9,n=0,r=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,r==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,r)=>{let s=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[r]==null&&(this.accumulatedMeanSquares[r]={originalName:`${n}/rms`,variable:M(()=>Ue(s).variable(a))}),this.accumulatedMoments[r]==null&&(this.accumulatedMoments[r]={originalName:`${n}/momentum`,variable:M(()=>Ue(s).variable(a))}),this.accumulatedMeanGrads[r]==null&&this.centered&&(this.accumulatedMeanGrads[r]={originalName:`${n}/mg`,variable:M(()=>Ue(s).variable(a))});let o=Array.isArray(e)?e[r].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[r].variable,c=this.accumulatedMoments[r].variable;M(()=>{let l=Y(V(i,this.decay),V(ct(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[r].variable,d=Y(V(u,this.decay),V(o,1-this.decay)),p=ge(V(o,this.learningRate),un(fe(l,Y(ct(d),this.epsilon)))),h=Y(V(c,this.momentum),p);i.assign(l),u.assign(d),c.assign(h);let f=fe(s,h);s.assign(f)}else{let u=Y(V(i,this.decay),V(ct(o),1-this.decay)),d=Y(V(c,this.momentum),ge(V(o,this.learningRate),un(Y(u,this.epsilon))));i.assign(u),c.assign(d);let p=fe(s,d);s.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&De(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&De(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&De(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};vf.className="RMSProp";ia(vf);var ha=class{static sgd(e){return new sd(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,s=!1){return new vf(e,t,n,r,s)}static adam(e=.001,t=.9,n=.999,r=null){return new gf(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,s=0){return new bf(e,t,n,r,s)}static adagrad(e,t=.1){return new mf(e,t)}},ti={sgd:ha.sgd,momentum:ha.momentum,adadelta:ha.adadelta,adagrad:ha.adagrad,rmsprop:ha.rmsprop,adamax:ha.adamax,adam:ha.adam},zL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function dI(){return new Promise(e=>zL(()=>e()))}var E={};$e(E,{ERF_A1:()=>ZL,ERF_A2:()=>JL,ERF_A3:()=>QL,ERF_A4:()=>eB,ERF_A5:()=>tB,ERF_P:()=>YL,PARALLELIZE_THRESHOLD:()=>iv,SELU_SCALE:()=>hI,SELU_SCALEALPHA:()=>pI,applyActivation:()=>df,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>rO,assertParamsConsistent:()=>WL,assignToTypedArray:()=>iB,axesAreInnerMostDims:()=>Wy,calculateShapes:()=>Q0,checkEinsumDimSizes:()=>hB,combineLocations:()=>Mk,complexWithEvenIndex:()=>sB,complexWithOddIndex:()=>aB,computeConv2DInfo:()=>Gl,computeConv3DInfo:()=>bk,computeDefaultPad:()=>Ty,computeDilation2DInfo:()=>TR,computeOptimalWindowSize:()=>UL,computeOutAndReduceShapes:()=>Lk,computeOutShape:()=>VL,computePool2DInfo:()=>gk,computePool3DInfo:()=>NR,convertConv2DDataFormat:()=>yk,decodeEinsumEquation:()=>dB,eitherStridesOrDilationsAreOne:()=>ns,expandShapeToKeepDim:()=>Jo,exponent:()=>uB,exponents:()=>cB,fromStringArrayToUint8:()=>kB,fromUint8ToStringArray:()=>wB,getAxesPermutation:()=>Bk,getBroadcastDims:()=>yP,getComplexWithIndex:()=>oB,getEinsumComputePath:()=>fB,getEinsumPermutation:()=>pB,getFusedBiasGradient:()=>lf,getFusedDyActivation:()=>uf,getImageCenter:()=>GL,getInnerMostAxes:()=>sO,getPermuted:()=>jL,getReductionAxes:()=>Ht,getReshaped:()=>HL,getReshapedPermuted:()=>qL,getSliceBeginCoords:()=>KL,getSliceSize:()=>XL,getUndoAxesPermutation:()=>Vy,isIdentityPermutation:()=>mB,log:()=>UD,mergeRealAndImagArrays:()=>nB,prepareAndValidate:()=>J0,prepareSplitSize:()=>bB,segment_util:()=>gI,shouldFuse:()=>pf,slice_util:()=>Gt,splitRealAndImagArrays:()=>rB,tupleValuesAreOne:()=>ca,upcastType:()=>wr,validateInput:()=>py,validateUpdateShape:()=>dy,warn:()=>Qr});function WL(e,t){let n=e[0].length;e.forEach((s,a)=>{R(s.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),R(t>=0&&t`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((s,a)=>{for(let o=0;o`Error in concat${n}D: Shape of tensors[${a}] (${s}) does not match the shape of the rest (${r}) along the non-concatenated axis ${a}.`)})}function VL(e,t){let n=e[0].slice();for(let r=1;r=t*2+1||o%2==1?a.push(o):s.push(o);r.push(...s),r.push(0),r.push(...a)}return r}function qL(e,t,n,r=!0){let s=[];r?s.push(e[0]/n):s.push(e[0]*n);for(let a=1;a/g,fI=",",mI="...";function dB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(lB,"").length)/cv.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${cv}").`);let[r,s]=e.split(cv);R(r.indexOf(mI)===-1,()=>`The ellipsis notation ("${mI}") is not supported yet.`);let a=r.split(fI),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;pf.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;ps!==-1),{permutationIndices:n,expandDims:r}}function hB(e,t,n){let r=new Array(e);for(let s=0;s`Expected dimension ${r[t[s][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function fB(e,t){let n=e,r=[],s=0;e.length===0&&n.push(-1),s=e.length+1;for(let o=0;ot===n)}function gB(e,t){let n=[];for(let r=0;r"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let s=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);R(s<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,c)=>c>0?i+c:i);t[a]=e.shape[n]-o}R(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var gI={};$e(gI,{collectGatherOpShapeInfo:()=>xB,computeOutShape:()=>vB,segOpComputeOptimalWindowSize:()=>yB});function yB(e,t){let n=!1,r;for(e<=iv?(r=e,n=!0):r=Lp(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Lp(e,r+1);return r}function vB(e,t,n){let r=[],s=e.length;for(let a=0;as))throw new Error(`Expect batchDims in the range of [-${s}, ${s}], but got ${r}`);if(r<0&&(r+=s),r>a)throw new Error(`batchDims (${r}) must be less than rank(x) ( ${a}).`);if(n_h(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function kB(e){return e.map(t=>Pl(t))}var os={};$e(os,{nonMaxSuppressionV3Impl:()=>rI,nonMaxSuppressionV4Impl:()=>sI,nonMaxSuppressionV5Impl:()=>aI,whereImpl:()=>qk});var bI={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,cu(ce(n,"float32"),-1))}}},IB={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ct(ce(n,"float32")),s=un(fe(Se(1),r));return kt(ge(e,s))}}}},SB={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=un(fe(ct(ce(n,"float32")),1));return ge(e,r)}}}},CB={kernelName:Js,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=e,c=Ht(n.shape,s);return c.length>0&&(i=ve(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Ht(r.shape,s);return c.length>0&&(i=ve(i,c)),U(i,r.shape)}}}},TB={kernelName:Ba,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,s)=>{n[s]=()=>e.clone()}),n}},NB={kernelName:za,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},_B={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},EB={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,un(fe(Se(1),ct(ce(n,"float32")))))}}},AB={kernelName:Ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=un(Y(Se(1),ct(ce(n,"float32"))));return ge(e,r)}}}},DB={kernelName:tc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=Y(ct(n),ct(r)),c=V(e,ge(r,i)),l=Ht(n.shape,s);return l.length>0&&(c=ve(c,l)),U(c,n.shape)},b:()=>{let i=Y(ct(n),ct(r)),c=kt(V(e,ge(n,i))),l=Ht(r.shape,s);return l.length>0&&(c=ve(c,l)),U(c,r.shape)}}}},FB={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Y(ct(ce(n,"float32")),1))}}},$B={kernelName:ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,fe(Se(1),ct(ce(n,"float32"))))}}};function RB(e,t,n,r,s,a){let o=A(e,"dy","avgPool3dGrad"),i=A(t,"input","avgPool3dGrad"),c=o,l=i,u=!1;i.rank===4&&(u=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),l=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),R(c.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),R(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),a!=null&&R(Yt(s),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:l},p={filterSize:n,strides:r,pad:s,dimRoundingMode:a},h=z.runKernel(Wp,d,p);return u?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var PB=W({avgPool3dGrad_:RB}),OB={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>PB(e,r,s,a,o,i)}}};function MB(e,t,n,r,s){let a=A(e,"dy","avgPoolGrad"),o=A(t,"input","avgPoolGrad");R(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,c=a,l=!1;o.rank===3&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),R(c.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${c.rank}.`),R(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:c,input:i},d={filterSize:n,strides:r,pad:s},p=z.runKernel(zp,u,d);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var LB=W({avgPoolGrad_:MB}),BB={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:s,strides:a,pad:o}=n;return{x:()=>LB(e,r,s,a,o)}}},zB={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,s]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ae(e,s,!1,!0),b:()=>Ae(r,e,!0,!1)}:!a&&o?{a:()=>Ae(e,s,!1,!1),b:()=>Ae(e,r,!0,!1)}:a&&!o?{a:()=>Ae(s,e,!1,!0),b:()=>Ae(r,e,!1,!1)}:{a:()=>Ae(s,e,!0,!0),b:()=>Ae(e,r,!0,!0)}}},WB={kernelName:nc,gradFunc:(e,t,n)=>{let{blockShape:r,crops:s}=n;return{x:()=>Zl(e,r,s)}}},VB={kernelName:g0,gradFunc:(e,t,n)=>{let r=n,s=r.inputShape,a=r.shape,o=Array.from(a);for(let c=s.length-1;c>=0;c--)if(s[c]===a[c])o[c]=1;else if(s[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${a}].`);let i=[];for(let c=0;c1&&i.push(c);return{x:()=>ve(e,i,!0)}}},UB={kernelName:Ua,gradFunc:e=>({x:()=>e.clone()})},GB={kernelName:Ga,gradFunc:e=>({x:()=>Ue(e)})},HB={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:s,clipValueMax:a}=n;return{x:()=>gn(Ir(la(r,s),da(r,a)),e,Ue(e))}}},jB={kernelName:vl,inputsToSave:["x"],gradFunc:bI.gradFunc},qB={kernelName:rc,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(c=>c.shape),{axis:s}=n,a=xr(s,t[0].shape)[0],o=r.map(c=>c[a]);return Ln(e,o,a).map(c=>()=>c)}},KB={kernelName:Ha,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{dilations:a,strides:o,pad:i,dataFormat:c}=n;return R(ca(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>Dy(r.shape,e,s,o,i,c),filter:()=>av(r,e,s.shape,o,i,c)}}},XB={kernelName:ja,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:c}=n;return{dy:()=>Rt(e,s,a,o,i,1,c),filter:()=>av(e,r,s.shape,a,o,i,c)}}};function YB(e,t,n,r,s){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),R(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),R(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),R(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),R(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),R(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},c={strides:r,pad:s,filterShape:n};return z.runKernel(jp,i,c)}var ZB=W({conv3DBackpropFilter_:YB}),JB={kernelName:xl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a}=n;R(ca(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[o,i]=t;return{x:()=>Nk(o.shape,e,i,s,a),filter:()=>ZB(o,e,i.shape,s,a)}}},QB={kernelName:qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(kt(ef(ce(n,"float32"))),e)}}},ez={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(tf(ce(n,"float32")),e)}}},tz={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s,exclusive:a,reverse:o}=n;return{x:()=>{let i=Bk([s],r.rank),c=Vh(e,s,a,!o);return i!=null&&(c=Re(c,i)),c}}}},nz={kernelName:Ya,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:s,pad:a,dimRoundingMode:o}=n,i=r==null?[1,1]:r;R(ca(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[c,l]=t;return R(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${c.rank}.`),R(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),R(c.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),R(ns(s,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${s} and dilations '${i}'.`),o!=null&&R(Yt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>eI(c.shape,e,l,s,a,i,o),filter:()=>Qk(c,e,l.shape,s,a,i,o)}}},rz={kernelName:wl,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,s]=t,a={x:r,filter:s,dy:e},o={x:r,filter:s,dy:e};return{x:()=>z.runKernel(Jp,a,n),filter:()=>z.runKernel(Qp,o,n)}}},sz={kernelName:Ja,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>z.runKernel(th,r)}}},az={kernelName:oc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(bn(kt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,r)}}},oz={kernelName:Qa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},iz={kernelName:cc,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},cz={kernelName:uc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,bn(n))}}},uz={kernelName:eo,gradFunc:e=>({x:()=>Ue(e)})},lz={kernelName:to,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=ge(e,ce(r,"float32")),c=Ht(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Ht(r.shape,s);c.length>0&&(i=U(ve(i,c),r.shape));let l=ct(r);return kt(ge(i,ce(l,"float32")))}}}},dz={kernelName:no,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[s,a,o,i]=t,c=i==null?Se(1):i,l=Ht(a.shape,s.shape),u=[];if(a.rank===1){for(let x=0;xa.rank===1?U(V(V(e,On(U(h,[1,1,1,a.shape[0]]),u)),c),s.shape):U(V(V(e,h),c),s.shape),mean:()=>{let x=V(V(h,Se(-1)),p);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},variance:()=>{let x=V(V(f,d),p);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},scale:()=>{let x=V(d,h),k=V(e,x);return a.rank===1&&(k=ve(k,l)),U(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,l)),U(x,a.shape)}}}},pz={kernelName:dc,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,s]=t,{axis:a}=n,o=xr(a,r.shape)[0];return{x:()=>{let c=r.shape,l=s.size,u=c.slice(0,o),d=u.length,p=c.slice(a,c.length).slice(1),h=p.length,f=yI(0,d),m=yI(d+1,d+1+h),g=vI([u,[l],p]),b=U(e,g),v=U(s,[l]),y=vI([[d],f,m]),x=Re(b,y),k=tv(x,v,r.shape[o]),C=Vy(y);return k=Re(k,C),k},indices:()=>s}}};function yI(e,t){let n=[];for(let r=e;r{let[n,r]=t;return{a:()=>Ue(n),b:()=>Ue(r)}}},fz={kernelName:so,gradFunc:e=>({x:()=>ce(e,"float32")})},mz={kernelName:fc,gradFunc:e=>({x:()=>Ue(e)})},gz={kernelName:mc,gradFunc:e=>({x:()=>Ue(e)})},bz={kernelName:gc,gradFunc:e=>({x:()=>Ue(e)})},yz={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:s}=n,a=Mn(r,0);return{x:()=>gn(a,e,V(e,s))}}},vz={kernelName:vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Y(n,1))}}},xz={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ce(n,"float32"))}}},wz={kernelName:b0,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n;return{logits:()=>{let a=!0,o=bn(r);return fe(e,V(ve(e,s,a),o))}}}};function kz(e,t,n,r=5,s=1,a=1,o=.5){let i={x:e,y:t,dy:n},c={depthRadius:r,bias:s,alpha:a,beta:o};return z.runKernel(oh,i,c)}var Iz=W({localResponseNormalizationBackprop_:kz}),Sz={kernelName:Cl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{depthRadius:a,bias:o,alpha:i,beta:c}=n;return{x:()=>Iz(r,s,e,a,o,i,c)}}};function xI(e,t,n,r){return t.rankV(e,ce(Kn(n,t),e.dtype))}}var wI={kernelName:io,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:s}=r,a=t[0],o=t[1],i=xr(s,a.shape),c=xI(e,o,a,i);return{x:()=>c.x()}}},Cz={kernelName:co,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(la(n,r),"float32")),b:()=>V(e,ce(Gh(n,r),"float32"))}}};function Tz(e,t,n,r,s,a,o){let i=A(e,"dy","maxPool3dGrad"),c=A(t,"input","maxPool3dGrad"),l=A(n,"output","maxPool3dGrad"),u=i,d=c,p=l,h=!1;c.rank===4&&(h=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=U(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),R(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),R(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),R(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&R(Yt(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:r,strides:s,pad:a,dimRoundingMode:o},g=z.runKernel(ch,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var Nz=W({maxPool3dGrad_:Tz}),_z={kernelName:Tl,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=n;return{x:()=>Nz(e,r,s,a,o,i,c)}}};function Ez(e,t,n,r,s,a,o){let i=A(e,"dy","maxPoolGrad"),c=A(t,"input","maxPoolGrad"),l=A(n,"output","maxPoolGrad");R(c.rank===i.rank,()=>`Rank of input (${c.rank}) does not match rank of dy (${i.rank})`),R(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),R(c.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${c.rank}.`),o!=null&&R(Yt(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:c,output:l},d={filterSize:r,strides:s,pad:a,dimRoundingMode:o};return z.runKernel(ih,u,d)}var Az=W({maxPoolGrad_:Ez}),Dz={kernelName:uo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,s]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>Az(e,r,s,a,o,i)}}},Fz={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:s}=n,a=xr(s,r.shape),i=Lk(r.shape,a)[1],c=$t(i);return{x:()=>{let u=r.shape.slice();a.forEach(h=>{u[h]=1});let d=U(e,u);return ge(V(d,Yn(r.shape,"float32")),c)}}}},$z={kernelName:po,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:s}=r,[a,o]=t,i=xr(s,a.shape),c=xI(e,o,a,i);return{x:()=>c.x()}}},Rz={kernelName:ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>V(e,ce(da(n,r),"float32")),b:()=>V(e,ce(Mn(n,r),"float32"))}}},Pz={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},Oz={kernelName:wc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=Ht(n.shape,s);return i.length>0?U(ve(e,i),n.shape):e},b:()=>{let i=V(e,kt(nu(ge(n,r)))),c=Ht(r.shape,s);return c.length>0?U(ve(i,c),r.shape):i}}}},Mz={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=V(e,ce(r,"float32")),c=Ht(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Ht(r.shape,s);return c.length>0?U(ve(i,c),r.shape):i}}}},Lz={kernelName:kc,gradFunc:e=>({x:()=>kt(e)})},Bz={kernelName:go,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>It(n.shape,"float32")}}},zz={kernelName:Nc,gradFunc:e=>({x:()=>Ue(e)})},Wz={kernelName:_c,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return pt(e,r).map(a=>()=>a)}},kI={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:s}=n,a=s.map(o=>o[0]);return{x:()=>We(e,a,r.shape)}}},Vz={kernelName:yo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,s]=t,a=n,o=r,i=bt(a.shape,o.shape);return{a:()=>{let u=ce(o,"float32"),d=V(e,V(u,Ts(a,fe(u,Se(1))))),p=Ht(a.shape,i);return p.length>0&&(d=ve(d,p)),U(d,a.shape)},b:()=>{let u=Mn(a,0),d=gn(u,Xn(a),Ue(a)),p=V(e,V(s,d)),h=Ht(o.shape,i);return h.length>0&&(p=ve(p,h)),U(p,o.shape)}}}},Uz={kernelName:vo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,s=Mn(n,0);return{x:()=>gn(s,e,V(e,r)),alpha:()=>{let a=gn(s,Ue(e),V(e,n)),o=Ht(r.shape,e.shape);return o.length>0&&(a=ve(a,o)),U(a,r.shape)}}}},Gz={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=ge(e,ce(r,"float32")),c=Ht(n.shape,s);return c.length>0?U(ve(i,c),n.shape):i},b:()=>{let i=V(e,ce(n,"float32")),c=Ht(r.shape,s);c.length>0&&(i=U(ve(i,c),r.shape));let l=ct(r);return kt(ge(i,ce(l,"float32")))}}}},Hz={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,kt(ct(n)))}}},jz={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=V(da(n,6),cu(n));return{x:()=>V(e,ce(r,"float32"))}}},qz={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,ce(cu(n),"float32"))}}},Kz={kernelName:Dc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},Xz={kernelName:wo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(hh,s,n)}}},Yz={kernelName:_l,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,s={dy:e,images:r};return{images:()=>z.runKernel(ph,s,n)}}},Zz={kernelName:Io,gradFunc:(e,t,n)=>{let{dims:r}=n,s=xr(r,e.shape);return{x:()=>Jn(e,s)}}},Jz={kernelName:So,gradFunc:e=>({x:()=>Ue(e)})},Qz={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>kt(ge(e,V(Ts(n,1.5),2)))}}},e4={kernelName:$c,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ce(Ue(n),"float32"),t:()=>V(e,ce(n,e.dtype)),e:()=>V(e,ce(Xl(n),e.dtype))}}},t4={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Mn(n,Se(0)),s=Se(pI),a=Se(hI),o=V(e,a),i=V(V(e,s),bn(ce(n,"float32")));return gn(r,o,i)}}}},n4={kernelName:No,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,fe(Se(1),n)))}}},r4={kernelName:Mc,gradFunc:e=>({x:()=>Ue(e)})},s4={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(jl(ce(n,"float32")),e)}}},a4={kernelName:Oc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(Wh(ce(n,"float32")),e)}}},o4={kernelName:Pc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:s,size:a}=n,o=r.shape,[i,c]=ck(r,s,a),l=[];for(let u=0;uur(e,l)}}},i4={kernelName:Ao,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:s}=n,a=!0,o=V(e,r);return{logits:()=>fe(o,V(ve(o,[s],a),r))}}},c4={kernelName:Lc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,cr(n))}}},II={kernelName:Bc,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:s}=n;return{x:()=>Hl(e,r,s)}}},SI={kernelName:zc,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>Ze(e,r)}}},u4={kernelName:_o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,V(un(ce(n,"float32")),2))}}},l4={kernelName:El,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(ce(n,"float32"),2))}}},d4={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=Se(2);return{a:()=>V(e,V(s,fe(n,r))),b:()=>V(e,V(s,fe(r,n)))}}},p4={kernelName:ta,gradFunc:e=>({x:()=>Ue(e)})},h4={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,s=bt(n.shape,r.shape);return{a:()=>{let i=e,c=Ht(n.shape,s);return c.length>0&&(i=ve(i,c)),U(i,n.shape)},b:()=>{let i=e,c=Ht(r.shape,s);return c.length>0&&(i=ve(i,c)),U(kt(i),r.shape)}}}},f4={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,s=r.shape.slice(),{axis:a}=n;xr(a,r.shape).forEach(l=>{s[l]=1});let i=U(e,s),c=V(i,Yn(r.shape,"float32"));return{x:()=>c}}},m4={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,ct(jl(n)))}}},g4={kernelName:Ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(fe(Se(1),ct(n)),e)}}},b4={kernelName:ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:s}=n;return{x:()=>{let o=Ue(r);if(r.rank===1)for(let i=0;i{let r=n,{perm:s}=r,a=Vy(s);return{x:()=>Re(e,a)}}},v4={kernelName:Gc,gradFunc:(e,t,n)=>{let r=n,{axis:s}=r;return{value:()=>Ot(e,s)}}},x4={kernelName:Al,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>w4(e,n)}}};function w4(e,t){let n=ss(t,Ue(t)),r=Yo(e,n),s=la(t,Se(0,"int32")),a=r.rank-s.rank;for(let i=0;i({x:()=>Ue(e)})},I4=[bI,IB,SB,CB,TB,NB,_B,EB,AB,DB,FB,$B,OB,BB,zB,WB,VB,UB,GB,HB,jB,qB,XB,KB,JB,QB,ez,tz,nz,rz,Gz,sz,az,oz,iz,cz,lz,uz,dz,pz,hz,fz,mz,gz,bz,yz,vz,xz,wz,Sz,wI,wI,Cz,_z,Dz,Fz,$z,Rz,Pz,Oz,Mz,Lz,Bz,zz,Wz,kI,kI,Vz,Uz,Hz,jz,qz,Kz,Xz,Yz,Zz,Jz,Qz,e4,t4,n4,r4,s4,a4,o4,i4,c4,II,II,SI,SI,u4,d4,l4,p4,h4,f4,m4,g4,b4,y4,v4,x4,k4];for(let e of I4)y0(e);Q().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Q().prototype.acos=function(){return this.throwIfDisposed(),yy(this)};Q().prototype.acosh=function(){return this.throwIfDisposed(),vy(this)};Q().prototype.add=function(e){return this.throwIfDisposed(),Y(this,e)};Q().prototype.all=function(e,t){return this.throwIfDisposed(),Mh(this,e,t)};Q().prototype.any=function(e,t){return this.throwIfDisposed(),Ul(this,e,t)};Q().prototype.argMax=function(e){return this.throwIfDisposed(),qo(this,e)};Q().prototype.argMin=function(e){return this.throwIfDisposed(),xy(this,e)};Q().prototype.asScalar=function(){return this.throwIfDisposed(),R(this.size===1,()=>"The array must have only 1 element."),U(this,[])};Q().prototype.asType=function(e){return this.throwIfDisposed(),ce(this,e)};Q().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};Q().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};Q().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};Q().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),U(this,[e,t,n,r])};Q().prototype.as5D=function(e,t,n,r,s){return this.throwIfDisposed(),U(this,[e,t,n,r,s])};Q().prototype.asin=function(){return this.throwIfDisposed(),wy(this)};Q().prototype.asinh=function(){return this.throwIfDisposed(),ky(this)};Q().prototype.atan=function(){return this.throwIfDisposed(),Iy(this)};Q().prototype.atan2=function(e){return this.throwIfDisposed(),Sy(this,e)};Q().prototype.atanh=function(){return this.throwIfDisposed(),Cy(this)};Q().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),ir(this,e,t,n,r)};Q().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Hl(this,e,t)};Q().prototype.batchNorm=function(e,t,n,r,s){return this.throwIfDisposed(),Cs(this,e,t,n,r,s)};Q().prototype.broadcastTo=function(e){return this.throwIfDisposed(),eu(this,e)};Q().prototype.cast=function(e){return this.throwIfDisposed(),ce(this,e)};Q().prototype.ceil=function(){return this.throwIfDisposed(),Ay(this)};Q().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),en(this,e,t)};Q().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ee&&(e=[e]),Ze([this,...e],t)};Q().prototype.conv1d=function(e,t,n,r,s,a){return this.throwIfDisposed(),Bh(this,e,t,n,r,s,a)};Q().prototype.conv2dTranspose=function(e,t,n,r,s){return this.throwIfDisposed(),zh(this,e,t,n,r,s)};Q().prototype.conv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),Rt(this,e,t,n,r,s,a)};Q().prototype.cos=function(){return this.throwIfDisposed(),jl(this)};Q().prototype.cosh=function(){return this.throwIfDisposed(),Wh(this)};Q().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Vh(this,e,t,n)};Q().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),$y(this,e,t)};Q().prototype.depthwiseConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),ua(this,e,t,n,r,s,a)};Q().prototype.dilation2d=function(e,t,n,r,s){return this.throwIfDisposed(),Ry(this,e,t,n,r,s)};Q().prototype.divNoNan=function(e){return this.throwIfDisposed(),Py(this,e)};Q().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Q().prototype.dot=function(e){return this.throwIfDisposed(),Ak(this,e)};Q().prototype.elu=function(){return this.throwIfDisposed(),tu(this)};Q().prototype.equal=function(e){return this.throwIfDisposed(),Kn(this,e)};Q().prototype.erf=function(){return this.throwIfDisposed(),Oy(this)};Q().prototype.exp=function(){return this.throwIfDisposed(),bn(this)};Q().prototype.expandDims=function(e){return this.throwIfDisposed(),yn(this,e)};Q().prototype.expm1=function(){return this.throwIfDisposed(),My(this)};Q().prototype.fft=function(){return this.throwIfDisposed(),td(this)};Q().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};Q().prototype.floor=function(){return this.throwIfDisposed(),nu(this)};Q().prototype.floorDiv=function(e){return this.throwIfDisposed(),Oh(this,e)};Q().prototype.gather=function(e,t){return this.throwIfDisposed(),Yo(this,e,t)};Q().prototype.greaterEqual=function(e){return this.throwIfDisposed(),la(this,e)};Q().prototype.greater=function(e){return this.throwIfDisposed(),Mn(this,e)};Q().prototype.ifft=function(){return this.throwIfDisposed(),iu(this)};Q().prototype.irfft=function(){return this.throwIfDisposed(),rf(this)};Q().prototype.isFinite=function(){return this.throwIfDisposed(),Fk(this)};Q().prototype.isInf=function(){return this.throwIfDisposed(),$k(this)};Q().prototype.isNaN=function(){return this.throwIfDisposed(),By(this)};Q().prototype.leakyRelu=function(e){return this.throwIfDisposed(),ql(this,e)};Q().prototype.lessEqual=function(e){return this.throwIfDisposed(),da(this,e)};Q().prototype.less=function(e){return this.throwIfDisposed(),Gh(this,e)};Q().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),zy(this,e,t,n,r)};Q().prototype.logSigmoid=function(){return this.throwIfDisposed(),Ok(this)};Q().prototype.logSoftmax=function(e){return this.throwIfDisposed(),jh(this,e)};Q().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Uy(this,e,t)};Q().prototype.log=function(){return this.throwIfDisposed(),Xn(this)};Q().prototype.log1p=function(){return this.throwIfDisposed(),Kl(this)};Q().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Ir(this,e)};Q().prototype.logicalNot=function(){return this.throwIfDisposed(),Xl(this)};Q().prototype.logicalOr=function(e){return this.throwIfDisposed(),qh(this,e)};Q().prototype.logicalXor=function(e){return this.throwIfDisposed(),zk(this,e)};Q().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ae(this,e,t,n)};Q().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Pt(this,e,t,n,r)};Q().prototype.max=function(e,t){return this.throwIfDisposed(),kr(this,e,t)};Q().prototype.maximum=function(e){return this.throwIfDisposed(),ss(this,e)};Q().prototype.mean=function(e,t){return this.throwIfDisposed(),Et(this,e,t)};Q().prototype.min=function(e,t){return this.throwIfDisposed(),Yl(this,e,t)};Q().prototype.minimum=function(e){return this.throwIfDisposed(),ru(this,e)};Q().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Hy(this,e,t)};Q().prototype.mod=function(e){return this.throwIfDisposed(),jy(this,e)};Q().prototype.mul=function(e){return this.throwIfDisposed(),V(this,e)};Q().prototype.neg=function(){return this.throwIfDisposed(),kt(this)};Q().prototype.norm=function(e,t,n){return this.throwIfDisposed(),cf(this,e,t,n)};Q().prototype.notEqual=function(e){return this.throwIfDisposed(),Qo(this,e)};Q().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Jc(this,e,t,n)};Q().prototype.onesLike=function(){return this.throwIfDisposed(),Zn(this)};Q().prototype.pad=function(e,t){return this.throwIfDisposed(),ur(this,e,t)};Q().prototype.pool=function(e,t,n,r,s){return this.throwIfDisposed(),Uk(this,e,t,n,r,s)};Q().prototype.pow=function(e){return this.throwIfDisposed(),Ts(this,e)};Q().prototype.prelu=function(e){return this.throwIfDisposed(),Jl(this,e)};Q().prototype.prod=function(e,t){return this.throwIfDisposed(),Xh(this,e,t)};Q().prototype.reciprocal=function(){return this.throwIfDisposed(),Xy(this)};Q().prototype.relu=function(){return this.throwIfDisposed(),je(this)};Q().prototype.relu6=function(){return this.throwIfDisposed(),Yh(this)};Q().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};Q().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};Q().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),iI(this,e,t,n)};Q().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),cI(this,e,t,n)};Q().prototype.reverse=function(e){return this.throwIfDisposed(),Jn(this,e)};Q().prototype.rfft=function(){return this.throwIfDisposed(),nd(this)};Q().prototype.round=function(){return this.throwIfDisposed(),Zh(this)};Q().prototype.rsqrt=function(){return this.throwIfDisposed(),Jh(this)};Q().prototype.selu=function(){return this.throwIfDisposed(),Qh(this)};Q().prototype.separableConv2d=function(e,t,n,r,s,a){return this.throwIfDisposed(),ei(this,e,t,n,r,s,a)};Q().prototype.sigmoid=function(){return this.throwIfDisposed(),cr(this)};Q().prototype.sign=function(){return this.throwIfDisposed(),Yy(this)};Q().prototype.sin=function(){return this.throwIfDisposed(),ef(this)};Q().prototype.sinh=function(){return this.throwIfDisposed(),tf(this)};Q().prototype.slice=function(e,t){return this.throwIfDisposed(),We(this,e,t)};Q().prototype.softmax=function(e){return this.throwIfDisposed(),Pr(this,e)};Q().prototype.softplus=function(){return this.throwIfDisposed(),Zo(this)};Q().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Zl(this,e,t)};Q().prototype.split=function(e,t){return this.throwIfDisposed(),Ln(this,e,t)};Q().prototype.sqrt=function(){return this.throwIfDisposed(),un(this)};Q().prototype.square=function(){return this.throwIfDisposed(),ct(this)};Q().prototype.squaredDifference=function(e){return this.throwIfDisposed(),sf(this,e)};Q().prototype.squeeze=function(e){return this.throwIfDisposed(),as(this,e)};Q().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ee?[this,e]:[this,...e];return Ot(n,t)};Q().prototype.step=function(e){return this.throwIfDisposed(),cu(this,e)};Q().prototype.stridedSlice=function(e,t,n,r,s,a,o,i){return this.throwIfDisposed(),Jy(this,e,t,n,r,s,a,o,i)};Q().prototype.sub=function(e){return this.throwIfDisposed(),fe(this,e)};Q().prototype.sum=function(e,t){return this.throwIfDisposed(),ve(this,e,t)};Q().prototype.tan=function(){return this.throwIfDisposed(),Qy(this)};Q().prototype.tanh=function(){return this.throwIfDisposed(),Xo(this)};Q().prototype.tile=function(e){return this.throwIfDisposed(),On(this,e)};Q().prototype.toBool=function(){return this.throwIfDisposed(),ce(this,"bool")};Q().prototype.toFloat=function(){return this.throwIfDisposed(),ce(this,"float32")};Q().prototype.toInt=function(){return this.throwIfDisposed(),ce(this,"int32")};Q().prototype.topk=function(e,t){return this.throwIfDisposed(),ev(this,e,t)};Q().prototype.transpose=function(e){return this.throwIfDisposed(),Re(this,e)};Q().prototype.unique=function(e){return this.throwIfDisposed(),of(this,e)};Q().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),tv(this,e,t)};Q().prototype.unstack=function(e){return this.throwIfDisposed(),pt(this,e)};Q().prototype.where=function(e,t){return this.throwIfDisposed(),gn(e,this,t)};Q().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var CI={};$e(CI,{maxNorm:()=>N4,minMaxNorm:()=>A4,nonNeg:()=>E4,unitNorm:()=>_4});var uv;function jt(){return uv==null&&(uv=fk().epsilon()),uv}function Lr(){return"channelsLast"}var Es=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Es.prototype)}},Br=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Br.prototype)}},H=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,H.prototype)}},Fe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Fe.prototype)}},TI=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,TI.prototype)}};function ni(e,t){if(Array.isArray(e)){let n=[];for(let r=0;rn.toUpperCase())}var Sr={};function lv(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function dv(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>dv(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:dv(r))}}}function ad(e,t={},n={},r="object",s=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Sr)o=Sr[a];else if(o=t[a],o==null)throw new H(`Unknown ${r}: ${e}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new H(`${r}: Improper config format: ${JSON.stringify(a)}. 'className' and 'config' must set.`);let o=a.className,i,c;if(o in n?[i,c]=n[o]:o in Sr?[i,c]=Sr.className:o in t&&([i,c]=t[o]),i==null)throw new H(`Unknown ${r}: ${o}. This may be due to one of the following reasons: 1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code. 2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(c!=null){let l={};for(let h of Object.keys(Sr))l[h]=Sr[h];for(let h of Object.keys(n))l[h]=n[h];let u=a.config;u.customObjects=l;let d=Object.assign({},Sr);for(let h of Object.keys(n))Sr[h]=n[h];dv(a.config);let p=c(i,a.config,n,s);return Sr=Object.assign({},d),p}else{let l=Object.assign({},Sr);for(let d of Object.keys(n))Sr[d]=n[d];let u=new i(a.config);return Sr=Object.assign({},l),u}}}function S4(e,t){return et?1:0}function xf(e,t){return-1*S4(e,t)}function fa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function C4(e){if(e==null)throw new H(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function si(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new H(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function pv(e,t,n=0,r=1/0){return is(n>=0),is(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(s=>typeof s===t)}function tn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>tn(n,`element ${r+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${_I(e)}.`)}function _I(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>_I(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function T4(e,t,n){let r=n!=null?n():w.now(),s;return(...o)=>{let i=n!=null?n():w.now();return i-run(ve(V(e,e),t,!0)))}var od=class extends ie.Serializable{getConfig(){return{}}},fv=class extends od{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=hv(e,this.axis),n=en(t,0,this.maxValue);return V(e,ge(n,Y(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};fv.className="MaxNorm";ie.registerClass(fv);var mv=class extends od{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>ge(e,Y(jt(),hv(e,this.axis))))}getConfig(){return{axis:this.axis}}};mv.className="UnitNorm";ie.registerClass(mv);var gv=class extends od{apply(e){return je(e)}};gv.className="NonNeg";ie.registerClass(gv);var bv=class extends od{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return M(()=>{let t=hv(e,this.axis),n=Y(V(this.rate,en(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,ge(n,Y(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};bv.className="MinMaxNorm";ie.registerClass(bv);var AI={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function qt(e){return lv(e)}function DI(e,t={}){return ad(e,ie.SerializationMap.getMap().classNameMap,t,"constraint")}function Kt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in AI?AI[e]:e,config:{}};return DI(n)}else return e instanceof od?e:DI(e)}function N4(e){return new fv(e)}function _4(e){return new mv(e)}function E4(){return new gv}function A4(e){return new bv(e)}var FI={};$e(FI,{constant:()=>Q4,glorotNormal:()=>oW,glorotUniform:()=>aW,heNormal:()=>iW,heUniform:()=>cW,identity:()=>rW,leCunNormal:()=>uW,leCunUniform:()=>lW,ones:()=>J4,orthogonal:()=>dW,randomNormal:()=>tW,randomUniform:()=>eW,truncatedNormal:()=>nW,varianceScaling:()=>sW,zeros:()=>Z4});var D4=["channelsFirst","channelsLast"],F4=["nearest","bilinear"],$4=["valid","same","causal"],R4=["max","avg"],P4=["sum","mul","concat","ave"],lu=new Map;function Mt(e){si(D4,"DataFormat",e)}function O4(e){si(F4,"InterpolationFormat",e)}function lr(e){si($4,"PaddingMode",e)}function $I(e){si(R4,"PoolMode",e)}var id=[],RI="/";function ai(e,t){id.push(e);try{let n=t();return id.pop(),n}catch(n){throw id.pop(),n}}function M4(){return id.length===0?"":id.join(RI)+RI}function PI(e){if(!MI(e))throw new Error("Not a valid tensor name: '"+e+"'");return M4()+e}function OI(e){if(!MI(e))throw new Error("Not a valid tensor name: '"+e+"'");lu.has(e)||lu.set(e,0);let t=lu.get(e);if(lu.set(e,lu.get(e)+1),t>0){let n=`${e}_${t}`;return lu.set(n,1),n}else return e}var L4=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function MI(e){return!!e.match(L4)}function B4(e){return e===parseInt(e.toString(),10)}function ma(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let s=t;st&&(t=r)}return t}function zr(e,t){if(t{if(e.shape.length!==2)throw new H(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=cd(e,1);return xv(n,[1,t,1])})}function W4(e){let t=[ma(e.shape)];return U(e,t)}function V4(e){if(e.rank<=1)throw new H(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ma(e.shape,1)];return U(e,t)}function oi(e,t,n){return M(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return Zy(e,[t,0],[n,e.shape[1]]);case 3:return ou(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ed(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return We(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return We(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new H(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function yv(e,t,n){return M(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:return Zy(e,[0,t],[e.shape[0],n]);case 3:return ou(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ed(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function kf(e,t,n,r){return M(()=>{switch(e.rank){case 1:return nf(e,t,n);case 2:switch(r){case 1:return oi(e,t,n);case 2:return yv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return oi(e,t,n);case 2:return ou(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return yv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return oi(e,t,n);case 2:return ed(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ed(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return yv(e,t,n);default:throw new H(`The axis is not within the rank of the tensor ${r}`)}default:throw new H(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function vv(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ze(e,t)}function LI(e,t){switch(e.rank){case 1:return Ik([e,t]);case 2:return Sk([e,t],0);case 3:return Ck([e,t],0);case 4:return Tk([e,t],0);default:throw new H(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function xv(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new H(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return On(e,t)}function If(e,t=0,n=1,r,s){return Gk(e,t,n,r,s)}function cs(e,t,n,r){if(e.rank<2||t.rank<2)throw new Fe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let s=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(s!==a)throw new Fe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let s=!1,a=!1;return pa.matMul({a:e,b:t,transposeA:s,transposeB:a,bias:r?wv(e.rank,r,Lr()):null,activation:n})}else{let s=e.shape.slice(),a=s.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),c=o.pop(),l=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Re(t,u),[c,-1]);let d=[...s,...l],p=!1,h=!1;return U(pa.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:r?wv(e.rank,r,Lr()):null,activation:n}),d)}}function BI(e,t,n){return M(()=>(Array.isArray(t)?t=Ge(t,"int32"):t=ce(t,"int32"),Yo(e,t,n)))}function ud(e){return V(e,e)}function wv(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new H(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1,1]):U(t,[1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1,1]):U(t,[1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,1,r[0]]):U(t,[1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?U(t,[1,r[0],1]):U(t,[1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?U(t,[1,1,r[0]]):U(t,[1].concat(r))}else if(e<3)return t;throw new H(`Unsupported input rank by biasAdd: ${t.rank}`)}function Wr(e,t,n){return M(()=>(n==null&&(n=Lr()),Mt(n),Y(e,wv(e.rank,t,n))))}function U4(e,t=1){if(t!==1)throw new Fe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return tu(e)}function G4(e){return M(()=>ge(e,Y(Lt(e),1)))}function zI(e,t,n,r){return M(()=>Zk(e,t,n,r))}function H4(e){return M(()=>{let t=Y(.5,V(.2,e));return en(t,0,1)})}function ld(e,t,n=!1){return n?e():t()}var j4=["fanIn","fanOut","fanAvg"],q4=["normal","uniform","truncatedNormal"];function K4(e){si(j4,"FanMode",e)}function X4(e){si(q4,"Distribution",e)}var Cr=class extends ie.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},kv=class extends Cr{apply(e,t){return It(e,t)}};kv.className="Zeros";ie.registerClass(kv);var Sf=class extends Cr{apply(e,t){return Yn(e,t)}};Sf.className="Ones";ie.registerClass(Sf);var Iv=class extends Cr{constructor(e){super();if(typeof e!="object")throw new H(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new H(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return M(()=>V(Se(this.value),Yn(e,t)))}getConfig(){return{value:this.value}}};Iv.className="Constant";ie.registerClass(Iv);var Sv=class extends Cr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return su(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Sv.className="RandomUniform";ie.registerClass(Sv);var Cv=class extends Cr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`randomNormal does not support dType ${t}.`);return If(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Cv.className="RandomNormal";ie.registerClass(Cv);var Tv=class extends Cr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`truncatedNormal does not support dType ${t}.`);return af(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Tv.className="TruncatedNormal";ie.registerClass(Tv);var Nv=class extends Cr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return M(()=>{if(e.length!==2||e[0]!==e[1])throw new H("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,Ly(e[0]))})}getConfig(){return{gain:this.gain}}};Nv.className="Identity";ie.registerClass(Nv);function Y4(e,t="channelsLast"){let n,r;if(Mt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let s=ma(e,2);n=e[1]*s,r=e[0]*s}else if(t==="channelsLast"){let s=ma(e,0,e.length-2);n=e[e.length-2]*s,r=e[e.length-1]*s}}else{let s=ma(e);n=Math.sqrt(s),r=Math.sqrt(s)}return[n,r]}var zn=class extends Cr{constructor(e){super();if(e.scale<0)throw new H(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,K4(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,X4(this.distribution),this.seed=e.seed}apply(e,t){let n=Y4(e),r=n[0],s=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,r):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(r+s)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`${this.getClassName()} does not support dType ${t}.`);return af(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return su(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};zn.className="VarianceScaling";ie.registerClass(zn);var Cf=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Cf.className="GlorotUniform";ie.registerClass(Cf);var Tf=class extends zn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Tf.className="GlorotNormal";ie.registerClass(Tf);var Nf=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Nf.className="HeNormal";ie.registerClass(Nf);var _f=class extends zn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};_f.className="HeUniform";ie.registerClass(_f);var Ef=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Ef.className="LeCunNormal";ie.registerClass(Ef);var Af=class extends zn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return zn.className}};Af.className="LeCunNormal";ie.registerClass(Af);var _v=class extends Cr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Fe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return M(()=>{if(e.length<2)throw new Fe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=If(n,0,1,"float32"),s=lI.gramSchmidt(r);return e[0]>e[1]&&(s=Re(s)),V(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};_v.className="Orthogonal";ie.registerClass(_v);var WI={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function VI(e,t={}){return ad(e,ie.SerializationMap.getMap().classNameMap,t,"initializer")}function At(e){return lv(e)}function St(e){if(typeof e=="string"){let t=e in WI?WI[e]:e;if(t==="GlorotNormal")return new Tf;if(t==="GlorotUniform")return new Cf;if(t==="HeNormal")return new Nf;if(t==="HeUniform")return new _f;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Af;{let n={};return n.className=t,n.config={},VI(n)}}else return e instanceof Cr?e:VI(e)}function Z4(){return new kv}function J4(){return new Sf}function Q4(e){return new Iv(e)}function eW(e){return new Sv(e)}function tW(e){return new Cv(e)}function nW(e){return new Tv(e)}function rW(e){return new Nv(e)}function sW(e){return new zn(e)}function aW(e){return new Cf(e)}function oW(e){return new Tf(e)}function iW(e){return new Nf(e)}function cW(e){return new _f(e)}function uW(e){return new Ef(e)}function lW(e){return new Af(e)}function dW(e){return new _v(e)}var UI={};$e(UI,{Layer:()=>qe,RNN:()=>ds,RNNCell:()=>vd,activation:()=>qV,add:()=>nU,alphaDropout:()=>BU,average:()=>rU,averagePooling1d:()=>jx,averagePooling2d:()=>qx,averagePooling3d:()=>Kx,avgPool1d:()=>pU,avgPool2d:()=>fU,avgPool3d:()=>gU,avgPooling1d:()=>hU,avgPooling2d:()=>mU,avgPooling3d:()=>bU,batchNormalization:()=>uU,bidirectional:()=>DU,concatenate:()=>sU,conv1d:()=>LV,conv2d:()=>BV,conv2dTranspose:()=>zV,conv3d:()=>WV,conv3dTranspose:()=>VV,convLstm2d:()=>NU,convLstm2dCell:()=>_U,cropping2D:()=>GV,dense:()=>KV,depthwiseConv2d:()=>jV,dot:()=>cU,dropout:()=>XV,elu:()=>FV,embedding:()=>tU,flatten:()=>ZV,gaussianDropout:()=>LU,gaussianNoise:()=>MU,globalAveragePooling1d:()=>yU,globalAveragePooling2d:()=>vU,globalMaxPool1d:()=>$U,globalMaxPool2d:()=>RU,globalMaxPooling1d:()=>JS,globalMaxPooling2d:()=>QS,gru:()=>wU,gruCell:()=>kU,input:()=>kS,inputLayer:()=>DV,layerNormalization:()=>lU,leakyReLU:()=>RV,lstm:()=>IU,lstmCell:()=>SU,masking:()=>zU,maxPool1d:()=>PU,maxPool2d:()=>OU,maxPooling1d:()=>eC,maxPooling2d:()=>tC,maxPooling3d:()=>xU,maximum:()=>aU,minimum:()=>oU,multiply:()=>iU,permute:()=>eU,prelu:()=>PV,reLU:()=>$V,repeatVector:()=>JV,reshape:()=>QV,rnn:()=>EU,separableConv2d:()=>UV,simpleRNN:()=>CU,simpleRNNCell:()=>TU,softmax:()=>OV,spatialDropout1d:()=>YV,stackedRNNCells:()=>AU,thresholdedReLU:()=>MV,timeDistributed:()=>FU,upSampling2d:()=>HV,zeroPadding2d:()=>dU});var pW=0;function GI(){return pW++}var Df={};function Ff(e=""){return e in Df||(Df[e]=0),Df[e]+=1,e+Df[e].toString()}function Ev(e){return Array.isArray(e)&&Array.isArray(e[0])}function $f(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Oe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new H(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new H(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Rf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,s)=>r*s);return t}var HI="Variable",jI=class{constructor(e,t="float32",n=HI,r=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=GI(),n=n==null?HI:n,this.originalName=PI(n),this.name=OI(this.originalName),this.trainable_=r,this.constraint=s,this.val=jk(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),hW(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function hW(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Av(e){return e.map(t=>t.read())}function Dv(e){e.forEach(t=>{t[0].write(t[1])})}var Bt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Vr=class{constructor(e,t,n,r,s,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=s,this.outputTensorIndex=o,this.id=GI(),a!=null&&(this.originalName=PI(a),this.name=OI(this.originalName)),this.rank=t.length}},fW=0,Pf=class{constructor(e,t){this.callArgs=t,this.id=fW++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},mW=0,qe=class extends ie.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=mW++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=As(n)+"_"+Ff(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),n=[s].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Br(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new H(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Bn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Bn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Es(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Es(`Layer ${this.name} is not connected, no input to return.`);return Bn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Es(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Es(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Bn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new H(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;ns.maxNDim)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a=0?o[c]:o[o.length+c];if(l!=null&&[l,null].indexOf(u)===-1)throw new H(`Input ${n} is incompatible with layer ${this.name}: expected axis ${c} of input shape to have value ${l} but got shape ${o}.`)}}if(s.shape!=null)for(let o=0;o{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of yt(e))a.push(o.shape);this.build(Bn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),o=yt(a),i=[];for(let c of o)n.indexOf(c)!==-1&&(c=c.clone()),i.push(c);if(a=Bn(i),this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=gW(e),o=this.computeOutputShape(a),i,c=bW(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((l,u)=>new Vr(c,l,this,yt(e),t,this.name,u)):i=new Vr(c,o,this,yt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Es(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Es(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Br(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Rf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Av(e?this.trainableWeights:this.weights)}setWeights(e){M(()=>{let t=this.weights;if(t.length!==e.length)throw new H(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=Av(t);for(let s=0;ss.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,s,a,o=null){let i=yt(e);t=yt(t),n=yt(n),r=yt(r),s=$f(s),a=$f(a);let c=[],l=[],u=[];for(let d of i)c.push(d.sourceLayer),l.push(d.nodeIndex),u.push(d.tensorIndex);new Pf({outboundLayer:this,inboundLayers:c,nodeIndices:l,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:s,outputShapes:a},o);for(let d=0;de.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function gW(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return Bn(t)}function bW(e){return"float32"}function qI(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let s=[];for(let a=0;a0){let s=await Promise.all(t);for(let a=0;aY(this.totals[r],V(s,n)));this.totals[r]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:M(()=>{let r=V(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Qt(t[n])}))}},JI=class extends hu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let s in this.history){let a=this.history[s];for(let o=0;onew QI(r,t))}var Tr=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Tr.checkForDuplicate(t),Tr.constructors[e]==null&&(Tr.constructors[e]=[]),Tr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Tr.constructors)Tr.constructors[+t].forEach(r=>{if(r===e)throw new H("Duplicate callback constructor.")})}static clear(){Tr.constructors={}}static createCallbacks(e){let t=[];for(let n in Tr.constructors){let r=+n;e>=r&&t.push(...Tr.constructors[r])}return t.map(n=>new n)}};Tr.constructors={};function tS(e,t,n,r,s,a,o,i,c){let l=new JI,u=[new vW,...Tr.createCallbacks(t)];e!=null&&u.push(...e),u.push(l);let d=new ZI(u);return d.setParams({epochs:n,initialEpoch:r,samples:s,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:c}),{callbackList:d,history:l}}function Ur(e,t={},n=!1){return ad(e,ie.SerializationMap.getMap().classNameMap,t,"layer",n)}function Of(e,t){return M(()=>{e.dtype!=="float32"&&(e=ce(e,"float32"));let n=ve(ud(e),t,!0),r=In(n.shape,jt()),s=un(ss(n,r));return ge(e,s)})}function ii(e,t){return M(()=>Et(ud(fe(t,e)),-1))}function Mf(e,t){return M(()=>Et(Lt(fe(t,e)),-1))}function fu(e,t){return M(()=>{let n=fe(e,t),r=en(Lt(e),jt(),Number.MAX_VALUE),s=Lt(ge(n,r));return V(100,Et(s,-1))})}function xW(e,t){return M(()=>{let n=en(t,jt(),Number.MAX_VALUE),r=Xn(Y(1,n)),s=en(e,jt(),Number.MAX_VALUE),a=Xn(Y(1,s));return Et(ud(fe(r,a)),-1)})}function wW(e,t){return M(()=>{let n=ss(0,fe(1,V(e,t)));return Et(ud(n),-1)})}function kW(e,t){return M(()=>{let n=ss(0,fe(1,V(e,t)));return Et(n,-1)})}function IW(e,t){return M(()=>{let n=ve(V(e,t),-1),r=kr(V(fe(1,e),t),-1);return ss(0,Y(1,fe(r,n)))})}function SW(e,t){return M(()=>{let n=Math.log(2),r=fe(t,e),s=fe(Y(r,Zo(V(-2,r))),n);return Et(s,-1)})}function dd(e,t,n=!1){return M(()=>{if(n)t=Pr(t);else{let r=ve(t,t.shape.length-1,!0);t=ge(t,r)}return t=en(t,jt(),1-jt()),kt(ve(V(ce(e,"float32"),Xn(t)),t.shape.length-1))})}function Lf(e,t,n=!1){return M(()=>{let r=ce(nu(W4(e)),"int32");t=en(t,jt(),1-jt());let s=t.shape,a=U(Jc(r,s[s.length-1]),s);return dd(a,t,n)})}function CW(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new H(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return M(()=>{let n=je(t),r=kt(Lt(t));return Y(fe(n,V(t,e)),Kl(bn(r)))})}function Bf(e,t){return M(()=>{let n;return n=en(t,jt(),1-jt()),n=Xn(ge(n,fe(1,n))),Et(CW(e,n),-1)})}function TW(e,t){return M(()=>{let n=en(e,jt(),1),r=en(t,jt(),1);return ve(V(e,Xn(ge(n,r))),-1)})}function NW(e,t){return M(()=>{let n=Xn(Y(jt(),t));return Et(fe(t,V(e,n)),-1)})}function Fv(e,t){return M(()=>{let n=Of(e,-1),r=Of(t,-1),s=V(n,r);return kt(ve(s,-1))})}var zf={meanSquaredError:ii,meanAbsoluteError:Mf,meanAbsolutePercentageError:fu,meanSquaredLogarithmicError:xW,squaredHinge:wW,hinge:kW,categoricalHinge:IW,logcosh:SW,categoricalCrossentropy:dd,sparseCategoricalCrossentropy:Lf,binaryCrossentropy:Bf,kullbackLeiblerDivergence:TW,poisson:NW,cosineProximity:Fv};function $v(e){if(typeof e=="string"){if(e in zf)return zf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new H(t)}else return e}function Rv(e,t){return M(()=>{let n=V(.5,Zn(t)),r=wf(Mn(t,n),e.dtype);return Et(Kn(e,r),-1)})}function Pv(e,t){return M(()=>wf(Kn(qo(e,-1),qo(t,-1)),"float32"))}function nS(e,t){return M(()=>ce(ve(Ir(Kn(e,1),Kn(t,1))),"float32"))}function _W(e,t){return M(()=>ce(ve(Ir(Kn(e,1),Kn(t,0))),"float32"))}function EW(e,t){return M(()=>ce(ve(Ir(Kn(e,0),Kn(t,1))),"float32"))}function rS(e,t){return M(()=>{let n=nS(e,t),r=EW(e,t),s=Y(n,r);return ce(gn(Mn(s,0),ge(n,s),0),"float32")})}function AW(e,t){return M(()=>{let n=nS(e,t),r=_W(e,t),s=Y(n,r);return ce(gn(Mn(s,0),ge(n,s),0),"float32")})}function sS(e,t){return Bf(e,t)}function aS(e,t){return e.rank===t.rank&&(e=as(e,[e.rank-1])),t=qo(t,-1),t.dtype!==e.dtype&&(t=ce(t,e.dtype)),ce(Kn(e,t),"float32")}var DW=ii,FW=ii,$W=Mf,RW=Mf,PW=fu,OW=fu,Ov=dd,MW=Fv,oS=Lf,Wf={binaryAccuracy:Rv,categoricalAccuracy:Pv,precision:rS,categoricalCrossentropy:Ov,sparseCategoricalCrossentropy:oS,mse:DW,MSE:FW,mae:$W,MAE:RW,mape:PW,MAPE:OW,cosine:MW};function LW(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new H(`Unknown metric ${e}`)}function Vf(e){if(is(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(zf))if(zf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function BW(e){let t={Adagrad:()=>ti.adagrad(.01),Adadelta:()=>ti.adadelta(1,.95,jt()),Adam:()=>ti.adam(.001,.9,.999,jt()),Adamax:()=>ti.adamax(.002,.9,.999,jt(),0),RMSProp:()=>ti.rmsprop(.001,.9,0,jt()),SGD:()=>ti.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new H(`Unknown Optimizer ${e}`)}var iS=1*1024*1024;function cS(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Mv(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>iS&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${iS}.`)}}function Mv(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Mv(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Mv(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function zW(e,t,n,r=console.log){let s=VW(e),a=["Layer (type)","Output shape","Param #"];s?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!s){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}r("_".repeat(t)),Uf(a,n,r),r("=".repeat(t));let i=e.layers;for(let u=0;u1||s.length===1&&s[0].inboundLayers.length>1){t=!1;break}r.push(...s)}if(t)for(let s of e.layers){let a=!1;for(let o of s.inboundNodes)if(r.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let r="";for(let s=0;s0&&(r=r.slice(0,r.length-1)+" "),r+=e[s],r=r.slice(0,t[s]),r+=" ".repeat(t[s]-r.length);n(r)}function UW(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(i){r="multiple"}let s=e.name,a=e.getClassName(),o=[`${s} (${a})`,r,e.countParams().toString()];Uf(o,t,n)}function GW(e,t,n,r){let s;try{s=JSON.stringify(e.outputShape)}catch(u){s="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;df.name),c=[],l=t.names();for(let f of i)l.indexOf(f)!==-1?c.push(t.getValue(f)):c.push(null);r!=null&&(r.maxNumTensors=-1/0,r.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(zv[u]==null){let f=jW(o,t);d=f.sorted,p=f.recipientCounts,zv[u]=d,lS[u]=p}d=zv[u],p={},s||Object.assign(p,lS[u]);let h=new ci(t);for(let f=0;fr.maxNumTensors&&(r.maxNumTensors=F),F0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let s=dS(e[0],t);n=s.sorted,r=s.recipientMap}else{let s=new Set;for(let a of e){let{sorted:o,recipientMap:i}=dS(a,t);for(let c of o)s.has(c.name)||(n.push(c),s.add(c.name));for(let c in i)r[c]==null&&(r[c]=new Set),i[c].forEach(l=>r[c].add(l))}}return{sorted:n,recipientCounts:qW(r)}}function qW(e){let t={};for(let n in e)t[n]=e[n].size;return t}function dS(e,t){let n=new Set,r=[],s={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let c=o[o.length-1]===a.length-1;if(i.inputs.length===0||c)a.pop(),r.push(i),n.add(i.name),c&&o.pop();else{o.push(a.length-1);for(let l of i.inputs)s[l.name]==null&&(s[l.name]=new Set),s[l.name].add(i.name),!n.has(l.name)&&a.push(l)}}return{sorted:r,recipientMap:s}}function KW(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;rb.name)}`);fa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let v=b.sourceLayer,y=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(v),this.outputLayersNodeIndices.push(y),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let v=b.sourceLayer,y=b.nodeIndex,x=b.tensorIndex;is(y===0,"input layer has >1 nodes"),is(x===0,"input layer has >1 tensors"),this.inputLayers.push(v),this.inputLayersNodeIndices.push(y),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;bb.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},r={},s={},a={},o=[],i=(b,v,y,x,k,C)=>{(x==null||k==null||C==null)&&(x=b.sourceLayer,k=b.nodeIndex,C=b.tensorIndex);let N=x.inboundNodes[k];if(y.indexOf(N)!==-1)throw new Br(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(v.indexOf(N)!==-1)return;this.containerNodes.add(us.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),y.indexOf(N)===-1&&y.push(N);let D=N.inboundLayers.length;for(let F=0;F=0;)y.splice(y.indexOf(N),1);o.push(N)},c=[],l=[];for(let b of this.outputs)i(b,c,l);let u=o.slice().reverse();for(let b of u){n[b.id]=b,b.id in t||(t[b.id]=0);let v=t[b.id],y=r[b.outboundLayer.id]==null?0:r[b.outboundLayer.id];v=Math.max(v,y),r[b.outboundLayer.id]=v,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=v;for(let x=0;xparseInt(b,10)).sort(xf);this.layers=[];for(let b of h){let v=p[b];v.sort((y,x)=>{let k=a[y.id],C=a[x.id];return kC?1:0});for(let y of v)y instanceof us&&this.internalContainerRefs.push(y),this.layers.push(y)}this.layersByDepth=p,h=Object.keys(d).map(b=>parseInt(b,10)).sort(xf);let f=this.inputs.slice(),m=[];for(let b of h)for(let v of d[b]){let y=v.outboundLayer;if(y!=null){for(let x of v.inputTensors)if(f.indexOf(x)===-1)throw new Br(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${y.name}". The following previous layers were accessed without issue: ${m}`);for(let x of v.outputTensors)f.push(x);m.push(y.name)}}this.nodesByDepth=d;let g=this.layers.map(b=>b.name);for(let b of g){let v=g.filter(y=>y===b).length;if(v!==1)throw new Br(`The name "${b}" is used ${v} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Pf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new H("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new H(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,r++}let s=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)s.push([n[o],e[a]]);else if(t)throw new H(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new H(`${a.length} of ${r} weights are not set: ${a}`)}Dv(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Bv}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Lv(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return M(()=>{e=yt(e);let n=new ci;for(let r=0;r{e=yt(e);let n;return t==null?n=ni(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=$f(e);if(t.length!==this.inputLayers.length)throw new H(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;oparseInt(o,10)).sort(xf);if(r.length>1)for(let o of r){let i=this.nodesByDepth[o];for(let c of i){let l=c.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let u=[];for(let f=0;fparseInt(i,10)).sort(xf);for(let i of r){let c=this.nodesByDepth[i];for(let l of c){let u=l.outboundLayer,d=l.inputTensors,p=l.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,b,v;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[y,x]=h[0];f.mask==null&&(f.mask=x),b=yt(u.call(y,f)),v=yt(u.computeMask(y,x)),m=[y],g=[x]}else m=h.map(y=>y[0]),g=h.map(y=>y[1]),f.mask==null&&(f.mask=g),b=yt(u.call(m,f)),v=yt(u.computeMask(m,g));if(u.activityRegularizer)throw new Fe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let y=0;y{let e=[];for(let t of this.layers)for(let n=0;n0){let f=[];for(let m=0;m0&&m.apply(Bn(b),v)}function c(m){let g=m.name,b=Ur(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(r),s[g]=b,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new H(`Corrupted configuration, expected array for nodeData: ${y}`);o(b,y)})}let l=t.name,u=t.layers;for(let m of u)c(m);for(;!C4(a);)for(let m of u){let g=s[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let v of b)i(g,v)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],v=m[2];is(g in s);let x=s[g].inboundNodes[b].outputTensors;d.push(x[v])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],v=m[2];is(g in s);let x=s[g].inboundNodes[b].outputTensors;p.push(x[v])}return new e({inputs:d,outputs:p,name:l})}get stateful(){if(this._stateful)throw new H("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){M(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function XW(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let s=[];return t.forEach(a=>{a in e?s.push(e[a]):s.push(null)}),s}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function pS(e,t){return XW(e,t,"classWeight")}async function hS(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let s=M(()=>{if(e.shape.length===1)return Is(e);if(e.shape.length===2){if(e.shape[1]>1)return qo(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await s.data());De(s);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ge(o,"float32")}else return null}function YW(e,t){return V(e,t)}var ZW=32;function fS(e,t){let n,r,s=t;n=s.xs,r=s.ys,w.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=mS("input",e.inputNames,n),o=mS("output",e.outputNames,r),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let c=0;c`Batch size mismatch: input ${e.inputNames[c]} has ${a[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let c=0;c`Batch size mismatch: output ${e.outputNames[c]} has ${o[c].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function mS(e,t,n){if(n instanceof Ee)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let s of t){if(n[s]==null)throw new H(`The feature data generated by the dataset lacks the required ${e} key '${s}'.`);r.push(n[s])}return r}}function JW(e){if(e.length===3)throw new Fe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function QW(e,t,n){let r=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let s=n.validationData!=null,a,o;if(s)if(gS(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=JW(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),c=e.getDedupedMetricsNames(),l;s?l=c.slice().concat(c.map(g=>"val_"+g)):l=c.slice();let u=eS(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=tS(u,d,n.epochs,null,null,eV(t,n),null,s,l);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f=n.batchesPerEpoch:y.done){if(s){let x;gS(n.validationData)?x=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=yt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?ZW:n.validationBatchSize,verbose:0}));for(let k=0;k0)throw new Fe("Verbose mode is not implemented yet.");w.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=tV(t)?t:await t.iterator(),i=0,c=0;for(;r?c{if(l.value){let{xs:u,ys:d}=fS(e,l.value),p=u.concat(d),h=M(()=>s(p));if(De(p),c===0)for(let m=0;mY(a[m],V(f,g))),c>0&&De(b)}De(h),i+=f,++c}return a}),l.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function fd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>oi(r,t,n-t)):oi(e,t,n-t)}function Vv(e,t){return M(()=>e==null?null:Array.isArray(e)?e.map(n=>Vv(n,t)):BI(e,t.dtype==="int32"?t:ce(t,"int32")))}function Uv(e,t){let n=[],r=0,s=null;for(;r=e&&(s=e),n.push([r,s]),r=s;return n}async function rV(e,t,n,r,s,a,o,i,c,l,u,d,p,h,f){s==null&&(s=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(c!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new H("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,s,h,"steps_per_epoch"),b;g!=null&&(b=zr(0,g)),o==null&&(o=1);let{callbackList:v,history:y}=tS(i,o,a,p,g,h,s,m,d);v.setModel(e),e.history=y,await v.onTrainBegin(),e.stopTraining_=!1;for(let x=p;x{let O=N[D][0],$=N[D][1],P=oi(C,O,$-O);F.batch=D,F.size=$-O;let T=Vv(n,P),L=t(T);for(let G=0;G0){if(f=!0,r.validationData.length===2)o=r.validationData[0],i=r.validationData[1];else throw r.validationData.length===3?new Fe("validationData including sample weights is not supported yet."):new H(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let N=!0,D=await e.standardizeUserData(o,i,null,null,N,d);c=D[0],l=D[1],m=c.concat(l)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let N=Math.floor(s[0].shape[0]*(1-r.validationSplit)),D=s[0].shape[0];c=fd(s,N,D),s=fd(s,0,N),l=fd(a,N,D),a=fd(a,0,N),m=c.concat(l)}else r.validationSteps!=null&&(f=!0);let g=s.concat(a).concat(u);e.checkTrainableWeightsConsistency();let b=e.makeTrainFunction(),v=e.getDedupedMetricsNames(),y,x;f?(e.makeTestFunction(),y=e.testFunction,x=v.slice().concat(v.map(N=>"val_"+N))):(y=null,m=[],x=v.slice());let k=eS(r.callbacks,r.yieldEvery);return await rV(e,b,g,v,d,r.epochs,r.verbose,k,y,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,ui(s,t),ui(a,n),ui(c,o),ui(l,i),u!=null&&De(u)}}function bS(e){let t=[];e instanceof Ee&&(e=[e]);for(let n=0;nn.push(s.id));else if(t!=null)for(let s in t){let a=t[s];n.push(a.id)}let r=[];if(e instanceof Ee)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(s=>{n.indexOf(s.id)===-1&&r.push(s)});else if(e!=null)for(let s in e){let a=e[s];n.indexOf(a.id)===-1&&r.push(a)}r.forEach(s=>{s.isDisposed||s.dispose()})}function aV(e){return e instanceof Ee}function Gv(e){return Array.isArray(e)}function yS(e){return!aV(e)&&!Gv(e)}function vS(e,t,n,r=!0,s=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(Gv(e)&&e.length>0)o=!0;else if(yS(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new H(`Error when checking model ${s} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(yS(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new H(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(Gv(e)){if(e=e,e.length!==t.length)throw new H(`Error when checking model ${s}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new H(`The model ${s} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=bS(a),n!=null)for(let o=0;o=0&&l!==u)throw new H(`${s} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${s} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function oV(e,t,n){let r=fa(e.map(a=>a.shape[0]));r.sort();let s=fa(t.map(a=>a.shape[0]));if(s.sort(),r.length>1)throw new H(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(s.length>1)throw new H(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(r.length>0&&s.length>0&&!w.arraysEqual(r,s))throw new H(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${s[0]} target sample(s).`)}function iV(e,t,n){let r=[ii,Bf,dd];for(let s=0;s1)throw new H(`The model expects ${t.length} ${s} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let s of t){let a=n.hasOwnProperty(s)?n[s]:[];Array.isArray(a)||(a=[a]),r.push(a)}return r}}var uV="layers-model",Ds=class extends us{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new H("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");zW(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=BW(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof _s))throw new H("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new H(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push($v(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new H(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>$v(o))}else{let a=$v(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a{for(let a=0;a1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let r=cV(e.metrics,this.outputNames),s=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};ai("metric",()=>{for(let a=0;a{let l="",u,d,p;for(let h of c){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Bf?["accuracy","acc"].indexOf(h)!==-1?d=Rv:["crossentropy","ce"].indexOf(h)!==-1&&(d=sS):this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=aS:["crossentropy","ce"].indexOf(h)!==-1&&(d=oS):["accuracy","acc"].indexOf(h)!==-1?d=Pv:["crossentropy","ce"].indexOf(h)!==-1&&(d=Ov);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=l+g}else p=LW(h),u=l+Vf(h);let f;ai(u,()=>{f=p}),s(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;Wv(r);let s=!0,a=this.standardizeUserDataXY(e,t,s,r);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,c=this.testLoop(i,o,r,n.verbose,n.steps);return Bn(c)}finally{ui(a[0],e),ui(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),nV(this,e,t)}checkNumSamples(e,t,n,r="steps"){let s;if(n!=null){if(s=null,t!=null)throw new H(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new H(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new H("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],s=this.retrieveSymbolicTensors(r),a=new ci;if(e instanceof Ee&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new H(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;io.name);for(let o=0;o0){let r=[];throw t.forEach((s,a)=>{s==null&&r.push(e[a])}),new H(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return M(()=>{let r=this.checkNumSamples(e);if(n)throw new Fe("Verbose predictLoop() is not implemented yet.");let s=Uv(r,t),a=this.outputs.map(o=>[]);for(let o=0;o{let c=s[o][0],l=s[o][1],u=fd(e,c,l),d=[];if(Array.isArray(u))for(let h=0;ha[l].push(c));return Bn(a.map(o=>Ze(o,0)))})}predict(e,t={}){let n=bS(e);xS(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return Wv(r),this.predictLoop(n,r)}finally{ui(n,e)}}predictOnBatch(e){xS(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Br("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a0&&e[0].shape[0]%r!=0)throw new H(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,s=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,s,a);if(n!=null)throw new Error("sample weight is not supported yet.");let c=null;if(r!=null){let l=pS(r,this.outputNames);c=[];for(let u=0;u{let a=this.checkNumSamples(t,n,s,"steps"),o=[];if(r>0)throw new Fe("Verbose mode is not implemented yet.");if(s!=null)throw new Fe("steps mode in testLoop() is not implemented yet");{let i=Uv(a,n),c=Ge(zr(0,a));for(let l=0;l1&&(s+=`_${NI(e.slice(0,n),r)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f1&&f{h=Y(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),c=!0;return[this.optimizer_.minimize(o,c,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>M(()=>{let t=[],n,r=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let c=0;cAs(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=As(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[As(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>As(Vf(e)));{let e={};for(let t in this.metrics)e[t]=As(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=pd(e.optimizer_config),n=Ur(t),r;if(typeof e.loss=="string")r=ri(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(a=>ri(a));else if(e.loss!=null){r={};for(let a in e.loss)r[a]=ri(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>ri(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=ri(e.metrics[a])}this.compile({loss:r,metrics:s,optimizer:n})}async save(e,t){if(typeof e=="string"){let c=Jt.getSaveHandlers(e);if(c.length===0)throw new H(`Cannot find any save handlers for URL '${e}'`);if(c.length>1)throw new H(`Found more than one (${c.length}) save handlers for URL '${e}'`);e=c[0]}if(e.save==null)throw new H("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Jt.encodeWeights(this.getNamedWeights(t)),r=!1,s=null,o={modelTopology:this.toJSON(s,r),format:uV,generatedBy:`TensorFlow.js tfjs-layers v${Bv}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let c="optimizer",{data:l,specs:u}=await Jt.encodeWeights(await this.optimizer.getWeights(),c);n.specs.push(...u),n.data=Jt.concatenateArrayBuffers([n.data,l])}if(this.userDefinedMetadata!=null){let c=!0;cS(this.userDefinedMetadata,this.name,c),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){cS(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Ds.className="Model";ie.registerClass(Ds);var wS=class extends Ds{};wS.className="Functional";ie.registerClass(wS);async function lV(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=pd(n),s=Ur(r,t);if(e.weightsManifest!=null){let a=await Jt.loadWeights(e.weightsManifest,e.pathPrefix,s.weights.map(i=>i.originalName)),o={};for(let i of s.weights)o[i.originalName]=a[i.originalName];s.loadWeights(o),De(a)}return s}async function dV(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Jt.getLoadHandlers(e,t);if(n.length===0)n.push(Jt.browserHTTPRequest(e,t));else if(n.length>1)throw new H(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return pV(e,void 0,t)}async function pV(e,t,n){if(n==null&&(n={}),e.load==null)throw new H("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),s=r.modelTopology;s.model_config!=null&&(s=s.model_config);let a=n.strict==null?!0:n.strict,o=r.weightData!=null&&r.weightSpecs!=null&&a,i=Ur(pd(s),t,o),c=r.trainingConfig;if(c!=null&&i.loadTrainingConfig(c),r.userDefinedMetadata!=null&&i.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new H("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:u}=hV(r.weightData,r.weightSpecs);i.loadWeights(l,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),De(l),De(u.map(d=>d.tensor))}return i}function hV(e,t){let n=Jt.decodeWeights(e,t),r={},s=[];return t.forEach(a=>{a.group==="optimizer"?s.push({name:a.name,tensor:n[a.name]}):r[a.name]=n[a.name]}),{modelWeights:r,optimizerWeights:s}}var mu=class extends Ds{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Ff("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new H(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof mu||e instanceof Ds,n;if(t){if(n=e,n.outputs.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new H("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new H("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=KI({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new H(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new H("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=qI(this.outputs[0])}this.inboundNodes=[],new Pf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ni(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Ds({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Br("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Br("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Br("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Br("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new H("Legacy serialization format not supported yet.");s=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof mu))throw new Fe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of s){let l=Ur(i,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),o.add(l)}return o}set stopTraining(e){if(this.model==null)throw new H("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new H("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};mu.className="Sequential";ie.registerClass(mu);function fV(e){return new Ds(e)}function mV(e){return new mu(e)}function gV(e,t){return t==null&&(t={}),dV(e,t)}function kS(e){return KI(e)}function bV(e,t){Tr.registerCallbackConstructor(e,t)}var Wn=class extends ie.Serializable{getConfig(){return{}}},IS=class extends Wn{apply(e,t=1){return U4(e,t)}};IS.className="elu";ie.registerClass(IS);var SS=class extends Wn{apply(e){return Qh(e)}};SS.className="selu";ie.registerClass(SS);var CS=class extends Wn{apply(e){return je(e)}};CS.className="relu";ie.registerClass(CS);var TS=class extends Wn{apply(e){return M(()=>ru(6,je(e)))}};TS.className="relu6";ie.registerClass(TS);var NS=class extends Wn{apply(e){return e}};NS.className="linear";ie.registerClass(NS);var _S=class extends Wn{apply(e){return cr(e)}};_S.className="sigmoid";ie.registerClass(_S);var ES=class extends Wn{apply(e){return H4(e)}};ES.className="hardSigmoid";ie.registerClass(ES);var AS=class extends Wn{apply(e){return Zo(e)}};AS.className="softplus";ie.registerClass(AS);var DS=class extends Wn{apply(e){return G4(e)}};DS.className="softsign";ie.registerClass(DS);var FS=class extends Wn{apply(e){return Xo(e)}};FS.className="tanh";ie.registerClass(FS);var Hv=class extends Wn{apply(e,t=-1){return Pr(e,t)}};Hv.className="softmax";ie.registerClass(Hv);var $S=class extends Wn{apply(e,t=-1){return jh(e,t)}};$S.className="logSoftmax";ie.registerClass($S);var RS=class extends Wn{apply(e,t=1){return M(()=>V(cr(V(e,t)),e))}};RS.className="swish";ie.registerClass(RS);var PS=class extends Wn{apply(e){return M(()=>V(e,Xo(Zo(e))))}};PS.className="mish";ie.registerClass(PS);function ya(e){return e.getClassName()}function jv(e,t={}){return ad(e,ie.SerializationMap.getMap().classNameMap,t,"activation")}function va(e){if(e==null){let t={};return t.className="linear",t.config={},jv(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},jv(t)}else return e instanceof Wn?e:jv(e)}function qv(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var OS=class extends ie.Serializable{},md=class extends OS{constructor(e){super();qv(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return M(()=>{let t=It([1]);return this.hasL1&&(t=Y(t,ve(V(this.l1,Lt(e))))),this.hasL2&&(t=Y(t,ve(V(this.l2,ud(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};md.className="L1L2";ie.registerClass(md);function yV(e){return qv(e),new md({l1:e!=null?e.l1:null,l2:0})}function vV(e){return qv(e),new md({l2:e!=null?e.l2:null,l1:0})}var MS={l1l2:"L1L2"};function ht(e){return lv(e)}function LS(e,t={}){return ad(e,ie.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ct(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in MS?MS[e]:e,config:{}};return LS(n)}else return e instanceof OS?e:LS(e)}var Kv=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=je(e);return this.maxValue!=null&&(n=en(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Kv.className="ReLU";ie.registerClass(Kv);var Xv=class extends qe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return ql(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Xv.className="LeakyReLU";ie.registerClass(Xv);var Yv=class extends qe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=St(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ct(e.alphaRegularizer),this.alphaConstraint=Kt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new H(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r(Mt(t),t==="channelsFirst"?Re(e,[0,2,3,1]):e))}function BS(e,t){return M(()=>(Mt(t),t==="channelsFirst"?Re(e,[0,2,3,4,1]):e))}function xV(e,t,n,r=1,s="valid",a,o=1){return M(()=>{if(a==null&&(a=Lr()),Mt(a),e.shape.length!==3)throw new H(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new H(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new H(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Re(e,[0,2,1])),s==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Bh(e,t,r,s==="same"?"same":"valid","NWC",o);return n!=null&&(i=Wr(i,n)),i})}function zS(e,t,n,r=[1,1],s="valid",a,o,i=null){return M(()=>{if(a==null&&(a=Lr()),Mt(a),e.rank!==3&&e.rank!==4)throw new H(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new H(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let c=ex(e,a);if(s==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return c=pa.conv2d({x:c,filter:t,strides:r,pad:s==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(c=Re(c,[0,3,1,2])),c})}function wV(e,t,n,r=[1,1,1],s="valid",a,o){return M(()=>{if(a==null&&(a=Lr()),Mt(a),e.rank!==4&&e.rank!==5)throw new H(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new H(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=BS(e,a);if(s==="causal")throw new Fe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=Fy(i,t,r,s==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Wr(i,n)),a==="channelsFirst"&&(i=Re(i,[0,4,1,2,3])),i})}var tx=class extends qe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",tx.verifyArgs(t),this.rank=e,tn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Fe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=gu(t.kernelSize,e,"kernelSize"),this.strides=gu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,lr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Mt(this.dataFormat),this.activation=va(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=St(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Kt(t.biasConstraint),this.biasRegularizer=Ct(t.biasRegularizer),this.activityRegularizer=Ct(t.activityRegularizer),this.dilationRate=gu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new H(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new H(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new H(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(is("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!pv(e.kernelSize,"number",1,3))throw new H(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ya(this.activation),useBias:this.useBias,biasInitializer:At(this.biasInitializer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},gd=class extends tx{constructor(e,t){super(e,t);this.kernel=null,gd.verifyArgs(t),this.filters=t.filters,tn(this.filters,"filters"),this.kernelInitializer=St(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Kt(t.kernelConstraint),this.kernelRegularizer=Ct(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return M(()=>{e=Oe(e);let n,r=this.bias==null?null:this.bias.read(),s=EI(this.activation.getClassName());if(s!=null&&this.rank===2)n=zS(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)n=xV(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=zS(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=wV(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Fe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s 0 but got ${JSON.stringify(e.filters)}`)}},bd=class extends gd{constructor(e){super(2,e);bd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pv(e.kernelSize,"number",1,2))throw new H(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};bd.className="Conv2D";ie.registerClass(bd);var yd=class extends gd{constructor(e){super(3,e);yd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new H(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};yd.className="Conv3D";ie.registerClass(yd);var nx=class extends bd{constructor(e){super(e);if(this.inputSpec=[new Bt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new H("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Oe(e);if(n.shape.length!==4)throw new H(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=r[a],c=r[o],l=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=ls(i,d,l,this.padding),f=ls(c,p,u,this.padding),m=[s,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Re(n,[0,2,3,1]));let g=zh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Re(g,[0,3,1,2])),this.bias!=null&&(g=Wr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,s;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3):(n=3,r=1,s=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],c=this.strides[1];return t[n]=this.filters,t[r]=ls(t[r],i,a,this.padding),t[s]=ls(t[s],c,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};nx.className="Conv2DTranspose";ie.registerClass(nx);var rx=class extends yd{constructor(e){super(e);if(this.inputSpec=[new Bt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new H(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new H("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new H("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Bt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return M(()=>{let n=Oe(e);if(n.shape.length!==5)throw new H(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,s=r[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let c=r[i],l=r[a],u=r[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=ls(c,f,d,this.padding),v=ls(l,m,p,this.padding),y=ls(u,g,h,this.padding),x=[s,b,v,y,this.filters];this.dataFormat!=="channelsLast"&&(n=Re(n,[0,2,3,4,1]));let k=_k(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Re(k,[0,4,1,2,3])),this.bias!==null&&(k=Wr(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=at(e);let t=e.slice(),n,r,s,a;this.dataFormat==="channelsFirst"?(n=1,r=2,s=3,a=4):(n=4,r=1,s=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],c=this.kernelSize[2],l=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[r]=ls(t[r],l,o,this.padding),t[s]=ls(t[s],u,i,this.padding),t[a]=ls(t[a],d,c,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};rx.className="Conv3DTranspose";ie.registerClass(rx);var WS=class extends gd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new H("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new H("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new H(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ct(t.depthwiseRegularizer),this.depthwiseConstraint=Kt(t.depthwiseConstraint),this.pointwiseInitializer=St(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ct(t.pointwiseRegularizer),this.pointwiseConstraint=Kt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length{e=Oe(e);let n;if(this.rank===1)throw new Fe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Re(e,[0,2,3,1])),n=ei(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Re(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=At(this.depthwiseInitializer),e.pointwiseInitializer=At(this.pointwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.pointwiseRegularizer=ht(this.pointwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseConstraint),e.pointwiseConstraint=qt(this.pointwiseConstraint),e}};WS.className="SeparableConv";var sx=class extends WS{constructor(e){super(2,e)}};sx.className="SeparableConv2D";ie.registerClass(sx);var Gf=class extends gd{constructor(e){super(1,e);Gf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!pv(e.kernelSize,"number",1,1))throw new H(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Gf.className="Conv1D";ie.registerClass(Gf);var ax=class extends qe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return M(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=kf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return kf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=kf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return kf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ax.className="Cropping2D";ie.registerClass(ax);var ox=class extends qe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,O4(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return M(()=>{let n=Oe(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=Re(n,[0,2,3,1]);let s=this.size[0]*r[2],a=this.size[1]*r[3],o=this.interpolation==="nearest"?Qn.resizeNearestNeighbor(n,[s,a]):Qn.resizeBilinear(n,[s,a]);return Re(o,[0,3,1,2])}else{let s=this.size[0]*r[1],a=this.size[1]*r[2];return this.interpolation==="nearest"?Qn.resizeNearestNeighbor(n,[s,a]):Qn.resizeBilinear(n,[s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ox.className="UpSampling2D";ie.registerClass(ox);function kV(e,t,n=[1,1],r="valid",s,a){return M(()=>{s==null&&(s=Lr()),Mt(s);let o=ex(e,s);if(e.rank!==4)throw new H(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new H(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=ua(o,t,n,r==="same"?"same":"valid","NHWC",a),s==="channelsFirst"&&(o=Re(o,[0,3,1,2])),o})}var ix=class extends tx{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=St(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Kt(e.depthwiseConstraint),this.depthwiseRegularizer=Ct(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new H(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new H(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{e=Oe(e);let n=kV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=Gr(t,this.kernelSize[0],this.padding,this.strides[0]),a=Gr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,s,a]:[e[0],s,a,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=At(this.depthwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.depthwiseConstraint=qt(this.depthwiseRegularizer),e}};ix.className="DepthwiseConv2D";ie.registerClass(ix);function VS(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new H("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function s(a){return a==null||Array.isArray(a)?a:[a]}return t=s(t),n=s(n),{inputs:e,initialState:t,constants:n}}function US(e,t,n,r=!1,s,a,o=!1,i=!1){return M(()=>{let c=t.shape.length;if(c<3)throw new H(`Input should be at least 3D, but is ${c}D.`);let l=[1,0].concat(zr(2,c));if(t=Re(t,l),a!=null)throw new Fe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),s!=null&&(s=ce(ce(s,"bool"),"float32"),s.rank===c-1&&(s=yn(s,-1)),s=Re(s,l)),r&&(t=Jn(t,0),s!=null&&(s=Jn(s,0)));let u=[],d,p=n,h=t.shape[0],f=pt(t),m;s!=null&&(m=pt(s));for(let b=0;be(v,p));if(s==null)d=y[0],p=y[1];else{let x=M(()=>{let k=m[b],C=fe(Zn(k),k),N=Y(V(y[0],k),V(p[0],C)),D=p.map((F,O)=>Y(V(y[1][O],k),V(F,C)));return{output:N,newStates:D}});d=x.output,p=x.newStates}i&&u.push(d)}let g;return i&&(g=Ot(u,1)),[d,g,p]})}var ds=class extends qe{constructor(e){super(e);let t;if(e.cell==null)throw new H("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new qf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new H("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Bt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return zr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Ev(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[r].concat(s)}else return r}computeMask(e,t){return M(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(s=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;no.shape[o.shape.length-1]),a))throw new H(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Bt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Es("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>It([n,r])):this.states_=[It([n,this.cell.stateSize])];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>It([n,r])):this.states_[0]=It([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):De(this.states_);for(let r=0;rQt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=VS(e,n,r,this.numConstants);e=s.inputs,n=s.initialState,r=s.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let c of n)this.stateSpec.push(new Bt({shape:c.shape}));o=o.concat(this.stateSpec)}if(r!=null&&(t.constants=r,a=a.concat(r),this.numConstants=r.length),a[0]instanceof Vr){let c=[e].concat(a),l=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=l;let d=super.apply(c,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;e=Oe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new H(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:r},c=US((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,s,this.goBackwards,n,null,this.unroll,this.returnSequences),l=c[0],u=c[1],d=c[2];this.stateful&&this.resetStates(d,r);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return M(()=>{let t=It(e.shape);return t=ve(t,[1,2]),t=cd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?xv(t,[1,n]):t):this.cell.stateSize>1?[xv(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ds.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,s=Ur(r,n);return new e(Object.assign(t,{cell:s}))}};ds.className="RNN";ie.registerClass(ds);var vd=class extends qe{},Hf=class extends vd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=va(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=du([1,ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=du([1,ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0Zn(e),rate:this.dropout,training:r,dropoutFunc:this.dropoutFunc})),0Zn(n),rate:this.recurrentDropout,training:r,dropoutFunc:this.dropoutFunc}));let s,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?s=cs(V(e,a),this.kernel.read()):s=cs(e,this.kernel.read()),this.bias!=null&&(s=Wr(s,this.bias.read())),o!=null&&(n=V(n,o));let i=Y(s,cs(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ya(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),recurrentInitializer:At(this.recurrentInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),recurrentConstraint:qt(this.recurrentConstraint),biasConstraint:qt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Hf.className="SimpleRNNCell";ie.registerClass(Hf);var cx=class extends ds{constructor(e){e.cell=new Hf(e);super(e)}call(e,t){return M(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return new e(t)}};cx.className="SimpleRNN";ie.registerClass(cx);var jf=class extends vd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new H("GRUCell does not support reset_after parameter set to true.");this.units=e.units,tn(this.units,"units"),this.activation=va(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=va(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=du([1,ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=du([1,ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return M(()=>{if(e=e,e.length!==2)throw new H(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0Zn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0Zn(r),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let s=this.dropoutMask,a=this.recurrentDropoutMask,o,i,c;0{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};ux.className="GRU";ie.registerClass(ux);var xd=class extends vd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,tn(this.units,"units"),this.activation=va(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=va(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=St(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ct(e.kernelRegularizer),this.recurrentRegularizer=Ct(e.recurrentRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.kernelConstraint=Kt(e.kernelConstraint),this.recurrentConstraint=Kt(e.recurrentConstraint),this.biasConstraint=Kt(e.biasConstraint),this.dropout=du([1,ga([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=du([1,ga([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;r=new(t=class extends Cr{apply(i,c){let l=s.apply([a]),u=new Sf().apply([a]),d=s.apply([a*2]);return LI(LI(l,u),d)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new H(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],s=e[2];e=e[0],0Zn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0Zn(r),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,c,l,u;0{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};lx.className="LSTM";ie.registerClass(lx);var qf=class extends vd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return M(()=>{e=e;let n=e.slice(1),r=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?r.push(n.splice(0,o.stateSize.length)):r.push(n.splice(0,1));r.reverse();let s=[],a;for(let o=0;o{ai(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),r={cells:this.cells.map(t)};return Object.assign({},e,r)}static fromConfig(e,t,n={}){let r=[];for(let s of t.cells)r.push(Ur(s,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Av(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,s=e.splice(r);for(let a=0;aa!=null?a(t(),n):zI(t(),n),i=()=>ld(o,t,r);return!s||s<=1?Qt(i().clone()):Array(s).fill(void 0).map(i).map(l=>Qt(l.clone()))}var IV=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var s=0,r=Object.getOwnPropertySymbols(e);s{if(this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new H("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return M(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)],a=It(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){M(()=>{if(!this.stateful)throw new Es("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),s=[r[0],...r.slice(2)];if(n[0]==null)throw new H("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(s)):this.states_=[It(s)];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>It(s)):this.states_[0]=It(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new H(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):De(this.states_);for(let o=0;oQt(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:s,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",c=e[i?3:2],l=e[i?4:3],u=Gr(c,r[0],s,a[0],o[0]),d=Gr(l,r[1],s,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};GS.className="ConvRNN2D";var Kf=class extends xd{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:s,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,tn(this.filters,"filters"),this.kernelSize=gu(n,2,"kernelSize"),this.kernelSize.forEach(i=>tn(i,"kernelSize")),this.strides=gu(r||1,2,"strides"),this.strides.forEach(i=>tn(i,"strides")),this.padding=s||"valid",lr(this.padding),this.dataFormat=a||"channelsLast",Mt(this.dataFormat),this.dilationRate=gu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>tn(i,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new H(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],s=4,a=this.kernelSize.concat([r,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let c=this.biasInitializer,l=this.filters;i=new(t=class extends Cr{apply(d,p){let h=c.apply([l]),f=Yn([l]),m=c.apply([l*2]);return vv([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return M(()=>{if(e.length!==3)throw new H(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],s=e[1],a=e[2],o=4;0Zn(r),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,c=(ee,te,ne)=>!te||!te[ne]?ee:V(te[ne],ee),l=c(r,i,0),u=c(r,i,1),d=c(r,i,2),p=c(r,i,3);0Zn(s),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=c(s,h,0),m=c(s,h,1),g=c(s,h,2),b=c(s,h,3),v=3,[y,x,k,C]=Ln(this.kernel.read(),o,v),[N,D,F,O]=this.useBias?Ln(this.bias.read(),o):[null,null,null,null];l=this.inputConv(l,y,N,this.padding),u=this.inputConv(u,x,D,this.padding),d=this.inputConv(d,k,F,this.padding),p=this.inputConv(p,C,O,this.padding);let[$,P,T,L]=Ln(this.recurrentKernel.read(),o,v);f=this.recurrentConv(f,$),m=this.recurrentConv(m,P),g=this.recurrentConv(g,T),b=this.recurrentConv(b,L);let G=this.recurrentActivation.apply(Y(l,f)),j=this.recurrentActivation.apply(Y(u,m)),q=Y(V(j,a),V(G,this.activation.apply(Y(d,g)))),K=V(this.recurrentActivation.apply(Y(p,b)),this.activation.apply(q));return[K,K,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=IV(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let s=Rt(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Wr(s,n,this.dataFormat):s}recurrentConv(e,t){return Rt(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Kf.className="ConvLSTM2DCell";ie.registerClass(Kf);var dx=class extends GS{constructor(e){let t=new Kf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};dx.className="ConvLSTM2D";ie.registerClass(dx);var Xf=class extends qe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r{this.invokeCallHook(e,t);let n=Oe(e);if(0zI(n,this.rate,s,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Xf.className="Dropout";ie.registerClass(Xf);var px=class extends Xf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};px.className="SpatialDropout1D";ie.registerClass(px);var hx=class extends qe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,tn(this.units,"units"),this.activation=va(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=St(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=St(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Kt(e.kernelConstraint),this.biasConstraint=Kt(e.biasConstraint),this.kernelRegularizer=Ct(e.kernelRegularizer),this.biasRegularizer=Ct(e.biasRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Oe(e),r=EI(this.activation.getClassName()),s;return r!=null?s=cs(n,this.kernel.read(),r,this.bias?this.bias.read():null):(s=cs(n,this.kernel.read()),this.bias!=null&&(s=Wr(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:ya(this.activation),useBias:this.useBias,kernelInitializer:At(this.kernelInitializer),biasInitializer:At(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:qt(this.kernelConstraint),biasConstraint:qt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hx.className="Dense";ie.registerClass(hx);var fx=class extends qe{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new H(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ma(e,1)]}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let s=2;s{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:ya(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};mx.className="Activation";ie.registerClass(mx);var gx=class extends qe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return M(()=>(e=Oe(e),z4(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};gx.className="RepeatVector";ie.registerClass(gx);var bx=class extends qe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t{this.invokeCallHook(e,t);let n=Oe(e),r=n.shape,s=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return U(n,s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};bx.className="Reshape";ie.registerClass(bx);var yx=class extends qe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=zr(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Bt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return Re(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};yx.className="Permute";ie.registerClass(yx);var vx=class extends qe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),r=-1;return Ul(Qo(n,this.maskValue),r)}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Oe(e),r=-1,s=!0,a=Ul(Qo(n,this.maskValue),r,s);return V(n,ce(a,n.dtype))})}};vx.className="Masking";ie.registerClass(vx);var xx=class extends qe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,tn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,tn(this.outputDim,"outputDim"),this.embeddingsInitializer=St(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ct(e.embeddingsRegularizer),this.activityRegularizer=Ct(e.activityRegularizer),this.embeddingsConstraint=Kt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return M(()=>this.maskZero?(e=Oe(e),Qo(e,Ue(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new H(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r{this.invokeCallHook(e,t);let n=Oe(e);n.dtype!=="int32"&&(n=wf(n,"int32"));let r=BI(this.embeddings.read(),U(n,[n.size]));return U(r,at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:At(this.embeddingsInitializer),embeddingsRegularizer:ht(this.embeddingsRegularizer),activityRegularizer:ht(this.activityRegularizer),embeddingsConstraint:qt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};xx.className="Embedding";ie.registerClass(xx);var li=class extends qe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Fe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length1)throw new H(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let s=1;ss.length);e.indexOf(null)===-1&&fa(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return M(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(s=>s.rank);if(r.indexOf(null)===-1){let s=ga(r);for(let a of e){let o=a.rank;for(let i=0;i1){let l=zr(1,c).concat([0]);n.push(Re(i,l)),s=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(s){if(o==null){let i=a.shape,c=i.length,l=i[c-1],u=[l].concat(i.slice(0,i.length-1));a=U(Re(U(a,[-1,l]),[1,0]),u)}else if(o>1){let i=[o-1].concat(zr(0,o-1));a=Re(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r{if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an Array");if(!Array.isArray(e))throw new H("`inputs` should be an Array");if(t.length!==e.length)throw new H(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:yn(r,0));let n=t[0];for(let r=1;r{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0].clone();for(let n=1;n{let t=e[0];for(let n=1;n{let t=e[0];for(let n=1;n1)throw new H("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return M(()=>vv(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new H("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let s of t.slice(1)){if(n[r]==null||s[r]==null){n[r]=null;break}n[r]+=s[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new H("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new H("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new H(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return M(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let r=[];for(let a=0;a3||t.shape.length>3)throw new Fe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Fe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,s=t.shape.length;n==null&&(n=[r-1,s-2]);let a=n;return M(()=>{let o;if(r>s){o=r-s;let c=[];for(let l=0;lr){o=s-r;let c=[];for(let l=0;l0){let c;r>s?c=r+s-3:c=r-1;let l=[];for(let u=c;u"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new H(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new H(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((s,a)=>wd(s,e[a].shape.length)):r=[wd(this.axes,t.shape.length),wd(this.axes,n.shape.length)],this.normalize&&(t=Of(t,r[0]),n=Of(n,r[1])),SV(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[wd(this.axes,e.length),wd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let s=t.concat(n);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Nx.className="Dot";ie.registerClass(Nx);var _x=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Oe(e);return ld(()=>Y(If(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};_x.className="GaussianNoise";ie.registerClass(_x);var Ex=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?ld(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return V(n,If(n.shape,1,s))},()=>n,t.training||!1):n})}};Ex.className="GaussianDropout";ie.registerClass(Ex);var Ax=class extends qe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return M(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return ld(()=>{let s=Oe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,c=la(su(n),this.rate);c=wf(c,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate,d=Y(V(s,c),V(Y(c,-1),i));return Y(V(d,l),u)},()=>Oe(e),t.training||!1)}return e})}};Ax.className="AlphaDropout";ie.registerClass(Ax);function kd(e,t,n,r,s,a=.001){let o;if(e.rank===2)o=vk(e,t,n,r,s,a);else if(e.rank===3)o=xk(e,t,n,r,s,a);else if(e.rank===4)o=wk(e,t,n,r,s,a);else throw new Fe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function CV(e,t,n,r,s=.001){return M(()=>{let a=Kh(e,r),o=a.mean,i=a.variance;return[kd(e,o,i,n,t,s),o,i]})}function TV(e,t,n,r,s=.001){return M(()=>{let a=Kh(e,r),o=a.mean,i=a.variance,c=[];for(let f of zr(0,e.rank))r.indexOf(f)!==-1?c.push(1):c.push(e.shape[f]);let l=U(o,c),u=U(i,c),d=t==null?null:U(t,c),p=n==null?null:U(n,c);return[kd(e,l,u,p,d,s),o,i]})}function NV(e,t,n,r,s=.001){return w.arraysEqual(r.slice().sort(),zr(0,e.rank-1))?CV(e,t,n,r,s):TV(e,t,n,r,s)}var Dx=class extends qe{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.movingMeanInitializer=St(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=St(e.movingVarianceInitializer||"ones"),this.betaConstraint=Kt(e.betaConstraint),this.gammaConstraint=Kt(e.gammaConstraint),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new H(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Bt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return M(()=>{let n=t.training==null?!1:t.training,r=Oe(e),s=r.shape,a=s.length,o=zr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let c=ni(1,a);c[i]=s[i];let l=o.slice();l.sort();let u=!w.arraysEqual(l,zr(0,a).slice(0,a-1)),d=()=>{if(u){let b=U(this.movingMean.read(),c),v=U(this.movingVariance.read(),c),y=this.center?U(this.beta.read(),c):null,x=this.scale?U(this.gamma.read(),c):null;return kd(r,b,v,y,x,this.epsilon)}else return kd(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=NV(r,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(b,v,y)=>{M(()=>{let x=1-y,k=b.read(),C=V(fe(k,v),x);b.write(fe(k,C))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:At(this.betaInitializer),gammaInitializer:At(this.gammaInitializer),movingMeanInitializer:At(this.movingMeanInitializer),movingVarianceInitializer:At(this.movingVarianceInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer),betaConstraint:qt(this.betaConstraint),gammaConstraint:qt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Dx.className="BatchNormalization";ie.registerClass(Dx);var Fx=class extends qe{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=St(e.betaInitializer||"zeros"),this.gammaInitializer=St(e.gammaInitializer||"ones"),this.betaRegularizer=Ct(e.betaRegularizer),this.gammaRegularizer=Ct(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==fa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(s=>e[s]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),r=n.shape,s=r.length;return M(()=>{let a=!0,{mean:o,variance:i}=Kh(n,this.axis,a),c=ni(1,s);for(let f of this.axis)c[f]=r[f];let l=f=>f!=null&&f.shape.length!==s?U(f,c):f,u=l(this.gamma.read()),d=l(this.beta.read()),p=[],h=[];for(let f=0;f{if(e.rank!==4)throw new H(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new H("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Lr()),n!=="channelsLast"&&n!=="channelsFirst")throw new H(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ur(e,r)})}var $x=class extends qe{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Lr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new H(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new H(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new H(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return M(()=>_V(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};$x.className="ZeroPadding2D";ie.registerClass($x);function Yf(e,t,n,r,s,a){return M(()=>{Mt(s),$I(a),lr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),s==null&&(s=Lr()),a==null&&(a="max"),e=ex(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Pt(e,t,n,i):o=ir(e,t,n,i),s==="channelsFirst"&&(o=Re(o,[0,3,1,2])),o})}function HS(e,t,n,r,s,a){return M(()=>{Mt(s),$I(a),lr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),s==null&&(s=Lr()),a==null&&(a="max"),e=BS(e,s);let o,i=r==="same"?"same":"valid";return a==="max"?o=Gy(e,t,n,i):o=_y(e,t,n,i),s==="channelsFirst"&&(o=Re(o,[0,4,1,2,3])),o})}var jS=class extends qe{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new H(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(tn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new H(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,lr(this.padding),this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Gr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return M(()=>{this.invokeCallHook(e,t),e=cd(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return as(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Rx=class extends jS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),Yf(e,t,n,r,s,"max")}};Rx.className="MaxPooling1D";ie.registerClass(Rx);var Px=class extends jS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),Yf(e,t,n,r,s,"avg")}};Px.className="AveragePooling1D";ie.registerClass(Px);var qS=class extends qe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new H(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),lr(this.padding),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Gr(t,this.poolSize[0],this.padding,this.strides[0]),n=Gr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ox=class extends qS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),Yf(e,t,n,r,s,"max")}};Ox.className="MaxPooling2D";ie.registerClass(Ox);var Mx=class extends qS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),Yf(e,t,n,r,s,"avg")}};Mx.className="AveragePooling2D";ie.registerClass(Mx);var KS=class extends qe{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new H(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];tn(this.poolSize,"poolSize"),tn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),lr(this.padding),this.inputSpec=[new Bt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Gr(t,this.poolSize[0],this.padding,this.strides[0]),n=Gr(n,this.poolSize[1],this.padding,this.strides[1]),r=Gr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return M(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Lx=class extends KS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),HS(e,t,n,r,s,"max")}};Lx.className="MaxPooling3D";ie.registerClass(Lx);var Bx=class extends KS{constructor(e){super(e)}poolingFunction(e,t,n,r,s){return Mt(s),lr(r),HS(e,t,n,r,s,"avg")}};Bx.className="AveragePooling3D";ie.registerClass(Bx);var XS=class extends qe{constructor(e){super(e);this.inputSpec=[new Bt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Fe}},zx=class extends XS{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Oe(e);return Et(n,1)})}};zx.className="GlobalAveragePooling1D";ie.registerClass(zx);var Wx=class extends XS{constructor(e){super(e||{})}call(e,t){return M(()=>{let n=Oe(e);return kr(n,1)})}};Wx.className="GlobalMaxPooling1D";ie.registerClass(Wx);var YS=class extends qe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.inputSpec=[new Bt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Fe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Vx=class extends YS{call(e,t){return M(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?Et(n,[1,2]):Et(n,[2,3])})}};Vx.className="GlobalAveragePooling2D";ie.registerClass(Vx);var Ux=class extends YS{call(e,t){return M(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?kr(n,[1,2]):kr(n,[2,3])})}};Ux.className="GlobalMaxPooling2D";ie.registerClass(Ux);var ZS=class extends qe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,s=Ur(r,n);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},Gx=class extends ZS{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new H(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return M(()=>(e=Oe(e),US((a,o)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Gx.className="TimeDistributed";ie.registerClass(Gx);function EV(e){si(P4,"BidirectionalMergeMode",e)}var AV="concat",Hx=class extends ZS{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ur(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Ur(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?AV:e.mergeMode,EV(this.mergeMode),e.weights)throw new Fe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,s;return this.returnState&&(s=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(s).concat(s.slice()):[n].concat(s).concat(s.slice()):Bn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let s=VS(e,n,r,this.numConstants);if(e=s.inputs,n=s.initialState,r=s.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let c=n.length;if(c%2>0)throw new H("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(u=>new Bt({shape:u.shape}));this.forwardLayer.stateSpec=l.slice(0,c/2),this.backwardLayer.stateSpec=l.slice(c/2),o.push(...l)}if(r!=null)throw new Fe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Vr;for(let c of a)if(c instanceof Vr!==i)throw new H("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let c=[e].concat(a),l=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=l;let d=super.apply(c,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return M(()=>{let n=t.initialState,r,s;if(n==null)r=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),c=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:c}))}let a;this.returnState&&(Array.isArray(r)&&(a=r.slice(1).concat(s.slice(1))),r=r[0],s=s[0]),this.returnSequences&&(s=Jn(s,1));let o;return this.mergeMode==="concat"?o=vv([r,s]):this.mergeMode==="sum"?o=Y(r,s):this.mergeMode==="ave"?o=V(.5,Y(r,s)):this.mergeMode==="mul"?o=V(r,s):this.mergeMode==null&&(o=[r,s]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){ai(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),ai(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(s).concat(s):[n].concat(s).concat(s)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ur(t.layer);if(delete t.layer,t.numConstants!=null)throw new Fe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Hx.className="Bidirectional";ie.registerClass(Hx);function DV(e){return new pu(e)}function FV(e){return new Zv(e)}function $V(e){return new Kv(e)}function RV(e){return new Xv(e)}function PV(e){return new Yv(e)}function OV(e){return new Qv(e)}function MV(e){return new Jv(e)}function LV(e){return new Gf(e)}function BV(e){return new bd(e)}function zV(e){return new nx(e)}function WV(e){return new yd(e)}function VV(e){return new rx(e)}function UV(e){return new sx(e)}function GV(e){return new ax(e)}function HV(e){return new ox(e)}function jV(e){return new ix(e)}function qV(e){return new mx(e)}function KV(e){return new hx(e)}function XV(e){return new Xf(e)}function YV(e){return new px(e)}function ZV(e){return new fx(e)}function JV(e){return new gx(e)}function QV(e){return new bx(e)}function eU(e){return new yx(e)}function tU(e){return new xx(e)}function nU(e){return new wx(e)}function rU(e){return new Ix(e)}function sU(e){return new Tx(e)}function aU(e){return new Sx(e)}function oU(e){return new Cx(e)}function iU(e){return new kx(e)}function cU(e){return new Nx(e)}function uU(e){return new Dx(e)}function lU(e){return new Fx(e)}function dU(e){return new $x(e)}function jx(e){return new Px(e)}function pU(e){return jx(e)}function hU(e){return jx(e)}function qx(e){return new Mx(e)}function fU(e){return qx(e)}function mU(e){return qx(e)}function Kx(e){return new Bx(e)}function gU(e){return Kx(e)}function bU(e){return Kx(e)}function yU(e){return new zx(e)}function vU(e){return new Vx(e)}function JS(e){return new Wx(e)}function QS(e){return new Ux(e)}function eC(e){return new Rx(e)}function tC(e){return new Ox(e)}function xU(e){return new Lx(e)}function wU(e){return new ux(e)}function kU(e){return new jf(e)}function IU(e){return new lx(e)}function SU(e){return new xd(e)}function CU(e){return new cx(e)}function TU(e){return new Hf(e)}function NU(e){return new dx(e)}function _U(e){return new Kf(e)}function EU(e){return new ds(e)}function AU(e){return new qf(e)}function DU(e){return new Hx(e)}function FU(e){return new Gx(e)}var $U=JS,RU=QS,PU=eC,OU=tC;function MU(e){return new _x(e)}function LU(e){return new Ex(e)}function BU(e){return new Ax(e)}function zU(e){return new vx(e)}var nC={};$e(nC,{MAPE:()=>ZU,MSE:()=>eG,binaryAccuracy:()=>WU,binaryCrossentropy:()=>VU,categoricalAccuracy:()=>GU,categoricalCrossentropy:()=>HU,cosineProximity:()=>KU,mape:()=>JU,meanAbsoluteError:()=>XU,meanAbsolutePercentageError:()=>YU,meanSquaredError:()=>QU,mse:()=>tG,precision:()=>jU,recall:()=>qU,sparseCategoricalAccuracy:()=>UU});function WU(e,t){return Rv(e,t)}function VU(e,t){return sS(e,t)}function UU(e,t){return aS(e,t)}function GU(e,t){return Pv(e,t)}function HU(e,t){return Ov(e,t)}function jU(e,t){return rS(e,t)}function qU(e,t){return AW(e,t)}function KU(e,t){return Fv(e,t)}function XU(e,t){return Mf(e,t)}function YU(e,t){return fu(e,t)}function ZU(e,t){return fu(e,t)}function JU(e,t){return fu(e,t)}function QU(e,t){return ii(e,t)}function eG(e,t){return ii(e,t)}function tG(e,t){return ii(e,t)}var rC={};$e(rC,{modelFromJSON:()=>lV});var sC={};$e(sC,{l1:()=>rG,l1l2:()=>nG,l2:()=>sG});function nG(e){return new md(e)}function rG(e){return yV(e)}function sG(e){return vV(e)}var aC=class extends hu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Ds))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Zf(e,t){return et}var iC=class extends aC{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Fe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Zf:this.mode==="max"?this.monitorFunc=oC:this.monitor.indexOf("acc")!==-1?this.monitorFunc=oC:this.monitorFunc=Zf,this.monitorFunc===Zf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Zf?1/0:-1/0}async onEpochEnd(e,t){await ba(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function aG(e){return new iC(e)}var oG={earlyStopping:aG},Hr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Hr||(Hr={}));var cC;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(cC||(cC={}));var Xx={};function iG(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Xx[e]=n}function uC(e){return Xx[e]}function cG(e){delete Xx[e]}function I(e,t,n,r,s){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,c=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Cn(t.inputNames[a.inputIndexStart],n,r,s);if(a.type==="tensors")return t.inputNames.slice(i,c).map(p=>Cn(p,n,r,s));let l=Cn(t.inputNames.slice(i)[0],n,r,s),u=l.dataSync();return a.type==="number"?u[0]:w.toNestedArray(l.shape,u)}let o=t.attrParams[e];return o&&o.value}function Cn(e,t,n,r){let[s,a]=er(e);if(r!=null){let i=r.getHashTableHandleByName(s);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Jf(s,i)]);return o!==void 0?t[Jf(s,o)][a]:void 0}function uG(e,t,n){return t[Jf(e,n.currentContextId)]}function Fs(e,t){let[n,r,s]=er(e);return[Jf(n,t&&t.currentContextId),r,s]}function Jf(e,t){return t?`${e}-${t}`:e}function er(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],r=t.length===3?t[1]:void 0,s=Number(t[t.length-1]);return[n,s,r]}function Qf(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let s=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)s[a][0]=r[a*2],s[a][1]=r[a*2+1];return s}return r}function $s(e){return e.kept?e:Is(e)}var lC={};$e(lC,{json:()=>lG});var lG=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],dC={};$e(dC,{json:()=>dG});var dG=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],pC={};$e(pC,{json:()=>pG});var pG=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],hC={};$e(hC,{json:()=>hG});var hG=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],fC={};$e(fC,{json:()=>fG});var fG=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],mC={};$e(mC,{json:()=>mG});var mG=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],gC={};$e(gC,{json:()=>gG});var gG=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],bC={};$e(bC,{json:()=>bG});var bG=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],yC={};$e(yC,{json:()=>yG});var yG=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],vC={};$e(vC,{json:()=>vG});var vG=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],xC={};$e(xC,{json:()=>xG});var xG=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],wC={};$e(wC,{json:()=>wG});var wG=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],kC={};$e(kC,{json:()=>kG});var kG=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],IC={};$e(IC,{json:()=>IG});var IG=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],SC={};$e(SC,{json:()=>SG});var SG=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],CC={};$e(CC,{json:()=>CG});var CG=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],TC={};$e(TC,{json:()=>TG});var TG=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],NC={};$e(NC,{json:()=>NG});var NG=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],_C={};$e(_C,{json:()=>_G});var _G=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],EC=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[lC,dC,pC,hC,fC,mC,gC,bC,yC,vC,xC,wC,kC,IC,SC,CC,TC,NC,_C],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],s=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?s.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],c=[],l={},u={};t!=null&&(l=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,b)=>{let[v,,y]=Fs(g),x=o[v];if(x.outputs!=null){let k=x.outputs.indexOf(y);if(k!==-1){let C=`${v}:${k}`;m.inputNames[b]=C}}m.inputs.push(x),x.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&c.push(m)}):Object.keys(u).forEach(f=>{let[m]=Fs(f),g=o[m];g!=null&&(g.signatureKey=u[f],c.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=Fs(f),g=o[m];g&&(g.signatureKey=l[f],i.push(g))}):i=r;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:c,weights:s,placeholders:r,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=uC(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,s)=>(r[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,s)=>{let a=s.type,o;switch(s.type){case"string":o=Yx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Yx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":o=sw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=sw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":o=Jx(e.attr,s.tfName,s.defaultValue||0),o===void 0&&!!s.tfDeprecatedName&&(o=Jx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":o=rw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=rw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":o=Zx(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=Zx(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":o=ow(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=ow(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":o=nw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=nw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":o=aw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=aw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":o=ew(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=ew(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":o=tw(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=tw(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":o=DC(e.attr,s.tfName,s.defaultValue),o===void 0&&!!s.tfDeprecatedName&&(o=DC(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return r[s.name]={value:o,type:a},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],s={};t!=null&&(s=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&r.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=Fs(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Qx(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),s[d]=p}),Object.keys(s).forEach(u=>{let d=s[u];d.inputNames.forEach((p,h)=>{let[f,,m]=Fs(p),g=s[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let v=`${f}:${b}`;d.inputNames[h]=v}}d.inputs.push(g),g.children.push(d)})});let c=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Fs(c[u.name]),h=s[d];h!=null&&(h.defaultOutput=p,o.push(h))});let l=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:o,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function EG(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function AC(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):EG(e);return t?n:n.toLowerCase()}function Yx(e,t,n,r=!1){let s=e[t];return s!=null?AC(s.s,r):n}function Zx(e,t,n){let r=e[t];return r?r.b:n}function Jx(e,t,n){let r=e[t]||{},s=r.i!=null?r.i:r.f!=null?r.f:n;return typeof s=="number"?s:parseInt(s,10)}function Qx(e){switch(typeof e=="string"&&(e=Hr[e]),e){case Hr.DT_FLOAT:return"float32";case Hr.DT_INT32:case Hr.DT_INT64:case Hr.DT_INT8:case Hr.DT_UINT8:return"int32";case Hr.DT_BOOL:return"bool";case Hr.DT_DOUBLE:return"float32";case Hr.DT_STRING:return"string";default:return null}}function DC(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function ew(e,t,n){let r=e[t];return r&&r.type?Qx(r.type):n}function tw(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(s=>Qx(s)):n}function FC(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function nw(e,t,n){let r=e[t];return r&&r.shape?FC(r.shape):n}function rw(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(s=>typeof s=="number"?s:parseInt(s,10)):n}function sw(e,t,n,r=!1){let s=e[t];return s&&s.list&&s.list.s?s.list.s.map(a=>AC(a,r)):n}function aw(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(s=>FC(s)):n}function ow(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var AG=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,s)=>(r[s]=this.getAttr(s),r),{}))}getInput(e){return Cn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Cn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Jx(this.node.rawAttrs,e,t);if(n.s!=null)return Yx(this.node.rawAttrs,e,t);if(n.b!=null)return Zx(this.node.rawAttrs,e,t);if(n.shape!=null)return nw(this.node.rawAttrs,e,t);if(n.type!=null)return ew(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return rw(this.node.rawAttrs,e,t);if(n.list.s!=null)return sw(this.node.rawAttrs,e,t);if(n.list.shape!=null)return aw(this.node.rawAttrs,e,t);if(n.list.b!=null)return ow(this.node.rawAttrs,e,t);if(n.list.type!=null)return tw(this.node.rawAttrs,e,t)}return t}},DG=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[Y(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[mk(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[jy(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[V(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[ge(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Py(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Oh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[fe(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[ru(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[ss(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Ts(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[sf(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},FG=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(I("x",e,t,n))];case"Acos":return[yy(I("x",e,t,n))];case"Acosh":return[vy(I("x",e,t,n))];case"Asin":return[wy(I("x",e,t,n))];case"Asinh":return[ky(I("x",e,t,n))];case"Atan":return[Iy(I("x",e,t,n))];case"Atan2":return[Sy(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Cy(I("x",e,t,n))];case"Ceil":return[Ay(I("x",e,t,n))];case"Complex":return[sa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[jl(I("x",e,t,n))];case"Cosh":return[Wh(I("x",e,t,n))];case"Elu":return[tu(I("x",e,t,n))];case"Erf":return[Oy(I("x",e,t,n))];case"Exp":return[bn(I("x",e,t,n))];case"Expm1":return[My(I("x",e,t,n))];case"Floor":return[nu(I("x",e,t,n))];case"Log":return[Xn(I("x",e,t,n))];case"Log1p":return[Kl(I("x",e,t,n))];case"Imag":return[Uh(I("x",e,t,n))];case"Neg":return[kt(I("x",e,t,n))];case"Reciprocal":return[Xy(I("x",e,t,n))];case"Real":return[Ql(I("x",e,t,n))];case"Relu":return[je(I("x",e,t,n))];case"Round":return[Zh(I("x",e,t,n))];case"Selu":return[Qh(I("x",e,t,n))];case"Sigmoid":return[cr(I("x",e,t,n))];case"Sin":return[ef(I("x",e,t,n))];case"Sign":return[Yy(I("x",e,t,n))];case"Sinh":return[tf(I("x",e,t,n))];case"Softplus":return[Zo(I("x",e,t,n))];case"Sqrt":return[un(I("x",e,t,n))];case"Square":return[ct(I("x",e,t,n))];case"Tanh":return[Xo(I("x",e,t,n))];case"Tan":return[Qy(I("x",e,t,n))];case"ClipByValue":return[en(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Yh(I("x",e,t,n))];case"Rsqrt":return[Jh(Cn(e.inputNames[0],t,n))];case"Prod":return[Xh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[ql(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Jl(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[By(Cn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Nr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;rn+` Shapes ${e} and ${t} must match`)}}}function $C(e){return!(typeof e=="number"||e.some(t=>t<0))}function Id(e,t,n){let r=iw(e,n),s=!$C(r);if(s&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(s&&t.forEach(a=>{r=iw(a.shape,r)}),!$C(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function iw(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r=0&&a>=0&&s!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=s>=0?s:a}return n}var $G=class{constructor(e,t,n,r,s,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),Qt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Nr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Qt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,pt(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=n===0?0:t.size/n,a=[];M(()=>{t=U(t,[1,n,s]);for(let i=0;i{if(n!==s.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${s.dtype}`);Nr(t,s.shape,"TensorList shape mismatch: "),Qt(s)}),this.idTensor=Se(0),this.maxNumElements=r,Qt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Sd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Nr(e,this.elementShape,"TensorList shape mismatch: ");let r=Id(this.elementShape,this.tensors,e);return M(()=>{let s=this.tensors.map(a=>U(a,r));return Ot(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Id(this.elementShape,this.tensors,e),r=this.tensors.pop();return Nr(r.shape,e,"TensorList shape mismatch: "),U(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Nr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Qt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Nr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=Id(this.elementShape,this.tensors,t);return U(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Nr(this.elementShape,t.shape,"TensorList shape mismatch: "),Qt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Nr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=Id(this.elementShape,this.tensors,n);return e.length===0?qn([],[0].concat(r)):M(()=>{let s=e.map(a=>U(this.tensors[a],r));return Ot(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Nr(this.elementShape,t,"TensorList shape mismatch: ");let n=Id(this.elementShape,this.tensors,t);return this.size()===0?qn([],[0].concat(n)):M(()=>{let r=this.tensors.map(s=>U(s,n));return Ze(r,0)})}};function RG(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let s=e.shape.slice(1);Nr(s,t,"TensorList shape mismatch: ");let a=pt(e);return new Sd(a,t,r)}function PG(e,t,n){return new Sd([],e,t,n)}function OG(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let s=Math.max(...t);if(r!=null&&r!==-1&&s>=r)throw new Error(`Max index must be < array size (${s} vs. ${r})`);let a=new Sd([],n,e.dtype,r),o=pt(e,0);return t.forEach((i,c)=>{a.setItem(i,o[c])}),a}function MG(e,t,n){let r=0,s=t.map(u=>(r+=u,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to tensor.shape[0], but sum of lengths is ${r}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=iw(a,n),i=r===0?0:e.size/r,c=M(()=>{let u=[];e=U(e,[1,r,i]);for(let d=0;d{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),s=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),s=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[s].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),c=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let l=a;for(;c[0];){let u=l;l=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let d=l.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);c=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let r=I("pred",e,t,n);return[$s(r)]}case"Switch":{let r=I("pred",e,t,n),s=I("data",e,t,n);return s.kept||(s=$s(s)),(await r.data())[0]?[void 0,s]:[s,void 0]}case"Merge":{let r=e.inputNames.find(s=>Cn(s,t,n)!==void 0);if(r){let s=Cn(r,t,n);return[$s(s)]}return}case"Enter":{let r=I("frameName",e,t,n),s=I("tensor",e,t,n);return n.enterFrame(r),[$s(s)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[$s(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[$s(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),s=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),c=I("identicalElementShapes",e,t,n),l=I("name",e,t,n),u=new $G(l,s,r,a,c,o,i);return n.addTensorArray(u),[u.idTensor,Se(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.write(s,a),[o.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),s=I("index",e,t,n);return[n.getTensorArray(r.id).read(s)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(s,a)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),s=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(r.id);return o.scatter(s,a),[o.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id),a=I("dtype",e,t,n);return[s.concat(a)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),s=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(r.id);return o.split(a,s),[o.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return[Se(s.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),s=n.getTensorArray(r.id);return s.clearAndClose(),[s.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(r.id);return o.setItem(s,a),[o.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),s=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(s,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),s=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=OG(s,r,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=PG(r,s,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),s=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(s,o,a)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(s,a,o)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=RG(r,s,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),s=n.getTensorList(r.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[s.concat(a,o)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),s=I("tensor",e,t,n),a=n.getTensorList(r.id);return a.pushBack(s),[a.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),s=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(s,a)]}case"TensorListSplit":{let r=I("tensor",e,t,n),s=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=MG(r,a,s);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function RC(e,t,n){let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=!a,i=s==="prelu",c=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(a){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(c)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=Qf(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:s,leakyreluAlpha:g}}var BG=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[Bh(I("x",e,t,n),I("filter",e,t,n),r,s,a,o)]}case"Conv2D":{let r=I("strides",e,t,n),s=Qf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Rt(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:l,leakyreluAlpha:u}=RC(e,t,n);return[pa.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:c,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:s,dataFormat:a,dilations:o,biasArg:i,preluArg:c,activationFunc:l,leakyreluAlpha:u}=RC(e,t,n);return[pa.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:s,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:l,preluActivationWeights:c,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),s=I("strides",e,t,n),a=Qf(e,t,n);return[zh(I("x",e,t,n),I("filter",e,t,n),r,[s[1],s[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),s=Qf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[ua(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],s,o,[a[1],a[2]])]}case"Conv3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Fy(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],s,a,[o[1],o[2],o[3]])]}case"AvgPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[ir(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPool":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Pt(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:c}=Wk(I("x",e,t,n),[a[1],a[2]],[r[1],r[2]],s,o);return[i,c]}case"AvgPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[_y(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"MaxPool3D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Gy(I("x",e,t,n),[a[1],a[2],a[3]],[r[1],r[2],r[3]],s)]}case"Dilation2D":{let r=I("strides",e,t,n),s=I("pad",e,t,n),a=I("dilations",e,t,n),o=r[1],i=r[2],c=a[1],l=a[2];return[Ry(I("x",e,t,n),I("filter",e,t,n),[o,i],s,[c,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zG=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),s=I("dtype",e,t,n),a=I("value",e,t,n);return[In(r,a,s)]}case"LinSpace":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("num",e,t,n);return[Rk(r,s,a)]}case"Multinomial":{let r=I("logits",e,t,n),s=I("numSamples",e,t,n),a=I("seed",e,t,n);return[Vk(r,s,a)]}case"OneHot":{let r=I("indices",e,t,n),s=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[Jc(r,s,a,o)]}case"Ones":return[Yn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Zn(I("x",e,t,n))];case"RandomUniform":return[su(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),s=I("stop",e,t,n),a=I("step",e,t,n);return[au(r,s,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),s=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[af(r,s,a,I("dtype",e,t,n),o)]}case"Zeros":return[It(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cw(e,t,n){let r=I("boxes",e,t,n),s=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),c=I("softNmsSigma",e,t,n);return{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}}var WG=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:c}=cw(e,t,n),l=await Qn.nonMaxSuppressionWithScoreAsync(r,s,a,o,i,c);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=cw(e,t,n),c=I("padToMaxOutputSize",e,t,n),l=await Qn.nonMaxSuppressionPaddedAsync(r,s,a,o,i,c);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:s,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=cw(e,t,n);return[await Qn.nonMaxSuppressionAsync(r,s,a,o,i)]}case"Where":{let r=ce(I("condition",e,t,n),"bool"),s=[await nv(r)];return r.dispose(),s}case"ListDiff":return Hk(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},VG=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),s=I("k",e,t,n),a=I("sorted",e,t,n),o=ev(r,s,a);return[o.values,o.indices]}case"Unique":{let r=I("x",e,t,n),s=of(r);return[s.values,s.indices]}case"UniqueV2":{let r=I("x",e,t,n),s=I("axis",e,t,n),a=of(r,s);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},UG=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[Cn(e.name,t,n)||r];case"Placeholder":return[Cn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=I("x",e,t,n);return[$s(l)]}case"IdentityN":return I("x",e,t,n).map(l=>$s(l));case"Snapshot":let s=I("x",e,t,n);return[$s(s)];case"Shape":return[Ge(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(l=>Ge(l.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),c=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let l=0;le.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),M(()=>{let r=pt(t),s=n.length,a=r.length;w.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let o=0;o{let r=[];for(let s=0;s{switch(e.op){case"HashTable":case"HashTableV2":{let s=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new GG(s,a);return r.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("values",e,t,n);return[await r.getHashTableById(s.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let s=I("tableHandle",e,t,n,r),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await r.getHashTableById(s.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let s=I("tableHandle",e,t,n,r);return[r.getHashTableById(s.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jG=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Qn.resizeBilinear(r,[s[0],s[1]],a,o)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),s=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Qn.resizeNearestNeighbor(r,[s[0],s[1]],a,o)]}case"CropAndResize":{let r=I("image",e,t,n),s=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),c=I("extrapolationValue",e,t,n);return[Qn.cropAndResize(r,s,a,o,i,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},qG=(e,t,n)=>{switch(e.op){case"Equal":return[Kn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Qo(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Mn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[la(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Gh(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[da(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Ir(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Xl(I("a",e,t,n))];case"LogicalOr":return[qh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[gn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},KG=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ae(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Dk(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Re(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,s]=I("fusedOps",e,t,n),a=r==="biasadd",o=s==="prelu",i=I("numArgs",e,t,n),c=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,u]=I("args",e,t,n);return[pa.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:l,activation:s,preluActivationWeights:u,leakyreluAlpha:c})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XG=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Cs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Cs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[zy(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Pr(I("x",e,t,n))];case"LogSoftmax":return[jh(I("x",e,t,n))];case"SparseToDense":return[rv(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},YG=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[kr(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Et(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Yl(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ve(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Mh(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ul(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[qo(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[xy(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Xh(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),c=I("reverse",e,t,n);return[Vh(I("x",e,t,n),o,i,c)]}case"Bincount":let r=I("x",e,t,n),s=I("weights",e,t,n),a=I("size",e,t,n);return[Ey(r,s,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),c=I("size",e,t,n),l=I("binaryOutput",e,t,n);return[Ek(o,i,c,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ZG=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),s=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,r),[Ze(a,s)]}case"Gather":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Yo(r,ce(s,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),s=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Yo(a,ce(o,"int32"),r,s)]}case"Reverse":{let r=I("dims",e,t,n),s=[];for(let o=0;o{let r=I("axis",e,t,n),s=I("tensors",e,t,n),a=s[0].shape,o=as(s[0]).shape,i=s.map(c=>{let l=w.arraysEqual(c.shape,a);if(!l&&!w.arraysEqual(as(c).shape,o))throw new Error("the input tensors shape does not match");return l?c:U(c,a)});return[Ot(i,r)]});case"Unpack":{let r=I("axis",e,t,n),s=I("tensor",e,t,n);return pt(s,r)}case"Tile":{let r=I("reps",e,t,n);return[On(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),s=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Ln(a,s,r)}case"ScatterNd":{let r=I("indices",e,t,n),s=I("values",e,t,n),a=I("shape",e,t,n);return[Xk(r,s,a)]}case"GatherNd":{let r=I("x",e,t,n),s=I("indices",e,t,n);return[Yk(r,s)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),s=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[rv(r,a,s,a.dtype===o.dtype?o:ce(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},JG=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:s,emptyRowIndicator:a,reverseIndexMap:o}=rd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,s,a,o]}case"SparseReshape":{let{outputIndices:r,outputShape:s}=rd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,s]}case"SparseSegmentMean":return[rd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[rd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},QG=(e,t,n)=>{switch(e.op){case"FFT":return[td(I("x",e,t,n))];case"IFFT":return[iu(I("x",e,t,n))];case"RFFT":return[nd(I("x",e,t,n))];case"IRFFT":return[rf(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eH=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:s}=hf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,s]}case"StringSplit":{let{indices:r,values:s,shape:a}=hf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,s,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tH=(e,t,n)=>{switch(e.op){case"Cast":return[ce(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[yn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[as(I("x",e,t,n),r)]}case"Reshape":return[U(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Hy(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[ur(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),s=I("paddings",e,t,n);return[Zl(I("x",e,t,n),r,s)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),s=I("crops",e,t,n);return[Hl(I("x",e,t,n),r,s)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),s=I("dataFormat",e,t,n).toUpperCase();return[$y(I("x",e,t,n),r,s)]}case"BroadcastTo":return[eu(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[kk(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function PC(e,t,n,r){let s=((a,o,i)=>{switch(a.category){case"arithmetic":return M(()=>DG(a,o,i));case"basic_math":return M(()=>FG(a,o,i));case"control":return LG(a,o,i);case"convolution":return M(()=>BG(a,o,i));case"creation":return M(()=>zG(a,o,i));case"dynamic":return WG(a,o,i);case"evaluation":return M(()=>VG(a,o,i));case"image":return M(()=>jG(a,o,i));case"graph":return M(()=>UG(a,o,i));case"logical":return M(()=>qG(a,o,i));case"matrices":return M(()=>KG(a,o,i));case"normalization":return M(()=>XG(a,o,i));case"reduction":return M(()=>YG(a,o,i));case"slice_join":return M(()=>ZG(a,o,i));case"sparse":return M(()=>JG(a,o,i));case"spectral":return M(()=>QG(a,o,i));case"string":return M(()=>eH(a,o,i));case"transformation":return M(()=>tH(a,o,i));case"hash_table":return HG(a,o,i,r);case"custom":let c=uC(a.op);if(c&&c.customExecutor)return c.customExecutor(new AG(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(s)?s.then(a=>[].concat(a)):[].concat(s)}var OC=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;tt.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function MC(e,t,n,r){let s=new Set,a=[],o=null,i=null,c=new Set,l=Object.keys(e).map(p=>er(p)[0]),u=[];r!=null&&(u=r.map(p=>er(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((LC(p)||oH(p)||iH(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>s.has(h))),s.add(p.name),n[p.name]==null&&l.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{c.has(h.name)||(c.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:s,missingInputs:a,dynamicNode:o,syncInputs:i}}function nH(e,t,n){let{usedNodes:r,inputs:s}=n,a=[],o=Object.keys(s).map(u=>er(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{r.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{r.has(u.name)&&a.push(u)});let c=new Set,l=[];for(;a.length>0;){let u=a.pop();c.add(u.name),t[u.name]||l.push(u),u.children.forEach(d=>{!c.has(d.name)&&r.has(d.name)&&d.inputs.every(p=>c.has(p.name))&&a.push(d)})}return l}var rH=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],sH=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],aH=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function LC(e){return rH.indexOf(e.op)>=0}function oH(e){return sH.indexOf(e.op)>=0}function iH(e){return aH.indexOf(e.op)>=0}var uw=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new uw(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(s=>s.name).sort(),r=t.map(s=>s.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=MC(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:s,syncInputs:a}=n;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(r.length>0){let o=t.map(c=>c.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${r}]`)}return nH(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[er(u)[0]]),s=t.map(u=>er(u)[0]),a=s.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(r,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let c={},l={};return M(()=>{let u=new OC(this.weightMap,c,l,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=er(f),b=[];b[g]=e[f],d[m]=b});let p=this.getFrozenTensorIds(d),h={};for(let f=0;fCn(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,s,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let c=uG(i.name,n,r);c!=null&&c.forEach(l=>{if(l&&!l.kept&&!s.has(l.id)){let u=o[l.id];u===1?(l.dispose(),delete o[l.id]):u!=null&&o[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},s={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new OC(this.weightMap,r,s,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Cn(d,o,a)),c=i.map(d=>d.id),l=Object.keys(e).map(d=>e[d].id),u=new Set([...c,...l,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let r=e.reduce((s,a,o)=>(s[this.inputs[o].name]=a,s),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let s=Object.keys(e),a=s.map(v=>this.graph.nodes[er(v)[0]]),o=n.map(v=>er(v)[0]),i=o.map(v=>this.graph.nodes[v]);i.length===0&&(i=this._outputs);let{usedNodes:c,missingInputs:l,dynamicNode:u,syncInputs:d}=MC(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(v=>({node:v,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(v=>{let[y,x]=er(v),k=[];k[x]=e[v],h[y]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let v=this.processStack(a,p,t,h,g,m,o,f,c);await Promise.all(v)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=i.filter(v=>!LC(v)&&!Cn(v.name,h,t)).map(v=>v.name);if(b.length>0){let v="";throw u!=null&&(v=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${l}]. ${v}`)}return h}processStack(e,t,n,r,s,a,o,i,c){let l=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([d]=Fs(u.node.name,n)),r[u.node.name]==null){let p=PC(u.node,r,n,this._resourceManager);d||([d]=Fs(u.node.name,n));let h=n.currentContext;w.isPromise(p)?l.push(p.then(f=>(r[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,r,n,a,o,i),this.processChildNodes(u.node,t,n,r,s,c),f))):(r[d]=p,this.checkTensorForDisposal(d,u.node,r,n,a,o,i),this.processChildNodes(u.node,t,n,r,s,c))}else this.processChildNodes(u.node,t,n,r,s,c)}return l}processChildNodes(e,t,n,r,s,a){e.children.forEach(o=>{let[i]=Fs(o.name,n);s[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(c=>!!Cn(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(c=>!!Cn(c,r,n))&&(s[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=er(t),s=this.graph.nodes[r];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,c)=>a[c]===-1||a[c]===i);w.assert(o,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&w.assert(n.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=er(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=er(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},cH=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},uH="?tfjs-format=file",lH="model.json",BC=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new cH}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Jt.browserHTTPRequest(e,this.loadOptions);else{let t=Jt.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Jt.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Jt.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new uw(EC.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=EC.Instance.transformGraph(e.modelInitializer);this.initializer=new uw(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Jt.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ee)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function dH(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${lH}${uH}`);let n=new BC(e,t);return await n.load(),n}var pH="3.11.0",zC={};$e(zC,{CSVDataset:()=>JC,Dataset:()=>yu,FileDataSource:()=>aT,TextLineDataset:()=>XC,URLDataSource:()=>oT,array:()=>PH,csv:()=>jH,func:()=>qH,generator:()=>KH,microphone:()=>YH,version_data:()=>ZH,webcam:()=>XH,zip:()=>OH});var hH=Oa(t0()),fH=Oa(t0());function mH(e,t){return em(e,t)}function em(e,t,n=new Map,r=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(s.recurse)if(bu(e)){let a=Array.isArray(e)?[]:{};r.add(e);for(let o in e){let i=e[o],c=em(i,t,n,r);a[o]=c}return r.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,s.value),s.value}function gH(e,t=VC){return WC(e,t)}function WC(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let s=t(e);if(s.recurse&&s.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(s.recurse)if(bu(r)){let a=Array.isArray(r)?[]:{};n.add(r);for(let o in r){let i=e.map(l=>l[o]),c=WC(i,t,n);a[o]=c}return n.delete(r),a}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return s.value}function VC(e){return e===null?null:bu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function UC(e,t){let n=new Map;em(e,t,n);for(let s of Array.from(n.keys())){let a=n.get(s);if(w.isPromise(a)){let o=await a;n.set(s,o)}}return em(e,t,n)}function bu(e){let t=!1;if(J().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=n0();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ee)&&!(e instanceof Promise)&&!t)}function bH(e){return e==null||yH(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ee||w.isTypedArray(e)}function yH(e){return e===null||typeof e!="object"&&typeof e!="function"}function vH(e){return mH(e,xH)}function xH(e){return e instanceof Ee?{value:e.clone(),recurse:!1}:bu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var GC=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},lw=class extends GC{constructor(){super(lw.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;rt===!0)}rowMajorBatch(e,t=!0){return new _H(this,e,t)}columnMajorBatch(e,t=!0,n=VC){return this.rowMajorBatch(e,t).map(s=>gH(s,n))}concatenate(e,t){return new qC(HC([this,e]),t)}take(e){return e<0||e==null?this:new NH(this,e)}skip(e){return e<0||e==null?this:new TH(this,e)}prefetch(e){return new KC(this,e)}shuffle(e,t){return new RH(this,e,t)}serial(){return new CH(this)}},IH=class extends nn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:vH(e),done:!1}}},SH=class extends nn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},CH=class extends nn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},TH=class extends nn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++ Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},_H=class extends nn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},EH=class extends nn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;De(e.value)}}},AH=class extends nn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$r.getTensorsInContainer(e.value),n=this.transform(e.value),r=$r.getTensorsInContainer(n);for(let s of t)$r.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},DH=class extends nn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},jC=class extends nn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$r.getTensorsInContainer(e.value),n=await this.transform(e.value),r=$r.getTensorsInContainer(n);for(let s of t)$r.isTensorInList(s,r)||s.dispose();return{value:n,done:!1}}},pw=class extends nn{constructor(){super();this.outputQueue=new lw,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},FH=class extends pw{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=$r.getTensorsInContainer(e.value),n=this.transform(e.value),r=$r.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let s of t)$r.isTensorInList(s,r)||s.dispose();return!0}},qC=class extends nn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},wa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(wa||(wa={}));var $H=class extends nn{constructor(e,t=wa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(a){return a instanceof nn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let s=await UC(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case wa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case wa.SHORTEST:return{value:null,done:!0};case wa.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},KC=class extends nn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new GC(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},RH=class extends KC{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=fH.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},yu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is ${e}`);let r;return this.size===1/0||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),tr(async()=>(await n.iterator()).columnMajorBatch(e,t,MH),r)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,tr(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,tr(async()=>(await t.iterator()).filter(r=>M(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return tr(async()=>(await t.iterator()).map(n=>M(()=>e(n))),this.size)}mapAsync(e){let t=this;return tr(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return tr(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,tr(async()=>{let r=dw(async()=>({value:await t.iterator(),done:!1}));return wH(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,s=hH.alea(t||w.now().toString());return tr(async()=>{let a=s.int32();return n&&(a+=s.int32()),(await r.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,tr(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};yu.MAX_BUFFER_SIZE=1e4;function tr(e,t=null){return new class extends yu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function PH(e){return tr(async()=>HC(e),e.length)}function OH(e){if(!bu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n{let n=await UC(e,r=>{if(r instanceof yu)return{value:r.iterator(),recurse:!1};if(bu(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return kH(n,wa.SHORTEST)},t)}function MH(e){if(e===null)return null;let t=e[0];return bH(t)?{value:LH(e),recurse:!1}:{value:null,recurse:!0}}function LH(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ee?Ot(e):qn(e)}var XC=class extends yu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(` `).map(r=>(r.endsWith("\r")&&(r=r.slice(0,-1)),r))}},tm='"',Cd=Symbol("out"),YC=Symbol("field"),nm=Symbol("quote"),hw=Symbol("quoteafterquote"),ZC=Symbol("quoteinquote"),JC=class extends yu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new XC(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,s)=>(r[s]=r[s]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let s=0;s14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new QC(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(s),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,s)=>n.set(r,s*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),qn(n,t)}},eT=class extends nn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ge([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-n)/2,a=(1-r)/2,o=s+n,i=r+a;this.cropBox=Or([a,s,i,o],[1,4])}else this.cropBox=Or([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new eT(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Go.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return M(()=>{let t=yn(ce(e,"float32"),0),n;n=Qn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return U(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},tT=class{},nT=class extends nn{split(e){return new BH(this,e)}},BH=class extends nT{constructor(e,t){super();this.upstream=e,this.impl=new zH(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zH=class extends pw{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},WH=class extends nn{decodeUTF8(){return new VH(this)}},VH=class extends nT{constructor(e){super();this.upstream=e,this.impl=new UH(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},UH=class extends pw{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=n0();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},rT=class extends WH{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let r=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,r)));else{let s=new FileReader;s.onload=o=>{let i=s.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},s.onabort=o=>n(new Error("Aborted")),s.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,r);s.readAsArrayBuffer(a)}this.offset=r}),done:!1}}};async function GH(e,t={},n){let r,s;typeof e=="string"?r=e:(r=e.url,s=HH(e));let a=await(n||w.fetch)(r,s);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new rT(o,t)}else throw new Error(a.statusText)}var HH=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function sT(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var aT=class extends tT{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(sT(this.input)&&J().get("IS_NODE")){let e=Rp();this.input=e.readFileSync(this.input.substr(7))}return new rT(this.input,this.options)}},oT=class extends tT{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return sT(this.url)?new aT(this.url,this.fileOptions).iterator():GH(this.url,this.fileOptions)}};function jH(e,t={}){return new JC(new oT(e),t)}function qH(e){let t=dw(e);return tr(async()=>t)}function KH(e){return tr(async()=>{let t=await e();return dw(()=>t.next())})}async function XH(e,t){return eT.create(e,t)}async function YH(e){return QC.create(e)}var ZH="3.11.0";function Ie(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var JH=os.whereImpl,fw=class extends fl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Pp(this,Ss())}nextDataId(){return fw.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&E.warn(` ============================ Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details. ============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,s){this.data.set(e,{values:t,dtype:r,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),s=this.readSync(n.imag.dataId);return E.mergeRealAndImagArrays(r,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ss().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ie([e],"where");let t=this.readSync(e.dataId);return JH(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};fw.nextDataId=0;var iT={};$e(iT,{addImpl:()=>uT,bincountImpl:()=>gw,bincountReduceImpl:()=>lT,ceilImpl:()=>dT,concatImpl:()=>bw,equalImpl:()=>pT,expImpl:()=>fT,expm1Impl:()=>gT,floorImpl:()=>bT,gatherNdImpl:()=>yT,gatherV2Impl:()=>vT,greaterEqualImpl:()=>wT,greaterImpl:()=>xT,lessEqualImpl:()=>IT,lessImpl:()=>kT,linSpaceImpl:()=>ST,logImpl:()=>CT,maxImpl:()=>TT,maximumImpl:()=>NT,minimumImpl:()=>_T,multiplyImpl:()=>yw,negImpl:()=>ET,notEqualImpl:()=>AT,prodImpl:()=>DT,rangeImpl:()=>xw,rsqrtImpl:()=>FT,sigmoidImpl:()=>z6,simpleAbsImpl:()=>cT,sliceImpl:()=>am,sparseFillEmptyRowsImpl:()=>RT,sparseReshapeImpl:()=>PT,sparseSegmentReductionImpl:()=>ww,sqrtImpl:()=>U6,squaredDifferenceImpl:()=>OT,stridedSliceImpl:()=>MT,stringNGramsImpl:()=>LT,stringSplitImpl:()=>BT,stringToHashBucketFastImpl:()=>zT,subImpl:()=>WT,tileImpl:()=>VT,topKImpl:()=>GT,transposeImpl:()=>vw,uniqueImpl:()=>HT});function cT(e){let t=new Float32Array(e.length);for(let n=0;n{let{x:t}=e.inputs,n=e.backend;Ie(t,"abs");let r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId).values;return r=cT(s),n.makeOutput(r,t.shape,t.dtype)},e6={kernelName:ji,backendName:"cpu",kernelFunc:QH};function zt(e){return(t,n,r,s,a)=>{let o=E.assertAndGetBroadcastShape(t,n),i=o.length,c=w.computeStrides(o),l=w.sizeFromShape(o),u=w.getTypedArrayFromDType(a,l),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=E.getBroadcastDims(t,o),g=E.getBroadcastDims(n,o);if(m.length+g.length===0)for(let b=0;by[N]=0);let x=w.locToIndex(y,d,h),k=v.slice(-p);g.forEach(N=>k[N]=0);let C=w.locToIndex(k,p,f);u[b]=e(r[x],s[C])}return[u,o]}}function nr(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=n.makeTensorInfo(r.shape,"complex64"),c=n.data.get(i.dataId);return c.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",a),imag:n.makeTensorInfo(s.shape,"float32",o)},i}var t6={kernelName:Gp,backendName:"cpu",kernelFunc:nr};function rm(e,t,n="float32"){if(n==="complex64"){let s=rm(e,t,"float32"),a=rm(e,t,"float32");return nr({inputs:{real:s,imag:a},backend:e})}let r=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function ps(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var n6={kernelName:so,backendName:"cpu",kernelFunc:ps};function di(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.data.get(r.dataId).complexTensorInfos.real,a=n.data.get(s.dataId).values;return n.makeTensorInfo(s.shape,s.dtype,a)}var r6={kernelName:dh,backendName:"cpu",kernelFunc:di};function ka(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return ps({inputs:{x:s},backend:n});let o=rm(n,s.shape,s.dtype),i=ka({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=nr({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=di({inputs:{input:s},backend:n}),i=ka({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=ps({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(s.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(s.shape,"int32",i)}if(a==="bool"){let o=n.data.get(s.dataId).values,i=w.toTypedArray([0],s.dtype),[c,l]=zt((u,d)=>u!==d?1:0)(s.shape,[],o,i,"bool");return n.makeTensorInfo(l,"bool",c)}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var s6={kernelName:Ua,backendName:"cpu",kernelFunc:ka};function rn(e,t,n,r){return n==null?({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;Ie([o,i],e);let l=c.data.get(o.dataId).values,u=c.data.get(i.dataId).values,d=o.dtype==="string"?E.fromUint8ToStringArray(l):l,p=o.dtype==="string"?E.fromUint8ToStringArray(u):u,h=r||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return c.makeTensorInfo(m,h,f)}:({inputs:s,backend:a})=>{let{a:o,b:i}=s,c=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let l=ka({inputs:{x:o},backend:c,attrs:{dtype:"complex64"}}),u=c.data.get(l.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=c.data.get(d.dataId).values,f=c.data.get(p.dataId).values,m=ka({inputs:{x:i},backend:c,attrs:{dtype:"complex64"}}),g=c.data.get(m.dataId),b=g.complexTensorInfos.real,v=g.complexTensorInfos.imag,y=c.data.get(b.dataId).values,x=c.data.get(v.dataId).values,[k,C,N]=n(o.shape,i.shape,h,f,y,x),D=c.makeTensorInfo(N,"float32",k),F=c.makeTensorInfo(N,"float32",C),O=nr({inputs:{real:D,imag:F},backend:c});return c.disposeIntermediateTensorInfo(l),c.disposeIntermediateTensorInfo(m),c.disposeIntermediateTensorInfo(D),c.disposeIntermediateTensorInfo(F),O}else{let l=c.data.get(o.dataId).values,u=c.data.get(i.dataId).values,d=r||o.dtype,[p,h]=t(o.shape,i.shape,l,u,d);return c.makeTensorInfo(h,d,p)}}}function mw(e){return(t,n,r,s,a,o)=>{let i=E.assertAndGetBroadcastShape(t,n),c=w.sizeFromShape(i),l=i.length,u=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c),h=E.getBroadcastDims(t,i),f=E.getBroadcastDims(n,i),m=E.mergeRealAndImagArrays(r,s),g=E.mergeRealAndImagArrays(a,o),b=t.length,v=w.computeStrides(t),y=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;kN[P]=0);let D=w.locToIndex(N,b,v),F=C.slice(-y);f.forEach(P=>F[P]=0);let O=w.locToIndex(F,y,x),$=e(m[D*2],m[D*2+1],g[O*2],g[O*2+1]);d[k]=$.real,p[k]=$.imag}return[d,p,i]}}var uT=zt((e,t)=>e+t),a6=mw((e,t,n,r)=>({real:e+n,imag:t+r})),Td=rn(Js,uT,a6),o6={kernelName:Js,backendName:"cpu",kernelFunc:Td};function gw(e,t,n,r,s){let a=w.sizeFromShape(r),o=w.makeZerosTypedArray(s,n);for(let i=0;i=s||(a>0?o[c]+=t[i]:o[c]+=1)}return o}function lT(e,t,n,r=!1){let s=e.shape[0],a=e.shape[1],o=ze([s,n],t.dtype);for(let i=0;i=n||(r?o.set(1,i,l):t.size>0?o.set(o.get(i,l)+t.get(i,c),i,l):o.set(o.get(i,l)+1,i,l))}return o}function Ia(e){return(t,n,r)=>{let s=w.getTypedArrayFromDType(n,t.length);for(let a=0;a{let{x:o}=r;if(Ie(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,l=w.sizeFromShape(o.shape),u=n||o.dtype,d=w.getArrayFromDType(u,l);for(let p=0;p{let{x:o}=r;if(Ie(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,c=i.data.get(o.dataId).values,l=n||o.dtype,u=t(c,l,s);return i.makeTensorInfo(o.shape,l,u)}}var dT=Ia(e=>Math.ceil(e)),i6=vu(Ga,dT),c6={kernelName:Ga,backendName:"cpu",kernelFunc:i6};function bw(e,t,n,r){let s=w.getArrayFromDType(n,w.sizeFromShape(t));if(r&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);s.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?E.fromUint8ToStringArray(o.vals):o.vals,c=0;for(let l=0;le===t?1:0),hT=rn(ic,pT,null,"bool"),u6={kernelName:ic,backendName:"cpu",kernelFunc:hT},fT=Ia(e=>Math.exp(e)),mT=vu(Qa,fT,"float32"),l6={kernelName:Qa,backendName:"cpu",kernelFunc:mT},gT=Ia(e=>Math.expm1(e)),d6=vu(uc,gT),p6={kernelName:uc,backendName:"cpu",kernelFunc:d6},bT=Ia(e=>Math.floor(e)),h6=vu(eo,bT),f6={kernelName:eo,backendName:"cpu",kernelFunc:h6};function yT(e,t,n,r,s,a,o,i,c){let l=ze([r,a],n);for(let u=0;u=c/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;he>t?1:0),m6=rn(hc,xT,null,"bool"),g6={kernelName:hc,backendName:"cpu",kernelFunc:m6},wT=zt((e,t)=>e>=t?1:0),b6=rn(ro,wT,null,"bool"),y6={kernelName:ro,backendName:"cpu",kernelFunc:b6},kT=zt((e,t)=>ee<=t?1:0),w6=rn(yc,IT,null,"bool"),k6={kernelName:yc,backendName:"cpu",kernelFunc:w6};function ST(e,t,n){let r=(t-e)/(n-1),s=w.makeZerosTypedArray(n,"float32");s[0]=e;for(let a=1;aMath.log(e)),I6=vu(oo,CT),S6={kernelName:oo,backendName:"cpu",kernelFunc:I6};function TT(e,t,n,r){let s=w.getTypedArrayFromDType(r,w.sizeFromShape(n));for(let a=0;ai)&&(i=l)}s[a]=i}return s}var NT=zt((e,t)=>Math.max(e,t)),C6=rn(co,NT),T6={kernelName:co,backendName:"cpu",kernelFunc:C6},_T=zt((e,t)=>Math.min(e,t)),N6=rn(ho,_T),_6={kernelName:ho,backendName:"cpu",kernelFunc:N6},yw=zt((e,t)=>e*t),E6=mw((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),sm=rn(mo,yw,E6),A6={kernelName:mo,backendName:"cpu",kernelFunc:sm};function ET(e,t,n){let r=w.createScalarValue(-1,n);return yw([],t,r,e,n)}function D6(e){let{inputs:t,backend:n}=e,{x:r}=t;Ie(r,"neg");let s=n.data.get(r.dataId).values,[a,o]=ET(s,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,a)}var F6={kernelName:kc,backendName:"cpu",kernelFunc:D6},AT=zt((e,t)=>e!==t?1:0),$6=rn(Ic,AT,null,"bool"),R6={kernelName:Ic,backendName:"cpu",kernelFunc:$6};function vw(e,t,n,r,s){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),c=w.computeStrides(s),l=w.getTypedArrayFromDType(n,w.sizeFromShape(s));for(let u=0;un.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(b,g,f)}var M6={kernelName:Ec,backendName:"cpu",kernelFunc:O6};function xw(e,t,n,r){let s=e===t,a=e1;if(s||a||o)return w.makeZerosTypedArray(0,r);let i=Math.abs(Math.ceil((t-e)/n)),c=w.makeZerosTypedArray(i,r);t1/Math.sqrt(e)),L6=vu(Co,FT),B6={kernelName:Co,backendName:"cpu",kernelFunc:L6},z6=Ia(e=>1/(1+Math.exp(-e))),$T=ot(No,e=>1/(1+Math.exp(-e))),W6={kernelName:No,backendName:"cpu",kernelFunc:$T};function am(e,t,n,r,s){let a=Gt.isSliceContinous(r,t,n),o=w.sizeFromShape(n),i=w.computeStrides(r);if(a){let d=Gt.computeFlatOffset(t,i);return s==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let c=s==="string"?E.fromUint8ToStringArray(e):e,l=ze(r,s,c),u=ze(n,s);for(let d=0;df+t[m]);u.set(l.get(...h),...p)}return s==="string"?E.fromStringArrayToUint8(u.values):u.values}function pi(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r;Ie(s,"slice");let[i,c]=Gt.parseSliceParams(s,a,o);Gt.assertParamsValid(s,i,c);let l=n.data.get(s.dataId).values,u=am(l,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,u)}var V6={kernelName:Pc,backendName:"cpu",kernelFunc:pi};function RT(e,t,n,r,s,a,o){let i=t[0],c=a[0],l=new Array(c),u=new Array(i),d=t[1];if(c===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(s,0);return[g,[0,d],b,l,u]}let p=!0,h=0,f=new Array(c).fill(0);for(let g=0;g=c)throw new Error(`indices(${g}, 0) is invalid: ${b} >= ${c}`);++f[b],p=p&&b>=h,h=b}let m=!0;for(let g=0;g0&&(f[g]+=f[g-1])}if(m&&p){let g=e,b=r;for(let v=0;v0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*r[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*c[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g0?s[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((y,x)=>y*x,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,b=0,v=s[m];for(;;){let y=0;if(g=y)throw new Error("segment ids are not increasing")}if(v<0||v>=d)throw new Error(`Segment id ${v} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);v>b&&f.fill(o,b*l,v*l);for(let x=m;x=c[0])throw new Error(`Bad: indices[${x}] == ${r[x]} out of range [0, ${c[0]})`);for(let C=0;Ci)break}return bMath.sqrt(e)),G6=ot(_o,e=>Math.sqrt(e)),H6={kernelName:_o,backendName:"cpu",kernelFunc:G6},OT=zt((e,t)=>{let n=e-t;return n*n}),j6=rn(Do,OT),q6={kernelName:Do,backendName:"cpu",kernelFunc:j6};function MT(e,t,n,r){let s=ze(e,t.dtype);for(let a=0;a0?0:o-i),p=0;p+=c*this.leftPad.length;for(let b=0;bb.forEach(v=>f[m++]=v);for(let b=0;b0){g(e[d+u-1]);for(let b=0;b0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let c=1;c=i;if(l=l&&t[c]<=n,!l)throw new Error(`Invalid split value ${t[c]}, must be in [${i}, ${n}]`);i=t[c]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let s=r-1,a=w.getArrayFromDType("int32",r);if(n===0||r===0){let i=new Array(n);for(let c=0;c<=s;++c)a[c]=0;return[i,a]}a[0]=0;for(let i=1;i<=s;++i){let c=t[i]-t[i-1],l=0;this.nGramWidths.forEach(u=>{l+=this.getNumNGrams(c,u)}),this.preserveShort&&c>0&&l===0&&(l=1),a[i]=a[i-1]+l}let o=new Array(a[s]);for(let i=0;i{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,c,o,l,p,u),l+=p}),this.preserveShort&&l===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,c,o,l,p,d)}}return[o,a]}};function LT(e,t,n,r,s,a,o,i){return new K6(n,r,s,a,o,i).compute(e,t)}function X6(e,t,n,r){if(!e.length)return;if(t.length===0){for(let a=0;ae-t),Y6=mw((e,t,n,r)=>({real:e-n,imag:t-r})),kw=rn(Fo,WT,Y6),Z6={kernelName:Fo,backendName:"cpu",kernelFunc:kw};function VT(e,t){let n=new Array(e.rank);for(let s=0;s{let n=t.value-e.value;return n===0?e.index-t.index:n};function UT(e,t,n=0,r=e.length-1){for(;r>n;){if(r-n>600){let i=r-n+1,c=t-n+1,l=Math.log(i),u=.5*Math.exp(2*l/3),d=.5*Math.sqrt(l*u*(i-u)/i)*Math.sign(c-i/2),p=Math.max(n,Math.floor(t-c*u/i+d)),h=Math.min(r,Math.floor(t+(i-c)*u/i+d));UT(e,t,p,h)}let s=e[t],a=n,o=r;for(w.swap(e,n,t),Nd(e[r],s)>0&&w.swap(e,n,r);a0;)o=o-1}Nd(e[n],s)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,r)),o<=t&&(n=o+1),t<=o&&(r=o-1)}}function GT(e,t,n,r,s){let a=t[t.length-1],[o,i]=[e.length/a,a],c=w.getTypedArrayFromDType(n,o*r),l=w.getTypedArrayFromDType("int32",o*r);for(let d=0;df[y]={value:v,index:y}),r{for(let g=0;gnew fw,1);var jT=ot(Ja,e=>e>=0?e:Math.exp(e)-1),J6={kernelName:Ja,backendName:"cpu",kernelFunc:jT};function qT(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r;Ie([s],"leakyRelu");let o=w.sizeFromShape(s.shape),i=n.data.get(s.dataId).values,c=w.getTypedArrayFromDType("float32",o);for(let l=0;le<0?t*e:e);function KT(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t;Ie([r,s],"prelu");let a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,[i,c]=e5(r.shape,s.shape,a,o,"float32");return n.makeTensorInfo(c,"float32",i)}var t5={kernelName:vo,backendName:"cpu",kernelFunc:KT},XT=ot(xo,e=>Math.max(0,e)),n5={kernelName:xo,backendName:"cpu",kernelFunc:XT},YT=ot(ko,e=>Math.min(Math.max(0,e),6)),r5={kernelName:ko,backendName:"cpu",kernelFunc:YT};function Iw(e,t,n,r,s){if(n==="linear")return ps({inputs:{x:t},backend:e});if(n==="relu")return XT({inputs:{x:t},backend:e});if(n==="elu")return jT({inputs:{x:t},backend:e});if(n==="relu6")return YT({inputs:{x:t},backend:e});if(n==="prelu")return KT({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return qT({inputs:{x:t},backend:e,attrs:{alpha:s}});if(n==="sigmoid")return $T({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Tt(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{shape:a}=r,o=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(a,o),c=w.sizeFromShape(i);w.assert(o===c,()=>`The new shape (${i}) has ${c} elements and the old shape (${s.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(s.dataId);let l=n.data.get(s.dataId);if(l.complexTensorInfos!=null){let u=l.complexTensorInfos.real,d=l.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:s.dataId,shape:i,dtype:s.dtype}}var s5={kernelName:Dc,backendName:"cpu",kernelFunc:Tt};function ZT(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;Ie([s,a],"matMul");let c=s.shape.length,l=a.shape.length,u=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=g===b||g===1||b===1;w.assert(c>=2&&l>=2&&v,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(g>b?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let k=o?[g,u,p]:[g,p,u],C=i?[b,h,d]:[b,d,h],N=Tt({inputs:{x:s},backend:n,attrs:{shape:k}}),D=Tt({inputs:{x:a},backend:n,attrs:{shape:C}}),F=o?N.shape[1]:N.shape[2],O=o?N.shape[2]:N.shape[1],$=i?D.shape[1]:D.shape[2],P=Math.max(g,b),T=n.data.get(N.dataId).values,L=n.data.get(D.dataId).values,G=w.computeStrides(N.shape),j=w.computeStrides(D.shape),[q,K,ee]=o?[G[0],1,G[1]]:[G[0],G[1],1],[te,ne,ae]=i?[1,j[1],j[0]]:[j[1],1,j[0]],se=O*$,re=ze([P,O,$],N.dtype),ue=re.values,de=n.blockSize;for(let me=0;meMath.acos(e)),u5={kernelName:qi,backendName:"cpu",kernelFunc:c5},l5=ot(Ki,e=>Math.acosh(e)),d5={kernelName:Ki,backendName:"cpu",kernelFunc:l5};function p5(e){let{inputs:t,backend:n}=e,r=t;Ie(t,"addN");let s=r.map(i=>n.data.get(i.dataId).values),a=ze(r[0].shape,r[0].dtype),o=a.values;for(let i=0;iv&&(v=k,y=x)}h[g]=y}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var v5={kernelName:za,backendName:"cpu",kernelFunc:y5};function x5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r;Ie(s,"argMin");let o=w.parseAxisParam(a,s.shape),i=E.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=dr({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=E.getInnerMostAxes(o.length,c.shape.length)),o=[o[0]],E.assertAxesAreInnerMostDims("argMin",o,c.shape.length);let[u,d]=E.computeOutAndReduceShapes(c.shape,o),p=w.sizeFromShape(u),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(c.dataId).values;for(let g=0;gn.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var w5={kernelName:bl,backendName:"cpu",kernelFunc:x5},k5=ot(Zi,e=>Math.asin(e)),I5={kernelName:Zi,backendName:"cpu",kernelFunc:k5},S5=ot(Ji,e=>Math.asinh(e)),C5={kernelName:Ji,backendName:"cpu",kernelFunc:S5},T5=ot(Qi,e=>Math.atan(e)),N5={kernelName:Qi,backendName:"cpu",kernelFunc:T5},_5=zt((e,t)=>Math.atan2(e,t)),E5=rn(tc,_5),A5={kernelName:tc,backendName:"cpu",kernelFunc:E5},D5=ot(ec,e=>Math.atanh(e)),F5={kernelName:ec,backendName:"cpu",kernelFunc:D5};function Sw(e,t,n,r,s,a){let o=s.strideHeight,i=s.strideWidth,c=s.dilationHeight,l=s.dilationWidth,u=s.effectiveFilterHeight,d=s.effectiveFilterWidth,p=s.padInfo.top,h=s.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=ze(s.outShape,n),g=m.values,b=s.outShape[1]*s.outShape[2]*s.outShape[3],v=s.outShape[2]*s.outShape[3],y=s.outShape[3];for(let x=0;xq?q=ue:a==="avg"&&(K+=ue,ee++)}if(isNaN(q))break}let te=P+T*y+N;g[te]=a==="avg"?K/ee:q}}}return m}function JT(e,t,n,r,s=!1,a=!1){let o=ze(r.outShape,"int32"),i=r.strideHeight,c=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,h=r.padInfo.top,f=r.padInfo.left,m=ze(t,n,e);for(let g=0;gO&&(O=j,s?$=a?((g*r.inHeight+P)*r.inWidth+L)*r.inChannels+b:(P*r.inWidth+L)*r.inChannels+b:$=T*p+G)}}o.set($,g,v,C,b)}}return o}function QT(e,t,n,r,s,a){let o=s.strideDepth,i=s.strideHeight,c=s.strideWidth,l=s.dilationDepth,u=s.dilationHeight,d=s.dilationWidth,p=s.effectiveFilterDepth,h=s.effectiveFilterHeight,f=s.effectiveFilterWidth,m=s.padInfo.front,g=s.padInfo.top,b=s.padInfo.left,v=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,y=ze(s.outShape,n),x=y.values,k=s.outShape[1]*s.outShape[2]*s.outShape[3]*s.outShape[4],C=s.outShape[2]*s.outShape[3]*s.outShape[4],N=s.outShape[3]*s.outShape[4],D=s.outShape[4];for(let F=0;Fwe?we=lt:a==="avg"&&(Ce+=lt,_e++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Me=me+P;x[Me]=a==="avg"?Ce/_e:we}}}}return y}function $5(e,t){let n=ze(t.outShape,"int32"),r=t.strideDepth,s=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,c=t.dilationWidth,l=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m=T&&(T=ne,L=j*u*d+K*u+te)}}}n.set(L,m,b,k,F,g)}}}return n}function R5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Ie(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;w.assert(E.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=E.computePool2DInfo(s.shape,a,o,l,i,c),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=ps({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Sw(p,s.shape,s.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,s.dtype,f.values)}return d}var P5={kernelName:Wa,backendName:"cpu",kernelFunc:R5};function O5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r;Ie(s,"avgPool3d");let u=E.computePool3DInfo(s.shape,a,o,1,i,c,l),d=n.data.get(s.dataId).values,p=QT(d,s.shape,s.dtype,w.computeStrides(s.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var M5={kernelName:yl,backendName:"cpu",kernelFunc:O5};function L5(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=r;Ie([s,a],"avgPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,c,l),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,b=u.dilationDepth,v=u.dilationHeight,y=u.dilationWidth,x=u.effectiveFilterDepth,k=u.effectiveFilterHeight,C=u.effectiveFilterWidth,N=x-1-u.padInfo.front,D=C-1-u.padInfo.left,F=k-1-u.padInfo.top,O=ze(a.shape,"float32"),$=1/(f*m*g),P=n.bufferSync(s);for(let T=0;T=u.outDepth||Math.floor(se)!==se))for(let re=0;re=u.outHeight||Math.floor(ue)!==ue))for(let de=0;de=u.outWidth||Math.floor(me)!==me)continue;ne+=P.get(T,se,ue,me,L)}}}O.set(ne*$,T,G,j,q,L)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var B5={kernelName:Wp,backendName:"cpu",kernelFunc:L5};function z5(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Ie([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:l}=r,u=E.computePool2DInfo(o.shape,i,c,1,l),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,y=v-1-u.padInfo.left,x=b-1-u.padInfo.top,k=ze(o.shape,"float32"),C=1/(h*f),N=n.data.get(s.dataId).values,D=ze(s.shape,"float32",N);for(let F=0;F=u.outHeight||Math.floor(q)!==q))for(let K=0;K=u.outWidth||Math.floor(ee)!==ee)continue;G+=D.get(F,q,ee,O)}}k.set(G*C,F,$,P,O)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var W5={kernelName:zp,backendName:"cpu",kernelFunc:z5};function V5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,scale:a,offset:o,mean:i,variance:c}=t;w.assert(i.shape.length===c.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ie([s,i,c,a,o],"batchNorm");let{varianceEpsilon:l}=r;l==null&&(l=.001);let u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(c.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,b=h.length,v=p.length,y=d.length,x=0,k=0,C=0,N=0;for(let D=0;D=g&&(x=0),k>=y&&(k=0),C>=b&&(C=0),N>=v&&(N=0);return n.makeTensorInfo(s.shape,s.dtype,m)}var U5={kernelName:no,backendName:"cpu",kernelFunc:V5};function G5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;Ie([s],"batchToSpaceND");let i=a.reduce((b,v)=>b*v),c=E.getReshaped(s.shape,a,i),l=E.getPermuted(c.length,a.length),u=E.getReshapedPermuted(s.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Tt({inputs:{x:s},backend:n,attrs:{shape:c}}),f=dr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=Tt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=pi({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var H5={kernelName:nc,backendName:"cpu",kernelFunc:G5};function j5(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,l=gw(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var q5={kernelName:Vp,backendName:"cpu",kernelFunc:j5};function K5(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values,i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var X5={kernelName:Up,backendName:"cpu",kernelFunc:K5},Y5=ot(Qs,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(w.sizeFromShape(t.shape)),s=n.data.get(t.dataId),a=s.complexTensorInfos.real,o=s.complexTensorInfos.imag,i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values;for(let l=0;lm.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return ps({inputs:{x:i[0]},backend:n});let c=i.map(m=>m.shape);if(E.assertParamsConsistent(c,a),i[0].dtype==="complex64"){let m=i.map(x=>di({inputs:{input:x},backend:n})),g=i.map(x=>xu({inputs:{input:x},backend:n})),b=wu({inputs:m,backend:n,attrs:{axis:a}}),v=wu({inputs:g,backend:n,attrs:{axis:a}}),y=nr({inputs:{real:b,imag:v},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(v),y}let l=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return Tt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=E.computeOutShape(l.map(m=>m.shape),1);let d=l[0].shape[0]===1,p=bw(u,o,t[0].dtype,d),h=E.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var tj={kernelName:rc,backendName:"cpu",kernelFunc:wu};function e2(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:l,dimRoundingMode:u}=r;Ie([s,a],"conv2d");let d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(s.shape,a.shape,o,l,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,b=p.padInfo.left,v=p.padInfo.top,y=p.dataFormat==="channelsLast",x=new Ut(p.outShape,s.dtype),k=w.computeStrides(s.shape),C=w.computeStrides(a.shape),N=k[0],D=y?k[1]:k[2],F=y?k[2]:1,O=y?1:k[1],$=x.strides[0],P=y?x.strides[1]:x.strides[2],T=y?x.strides[2]:1,L=y?1:x.strides[1],G=n.data.get(s.dataId).values,j=n.data.get(a.dataId).values,q=x.values;for(let K=0;K=p.inHeight)continue;let de=re*C[0],me=ee+ue*D;for(let we=0;we=p.inWidth)continue;let Ke=de+Me*C[1],st=me+Be*F,et=Ke;for(let tt=0;tt=l.inDepth)continue;let K=j*F[0],ee=$+q*D[1];for(let te=0;te=l.inHeight)continue;let ue=K+se*F[1],de=ee+re*D[2];for(let me=0;me=l.inWidth)continue;let Be=ue+_e*F[2],Ke=de+Me*l.inChannels,st=Be;for(let et=0;etMath.cos(e)),fj={kernelName:qa,backendName:"cpu",kernelFunc:hj},mj=ot(Ka,e=>Math.cosh(e)),gj={kernelName:Ka,backendName:"cpu",kernelFunc:mj};function bj(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:l}=r,[u,d,p,h]=s.shape,f=a.shape[0],[m,g]=i,b=ze([f,m,g,h],"float32"),v=n.data.get(a.dataId).values,y=n.data.get(o.dataId).values,x=n.data.get(s.dataId).values,k=w.computeStrides(s.shape),C=w.computeStrides(b.shape);for(let N=0;N=u)continue;let L=m>1?($-F)*(d-1)/(m-1):0,G=g>1?(P-O)*(p-1)/(g-1):0;for(let j=0;j1?F*(d-1)+j*L:.5*(F+$)*(d-1);if(q<0||q>d-1){for(let K=0;K1?O*(p-1)+ne*G:.5*(O+P)*(p-1);if(ae<0||ae>p-1){for(let de=0;de1?O*(p-1)+K*G:.5*(O+P)*(p-1);if(ee<0||ee>p-1){for(let ae=0;aeb+f-v-1:(b,v)=>b+v;for(let b=0;b`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=s.shape[0],c=s.shape[1],l=s.shape[2],u=s.shape[3],d=c*a,p=l*a,h=u/(a*a),f=n.data.get(s.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let b=0;b`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=E.computeConv2DInfo(s.shape,a.shape,o,p,i,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:v}=h,y=v.left,x=v.top,k=h.outChannels/h.inChannels,C=new Ut(h.outShape,s.dtype),N=n.data.get(s.dataId).values,D=n.data.get(a.dataId).values,F=C.values;for(let O=0;O=h.inHeight)continue;let K=j*d[0],ee=$+q*u[1];for(let te=0;te=h.inWidth)continue;let ue=K+se*d[1],de=ee+re*h.inChannels,me=ne,we=ue;for(let Ce=0;Ce{let{x:r,filter:s}=e,{strides:a,pad:o,dilations:i}=n,c=t,l=c.data.get(r.dataId).values,u=r.shape.length,d=c.data.get(s.dataId).values,p=s.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:v,padInfo:y,strideHeight:x,strideWidth:k,filterHeight:C,filterWidth:N,dilationHeight:D,dilationWidth:F,outShape:O}=E.computeDilation2DInfo(r.shape,s.shape,a,o,"NHWC",i),$=w.sizeFromShape(O),P=O.length,T=w.getArrayFromDType(r.dtype,$);for(let G=0;G=0&&re=0&&dene&&(ne=Ce)}}}let ae=w.locToIndex([G,j,K,te],P,w.computeStrides(O));T[ae]=ne}}}return{dataId:c.write(w.toTypedArray(T,r.dtype),O,r.dtype),shape:O,dtype:r.dtype}}},$j={kernelName:Qp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,l=t,u=w.toNestedArray(r.shape,l.data.get(r.dataId).values),d=w.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:v,strideHeight:y,strideWidth:x,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:D,outShape:F}=E.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);w.assert(a.rank===F.length,()=>`Error in ${Qp}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let O=w.toNestedArray(F,l.data.get(a.dataId).values),$=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T=0&&se=0&&ueee&&(ee=de,te=ae,ne=re)}}}$[te][ne][K]+=O[T][L][j][K]}}}return{dataId:l.write(w.toTypedArray($,r.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Rj={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:s,dy:a}=e,{strides:o,pad:i,dilations:c}=n,l=t,u=w.toNestedArray(r.shape,l.data.get(r.dataId).values),d=w.toNestedArray(s.shape,l.data.get(s.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:v,strideHeight:y,strideWidth:x,filterHeight:k,filterWidth:C,dilationHeight:N,dilationWidth:D,outShape:F}=E.computeDilation2DInfo(r.shape,s.shape,o,i,"NHWC",c);w.assert(a.rank===F.length,()=>`Error in ${Jp}, dy must have the same rank as output ${F.length}, but got ${a.rank}`);let O=w.toNestedArray(F,l.data.get(a.dataId).values),$=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T=0&&se=0&&ueee&&(ee=de,te=se,ne=ue)}}}$[T][te][ne][K]+=O[T][L][j][K]}}}return{dataId:l.write(w.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function _d(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Ie(s,"sum");let i;s.dtype==="bool"?i=ka({inputs:{x:s},backend:n,attrs:{dtype:"int32"}}):i=ps({inputs:{x:s},backend:n});let c=i.shape.length,l=w.parseAxisParam(a,i.shape),u=E.getAxesPermutation(l,c),d=l,p=i;u!=null&&(p=dr({inputs:{x:i},backend:n,attrs:{perm:u}}),d=E.getInnerMostAxes(d.length,c)),E.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=E.computeOutAndReduceShapes(p.shape,d),m=E.upcastType(p.dtype,"int32"),g=rm(n,h,m),b=w.sizeFromShape(f),v=n.data.get(g.dataId).values,y=n.data.get(p.dataId).values;for(let x=0;x=0&&(p=_d({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Mj={kernelName:eh,backendName:"cpu",kernelFunc:Oj};function Lj(e){let{inputs:t,backend:n}=e,{dy:r,y:s}=t;Ie([r,s],"eluGrad");let a=new Float32Array(w.sizeFromShape(s.shape)),o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values;for(let c=0;c=1?a[c]=i[c]:a[c]=i[c]*(l+1)}return n.makeTensorInfo(s.shape,"float32",a)}var Bj={kernelName:th,backendName:"cpu",kernelFunc:Lj},zj=E.ERF_P,Wj=E.ERF_A1,Vj=E.ERF_A2,Uj=E.ERF_A3,Gj=E.ERF_A4,Hj=E.ERF_A5,jj=ot(oc,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+zj*n);return t*(1-((((Hj*r+Gj)*r+Uj)*r+Vj)*r+Wj)*r*Math.exp(-n*n))}),qj={kernelName:oc,backendName:"cpu",kernelFunc:jj};function om(e){let{inputs:t,backend:n,attrs:r}=e,{input:s}=t,{dim:a}=r,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),Tt({inputs:{x:s},backend:n,attrs:{shape:i}})}var Kj={kernelName:cc,backendName:"cpu",kernelFunc:om},Xj=zt((e,t)=>e/t),Cw=rn(Za,Xj),Tw={kernelName:Za,backendName:"cpu",kernelFunc:Cw};function n2(e,t,n){let r=e.shape,s=r[0],a=r[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,c=o.complexTensorInfos.imag,l=[s,a],u=w.sizeFromShape(l),d=w.getTypedArrayFromDType("float32",u),p=w.getTypedArrayFromDType("float32",u);for(let g=0;g{let{image:r}=e,s=n,a=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[o,i,c,l]=r.shape,u=s.data.get(r.dataId).values;for(let p=0;p=0&&yMath.floor(e/t)),aq=rn(to,sq,null,"int32"),oq={kernelName:to,backendName:"cpu",kernelFunc:aq};function iq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=e2({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Td({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Iw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var cq={kernelName:Mo,backendName:"cpu",kernelFunc:iq};function uq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=t2({inputs:{x:s,filter:a},backend:n,attrs:{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Td({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Iw(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var lq={kernelName:Lo,backendName:"cpu",kernelFunc:uq};function dq(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=w.sizeFromShape(r.shape),o=s.shape,i=o[o.length-1],[c,l,u,d]=E.prepareAndValidate(r,s);if(l===0)return n.makeTensorInfo(c,r.dtype,[]);let p=n.data.get(s.dataId).values,h=n.bufferSync(r),f=yT(p,h,r.dtype,l,i,u,d,r.shape,a);return n.makeTensorInfo(c,r.dtype,f.values)}var pq={kernelName:pc,backendName:"cpu",kernelFunc:dq};function hq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,indices:a}=t,{axis:o,batchDims:i}=r;Ie([s,a],"gatherV2");let c=w.parseAxisParam(o,s.shape)[0],l=n.data.get(a.dataId).values,u=s.shape[c];for(let x=0;x=0,()=>`GatherV2: the index value ${k} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=w.sizeFromShape(a.shape),h=E.segment_util.collectGatherOpShapeInfo(s,a,c,d),f=Tt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Tt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],b=n.bufferSync(m),v=n.bufferSync(f),y=vT(v,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var fq={kernelName:dc,backendName:"cpu",kernelFunc:hq};function mq(e){let{inputs:t,backend:n}=e,{input:r}=t,s=w.sizeFromShape(r.shape),a=r.shape[r.shape.length-1],o=s/a,i=Tt({inputs:{x:r},backend:n,attrs:{shape:[o,a]}}),c=n2(i,!0,n),l=Tt({inputs:{x:c},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),l}var gq={kernelName:rh,backendName:"cpu",kernelFunc:mq},bq=ot(fc,e=>Number.isFinite(e)?1:0,"bool"),yq={kernelName:fc,backendName:"cpu",kernelFunc:bq},vq=ot(mc,e=>Math.abs(e)===1/0?1:0,"bool"),xq={kernelName:mc,backendName:"cpu",kernelFunc:vq},wq=ot(gc,e=>Number.isNaN(e)?1:0,"bool"),kq={kernelName:gc,backendName:"cpu",kernelFunc:wq};function Iq(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=ST(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var Sq={kernelName:ah,backendName:"cpu",kernelFunc:Iq},Cq=ot(vc,e=>Math.log1p(e)),Tq={kernelName:vc,backendName:"cpu",kernelFunc:Cq},Nq=zt((e,t)=>e&&t),_q=rn(xc,Nq,null,"bool"),Eq={kernelName:xc,backendName:"cpu",kernelFunc:_q},Aq=ot(Il,e=>e?0:1,"bool"),Dq={kernelName:Il,backendName:"cpu",kernelFunc:Aq},Fq=zt((e,t)=>e||t),$q=rn(Sl,Fq,null,"bool"),Rq={kernelName:Sl,backendName:"cpu",kernelFunc:$q};function Pq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r;Ie(s,"LRN");let l=s.shape[3],u=l-1,d=n.data.get(s.dataId).values,p=w.sizeFromShape(s.shape),h=new Float32Array(p);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),v=m-g+Math.min(g+a,u),y=0;for(;b<=v;b++){let x=d[b];y+=x*x}return y}for(let m=0;m`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=E.computePool2DInfo(s.shape,a,o,l,i,c),d;if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))d=ps({inputs:{x:s},backend:n});else{let p=n.data.get(s.dataId).values,h=w.computeStrides(s.shape),f=Sw(p,s.shape,s.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,s.dtype,f.values)}return d}var Wq={kernelName:uo,backendName:"cpu",kernelFunc:zq};function Vq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r;Ie(s,"maxPool3d");let u=E.computePool3DInfo(s.shape,a,o,1,i,c,l),d=n.data.get(s.dataId).values,p=QT(d,s.shape,s.dtype,w.computeStrides(s.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var Uq={kernelName:Tl,backendName:"cpu",kernelFunc:Vq};function Gq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=r;Ie([s,a],"maxPool3DGrad");let u=E.computePool3DInfo(a.shape,o,i,1,c,l),d=n.bufferSync(a),p=$5(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,b=u.dilationHeight,v=u.dilationWidth,y=u.effectiveFilterDepth,x=u.effectiveFilterHeight,k=u.effectiveFilterWidth,C=y-1-u.padInfo.front,N=k-1-u.padInfo.left,D=x-1-u.padInfo.top,F=ze(a.shape,"float32"),O=n.bufferSync(s);for(let $=0;$=u.outDepth||Math.floor(ne)!==ne))for(let ae=0;ae=u.outHeight||Math.floor(se)!==se))for(let re=0;re=u.outWidth||Math.floor(ue)!==ue)continue;let de=y*x*k-1-p.get($,ne,se,ue,P),me=te*x*k+ae*k+re,we=de===me?1:0;if(we===0)continue;ee+=O.get($,ne,se,ue,P)*we}}}F.set(ee,$,T,L,G,P)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var Hq={kernelName:ch,backendName:"cpu",kernelFunc:Gq};function jq(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Ie([a,o],"maxPoolGrad");let{filterSize:c,strides:l,pad:u,dimRoundingMode:d}=r,p=E.computePool2DInfo(i.shape,c,l,1,u,d),h=n.data.get(i.dataId).values,f=ze(p.outShape,i.dtype,JT(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,b=p.dilationHeight,v=p.dilationWidth,y=p.effectiveFilterHeight,x=p.effectiveFilterWidth,k=x-1-p.padInfo.left,C=y-1-p.padInfo.top,N=ze(i.shape,"float32"),D=n.data.get(s.dataId).values,F=ze(s.shape,"float32",D);for(let O=0;O=p.outHeight||Math.floor(K)!==K))for(let ee=0;ee=p.outWidth||Math.floor(te)!==te)continue;let ne=y*x-1-f.get(O,K,te,$),ae=q*x+ee,se=ne===ae?1:0;if(se===0)continue;j+=F.get(O,K,te,$)*se}}N.set(j,O,P,T,$)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var qq={kernelName:ih,backendName:"cpu",kernelFunc:jq};function Kq(e,t,n,r,s){let a=w.computeStrides(t),o=Sw(e,t,n,a,s,"max"),i=JT(e,t,n,s,!0,r);return[o.values,i.values]}var Xq={kernelName:uh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;Ie(r,"MaxPoolWithArgmax");let l=c.data.get(r.dataId).values,u=E.computePool2DInfo(r.shape,s,a,[1,1],o),[d,p]=Kq(l,r.shape,r.dtype,i,u),h=c.write(d,u.outShape,r.dtype),f=c.write(p,u.outShape,r.dtype);return[{dataId:h,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Yq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=w.parseAxisParam(a,s.shape),l=E.computeOutAndReduceShapes(s.shape,i)[1],u=w.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=ka({inputs:{x:s},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Cw({inputs:{a:h,b:p},backend:n});d.push(f);let m=_d({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var Zq={kernelName:lo,backendName:"cpu",kernelFunc:Yq};function Jq(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r;Ie(s,"min");let i=w.parseAxisParam(a,s.shape),c=i,l=E.getAxesPermutation(c,s.shape.length),u=s;l!=null&&(u=dr({inputs:{x:s},backend:n,attrs:{perm:l}}),c=E.getInnerMostAxes(c.length,s.shape.length)),E.assertAxesAreInnerMostDims("min",c,u.shape.length);let[d,p]=E.computeOutAndReduceShapes(u.shape,c),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let b=0;by[0]+s.shape[x]+y[1]),c=a.map(y=>y[0]),l=a.map((y,x)=>y[0]+s.shape[x]),u=o==="reflect"?0:1,d=n.data.get(s.dataId).values,p=s.shape.length,h=w.computeStrides(s.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),b=w.getTypedArrayFromDType(s.dtype,f);for(let y=0;y=l[C]&&(x[C]=(l[C]-1)*2-x[C]+u);x=x.map((C,N)=>C-c[N]);let k=w.locToIndex(x,p,h);b[y]=d[k]}return{dataId:n.write(b,i,s.dtype),shape:i,dtype:s.dtype}}var t8={kernelName:fo,backendName:"cpu",kernelFunc:e8},n8=zt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),r8=rn(wc,n8),s8={kernelName:wc,backendName:"cpu",kernelFunc:r8},a8=Oa(e0());function s2(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=s.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let c=w.parseAxisParam([i],s.shape),l=r2({inputs:{x:s},backend:n,attrs:{reductionIndices:c,keepDims:!1}}),u=E.expandShapeToKeepDim(l.shape,c),d=Tt({inputs:{x:l},backend:n,attrs:{shape:u}}),p=kw({inputs:{a:s,b:d},backend:n}),h=mT({inputs:{x:p},backend:n}),f=_d({inputs:{x:h},backend:n,attrs:{axis:c,keepDims:!1}}),m=Tt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Cw({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var o8={kernelName:Ao,backendName:"cpu",kernelFunc:s2};function i8(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r;Ie(s,"multinomial");let c=i?s:s2({inputs:{logits:s},backend:n,attrs:{dim:-1}}),l=c.shape[0],u=c.shape[1],d=n.data.get(c.dataId).values,p=[l,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f=0&&u[d]{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=om({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=wu({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),l}var k8={kernelName:_c,backendName:"cpu",kernelFunc:o2};function I8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;Ie(s,"pad");let i=a.map((v,y)=>v[0]+s.shape[y]+v[1]),c=a.map(v=>v[0]),l=n.data.get(s.dataId).values,u=w.sizeFromShape(s.shape),d=s.shape.length,p=w.computeStrides(s.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(s.dtype,h);o!==0&&g.fill(o);for(let v=0;vC+c[N]),k=w.locToIndex(x,f,m);g[k]=l[v]}return{dataId:n.write(g,i,s.dtype),shape:i,dtype:s.dtype}}var i2={kernelName:bo,backendName:"cpu",kernelFunc:I8},S8=zt((e,t)=>Math.pow(e,t)),C8=rn(yo,S8),T8={kernelName:yo,backendName:"cpu",kernelFunc:C8};function N8(e){let{backend:t,attrs:n}=e,{start:r,stop:s,dtype:a,step:o}=n,i=xw(r,s,o,a);return t.makeTensorInfo([i.length],a,i)}var _8={kernelName:Nl,backendName:"cpu",kernelFunc:N8},E8=ot(Ac,e=>1/e),A8={kernelName:Ac,backendName:"cpu",kernelFunc:E8};function D8(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r;Ie(s,"resizeBilinear");let c=w.computeStrides(s.shape),[l,u]=i,[d,p,h,f]=s.shape,m=n.data.get(s.dataId).values,g=new Float32Array(w.sizeFromShape([d,l,u,f])),b=[a&&l>1?p-1:p,a&&u>1?h-1:h],v=[a&&l>1?l-1:l,a&&u>1?u-1:u],y=0,x=b[0]/v[0],k=b[1]/v[1];for(let C=0;C1?l-1:l,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],b=m[0]/g[0],v=m[1]/g[1],y=n.data.get(a.dataId).values,x=0;for(let k=0;k1?p-1:p,a&&u>1?h-1:h],v=[a&&l>1?l-1:l,a&&u>1?u-1:u],y=b[0]/v[0],x=b[1]/v[1],k=0;for(let C=0;C1?u-1:u,o&&f>1?d-1:d],v=[o&&h>1?h-1:h,o&&f>1?f-1:f],y=b[0]/v[0],x=b[1]/v[1],k=1/y,C=1/x,N=Math.ceil(k)*2+2,D=Math.ceil(C)*2+2;for(let F=0;F=h)continue;let se=O+ae*c[1],re=ae*y,ue=Math.min(u-1,o?Math.round(re):Math.floor(re));if($===ue)for(let de=0;de=f)continue;let we=se+me*c[2],Ce=me*x,_e=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));G===_e&&(te+=g[we+ee])}}m[j+ee]=te}}}}return n.makeTensorInfo(s.shape,s.dtype,m)}var L8={kernelName:ph,backendName:"cpu",kernelFunc:M8};function B8(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r;Ie(s,"reverse");let o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return ps({inputs:{x:s},backend:n});let c=new Ut(s.shape,s.dtype),l=n.bufferSync(s);for(let u=0;up[h]=s.shape[h]-1-p[h]),c.set(l.get(...p),...d)}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var z8={kernelName:Io,backendName:"cpu",kernelFunc:B8},W8={kernelName:jc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(r.shape)),[l,u,d,p]=r.shape,[h,f]=E.getImageCenter(o,u,d),m=255,g=Math.sin(s),b=Math.cos(s),v=i.data.get(r.dataId).values;for(let x=0;x=0&&L=0&&G{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),U8={kernelName:So,backendName:"cpu",kernelFunc:V8};function c2(e,t,n,r,s,a,o,i,c,l){let u=[r/s,s],d=e.values,p=t.values;if(r===0)return ze(n,t.dtype);let h=ze(u,t.dtype);h.values.fill(c);for(let f=0;f=r/s)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b1||s.shape.length===1?1:w.sizeFromShape(s.shape.slice(1));for(let f=0;fe>=0?X8*e:K8*(Math.exp(e)-1)),Z8={kernelName:Rc,backendName:"cpu",kernelFunc:Y8},J8=ot(Mc,e=>e<0?-1:e>0?1:0),Q8={kernelName:Mc,backendName:"cpu",kernelFunc:J8},eK=ot(To,e=>Math.sin(e)),tK={kernelName:To,backendName:"cpu",kernelFunc:eK},nK=ot(Oc,e=>Math.sinh(e)),rK={kernelName:Oc,backendName:"cpu",kernelFunc:nK},sK=11920928955078125e-23,u2=Math.log(sK)+2,aK=ot(Lc,e=>{let t=e>-u2,n=eNumber(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var lK={kernelName:fh,backendName:"cpu",kernelFunc:uK};function dK(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(s.dataId).values),i=n.data.get(r.dataId).values,c=Array.from(n.data.get(a.dataId).values),[l,u,d]=PT(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(u,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var pK={kernelName:mh,backendName:"cpu",kernelFunc:dK};function hK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[l,u]=ww(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(u,r.dtype,l)}var fK={kernelName:gh,backendName:"cpu",kernelFunc:hK};function mK(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values,c=n.data.get(a.dataId).values,[l,u]=ww(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(u,r.dtype,l)}var gK={kernelName:bh,backendName:"cpu",kernelFunc:mK};function bK(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=E.calculateShapes(a,s,i),h=!1,f=n.bufferSync(s),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],b=c2(f,m,i,p,u,l,c,d,g,h);return n.makeTensorInfo(i,b.dtype,b.values)}var yK={kernelName:yh,backendName:"cpu",kernelFunc:bK};function vK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],c=E.prepareSplitSize(s,a,i),l=new Array(s.shape.length).fill(0),u=s.shape.slice();return c.map(d=>{let p=[...u];p[i]=d;let h=pi({inputs:{x:s},backend:n,attrs:{begin:l,size:p}});return l[i]+=d,h})}var xK={kernelName:zc,backendName:"cpu",kernelFunc:vK},wK={kernelName:El,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Ie(n,"square");let s=r.data.get(n.dataId).values,a=new Float32Array(s.length);for(let i=0;i{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),IK={kernelName:ta,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r;Ie(s,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:v,end:y,strides:x}=Gt.sliceInfo(s.shape,a,o,i,c,l,u,d,p),k;if(m)k=Tt({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let C=Gt.computeOutShape(v,y,x),N=pi({inputs:{x:s},backend:n,attrs:{begin:v,size:C}});k=Tt({inputs:{x:N},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(N)}else{let C=n.bufferSync(s),N=MT(h,C,x,v);k=n.makeTensorInfo(f,N.dtype,N.values)}return k}var CK={kernelName:Wc,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:l}=r,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=LT(p,h,s,a,o,i,c,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var NK={kernelName:vh,backendName:"cpu",kernelFunc:TK};function _K(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[l,u,d]=BT(i,c,s),p=u.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var EK={kernelName:xh,backendName:"cpu",kernelFunc:_K};function AK(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=zT(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var DK={kernelName:wh,backendName:"cpu",kernelFunc:AK},FK=ot($o,e=>Math.tan(e)),$K={kernelName:$o,backendName:"cpu",kernelFunc:FK},RK=ot(Ro,e=>Math.tanh(e)),PK={kernelName:Ro,backendName:"cpu",kernelFunc:RK};function OK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reps:a}=r;Ie(s,"tile");let o=VT(n.bufferSync(s),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var MK={kernelName:ea,backendName:"cpu",kernelFunc:OK};function LK(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{k:a,sorted:o}=r;Ie(s,"topk");let i=n.data.get(s.dataId).values,[c,l]=GT(i,s.shape,s.dtype,a,o);return[n.makeTensorInfo(c.shape,c.dtype,c.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var BK={kernelName:Vc,backendName:"cpu",kernelFunc:LK};function zK(e){let{inputs:t,attrs:n,backend:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=n,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=w.computeStrides(s.shape),v=b[0],y=b[1],x=b[2],k=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(g));k.fill(c);let C=r.data.get(s.dataId).values,N=r.data.get(a.dataId).values;for(let F=0;Ft-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return w.clamp(0,n,t-1)}function UK(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return w.clamp(0,n,t-1)}function GK(e,t){return e}function HK(e,t){return w.clamp(0,e,t-1)}function Ed(e,t,n,r,s,a,o,i,c,l,u){let d=o*r+i*s+c*a+l;return 0<=i&&in.disposeIntermediateTensorInfo(f)),h}var QK={kernelName:Al,backendName:"cpu",kernelFunc:JK},eX=[i5,e6,u5,d5,o6,h5,m5,b5,v5,w5,I5,C5,N5,A5,F5,P5,M5,B5,W5,a5,U5,H5,q5,X5,s6,c6,Z5,t6,Q5,tj,sj,oj,nj,lj,pj,cj,fj,gj,yj,xj,kj,Sj,Cj,Nj,Ej,Dj,Fj,Rj,$j,Tw,Mj,J6,Bj,u6,qj,l6,Kj,p6,eq,tq,rq,f6,oq,cq,lq,pq,fq,g6,y6,n6,gq,ej,yq,xq,kq,Q6,x6,k6,Sq,S6,Tq,Eq,Dq,Rq,Oq,Lq,T6,Wq,Uq,Hq,qq,Xq,Bq,Zq,Qq,_6,t8,s8,c8,A6,F6,d8,f8,b8,R6,v8,w8,k8,i2,T8,t5,M6,_8,r6,A8,n5,r5,s5,F8,R8,O8,L8,z8,W8,U8,B6,H8,q8,Z8,W6,Q8,tK,rK,V6,o8,oK,cK,lK,pK,fK,gK,yK,xK,H6,wK,q6,IK,CK,NK,EK,DK,Z6,Pj,$K,PK,MK,BK,P6,WK,XK,ZK,QK,x8];for(let e of eX)Fl(e);var d2={};$e(d2,{assertNotComplex:()=>Iu,bindCanvasToFramebuffer:()=>pX,bindColorTextureToFramebuffer:()=>lm,bindTextureToProgramUniformSampler:()=>N2,bindTextureUnit:()=>S2,bindVertexBufferToProgramAttribute:()=>Dw,callAndCheck:()=>xe,canBeRepresented:()=>h2,createFragmentShader:()=>g2,createFramebuffer:()=>I2,createProgram:()=>b2,createStaticIndexBuffer:()=>x2,createStaticVertexBuffer:()=>v2,createTexture:()=>w2,createVertexShader:()=>m2,getBatchDim:()=>fi,getExtensionOrThrow:()=>Fd,getFramebufferErrorMessage:()=>_2,getMaxTexturesInShader:()=>F2,getNumChannels:()=>lX,getProgramUniformLocation:()=>T2,getProgramUniformLocationOrThrow:()=>C2,getRowsCols:()=>mi,getShapeAs3D:()=>dm,getTextureShapeFromLogicalShape:()=>A2,getWebGLDisjointQueryTimerVersion:()=>$2,getWebGLErrorMessage:()=>f2,getWebGLMaxTextureSize:()=>D2,hasExtension:()=>hr,isCapableOfRenderingToFloatTexture:()=>R2,isDownloadFloatTextureEnabled:()=>P2,isReshapeFree:()=>Rd,isWebGLFenceEnabled:()=>O2,isWebGLVersionEnabled:()=>$w,linkProgram:()=>y2,resetMaxTextureSize:()=>hX,resetMaxTexturesInShader:()=>fX,unbindColorTextureFromFramebuffer:()=>Fw,unbindTextureUnit:()=>dX,validateFramebuffer:()=>$d,validateProgram:()=>um,validateTextureSize:()=>k2});var hi={},Ew={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function p2(e,t){hi[e]=t}function hs(e){if(!(e in hi)){let n=nX(e);if(n!==null)hi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=hi[e];return t.isContextLost()?(delete hi[e],hs(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),hi[e])}function tX(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function nX(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=tX(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete hi[e]},!1),e===1?t.getContext("webgl",Ew)||t.getContext("experimental-webgl",Ew):t.getContext("webgl2",Ew)}var Ad;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ad||(Ad={}));var pr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(pr||(pr={}));var ln;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(ln||(ln={}));function Dd(e,t){return[t,e]}function rX(e,t){return e*t}function cm(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function ku(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function sX(e,t){let[n,r]=ku(e,t);return n*r*4}function Aw(e,t){let n=e,r,s,a,o,i,c,l,u,d,p;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,s=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,l=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(r=e.RGBA,s=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,l=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),c=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:s,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:c,downloadUnpackNumChannels:l,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&aX(e),n}function aX(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+f2(e,t))}var oX=596e-10,iX=65504;function h2(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||oXe.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function m2(e,t){let n=Rs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function g2(e,t){let n=Rs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw uX(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var cX=/ERROR: [0-9]+:([0-9]+):/g;function uX(e,t){let n=cX.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],s=e.split(` `),a=s.length.toString().length+2,o=s.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;de.createProgram(),"Unable to create WebGLProgram.")}function y2(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function um(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function v2(e,t){let n=Rs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function x2(e,t){let n=Rs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function lX(){return J().getNumber("WEBGL_VERSION")===2?1:4}function w2(e){return Rs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function k2(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,s=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+s+".")}}function I2(e){return Rs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Dw(e,t,n,r,s,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(i,s,e.FLOAT,!1,a,o)),xe(e,()=>e.enableVertexAttribArray(i)),!0)}function S2(e,t,n){E2(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function dX(e,t){E2(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function C2(e,t,n){return Rs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function T2(e,t,n){return e.getUniformLocation(t,n)}function N2(e,t,n,r){xe(e,()=>S2(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function pX(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function lm(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Fw(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function $d(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+_2(e,t))}function _2(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Rs(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function E2(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(rn){let s=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${s}.`)}}function fi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function mi(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function dm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fi(e),...mi(e)]),t}function A2(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((s,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let r=w.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let s=fi(e),a=2,o=2;return e.length&&([a,o]=mi(e)),r=s*(a/2)*(o/2),w.sizeToSquarishShape(r).map(i=>i*2)}return w.sizeToSquarishShape(r)}function pm(e){return e%2==0}function Rd(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||pm(n)&&pm(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&pm(e[0])&&pm(t[0])}var hm,fm;function D2(e){if(hm==null){let t=hs(e);hm=t.getParameter(t.MAX_TEXTURE_SIZE)}return hm}function hX(){hm=null}function fX(){fm=null}function F2(e){if(fm==null){let t=hs(e);fm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,fm)}function $2(e){if(e===0)return 0;let t,n=hs(e);return hr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:hr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function hr(e,t){return e.getExtension(t)!=null}function $w(e){try{if(hs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function R2(e){if(e===0)return!1;let t=hs(e);if(e===1){if(!hr(t,"OES_texture_float"))return!1}else if(!hr(t,"EXT_color_buffer_float"))return!1;return Rw(t)}function P2(e){if(e===0)return!1;let t=hs(e);if(e===1){if(!hr(t,"OES_texture_float")||!hr(t,"WEBGL_color_buffer_float"))return!1}else{if(hr(t,"EXT_color_buffer_float"))return Rw(t);let r="EXT_color_buffer_half_float";if(hr(t,r)){let s=t.getExtension(r);return mX(t,s)}return!1}return Rw(t)}function Rw(e){let t=Aw(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,s,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function mX(e,t){let n=Aw(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let s=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,s,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(o),i}function O2(e){return e!==2?!1:hs(e).fenceSync!=null}function Iu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=J();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>$w(2)?2:$w(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>D2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>F2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:$2(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!zl.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>R2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>P2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>O2(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>zl.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Tn(){let e,t,n,r,s,a,o,i,c,l;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",s="texture",a="outputColor",o="out vec4 outputColor;",i=` bool isnan_custom(float val) { return (val > 0.0 || val < 0.0) ? false : val != 0.0; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan_custom(val.x), isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w)); } #define isnan(value) isnan_custom(value) `,c="",l=` #define round(value) newRound(value) int newRound(float value) { return int(floor(value + 0.5)); } ivec4 newRound(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `):(e="",t="attribute",n="varying",r="varying",s="texture2D",a="gl_FragColor",o="",i=` #define isnan(value) isnan_custom(value) bool isnan_custom(float val) { return (val > 0. || val < 1. || val == 0.) ? false : true; } bvec4 isnan_custom(vec4 val) { return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w)); } `,c=` uniform float INFINITY; bool isinf(float val) { return abs(val) == INFINITY; } bvec4 isinf(vec4 val) { return equal(abs(val), vec4(INFINITY)); } `,l=` int round(float value) { return int(floor(value + 0.5)); } ivec4 round(vec4 value) { return ivec4(floor(value + vec4(0.5))); } `),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:s,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:c,defineRound:l}}function gi(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / ${s}`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${s}`:`index -= ${e[a]} * ${s}`;return`${o}; ${i};`}).join("")}function mm(e,t,n="index"){let r=w.computeStrides(t);return r.map((s,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===r.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function gX(e,t){let n=e.length,r=e.map(a=>`${t}[${a}]`),s=new Array(n-1);s[n-2]=r[n-1];for(let a=n-3;a>=0;--a)s[a]=`(${s[a+1]} * ${r[a+1]})`;return s}function bX(e,t,n="index"){let r=e.map((a,o)=>o),s=gX(r,t);return s.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${s[o]}`,c=o===s.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${s[o]}`:`index -= ${e[o]} * ${s[o]}`;return`${i}; ${c};`}).join("")}function Pw(e){let t=w.computeStrides(e).map(n=>n.toString());return` int getFlatIndex(ivec3 coords) { return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z; } `}function Ow(){return` int getFlatIndex(ivec3 coords) { return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z; } `}var M2=` const float FLOAT_MAX = 1.70141184e38; const float FLOAT_MIN = 1.17549435e-38; lowp vec4 encode_float(highp float v) { if (isnan(v)) { return vec4(255, 255, 255, 255); } highp float av = abs(v); if(av < FLOAT_MIN) { return vec4(0.0, 0.0, 0.0, 0.0); } else if(v > FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 127.0) / 255.0; } else if(v < -FLOAT_MAX) { return vec4(0.0, 0.0, 128.0, 255.0) / 255.0; } highp vec4 c = vec4(0,0,0,0); highp float e = floor(log2(av)); highp float m = exp2(fract(log2(av))) - 1.0; c[2] = floor(128.0 * m); m -= c[2] / 128.0; c[1] = floor(32768.0 * m); m -= c[1] / 32768.0; c[0] = floor(8388608.0 * m); highp float ebias = e + 127.0; c[3] = floor(ebias / 2.0); ebias -= c[3] * 2.0; c[2] += floor(ebias) * 128.0; c[3] += 128.0 * step(0.0, -v); return c / 255.0; } `,{getBroadcastDims:L2}=E;function yX(e,t,n){let r=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Mw(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:r.push(`uniform int ${h.name}Shape;`);break;case 2:r.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:r.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:r.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}r.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:r.push("uniform int outShape;");break;case 2:r.push("uniform ivec2 outShape;"),r.push("uniform int outShapeStrides;");break;case 3:r.push("uniform ivec3 outShape;"),r.push("uniform ivec2 outShapeStrides;");break;case 4:r.push("uniform ivec4 outShape;"),r.push("uniform ivec3 outShapeStrides;");break;default:break}r.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{r.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let s=r.join(` `),a=e.map(h=>vX(h,t,n.packedInputs,n.enableShapeUniforms)).join(` `),o=t.texShape,i=Tn(),c=kX(i),l,u,d=CX(i);return t.isPacked?(l=xX(t.logicalShape,o,n.enableShapeUniforms),u=SX(i)):(l=wX(t.logicalShape,o,n.enableShapeUniforms),u=IX(i)),n.packedInputs&&(d+=EX),[d,c,u,s,l,a,n.userCode].join(` `)}function Su(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return WX(e,t);case 1:return UX(e,t);case 2:return HX(e,t);case 3:return qX(e,t);case 4:return XX(e,t);case 5:return YX(e);case 6:return ZX(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function B2(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return zX(e);case 1:return VX(e,t);case 2:return GX(e,t);case 3:return jX(e,t);default:return KX(e,t)}}function vX(e,t,n=!1,r){let s="";n?s+=B2(e,r):s+=Su(e,r);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?s+=JX(e,t):s+=QX(e,t)),s}function xX(e,t,n){switch(e.length){case 0:return z2();case 1:return AX(e,t,n);case 2:return LX(e,t,n);case 3:return FX(e,t,n);default:return RX(e,t,n)}}function wX(e,t,n){switch(e.length){case 0:return z2();case 1:return DX(e,t,n);case 2:return BX(e,t,n);case 3:return $X(e,t,n);case 4:return PX(e,t,n);case 5:return OX(e,t);case 6:return MX(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function kX(e){return` float sampleTexture(sampler2D textureSampler, vec2 uv) { return ${e.texture2D}(textureSampler, uv).r; } `}function IX(e){return` void setOutput(float val) { ${e.output} = vec4(val, 0, 0, 0); } `}function SX(e){return` void setOutput(vec4 val) { ${e.output} = val; } `}function CX(e){return`${e.version} precision highp float; precision highp int; precision highp sampler2D; ${e.varyingFs} vec2 resultUV; ${e.defineOutput} const vec2 halfCR = vec2(0.5, 0.5); struct ivec5 { int x; int y; int z; int w; int u; }; struct ivec6 { int x; int y; int z; int w; int u; int v; }; uniform float NAN; ${e.defineSpecialNaN} ${e.defineSpecialInf} ${e.defineRound} int imod(int x, int y) { return x - y * (x / y); } int idiv(int a, int b, float sign) { int res = a / b; int mod = imod(a, b); if (sign < 0. && mod != 0) { res -= 1; } return res; } //Based on the work of Dave Hoskins //https://www.shadertoy.com/view/4djSRW #define HASHSCALE1 443.8975 float random(float seed){ vec2 p = resultUV * seed; vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1); p3 += dot(p3, p3.yzx + 19.19); return fract((p3.x + p3.y) * p3.z); } ${TX} ${NX} ${_X} `}var TX=` vec2 uvFromFlat(int texNumR, int texNumC, int index) { int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } vec2 packedUVfrom1D(int texNumR, int texNumC, int index) { int texelIndex = index / 2; int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,NX=` vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR, int texNumC, int row, int col) { int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2); int texR = texelIndex / texNumC; int texC = texelIndex - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,_X=` vec2 packedUVfrom3D(int texNumR, int texNumC, int texelsInBatch, int texelsInLogicalRow, int b, int row, int col) { int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2); int texR = index / texNumC; int texC = index - texR * texNumC; return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR); } `,EX=` float getChannel(vec4 frag, vec2 innerDims) { vec2 modCoord = mod(innerDims, 2.); return modCoord.x == 0. ? (modCoord.y == 0. ? frag.r : frag.g) : (modCoord.y == 0. ? frag.b : frag.a); } float getChannel(vec4 frag, int dim) { float modCoord = mod(float(dim), 2.); return modCoord == 0. ? frag.r : frag.g; } `;function z2(){return` int getOutputCoords() { return 0; } `}function AX(e,t,n){let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return r[0]===1?n?` int getOutputCoords() { return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.x * ${r[1]}.0); } `:r[1]===1?n?` int getOutputCoords() { return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0)); } `:` int getOutputCoords() { return 2 * int(resultUV.y * ${r[0]}.0); } `:n?` int getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y); } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${r[0]}, ${r[1]})); return 2 * (resTexRC.x * ${r[1]} + resTexRC.y); } `}function DX(e,t,n){return t[0]===1?n?` int getOutputCoords() { return int(resultUV.x * float(outTexShape[1])); } `:` int getOutputCoords() { return int(resultUV.x * ${t[1]}.0); } `:t[1]===1?n?` int getOutputCoords() { return int(resultUV.y * float(outTexShape[0])); } `:` int getOutputCoords() { return int(resultUV.y * ${t[0]}.0); } `:n?` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); return resTexRC.x * outTexShape[1] + resTexRC.y; } `:` int getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); return resTexRC.x * ${t[1]} + resTexRC.y; } `}function FX(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec3(b, r, c); } `;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[2]/2),a=s*Math.ceil(e[1]/2);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${r[0]}, ${r[1]})); int index = resTexRC.x * ${r[1]} + resTexRC.y; int b = index / ${a}; index -= b * ${a}; int r = 2 * (index / ${s}); int c = imod(index, ${s}) * 2; return ivec3(b, r, c); } `}function $X(e,t,n){if(n)return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1])); int index = resTexRC.x * outTexShape[1] + resTexRC.y; ${mm(["r","c","d"],e)} return ivec3(r, c, d); } `;let r=gi(["r","c","d"],e);return` ivec3 getOutputCoords() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]})); int index = resTexRC.x * ${t[1]} + resTexRC.y; ${r} return ivec3(r, c, d); } `}function RX(e,t,n){if(n)return` ivec4 getOutputCoords() { ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0)); ivec2 resTexRC = ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1])); int index = resTexRC.x * packedTexShape[1] + resTexRC.y; int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0)); int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0)); int texelsInBatchN = texelsInBatch * outShape[1]; int b2 = index / texelsInBatchN; index -= b2 * texelsInBatchN; int b = index / texelsInBatch; index -= b * texelsInBatch; int r = 2 * (index / texelsInLogicalRow); int c = imod(index, texelsInLogicalRow) * 2; return ivec4(b2, b, r, c); } `;let r=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],s=Math.ceil(e[e.length-1]/2),a=s*Math.ceil(e[e.length-2]/2),o=a,i="",c="b, r, c";for(let l=2;l=1?u="coords = 0;":u=i.map(v=>`coords.${d[v+l]} = 0;`).join(` `);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((v,y)=>`coords.${d[y+l]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=` return vec4(outputValue.xy, outputValue.xy); `;else if(m&&!b)o===1?h=` return vec4(outputValue.x, outputValue.x, 0., 0.); `:h=` return vec4(outputValue.x); `;else if(i.length){let v=a-2,y=a-1;i.indexOf(v)>-1&&i.indexOf(y)>-1?h="return vec4(outputValue.x);":i.indexOf(v)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return` vec4 ${s}() { ${c} coords = getOutputCoords(); ${u} vec4 outputValue = get${r}(${p}); ${h} } `}function QX(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),s="get"+r+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,c=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===c&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return` float ${s}() { return sampleTexture(${n}, resultUV); } `;let l=ft(c),u=L2(e.shapeInfo.logicalShape,t.logicalShape),d=c-i,p,h=["x","y","z","w","u","v"];i===0?p="":c<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(` `);let f="";return c<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),` float ${s}() { ${l} coords = getOutputCoords(); ${p} return get${r}(${f}); } `}function ft(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Mw(e,t,n){let{newShape:r,keptDims:s}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):r,c=!e&&a>1&&!w.arraysEqual(t,n)&&r.lengthe[n]).join(", ")}function e7(e,t,n,r){let s=n.map((y,x)=>{let k={logicalShape:y.shape,texShape:y.isUniform?null:y.texData.texShape,isUniform:y.isUniform,isPacked:y.isUniform?!1:y.texData.isPacked,flatOffset:null};return y.texData!=null&&y.texData.slice!=null&&y.texData.slice.flatOffset>0&&(k.flatOffset=y.texData.slice.flatOffset),{name:t.variableNames[x],shapeInfo:k}}),a=s.map(y=>y.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},i=yX(s,o,t),c=e.createProgram(i),l=null,u=e.getUniformLocation(c,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(l=e.getUniformLocation(c,"INFINITY",!1));let d=!1,p={},h={},f={};for(let y=0;y{v[x]=e.getUniformLocation(c,y.name,d)}),{program:t,source:i,webGLProgram:c,uniformLocations:p,customUniformLocations:v,inShapeInfos:a,outShapeInfo:o,infLoc:l,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:b,outTexShapeLocation:g}}function W2(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let s=n.logicalShape,a=t[r],o=a.shape;if(!w.arraysEqual(s,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${s} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,c=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,c))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${c} must match`)})}function t7(e,t,n,r,s){t.program.enableShapeUniforms||(W2(t.inShapeInfos,n),W2([t.outShapeInfo],[r]));let a=r.texData.texture,o=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((c,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=Mw(t.program.packedInputs,c.shape,c.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,c.texData.texShape[0],c.texData.texShape[1]),d!=null){if(c.isUniform){if(w.sizeFromShape(c.shape)<2)e.gl.uniform1f(d,c.uniformValues[0]);else{let m=c.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}c.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,c.texData.slice.flatOffset),e.setInputMatrixTexture(c.texData.texture,d,l)}});let i=t.outShapeLocation;if(i)switch(r.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(r.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(r.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(r.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(r.shape));break;default:break}if(t.outShapeStridesLocation){let c=w.computeStrides(r.shape);switch(r.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(c));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(c));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(c));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,r.texData.texShape[0],r.texData.texShape[1]),t.program.customUniforms&&s&&t.program.customUniforms.forEach((c,l)=>{let u=t.customUniformLocations[l],d=s[l];if(c.type==="float")e.gl.uniform1fv(u,d);else if(c.type==="vec2")e.gl.uniform2fv(u,d);else if(c.type==="vec3")e.gl.uniform3fv(u,d);else if(c.type==="vec4")e.gl.uniform4fv(u,d);else if(c.type==="int")e.gl.uniform1iv(u,d);else if(c.type==="ivec2")e.gl.uniform2iv(u,d);else if(c.type==="ivec3")e.gl.uniform3iv(u,d);else if(c.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${c.type} is not supported yet.`)}),e.executeProgram()}function n7(e,t,n){let r="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let c=o.texData.texShape,{useSqueezeShape:l,uniformShape:u,keptDims:d}=Mw(e.packedInputs,o.shape,c),p="",h="",f="";if(u.length===1&&e.packedInputs){let k=[Math.ceil(c[0]/2),Math.ceil(c[1]/2)];p=`${k[0]>1}_${k[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let k=w.computeStrides(u);f=`${k[0]===c[1]}_${k[k.length-1]===c[1]}`}let m=o.shape.length,g=u.length===2&&w.arraysEqual(o.shape,c),b=w.sizeFromShape(o.shape)===1,v=E.getBroadcastDims(o.shape,n.shape),y=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(c,n.texData.texShape),x=e.packedInputs||u.length>2?"":`${c[0]>1}_${c[1]>1}`;r+=`${m}_${y}_${l?d:""}_${u.length}_${b}_${v}_${g}_${p}_${h}_${f}_${x}_${i}`}else{let c=o.isUniform?"uniform":o.texData.texShape;r+=`${o.shape}_${c}_${i}`}});let s=e.userCode,a=e.constructor.name;return a+="_"+r+"_"+s+`${J().getNumber("WEBGL_VERSION")}`,a}function fr(e){return J().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var r7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ad.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Tn();this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?mm(["r","c","d"],e):gi(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getA(rc.x, rc.y, rc.z); } ${t.output} = result; } `}},s7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ad.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Tn();this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length),this.userCode=` ivec3 outCoordsFromFlatIndex(int index) { ${this.enableShapeUniforms?mm(["r","c","d"],e):gi(["r","c","d"],e)} return ivec3(r, c, d); } void main() { ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1])); int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y); vec4 result = vec4(0.); for (int i=0; i<4; i++) { int flatIndex = index + i; ivec3 rc = outCoordsFromFlatIndex(flatIndex); result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z)); } ${t.output} = result; } `}},a7=class{constructor(e){this.variableNames=["A"],this.outTexUsage=pr.DOWNLOAD;let t=Tn();this.outputShape=e,this.userCode=` ${M2} void main() { float x = getAAtOutCoords(); ${t.output} = encode_float(x); } `}},o7=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=pr.DOWNLOAD;let t=Tn();this.outputShape=e,this.userCode=` ${M2} void main() { ivec3 coords = getOutputCoords(); float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z)); ${t.output} = encode_float(x); } `}},i7=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Tn();this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length);let r="result";t&&(r="floor(result * 255. + 0.5)"),this.userCode=` ${this.enableShapeUniforms?Ow():Pw(e)} void main() { ivec3 coords = getOutputCoords(); int flatIndex = getFlatIndex(coords); int offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / texShape[1]; int c = imod(flatIndex, texShape[1]); vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]); vec4 values = ${n.texture2D}(A, uv); float result; if(offset == 0) { result = values[0]; } else if(offset == 1) { result = values[1]; } else if(offset == 2) { result = values[2]; } else { result = values[3]; } ${n.output} = vec4(${r}, 0., 0., 0.); } `}},c7=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Tn();this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length);let r="",s="result";t&&(s="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;r+=` localCoords = coords; if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) { localCoords[2] += ${o}; if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) { localCoords[1] += ${a}; flatIndex = getFlatIndex(localCoords); offset = imod(flatIndex, 4); flatIndex = idiv(flatIndex, 4, 1.); int r = flatIndex / texShape[1]; int c = imod(flatIndex, texShape[1]); vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]); values = ${n.texture2D}(A, uv); if (offset == 0) { result[${i}] = values[0]; } else if (offset == 1) { result[${i}] = values[1]; } else if (offset == 2) { result[${i}] = values[2]; } else { result[${i}] = values[3]; } } } `}this.userCode=` ${this.enableShapeUniforms?Ow():Pw(e)} void main() { ivec3 coords = getOutputCoords(); vec4 result = vec4(0.); int flatIndex, r, c, offset; ivec3 localCoords; vec2 uv; vec4 values; ${r} ${n.output} = ${s}; } `}},V2={};$e(V2,{bindVertexProgramAttributeStreams:()=>Z2,createBufferFromOutputTexture:()=>eN,createFloat16MatrixTexture:()=>q2,createFloat16PackedMatrixTexture:()=>Y2,createFloat32MatrixTexture:()=>j2,createIndexBuffer:()=>H2,createPackedMatrixTexture:()=>X2,createUnsignedBytesMatrixTexture:()=>K2,createVertexBuffer:()=>G2,createVertexShader:()=>U2,downloadByteEncodedFloatMatrixFromOutputTexture:()=>nN,downloadFloat32MatrixFromBuffer:()=>tN,downloadMatrixFromPackedOutputTexture:()=>sN,downloadPackedMatrixFromBuffer:()=>rN,getInternalFormatForFloat16MatrixTexture:()=>Bw,getInternalFormatForFloat16PackedMatrixTexture:()=>Vw,getInternalFormatForFloat32MatrixTexture:()=>Lw,getInternalFormatForPackedMatrixTexture:()=>Ww,getInternalFormatForUnsignedBytesMatrixTexture:()=>zw,uploadDenseMatrixToTexture:()=>J2,uploadPixelDataToTexture:()=>Q2});function U2(e){let t=Tn(),n=`${t.version} precision highp float; ${t.attribute} vec3 clipSpacePos; ${t.attribute} vec2 uv; ${t.varyingVs} vec2 resultUV; void main() { gl_Position = vec4(clipSpacePos, 1); resultUV = uv; }`;return m2(e,n)}function G2(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return v2(e,t)}function H2(e){let t=new Uint16Array([0,1,2,2,1,3]);return x2(e,t)}function Pd(e,t,n,r,s,a){k2(t,n);let o=w2(e),i=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(i,o)),xe(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(i,0,r,t,n,0,s,a,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function Lw(e){return e.internalFormatFloat}function j2(e,t,n,r){let[s,a]=Dd(t,n);return Pd(e,s,a,Lw(r),r.textureFormatFloat,e.FLOAT)}function Bw(e){return e.internalFormatHalfFloat}function q2(e,t,n,r){let[s,a]=Dd(t,n);return Pd(e,s,a,Bw(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function zw(e){return e.downloadTextureFormat}function K2(e,t,n,r){let[s,a]=Dd(t,n);return Pd(e,s,a,zw(r),e.RGBA,e.UNSIGNED_BYTE)}function Ww(e){return e.internalFormatPackedFloat}function X2(e,t,n,r){let[s,a]=ku(t,n);return Pd(e,s,a,Ww(r),e.RGBA,e.FLOAT)}function Vw(e){return e.internalFormatPackedHalfFloat}function Y2(e,t,n,r){let[s,a]=ku(t,n);return Pd(e,s,a,Vw(r),e.RGBA,r.textureTypeHalfFloat)}function Z2(e,t,n){let r=0,s=3*4,a=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Dw(e,t,"clipSpacePos",n,3,a,r)&&Dw(e,t,"uv",n,2,a,s)}function J2(e,t,n,r,s,a){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,c;s instanceof Uint8Array?(o=new Uint8Array(n*r*4),i=e.UNSIGNED_BYTE,c=e.RGBA):(o=new Float32Array(n*r*4),i=e.FLOAT,c=a.internalFormatPackedFloat),o.set(s),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,c,n,r,0,e.RGBA,i,o)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Q2(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function eN(e,t,n,r){let s=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,s));let i=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),s}function tN(e,t,n){let r=e,s=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,s),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),s}function nN(e,t,n,r){let[s,a]=Dd(t,n),o=4,i=new Uint8Array(rX(t*n,o));return xe(e,()=>e.readPixels(0,0,s,a,r.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function rN(e,t,n,r,s,a,o,i){let c=e,l=new Float32Array(sX(a,o));return c.bindBuffer(c.PIXEL_PACK_BUFFER,t),c.getBufferSubData(c.PIXEL_PACK_BUFFER,0,l),c.bindBuffer(c.PIXEL_PACK_BUFFER,null),l}function sN(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var aN=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,p2(t,e)):this.gl=hs(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Fd(this.gl,s),hr(this.gl,a))this.textureHalfFloatExtension=Fd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),hr(this.gl,r))this.colorBufferHalfFloatExtension=Fd(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",hr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(hr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=G2(this.gl),this.indexBuffer=H2(this.gl),this.framebuffer=I2(this.gl),this.textureConfig=Aw(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),j2(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),q2(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),K2(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Q2(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),J2(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Y2(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),X2(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Fw(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>nN(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,s,a){return rN(this.gl,e,t,n,r,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return tN(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=eN(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,s=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=r.clientWaitSync(s,0,0);return a===r.ALREADY_SIGNALED||a===r.CONDITION_SATISFIED},t=s}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>sN(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=g2(t,e);this.vertexShader==null&&(this.vertexShader=U2(t));let r=b2(t);return xe(t,()=>t.attachShader(r,this.vertexShader)),xe(t,()=>t.attachShader(r,n)),y2(t,r),this.debug&&um(t,r),this.vertexAttrsAreBound||(this.setProgram(r),this.vertexAttrsAreBound=Z2(t,this.program,this.vertexBuffer)),r}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&um(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?C2(this.gl,e,t):T2(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),N2(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,s]=ku(t,n);this.setOutputMatrixTextureDriver(e,r,s)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&um(this.gl,this.program),$d(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Fd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),s=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=u7(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),lm(this.gl,e,this.framebuffer),this.debug&&$d(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(lm(this.gl,this.outputTexture,this.framebuffer),this.debug&&$d(this.gl)):Fw(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;lm(r,e,this.framebuffer),this.debug&&$d(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function u7(e){let t=0;for(;t`${e}.${n}`)}function Nn(e,t){return t===1?[e]:uN(e,t)}function K7(e,t){if(e===1)return"rc";let n="";for(let r=0;r ${t[0]}`;let r="";for(let s=e-2;s= ${t[s]}`,s= ${t}; bool rEdge = rp1 >= ${n}; `}function Q7(e,t){let n=e.length,r=Y7(n,t);return n===1?`getA(rc), rc + 1 >= ${e[0]} ? 0. : getA(rc + 1), 0, 0`:`getA(${r[0]}), cEdge ? 0. : getA(${r[1]}), rEdge ? 0. : getA(${r[2]}), rEdge || cEdge ? 0. : getA(${r[3]})`}var lN=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length);let n="";for(let r=0;r<4;r++){let s="thisRC = rc;";r%2==1&&(s+="thisRC.z += 1;"),r>1&&(s+="thisRC.y += 1;"),n+=` ${s} ${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""} int flatIndex = getFlatIndex(thisRC); ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex); vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z)); result[${r}] = getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims); ${r>0?"}":""} `}this.userCode=` ${e9(t,this.enableShapeUniforms)} ${this.enableShapeUniforms?Ow():Pw(e)} void main() { ivec3 rc = getOutputCoords(); vec4 result = vec4(0.); ivec3 thisRC; int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]}; int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]}; ${n} setOutput(result); } `}};function e9(e,t){return` ivec3 inputCoordsFromReshapedOutCoords(int index) { ${t?bX(["r","c","d"],"inputShape"):gi(["r","c","d"],e)} return ivec3(r, c, d); } `}var t9=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=pN(t,n),s=hN(e,r,n);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=dN(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[s].shift();return this.usedTextures[s].push(i),i}let o;return r===ln.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===ln.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===ln.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===ln.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===ln.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let s=pN(n,r),a=hN(t,s,r);a in this.freeTextures||(this.freeTextures[a]=[]);let o=dN(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,r),i=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let c=this.usedTextures[a],l=c.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");c.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function n9(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function dN(e,t,n,r,s){let a=r9(t,r),o;if(s){let[c,l]=ku(e[0],e[1]);o=c*l}else{let[c,l]=Dd(e[0],e[1]);o=c*l}let i=n9(n,a);return o*i}function r9(e,t){switch(e){case ln.PACKED_2X2_FLOAT32:return Ww(t);case ln.PACKED_2X2_FLOAT16:return Vw(t);case ln.UNPACKED_FLOAT32:return Lw(t);case ln.UNPACKED_FLOAT16:return Bw(t);case ln.PACKED_4X1_UNSIGNED_BYTE:return zw(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function s9(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?ln.PACKED_2X2_FLOAT32:ln.UNPACKED_FLOAT32:e?ln.PACKED_2X2_FLOAT16:ln.UNPACKED_FLOAT16}function pN(e,t){if(e===pr.UPLOAD)return ln.PACKED_2X2_FLOAT32;if(e===pr.RENDER||e==null)return s9(t);if(e===pr.DOWNLOAD||e===pr.PIXELS)return ln.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function hN(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Sa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length),this.userCode=` float unaryOperation(float x) { ${t} } void main() { float x = getAAtOutCoords(); float y = unaryOperation(x); setOutput(y); } `}},jr="if (isnan(x)) return x;",a9="return x;",fN="return abs(x);",o9="return (x >= 0.0) ? x : (exp(x) - 1.0);",i9=jr+` return (x < 0.0) ? 0.0 : x; `,c9=jr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,gm="return x;",u9="return 1.0 / (1.0 + exp(-1.0 * x));",l9="return x;",d9=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,p9=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,h9=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,f9="return 1.0 / (1.0 + exp(-1.0 * x));",_u=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length),this.userCode=` vec4 unaryOperation(vec4 x) { ${t} } void main() { vec4 x = getAAtOutCoords(); vec4 y = unaryOperation(x); setOutput(y); } `}},m9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Nn("rc",t),r=ft(t),s=K7(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=` void main() { ${r} rc = getOutputCoords(); vec4 packedInput = getA(${s}); setOutput(getChannel(packedInput, ${o})); } `}},g9=os.whereImpl,b9=1e-7,y9=1e-4,bm={};function v9(e){return e in bm||(bm[e]={}),bm[e]}var x9=J().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),w9=600;function k9(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*w9/1024/1024}var ym=class extends fl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=hs(J().getNumber("WEBGL_VERSION"));this.binaryCache=v9(J().getNumber("WEBGL_VERSION")),this.gpgpu=new aN(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new t9(this.gpgpu),this.numMBBeforeWarning=k9(),this.texData=new Pp(this,Ss())}nextDataId(){return ym.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:pr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,s){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:pr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:s,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new _u(o,gm):d=new Sa(o,gm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:r}],r),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let c=this.activeTimers!=null,l;c&&(l=w.now());let u;if(r==="complex64"){let d=this.readSync(s.real.dataId),p=this.readSync(s.imag.dataId);u=E.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return c&&(this.downloadWaitMs+=w.now()-l),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:s,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(s!=null){let h;i?h=new _u(r,gm):h=new Sa(r,gm);let f=this.runWebGLProgram(h,[{dataId:e,shape:r,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let c=null,l;if(a!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);c=this.gpgpu.createBufferFromTexture(h.texture,...cm(r))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=E.mergeRealAndImagArrays(f,m)}else if(c==null)u=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(c,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),c!=null){let h=this.gpgpu.gl;xe(h,()=>h.deleteBuffer(c))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ss().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>w.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return ze(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let s=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(s);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((c,l)=>({name:a[l],ms:c})).map(c=>`${c.name}: ${c.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:s,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,c=this.dataRefCount.get(i);c>1?this.dataRefCount.set(i,c-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,s,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=x9){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)0&&w.isString(n[0])){let s=n.map(a=>w.encodeString(a));r=this.write(s,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Ss().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new m9(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new X7(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fi(e.shape),...mi(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},s=[fi(t),...mi(t)],a=new lN(s,n),o=!0,i=[n],c=this.runWebGLProgram(a,[r],e.dtype,i,o);return{dataId:c.dataId,shape:t,dtype:c.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:s}=t,a=dm(r),o,i=cm(a);n?o=new s7(a):o=new r7(a);let c=!0,l=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:s,dataId:e}],s,l,c);return{dtype:s,shape:r,dataId:u.dataId}}runWebGLProgram(e,t,n,r,s=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Ad.DENSE){let m=cm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],c=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!Rd(g.shape,m.shape)){let b=m,v=m.shape;m.shape=g.shape,m=this.packedReshape(m,v),i.push(m),g=this.texData.get(m.dataId),b.shape=v}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let l={shape:a.shape,texData:o,isUniform:!1},u=n7(e,c,l),d=this.getAndSaveBinary(u,()=>e7(this.gpgpu,e,c,l)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),t7(this.gpgpu,d,c,l,r),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&s===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,r,s=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=M(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?b9:y9}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:s,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let c=this.activeTimers!=null,l;c&&(l=w.now());let u=t.texShape;if(u==null&&(u=A2(n,i),t.texShape=u),s!=null){let d=dm(n),p,h=u[1],f=u[0],m=s instanceof Uint8Array||s instanceof Uint8ClampedArray;i?([h,f]=ku(u[0],u[1]),p=new c7(d,m)):p=new i7(d,m);let g=this.makeTensorInfo([f,h],r);m?this.texData.get(g.dataId).usage=pr.PIXELS:this.texData.get(g.dataId).usage=pr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,s);let b=[[f,h]],v=!0,y=this.runWebGLProgram(p,[g],r,b,v),x=this.texData.get(y.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(y.dataId),t.values=null,c&&(this.uploadWaitMs+=w.now()-l)}else{let d=this.acquireTexture(u,o,r,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=I9(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};ym.nextDataId=0;function I9(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;rnew ym,2);var C9={forceHalfFloat:mN},gN=` if (isnan(a)) return a; if (isnan(b)) return b; `,Eu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=E.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=fr(this.outputShape.length),this.userCode=` float binaryOperation(float a, float b) { ${e} } void main() { float a = getAAtOutCoords(); float b = getBAtOutCoords(); setOutput(binaryOperation(a, b)); } `}},vm=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `,Od=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=E.assertAndGetBroadcastShape(t,n);let s=this.outputShape.length;this.enableShapeUniforms=fr(s);let a="";if(r)if(s===0||w.sizeFromShape(this.outputShape)===1)a=` result.y = 0.; result.z = 0.; result.w = 0.; `;else if(a=` ${ft(s)} coords = getOutputCoords(); `,s===1)this.enableShapeUniforms?a+=` result.y = (coords + 1) >= outShape ? 0. : result.y; result.z = 0.; result.w = 0.; `:a+=` result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y; result.z = 0.; result.w = 0.; `;else{let i=Nn("coords",s);this.enableShapeUniforms?a+=` bool nextRowOutOfBounds = (${i[s-2]} + 1) >= outShape[${s} - 2]; bool nextColOutOfBounds = (${i[s-1]} + 1) >= outShape[${s} - 1]; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `:a+=` bool nextRowOutOfBounds = (${i[s-2]} + 1) >= ${this.outputShape[s-2]}; bool nextColOutOfBounds = (${i[s-1]} + 1) >= ${this.outputShape[s-1]}; result.y = nextColOutOfBounds ? 0. : result.y; result.z = nextRowOutOfBounds ? 0. : result.z; result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w; `}this.userCode=` vec4 binaryOperation(vec4 a, vec4 b) { ${e} } void main() { vec4 a = getAAtOutCoords(); vec4 b = getBAtOutCoords(); vec4 result = binaryOperation(a, b); ${a} setOutput(result); } `}};function rr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var T9={kernelName:so,backendName:"webgl",kernelFunc:rr};function Ca(e){let{inputs:t,backend:n}=e,{real:r,imag:s}=t,a=n.makeTensorInfo(r.shape,"complex64"),o=n.texData.get(a.dataId),i=rr({inputs:{x:r},backend:n}),c=rr({inputs:{x:s},backend:n});return o.complexTensorInfos={real:i,imag:c},a}var N9={kernelName:Gp,backendName:"webgl",kernelFunc:Ca},bN="return (a < 0.) ? b * a : a;",yN=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function _9(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{alpha:a}=r,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Od(yN,s.shape,o.shape):new Eu(bN,s.shape,o.shape),c=n.runWebGLProgram(i,[s,o],"float32");return n.disposeIntermediateTensorInfo(o),c}var E9={kernelName:ao,backendName:"webgl",kernelFunc:_9},vN="return (a < 0.) ? b * a : a;",xN=` vec4 aLessThanZero = vec4(lessThan(a, vec4(0.))); return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a); `;function A9(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Od(xN,r.shape,s.shape):new Eu(vN,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],"float32")}var D9={kernelName:vo,backendName:"webgl",kernelFunc:A9},wN="if (isnan(x)) return x;",F9=` if (isnan(a)) return a; if (isnan(b)) return b; `,$9=` result.r = isNaN.r > 0. ? NAN : result.r; result.g = isNaN.g > 0. ? NAN : result.g; result.b = isNaN.b > 0. ? NAN : result.b; result.a = isNaN.a > 0. ? NAN : result.a; `;function Xe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:s,backend:a})=>{let{x:o}=s,i=a,c=r||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,c);return i.makeTensorInfo(o.shape,c,p)}let l=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return l?u=new _u(o.shape,t):u=new Sa(o.shape,e),i.runWebGLProgram(u,[o],c)}}function dn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:s,dtype:a}){return({inputs:o,backend:i})=>{let{a:c,b:l}=o,u=i;if(r&&c.dtype==="complex64"){let f=u.texData.get(c.dataId),m=u.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(y=>{let[x,k]=y,C={dataId:x.dataId,dtype:x.dtype,shape:c.shape},N={dataId:k.dataId,dtype:k.dtype,shape:l.shape},D=new Eu(e,c.shape,l.shape);return u.runWebGLProgram(D,[C,N],wr(x.dtype,k.dtype))}),v=Ca({inputs:{real:g,imag:b},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(b),v}let d=a||wr(c.dtype,l.dtype);if((c.dtype==="string"||l.dtype==="string"||u.shouldExecuteOnCPU([c,l]))&&s!=null){let f=u.texData.get(c.dataId).values,m=u.texData.get(l.dataId).values,g=c.dtype==="string"?E.fromUint8ToStringArray(f):f,b=c.dtype==="string"?E.fromUint8ToStringArray(m):m,[v,y]=s(c.shape,l.shape,g,b,d),x=u.makeTensorInfo(y,d),k=u.texData.get(x.dataId);return k.values=v,x}let p=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Od(t,c.shape,l.shape,n):h=new Eu(e,c.shape,l.shape),u.runWebGLProgram(h,[c,l],d)}}function xm(e,t=!1){if(e==="linear")return t?l9:a9;if(e==="relu")return t?p9:i9;if(e==="elu")return t?d9:o9;if(e==="relu6")return t?h9:c9;if(e==="prelu")return t?xN:vN;if(e==="leakyrelu")return t?yN:bN;if(e==="sigmoid")return t?f9:u9;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var kN=class{constructor(e,t,n,r=!1,s=!1,a=!1,o=null,i=!1,c=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=fr(this.outputShape.length);let l=r?e[1]:e[2],u=Math.ceil(l/2),d=r?"i * 2, rc.y":"rc.y, i * 2",p=s?"rc.z, i * 2":"i * 2, rc.z",h=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) { vec4 b = getPreluActivationWeightsAtOutCoords(); ${o} }`:c?m=`vec4 activation(vec4 a) { vec4 b = getLeakyreluAlphaAtOutCoords(); ${o} }`:m=`vec4 activation(vec4 x) { ${o} }`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),c&&this.variableNames.push("leakyreluAlpha");let v="rc.x",y="rc.x";e[0]`The new shape (${c}) has ${l} elements and the old shape (${s.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(s.dataId);return u.isPacked&&!Rd(s.shape,c)&&!(u.texture!==null&&Rd(u.shape,c))?P9(s,c,o):(o.incRef(s.dataId),{dataId:s.dataId,shape:c,dtype:s.dtype})}var O9={kernelName:Dc,backendName:"webgl",kernelFunc:be},TN=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o=Math.floor(n/4)*4,i=n%4,c="sumValue += dot(values, ones);";if(t!=null){let u=1/t;c=`sumValue += dot(values * ${w.isInt(u)?u.toPrecision(2):u}, ones);`}let l="";s%n>0&&(l=` if (inIdx < 0 || inIdx >= ${s}) { return 0.0; } `),this.userCode=` const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${l} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; float sumValue = 0.0; for (int i = 0; i < ${o}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${c} } int inIdx = inOffset + ${o}; if (${i===1}) { vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0); ${c} } else if (${i===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), 0.0, 0.0); ${c} } else if (${i===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), 0.0); ${c} } setOutput(sumValue); } `}},M9=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:s,outSize:a}=e;this.outputShape=[r,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let c=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?c="sumValue":t==="prod"?c="prodValue":t==="all"?c="allValue":t==="any"&&(c="anyValue");let l=Math.floor(n/4)*4,u=n%4,d=` if (${t==="sum"}) { sumValue += dot(values, ones); } else if (${t==="prod"}) { vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]); prodValue *= tmp[0] * tmp[1]; } else { minMaxValue = ${i}(values, minMaxValue); if (${t==="min"} || ${t==="max"}) { minMaxValue = ${i}(values, minMaxValue); bvec4 isNaN = isnan(values); if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) { minMaxValue = vec4(NAN); } } } `,p="vec4";t==="all"?(o="1.0",d=` bool reducedAllValue = all(values); float floatedReducedAllValue = float(reducedAllValue); allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0); `,p="bvec4"):t==="any"&&(o="0.0",d=` bool reducedAnyValue = any(values); float floatedReducedAnyValue = float(reducedAnyValue); anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0); `,p="bvec4");let h="";s%n>0&&(h=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `),this.userCode=` const float initializationValue = ${o}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float getValue(int batch, int inIdx) { ${h} return getX(batch, inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${n}; vec4 minMaxValue = vec4(${o}); float prodValue = 1.0; float sumValue = 0.0; float allValue = 1.0; float anyValue = 0.0; for (int i = 0; i < ${l}; i += 4) { int inIdx = inOffset + i; ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); ${d} } int inIdx = inOffset + ${l}; if (${u===1}) { ${p} values = ${p}( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); ${d} } else if (${u===2}) { ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); ${d} } else if (${u===3}) { ${p} values = ${p}( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); ${d} } setOutput(${c}); } `}};function L9(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=E.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function yi(e,t,n,r){let s=L9(e.shape),a=e;for(let o=0;o6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let s=0;s6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ft(this.rank),s=uN("rc",this.rank),a=new Array(this.rank);for(let l=0;l=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let k=(b>v?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let C=n?[b,d,h]:[b,h,d],N=r?[v,f,p]:[v,p,f],D=be({inputs:{x:e},backend:s,attrs:{shape:C}}),F=be({inputs:{x:t},backend:s,attrs:{shape:N}}),O=[D,F],$=Math.max(b,v),P=n?D.shape[1]:D.shape[2],T=a!=null,L=o!=null,G=c==="leakyrelu",j=c!=null?xm(c,!0):null,q=T||L||G||j!=null,K;if((h===1||f===1)&&P>NN&&q===!1){let te=D,ne=F;n&&(te=_n({inputs:{x:D},backend:s,attrs:{perm:[0,2,1]}}),O.push(te)),r&&(ne=_n({inputs:{x:F},backend:s,attrs:{perm:[0,2,1]}}),O.push(ne));let ae=f!==1,se=f===1,re=te;ae&&(re=be({inputs:{x:te},backend:s,attrs:{shape:[$,P,1]}}),O.push(re));let ue=f===1?2:1,de=ne;se&&(de=be({inputs:{x:ne},backend:s,attrs:{shape:[$,1,P]}}),O.push(de));let me=Gw({inputs:{a:re,b:de},backend:s});K=km({inputs:{x:me},backend:s,attrs:{axis:ue,keepDims:!0}}),O.push(me)}else{let te=wr(e.dtype,t.dtype),ne=new kN(C,N,[$,h,f],n,r,T,j,L,G),ae=[D,F];if(a!=null&&ae.push(a),L&&ae.push(o),G){let se=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));ae.push(se),O.push(se)}K=s.runWebGLProgram(ne,ae,te)}let ee=be({inputs:{x:K},backend:s,attrs:{shape:k}});O.push(K);for(let te of O)s.disposeIntermediateTensorInfo(te);return ee}function H9(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:c,transposeB:l,activation:u,leakyreluAlpha:d}=r;return Im({a:s,b:a,transposeA:c,transposeB:l,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var j9={kernelName:Oo,backendName:"webgl",kernelFunc:H9},_N="return abs(x);";function q9(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let a=n.texData.get(r.dataId),o=iN(a.values);return n.makeTensorInfo(r.shape,r.dtype,o)}let s;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new _u(r.shape,_N):s=new Sa(r.shape,_N),n.runWebGLProgram(s,[r],r.dtype)}var K9={kernelName:ji,backendName:"webgl",kernelFunc:q9},X9=jr+` if (abs(x) > 1.) { return NAN; } return acos(x); `,Y9=Xe({opSnippet:X9}),Z9={kernelName:qi,backendName:"webgl",kernelFunc:Y9},J9=jr+` if (x < 1.0) return NAN; return log(x + sqrt(x * x - 1.0));`,Q9=Xe({opSnippet:J9}),eY={kernelName:Ki,backendName:"webgl",kernelFunc:Q9},EN="return a + b;",tY=dn({opSnippet:EN,packedOpSnippet:EN,supportsComplex:!0,cpuKernelImpl:l7}),nY={kernelName:Js,backendName:"webgl",kernelFunc:tY},rY=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`float v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} float result = ${r}; setOutput(result); } `}},sY=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let n=[];this.variableNames.forEach(s=>{n.push(`vec4 v${s} = get${s}AtOutCoords();`)});let r=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=` void main() { ${n.join(` `)} vec4 result = ${r}; setOutput(result); } `}};function Sm(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return rr({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(r.length/2),l=Sm({inputs:r.slice(0,c),backend:n}),u=Sm({inputs:r.slice(c),backend:n});return Sm({inputs:[l,u],backend:n})}let s=r.map(c=>c.dtype).reduce((c,l)=>wr(c,l)),a=r.map(c=>c.shape),i=J().getBool("WEBGL_PACK")?new sY(r[0].shape,a):new rY(r[0].shape,a);return n.runWebGLProgram(i,r,s)}var aY={kernelName:Ba,backendName:"webgl",kernelFunc:Sm};function oY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),l=c,u=E.getAxesPermutation(l,i),d=s;u!=null&&(d=_n({inputs:{x:s},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,i)),E.assertAxesAreInnerMostDims("all",l,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,l),f=w.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yi(m,m.dtype,"all",n),b;if(o){let v=E.expandShapeToKeepDim(p,c);b=be({inputs:{x:g},backend:n,attrs:{shape:v}})}else b=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),b}var iY={kernelName:Xi,backendName:"webgl",kernelFunc:oY};function cY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),l=c,u=E.getAxesPermutation(l,i),d=s;u!=null&&(d=_n({inputs:{x:s},backend:n,attrs:{perm:u}}),l=E.getInnerMostAxes(l.length,i)),E.assertAxesAreInnerMostDims("any",l,i);let[p,h]=E.computeOutAndReduceShapes(d.shape,l),f=w.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yi(m,m.dtype,"any",n),b;if(o){let v=E.expandShapeToKeepDim(p,c);b=be({inputs:{x:g},backend:n,attrs:{shape:v}})}else b=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),b}var uY={kernelName:Yi,backendName:"webgl",kernelFunc:cY},lY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:s,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = outIdx * ${r}; int bestIndex = inOffset; float bestValue = getA(batch, bestIndex); for (int i = 0; i < ${r}; i++) { int inIdx = ${i}; float candidate = getA(batch, inIdx); if (candidate ${o} bestValue) { bestValue = candidate; bestIndex = inIdx; } } setOutput(float(bestIndex)); } `}},dY=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),r||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,c=ft(i),l=Nn("coords",i),u,d;if(a===1){d=i+1;let N=ft(d);u=` ${N} sourceLocR = ${N}(${l.join()}, 0); ++${l[i-1]}; ${N} sourceLocG = ${N}(${l.join()}, 0); ++${l[i-2]}; ${N} sourceLocA = ${N}(${l.join()}, 0); --${l[i-1]}; ${N} sourceLocB = ${N}(${l.join()}, 0); --${l[i-2]};`}else d=i,u=` ${c} sourceLocR = coords; ++${l[i-1]}; ${c} sourceLocG = coords; ++${l[i-2]}; ${c} sourceLocA = coords; --${l[i-1]}; ${c} sourceLocB = coords; --${l[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(N=>"int "+N),m=Nn("sourceLocR",d-1).concat("inIdx.r"),g=Nn("sourceLocG",d-1).concat("inIdx.g"),b=Nn("sourceLocB",d-1).concat("inIdx.b"),v=Nn("sourceLocA",d-1).concat("inIdx.a"),y=n==="max"?"greaterThan":"lessThan",x=r?"":` inIdx = round(vec4(getBestIndicesAChannel(${m.join()}), getBestIndicesAChannel(${g.join()}), getBestIndicesAChannel(${b.join()}), getBestIndicesAChannel(${v.join()})));`,k=`vec4( getAChannel(${m.join()}), hasNextCol ? getAChannel(${g.join()}) : 0., hasNextRow ? getAChannel(${b.join()}) : 0., hasNextRow && hasNextCol ? getAChannel(${v.join()}) : 0.)`,C=r?"":` float getBestIndicesAChannel(${f.join()}) { return getChannel(getBestIndicesA(${p.join()}), vec2(${p.slice(-2).join()})); }`;this.userCode=` float getAChannel(${f.join()}) { return getChannel(getA(${p.join()}), vec2(${p.slice(-2).join()})); } ${C} void main() { ${c} coords = getOutputCoords(); bool hasNextCol = ${l[i-1]} < ${o[i-1]-1}; bool hasNextRow = ${l[i-2]} < ${o[i-2]-1}; ${u} ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h}, sourceLocB${h}, sourceLocA${h}) * ${t}; ivec4 inIdx = srcIdx; vec4 bestIndex = vec4(inIdx); vec4 bestValue = ${k}; for (int i = 0; i < ${t}; i++) { inIdx = srcIdx; ${x} vec4 candidate = ${k}; bvec4 nan = isnan(candidate); bvec4 replace = bvec4( vec4(${y}(candidate, bestValue)) * (vec4(1.0) - vec4(nan))); bestValue = vec4(replace.x ? candidate.x : bestValue.x, replace.y ? candidate.y : bestValue.y, replace.z ? candidate.z : bestValue.z, replace.w ? candidate.w : bestValue.w); bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace)); srcIdx++; } setOutput(bestIndex); } `}};function AN(e,t,n,r=null){let s=t.shape[0],a=t.shape[1];r!=null&&(s=r.shape[0],a=r.shape[1]);let o=E.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:s,outSize:Math.ceil(a/o)},c=new lY(i,n,r==null),l=[t];r!=null&&l.push(r);let u=e.runWebGLProgram(c,l,"int32");if(u.shape[1]===1)return u;let d=AN(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function DN(e,t,n,r=null){let s=r!=null?r.shape:t.shape,a=s[s.length-1],o=E.computeOptimalWindowSize(a),i=new dY(s,o,n,r==null),c=r==null?[t]:[t,r],l=e.runWebGLProgram(i,c,"int32");if(l.shape.length===t.shape.length){let u=DN(e,t,n,l);return e.disposeIntermediateTensorInfo(l),u}return l}function FN(e,t,n,r){let s=[n];if(E.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),s,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,c=t;i&&(c=e.unpackTensor(t),a.push(c));let[l,u]=E.computeOutAndReduceShapes(c.shape,s),d=w.sizeFromShape(u),p=be({inputs:{x:c},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=AN(e,p,r);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return DN(e,t,r)}function pY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=E.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=_n({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=E.getInnerMostAxes(o.length,c.shape.length)),E.assertAxesAreInnerMostDims("argMax",[o[0]],c.shape.length);let u=FN(n,c,o[0],"max");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var hY={kernelName:za,backendName:"webgl",kernelFunc:pY};function fY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a}=r,o=w.parseAxisParam(a,s.shape),i=E.getAxesPermutation(o,s.shape.length),c=s,l=[];i!=null&&(c=_n({inputs:{x:s},backend:n,attrs:{perm:i}}),l.push(c),o=E.getInnerMostAxes(o.length,c.shape.length)),E.assertAxesAreInnerMostDims("argMin",[o[0]],c.shape.length);let u=FN(n,c,o[0],"min");return l.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var mY={kernelName:bl,backendName:"webgl",kernelFunc:fY},gY=jr+` if (abs(x) > 1.) { return NAN; } return asin(x); `,bY=Xe({opSnippet:gY}),yY={kernelName:Zi,backendName:"webgl",kernelFunc:bY},vY=jr+"return log(x + sqrt(x * x + 1.0));",xY=Xe({opSnippet:vY}),wY={kernelName:Ji,backendName:"webgl",kernelFunc:xY},kY=jr+` return atan(x); `,IY=Xe({opSnippet:kY}),SY={kernelName:Qi,backendName:"webgl",kernelFunc:IY},CY=F9+` return atan(a, b); `,TY=` vec4 result = atan(a, b); vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0)); `+$9+` return result; `,NY=dn({opSnippet:CY,packedOpSnippet:TY}),_Y={kernelName:tc,backendName:"webgl",kernelFunc:NY},EY=jr+` if ((x < -1.0) || (x > 1.0)) return NAN; return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,AY=Xe({opSnippet:EY}),DY={kernelName:ec,backendName:"webgl",kernelFunc:AY},Md=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,c=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let N=">=";this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${p}, ${h}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; float avgValue = 0.0; for (int wR = 0; wR < ${u}; wR += ${c}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${d}; wC += ${l}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xR, xC, d); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${N} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?s?m:g:`wR * ${d} + wC`}; } } } setOutput(float(minMaxPosition)); } `;return}let v="max",y=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(y="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,C=` if (${f}) { avgValue += dot(values, ones); } else { minMaxValue = ${v}(values, minMaxValue); } `;this.userCode=` const ivec2 strides = ivec2(${o}, ${i}); const ivec2 pads = ivec2(${p}, ${h}); const float initializationValue = ${b}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xR, int xC, int d) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xR, xC, d); } void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d = coords[3]; ivec2 xRCCorner = coords.yz * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // max/min x(?, ?, d) to get y(yR, yC, d). // ? = to be determined vec4 minMaxValue = vec4(${b}); float avgValue = 0.0; count = 0.0; for (int wR = 0; wR < ${u}; wR += ${c}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${x}; wC += 4) { int xC = xCCorner + wC * ${l}; vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${l}, d), getValue(batch, xR, xC + 2 * ${l}, d), getValue(batch, xR, xC + 3 * ${l}, d) ); ${C} } int xC = xCCorner + ${x}; if (${k===1}) { vec4 values = vec4( getValue(batch, xR, xC, d), initializationValue, initializationValue, initializationValue ); ${C} } else if (${k===2}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${l}, d), initializationValue, initializationValue ); ${C} } else if (${k===3}) { vec4 values = vec4( getValue(batch, xR, xC, d), getValue(batch, xR, xC + ${l}, d), getValue(batch, xR, xC + 2 * ${l}, d), initializationValue ); ${C} } } setOutput(${y}); } `}},Hw=class{constructor(e,t,n,r=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,c=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let v=t==="avg",y="0.0";if(v||(y="-1.0 / 1e-20"),n){let F=">=";this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${c}); const ivec3 pads = ivec3(${m}, ${g}, ${b}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch). // ? = to be determined float minMaxValue = 0.0; float minMaxValueFound = 0.0; int minMaxPosition = 0; for (int wD = 0; wD < ${p}; wD += ${l}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${f}; wC += ${d}) { int xC = xCCorner + wC; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float value = getX(batch, xD, xR, xC, ch); // If a min / max value has already been found, use it. If not, // use the current value. float currMinMaxValue = mix( value, minMaxValue, minMaxValueFound); if (value ${F} currMinMaxValue) { minMaxValue = value; minMaxValueFound = 1.0; minMaxPosition = ${r?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} + wR * ${f} + wC`}; } } } } setOutput(float(minMaxPosition)); } `;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let C=Math.floor(a/4)*4,N=a%4,D=` if (${v}) { avgValue += dot(values, ones); } else { minMaxValue = ${x}(values, minMaxValue); } `;this.userCode=` const ivec3 strides = ivec3(${o}, ${i}, ${c}); const ivec3 pads = ivec3(${m}, ${g}, ${b}); const float initializationValue = ${y}; const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0); float count = 0.0; float getValue(int batch, int xD, int xR, int xC, int ch) { if (xC < 0 || xC >= ${e.inWidth}) { return initializationValue; } count += 1.0; return getX(batch, xD, xR, xC, ch); } void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xDCorner = xCorner.x; int xRCorner = xCorner.y; int xCCorner = xCorner.z; // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch). // ? = to be determined vec4 minMaxValue = vec4(${y}); float avgValue = 0.0; count = 0.0; for (int wD = 0; wD < ${p}; wD += ${l}) { int xD = xDCorner + wD; if (xD < 0 || xD >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${h}; wR += ${u}) { int xR = xRCorner + wR; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${C}; wC += 4) { int xC = xCCorner + wC * ${d}; vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), getValue(batch, xD, xR, xC + 3 * ${d}, ch) ); ${D} } int xC = xCCorner + ${C}; if (${N===1}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), initializationValue, initializationValue, initializationValue ); ${D} } else if (${N===2}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), initializationValue, initializationValue ); ${D} } else if (${N===3}) { vec4 values = vec4( getValue(batch, xD, xR, xC, ch), getValue(batch, xD, xR, xC + ${d}, ch), getValue(batch, xD, xR, xC + 2 * ${d}, ch), initializationValue ); ${D} } } setOutput(${k}); } } `}};function FY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t;Iu(s,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:c}=r,l=1;w.assert(E.eitherStridesOrDilationsAreOne(o,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=E.computePool2DInfo(s.shape,a,o,l,i,c);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return rr({inputs:{x:s},backend:n});let d=new Md(u,"avg",!1);return n.runWebGLProgram(d,[s],"float32")}var $Y={kernelName:Wa,backendName:"webgl",kernelFunc:FY};function RY(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:c,dataFormat:l}=r,u=[1,1,1],d=E.computePool3DInfo(s.shape,a,o,u,i,c,l),p=new Hw(d,"avg",!1);return n.runWebGLProgram(p,[s],"float32")}var PY={kernelName:yl,backendName:"webgl",kernelFunc:RY},OY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,c=e.effectiveFilterWidth,l=i-1-e.padInfo.top,u=c-1-e.padInfo.left,d=1/(t*n);this.userCode=` const ivec2 pads = ivec2(${l}, ${u}); const float avgMultiplier = float(${d}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${i}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${c}; wC+= ${o}) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); dotProd += dyValue * avgMultiplier; } } setOutput(dotProd); } `}},MY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*r);this.userCode=` const ivec3 pads = ivec3(${h}, ${f}, ${m}); const float avgMultiplier = float(${g}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${u}; wD += ${i}) { float dyD = float(dyDCorner + wD) / ${s}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${d}; wR += ${c}) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${p}; wC += ${l}) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); dotProd += dyValue * avgMultiplier; } } } setOutput(dotProd); } `}};function LY(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:l,dimRoundingMode:u}=r,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,c,d,l,u),h=new MY(p);return n.runWebGLProgram(h,[s],o.dtype)}var BY={kernelName:Wp,backendName:"webgl",kernelFunc:LY};function zY(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a;Iu([s,a],"avgPoolGrad");let{filterSize:i,strides:c,pad:l}=r,u=E.computePool2DInfo(o.shape,i,c,1,l),d=new OY(u);return n.runWebGLProgram(d,[s],o.dtype)}var WY={kernelName:zp,backendName:"webgl",kernelFunc:zY};function VY(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;return Im({a:s,b:a,transposeA:o,transposeB:i,backend:n})}var UY={kernelName:Va,backendName:"webgl",kernelFunc:VY},GY=class{constructor(e,t,n,r,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="0.0";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { float x = getXAtOutCoords(); float mean = getMeanAtOutCoords(); float variance = getVarianceAtOutCoords(); float offset = ${o}; float scale = ${i}; float inv = scale * inversesqrt(variance + float(${a})); setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1))); } `}},HY=class{constructor(e,t,n,r,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],E.assertAndGetBroadcastShape(e,t),E.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";r!=null&&(E.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";s!=null&&(E.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=` void main() { vec4 offset = ${o}; vec4 scale = ${i}; vec4 x = getXAtOutCoords(); vec4 mean = getMeanAtOutCoords(); vec4 variance = getVarianceAtOutCoords(); vec4 inv = scale * inversesqrt(variance + vec4(${a})); setOutput((x - mean) * inv + offset); } `}},jY=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:s,variance:a,offset:o,scale:i}=e;w.assert(s.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||s.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||s.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:c}=n;c==null&&(c=.001);let l=[r,s,a],u=null;o!=null&&(u=o.shape,l.push(o));let d=null;i!=null&&(d=i.shape,l.push(i));let p=J().getBool("WEBGL_PACK_NORMALIZATION")?new HY(r.shape,s.shape,a.shape,u,d,c):new GY(r.shape,s.shape,a.shape,u,d,c);return t.runWebGLProgram(p,l,l[0].dtype)},qY={kernelName:no,backendName:"webgl",kernelFunc:jY},KY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ft(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=XY(this.rank),r,s=e.map((a,o)=>`sourceLoc.${jw[o]} = start[${o}] + coords.${jw[o]};`);r=` ${t} sourceLoc; ${t} coords = getOutputCoords(); ${s.join(` `)} `,this.userCode=` void main() { ${r} setOutput(getSource(${n})); } `}},jw=["x","y","z","w","u","v"];function XY(e){if(e===1)return"sourceLoc";if(e<=6)return jw.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var YY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ft(this.rank),n=Nn("coords",this.rank),r=Nn("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,a=`getChannel(getSource(${r.join()}), ${s})`,o=` result.x = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.y = ${a}; --${r[this.rank-1]}; } `,i=this.rank===1?"":` --${n[this.rank-1]}; if (++${n[this.rank-2]} < ${e[this.rank-2]}) { ++${r[this.rank-2]}; result.z = ${a}; if (++${n[this.rank-1]} < ${e[this.rank-1]}) { ++${r[this.rank-1]}; result.w = ${a}; } } `,c=this.rank<=4?`sourceLoc = coords + ${t}(${e.map((l,u)=>`start[${u}]`).join()});`:e.map((l,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(` `);this.userCode=` void main() { ${t} coords = getOutputCoords(); ${t} sourceLoc; ${c} vec4 result = vec4(0.); ${o} ${i} setOutput(result); } `}};function ZY(e,t,n,r){let s=r.texData.get(e.dataId),a=r.makeTensorInfo(n,e.dtype),o=r.texData.get(a.dataId);Object.assign(o,s),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Gt.computeFlatOffset(t,w.computeStrides(e.shape));s.slice&&(i+=s.slice.flatOffset),o.slice={flatOffset:i,origDataId:s.slice&&s.slice.origDataId||e.dataId};let c=r.dataRefCount.get(o.slice.origDataId)||1;return r.dataRefCount.set(o.slice.origDataId,c+1),a}function Au(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,size:o}=r,[i,c]=Gt.parseSliceParams(s,a,o);if(Gt.assertParamsValid(s,i,c),w.sizeFromShape(c)===0)return n.makeTensorInfo(c,s.dtype,[]);if(n.shouldExecuteOnCPU([s])||s.dtype==="string"){let d=n.texData.get(s.dataId),p=O7(d.values,i,c,s.shape,s.dtype);return n.makeTensorInfo(c,s.dtype,p)}let{isPacked:l}=n.texData.get(s.dataId),u=Gt.isSliceContinous(s.shape,i,c);if(l||!u){let d=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new YY(c):new KY(c),p=[i];return n.runWebGLProgram(d,[s],s.dtype,p)}return n.uploadToGPU(s.dataId),ZY(s,i,c,n)}var JY={kernelName:Pc,backendName:"webgl",kernelFunc:Au},QY=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,crops:o}=r;w.assert(s.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((v,y)=>v*y),c=E.getReshaped(s.shape,a,i),l=E.getPermuted(c.length,a.length),u=E.getReshapedPermuted(s.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=[],f=be({inputs:{x:s},backend:n,attrs:{shape:c}}),m=_n({inputs:{x:f},backend:n,attrs:{perm:l}}),g=be({inputs:{x:m},backend:n,attrs:{shape:u}}),b=Au({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(v=>n.disposeIntermediateTensorInfo(v)),b},eZ={kernelName:nc,backendName:"webgl",kernelFunc:QY};function tZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o}=r,i=n.readSync(s.dataId),c=n.readSync(a.dataId),l=oN(i,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,l)}var nZ={kernelName:Vp,backendName:"webgl",kernelFunc:tZ};function rZ(e){let{inputs:t,backend:n}=e,{s0:r,s1:s}=t,a=n.readSync(r.dataId),o=n.readSync(s.dataId),i=E.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var sZ={kernelName:Up,backendName:"webgl",kernelFunc:rZ},aZ="return float(a != b);",$N=dn({opSnippet:aZ,cpuKernelImpl:D7,dtype:"bool"}),oZ={kernelName:Ic,backendName:"webgl",kernelFunc:$N};function Ld(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return rr({inputs:{x:s.complexTensorInfos.real},backend:n})}var iZ={kernelName:dh,backendName:"webgl",kernelFunc:Ld},cZ="return float(int(x));";function uZ(e,t){let n=new Sa(e.shape,cZ),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function qw(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dtype:a}=r;if(a==="complex64"){if(s.dtype==="complex64")return rr({inputs:{x:s},backend:n});let o=It(s.shape),i=qw({inputs:{x:s},backend:n,attrs:{dtype:"float32"}}),c=Ca({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),c}if(s.dtype==="complex64"){let o=Ld({inputs:{input:s},backend:n}),i=qw({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(s.dtype,a)){let o=rr({inputs:{x:s},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return uZ(s,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),c=$N({inputs:{a:s,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),c}throw new Error(`Error in Cast: failed to cast ${s.dtype} to ${a}`)}var lZ={kernelName:Ua,backendName:"webgl",kernelFunc:qw},RN="return ceil(x);",dZ=Xe({opSnippet:RN,packedOpSnippet:RN,cpuKernelImpl:p7}),pZ={kernelName:Ga,backendName:"webgl",kernelFunc:dZ},hZ=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { float value = getAAtOutCoords(); if (isnan(value)) { setOutput(value); return; } setOutput(clamp(value, minVal, maxVal)); } `}},fZ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=` void main() { vec4 value = getAAtOutCoords(); if (any(isnan(value))) { setOutput(value); return; } setOutput(clamp(value, vec4(minVal), vec4(maxVal))); } `}};function mZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i;J().getBool("WEBGL_PACK_CLIP")?i=new fZ(s.shape):i=new hZ(s.shape);let c=[[a],[o]];return n.runWebGLProgram(i,[s],s.dtype,c)}var gZ={kernelName:Qs,backendName:"webgl",kernelFunc:mZ},bZ=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=` void main() { float re = abs(getRealAtOutCoords()); float im = abs(getImagAtOutCoords()); float mx = max(re, im); // sadly the length function in glsl is not underflow-safe // (at least not on Intel GPUs). So the safe solution is // to ensure underflow-safety in all cases. setOutput( mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx)) ); } `}};function PN(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function yZ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=n.texData.get(r.dataId),a=new bZ(r.shape),o=[PN(r,s.complexTensorInfos.real),PN(r,s.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var vZ={kernelName:vl,backendName:"webgl",kernelFunc:yZ},xZ=class{constructor(e){this.outputShape=[],this.outputShape=E.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f= ${i[f-1]}) { return getChannel( getT${f}(${Cm(o,c,m)}), vec2(${Cm(l,c,m)})); }`}let p=i.length,h=i[i.length-1];d+=` return getChannel( getT${p}(${Cm(o,c,h)}), vec2(${Cm(l,c,h)}));`,this.userCode=` float getValue(${o.map(f=>"int "+f)}) { ${d} } void main() { ${s} coords = getOutputCoords(); vec4 result = vec4(getValue(${a}), 0., 0., 0.); ${a[r-1]} = ${a[r-1]} + 1; if (${a[r-1]} < ${n[r-1]}) { result.g = getValue(${a}); } ${a[r-2]} = ${a[r-2]} + 1; if (${a[r-2]} < ${n[r-2]}) { result.a = getValue(${a}); } ${a[r-1]} = ${a[r-1]} - 1; if (${a[r-2]} < ${n[r-2]} && ${a[r-1]} < ${n[r-1]}) { result.b = getValue(${a}); } setOutput(result); } `}};function Cm(e,t,n){let r=e.indexOf(t);return e.map((a,o)=>o===r?`${a} - ${n}`:a).join()}function Tm(e){let{inputs:t,backend:n}=e,{input:r}=t,s=n.texData.get(r.dataId);return rr({inputs:{x:s.complexTensorInfos.imag},backend:n})}var kZ={kernelName:sh,backendName:"webgl",kernelFunc:Tm};function Du(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>Ld({inputs:{input:m},backend:n})),d=e.map(m=>Tm({inputs:{input:m},backend:n})),p=Du(u,t,n),h=Du(d,t,n),f=Ca({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let s=n.shouldExecuteOnCPU(e);if(r==="string"&&(s=!0),s){let u=e.map(b=>{let v=w.sizeFromShape(b.shape.slice(t));return be({inputs:{x:b},backend:n,attrs:{shape:[-1,v]}})}),d=u.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),p=E.computeOutShape(u.map(b=>b.shape),1),h=u[0].shape[0]===1,f=h7(d,p,r,h),m=E.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,r,f);return u.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Du(e.slice(0,u),t,n),p=Du(e.slice(u),t,n),h=Du([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new wZ(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:o}=IZ(e,t,n),i=new xZ(a.map(u=>u.shape)),c=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=be({inputs:{x:c},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(c),l}function IZ(e,t,n){let r=E.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function ON(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r,a=w.parseAxisParam(s,t[0].shape)[0],o=E.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(l=>w.sizeFromShape(l.shape)>0);if(i.length===1)return rr({inputs:{x:i[0]},backend:n});let c=i.map(l=>l.shape);return E.assertParamsConsistent(c,a),Du(i,a,n)}var SZ={kernelName:rc,backendName:"webgl",kernelFunc:ON},MN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,c=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,v=m?3:1,y="",x="";n&&(r?y=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:s?y=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:y=` float activation(float x) { ${n} } `,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${y} const ivec2 strides = ivec2(${i}, ${c}); const ivec2 pads = ivec2(${a}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d2 = coords[${v}]; ivec2 xRCCorner = ivec2(coords[${g}], coords[${b}]) * strides - pads; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${l}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${p}; wC++) { int xC = xCCorner + wC * ${u}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 wValues = vec4( getW(wR, wC, d1, d2), getW(wR, wC, d1 + 1, d2), getW(wR, wC, d1 + 2, d2), getW(wR, wC, d1 + 3, d2) ); if (${m}) { vec4 xValues = vec4( getX(batch, xR, xC, d1), getX(batch, xR, xC, d1 + 1), getX(batch, xR, xC, d1 + 2), getX(batch, xR, xC, d1 + 3) ); dotProd += dot(xValues, wValues); } else { vec4 xValues = vec4( getX(batch, d1, xR, xC), getX(batch, d1 + 1, xR, xC), getX(batch, d1 + 2, xR, xC), getX(batch, d1 + 3, xR, xC) ); dotProd += dot(xValues, wValues); } } if (${f===1}) { if (${m}) { dotProd += getX(batch, xR, xC, ${h}) * getW(wR, wC, ${h}, d2); } else { dotProd += getX(batch, ${h}, xR, xC) * getW(wR, wC, ${h}, d2); } } else if (${f===2}) { vec2 wValues = vec2( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2) ); if (${m}) { vec2 xValues = vec2( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1) ); dotProd += dot(xValues, wValues); } else { vec2 xValues = vec2( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC) ); dotProd += dot(xValues, wValues); } } else if (${f===3}) { vec3 wValues = vec3( getW(wR, wC, ${h}, d2), getW(wR, wC, ${h} + 1, d2), getW(wR, wC, ${h} + 2, d2) ); if (${m}) { vec3 xValues = vec3( getX(batch, xR, xC, ${h}), getX(batch, xR, xC, ${h} + 1), getX(batch, xR, xC, ${h} + 2) ); dotProd += dot(xValues, wValues); } else { vec3 xValues = vec3( getX(batch, ${h}, xR, xC), getX(batch, ${h} + 1, xR, xC), getX(batch, ${h} + 2, xR, xC) ); dotProd += dot(xValues, wValues); } } } } float result = dotProd; ${k} ${x} setOutput(result); } `}},CZ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,c=e.dilationHeight,l=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=` const ivec3 strides = ivec3(${s}, ${a}, ${o}); const ivec3 pads = ivec3(${t}, ${n}, ${r}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d2 = coords.u; ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads; int xFCorner = xFRCCorner.x; int xRCorner = xFRCCorner.y; int xCCorner = xFRCCorner.z; // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get // y(yF, yR, yC, d2). ? = to be determined. : = across all // values in that axis. float dotProd = 0.0; for (int wF = 0; wF < ${u}; wF++) { int xF = xFCorner + wF * ${i}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int wR = 0; wR < ${d}; wR++) { int xR = xRCorner + wR * ${c}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int wC = 0; wC < ${p}; wC++) { int xC = xCCorner + wC * ${l}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } for (int d1 = 0; d1 < ${h}; d1 += 4) { vec4 xValues = vec4( getX(batch, xF, xR, xC, d1), getX(batch, xF, xR, xC, d1 + 1), getX(batch, xF, xR, xC, d1 + 2), getX(batch, xF, xR, xC, d1 + 3) ); vec4 wValues = vec4( getW(wF, wR, wC, d1, d2), getW(wF, wR, wC, d1 + 1, d2), getW(wF, wR, wC, d1 + 2, d2), getW(wF, wR, wC, d1 + 3, d2) ); dotProd += dot(xValues, wValues); } if (${f===1}) { dotProd += getX(batch, xF, xR, xC, ${h}) * getW(wF, wR, wC, ${h}, d2); } else if (${f===2}) { vec2 xValues = vec2( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1) ); vec2 wValues = vec2( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2) ); dotProd += dot(xValues, wValues); } else if (${f===3}) { vec3 xValues = vec3( getX(batch, xF, xR, xC, ${h}), getX(batch, xF, xR, xC, ${h} + 1), getX(batch, xF, xR, xC, ${h} + 2) ); vec3 wValues = vec3( getW(wF, wR, wC, ${h}, d2), getW(wF, wR, wC, ${h} + 1, d2), getW(wF, wR, wC, ${h} + 2, d2) ); dotProd += dot(xValues, wValues); } } } } setOutput(dotProd); } `}},TZ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=fr(this.outputShape.length);let{dataFormat:n}=t,r=Tn(),s=n==="channelsLast",a=s?0:1,o=s?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,c="";for(let l=0;l<=1;l++)for(let u=0;u<=1;u++)c+=` blockIndex = rc.y + ${u}; pos = rc.x + ${l}; ${i} offsetY = int(blockIndex / outWidth) * stride[0] - pad[0]; d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow); if(d0 < inputShape[${a}] && d0 >= 0) { // Use custom imod instead mod. On Intel GPU, mod may generate // unexpected value. // https://github.com/tensorflow/tfjs/issues/5447 offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1]; d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) / inChannels); if(d1 < inputShape[${o}] && d1 >= 0) { ch = imod(pos, inChannels); if (${s}) { innerDims = vec2(d1, ch); result[${l*2+u}] = getChannel( getA(d0, int(innerDims.x), int(innerDims.y)), innerDims); } else { innerDims = vec2(d0, d1); result[${l*2+u}] = getChannel( getA(ch, int(innerDims.x), int(innerDims.y)), innerDims); } } } } `;this.userCode=` void main() { ivec2 rc = getOutputCoords(); vec4 result = vec4(0); int blockIndex, pos, offsetY, d0, offsetX, d1, ch; vec2 innerDims; ${c} ${r.output} = result; } `}};function LN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let c=e.shape,l=r.texData.get(e.dataId),u=n.inChannels,d=c[0]*c[1]*c[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(!((d===1||p===1)&&u>NN)&&l.isPacked&&h&&l.texture!=null&&c[2]%2!=0&&w.arraysEqual(l.shape.slice(-3),c.slice(-3))){let x=c[0]*c[1]*(c[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},C=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,w.assert(Rd(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let N=be({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push(N);let D=Im({a:k,b:N,backend:r,transposeA:f,transposeB:m,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),F=r.texData.get(D.dataId);w.assert(F.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=C,F.shape=n.outShape,g=rr({inputs:{x:D},backend:r}),g.shape=n.outShape,b.push(D)}else{let x=h?c[0]*c[1]*c[2]:c[0]*c[2]*c[3],k=be({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),C=be({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Im({a:k,b:C,transposeA:f,transposeB:m,backend:r,bias:s,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),b.push(k),b.push(C),b.push(N)}for(let x of b)r.disposeIntermediateTensorInfo(x);return g}function BN({x:e,filter:t,convInfo:n,backend:r,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:c,filterHeight:l,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=c*l*u,g=p*d,b=[m,g],v=!0,y=!1,x=[],k=be({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),C=be({inputs:{x:t},backend:r,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k),x.push(C);let N=new TZ(b,n),D=[k.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],F=r.runWebGLProgram(N,[k],"float32",D),O=be({inputs:{x:F},backend:r,attrs:{shape:[1,b[0],b[1]]}});x.push(F),x.push(O);let $=s!=null,P=a!=null,T=i==="leakyrelu",L=i?xm(i,!0):null,G=new kN(O.shape,C.shape,[1,g,n.outChannels],v,y,$,L,P,T),j=[O,C];if(s&&j.push(s),P&&j.push(a),T){let te=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(te),x.push(te)}let q=r.runWebGLProgram(G,j,"float32"),K=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],ee=be({inputs:{x:q},backend:r,attrs:{shape:K}});x.push(q);for(let te of x)r.disposeIntermediateTensorInfo(te);return ee}function NZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dataFormat:c,dilations:l,dimRoundingMode:u}=r,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(s.shape,a.shape,o,l,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=LN({x:s,filter:a,convInfo:p,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)h=BN({x:s,filter:a,convInfo:p,backend:n});else{let m=new MN(p);h=n.runWebGLProgram(m,[s,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var _Z={kernelName:Ha,backendName:"webgl",kernelFunc:NZ},EZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int d2 = coords.w; // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${s}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } if (${a}) { float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } else { float dyValue = getDy(b, d2, yR, yC); float xValue = getX(b, d1, xR, xC); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},AZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,c=a?1:2,l=a?2:3,u=a?3:1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[${u}]; ivec2 dyCorner = ivec2(coords[${c}], coords[${l}]) - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { if (${a}) { float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } else { float xValue = getDy(batch, d2, idyR, idyC); float wValue = getW(wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}},DZ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=` void main() { ivec5 coords = getOutputCoords(); int wF = coords.x; int wR = coords.y; int wC = coords.z; int d1 = coords.w; int d2 = coords.u; float dotProd = 0.0; for (int b = 0; b < ${e.batchSize}; b++) { for (int yF = 0; yF < ${e.outDepth}; yF++) { int xF = wF + yF * ${t} - ${s}; if (xF < 0 || xF >= ${e.inDepth}) { continue; } for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${n} - ${a}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${r} - ${o}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yF, yR, yC, d2); float xValue = getX(b, xF, xR, xC, d1); dotProd += (xValue * dyValue); } } } } setOutput(dotProd); } `}},FZ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,s=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,c=n-1-e.padInfo.top,l=r-1-e.padInfo.left;this.userCode=` const ivec3 pads = ivec3(${i}, ${c}, ${l}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyFCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; float dotProd = 0.0; for (int wF = 0; wF < ${t}; wF++) { float dyF = float(dyFCorner + wF) / ${s}.0; if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) { continue; } int idyF = int(dyF); int wFPerm = ${t} - 1 - wF; for (int wR = 0; wR < ${n}; wR++) { float dyR = float(dyRCorner + wR) / ${a}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${n} - 1 - wR; for (int wC = 0; wC < ${r}; wC++) { float dyC = float(dyCCorner + wC) / ${o}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${r} - 1 - wC; for (int d2 = 0; d2 < ${e.outChannels}; d2++) { float xValue = getDy(batch, idyF, idyR, idyC, d2); float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2); dotProd += xValue * wValue; } } } } setOutput(dotProd); } `}};function $Z(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,dataFormat:c,dimRoundingMode:l,filterShape:u}=r,d=E.convertConv2DDataFormat(c),p=E.computeConv2DInfo(s.shape,u,o,1,i,l,!1,d),h=new EZ(p);return n.runWebGLProgram(h,[s,a],"float32")}var RZ={kernelName:Hp,backendName:"webgl",kernelFunc:$Z};function PZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{inputShape:o,strides:i,pad:c,dataFormat:l,dimRoundingMode:u}=r,d=E.convertConv2DDataFormat(l),p=E.computeConv2DInfo(o,a.shape,i,1,c,u,!1,d),h=new AZ(p);return n.runWebGLProgram(h,[s,a],"float32")}var OZ={kernelName:ja,backendName:"webgl",kernelFunc:PZ};function MZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,l=E.computeConv3DInfo(s.shape,a.shape,o,c,i),u=new CZ(l);return n.runWebGLProgram(u,[s,a],"float32")}var LZ={kernelName:xl,backendName:"webgl",kernelFunc:MZ};function BZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,pad:i,filterShape:c}=r,l=E.computeConv3DInfo(s.shape,c,o,1,i),u=new DZ(l);return n.runWebGLProgram(u,[s,a],"float32")}var zZ={kernelName:jp,backendName:"webgl",kernelFunc:BZ};function WZ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{pad:o,strides:i,inputShape:c}=r,l=E.computeConv3DInfo(c,a.shape,i,1,o),u=new FZ(l);return n.runWebGLProgram(u,[s,a],"float32")}var VZ={kernelName:qp,backendName:"webgl",kernelFunc:WZ},UZ=wN+` return cos(x); `,GZ=Xe({opSnippet:UZ}),HZ={kernelName:qa,backendName:"webgl",kernelFunc:GZ},jZ=` float e2x = exp(-x); return (e2x + 1.0 / e2x) / 2.0; `,qZ=Xe({opSnippet:jZ}),KZ={kernelName:Ka,backendName:"webgl",kernelFunc:qZ},XZ=class{constructor(e,t,n,r,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,c]=e,[l]=t,[u,d]=n;this.outputShape=[l,u,d,c];let p=r==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,b]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[v,y,x]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=` const float height_ratio = float(${m}); const float width_ratio = float(${v}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int y = coords[1]; int x = coords[2]; int d = coords[3]; // get box vals float y1 = getBoxes(b,0); float x1 = getBoxes(b,1); float y2 = getBoxes(b,2); float x2 = getBoxes(b,3); // get image in batch index int bInd = round(getBoxInd(b)); if(bInd < 0 || bInd >= ${a}) { return; } float height_scale = ${g}; float width_scale = ${y}; float in_y = ${b}; if( in_y < 0.0 || in_y > ${h} ) { setOutput(float(${s})); return; } float in_x = ${x}; if( in_x < 0.0 || in_x > ${f} ) { setOutput(float(${s})); return; } vec2 sourceFracIndexCR = vec2(in_x,in_y); if(${p} == 1) { // Compute the four integer indices. ivec2 sourceFloorCR = ivec2(sourceFracIndexCR); ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR)); float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d); float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d); float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d); float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d); vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR); float top = topLeft + (topRight - topLeft) * fracCR.x; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x; float newValue = top + (bottom - top) * fracCR.y; setOutput(newValue); } else { // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestCR = ivec2(floor( sourceFracIndexCR + vec2(0.5,0.5))); float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d); setOutput(newValue); } } `}},YZ=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:s,boxes:a,boxInd:o}=t,{cropSize:i,method:c,extrapolationValue:l}=r,u=new XZ(s.shape,a.shape,i,c,l);return n.runWebGLProgram(u,[s,a,o],"float32")},ZZ={kernelName:sc,backendName:"webgl",kernelFunc:YZ},zN=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let r=e.length,s=t?"0.0":`getX(${WN(r,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=` void main() { ${ft(r)} coords = getOutputCoords(); int end = ${VN(r,"coords")}; float val = ${s}; int pow2 = int(pow(2.0, index)); if (${o}) { int idx = ${i}; ${VN(r,"coords")} = idx; val += getX(${WN(r,"coords")}); } setOutput(val); } `}};function WN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function VN(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function JZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,exclusive:o,reverse:i}=r,c=s.shape.length,l=E.getAxesPermutation([a],c),u=s;l!=null&&(u=_n({inputs:{x:s},backend:n,attrs:{perm:l}}));let d=E.getInnerMostAxes(1,c)[0];if(d!==c-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${s.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=rr({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new zN(u.shape,!1,i),g=[[f]],b=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(b)}if(o){let f=new zN(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(l!=null){let f=E.getUndoAxesPermutation(l),m=_n({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var QZ={kernelName:Xa,backendName:"webgl",kernelFunc:JZ};function eJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,weights:a}=t,{size:o,binaryOutput:i}=r;if(s.shape.length===1){let c=n.readSync(s.dataId),l=n.readSync(a.dataId),u=oN(c,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(s.shape.length===2){let c=n.bufferSync(s),l=n.bufferSync(a),u=d7(c,l,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${s.shape.length}.`)}var tJ={kernelName:Kp,backendName:"webgl",kernelFunc:eJ},nJ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int h = ${this.getHeightCoordString()}; int w = ${this.getWidthCoordString()}; int d = ${this.getDepthCoordString()}; int in_h = h / ${t}; int offset_h = imod(h, ${t}); int in_w = w / ${t}; int offset_w = imod(w, ${t}); int offset_d = (offset_h * ${t} + offset_w) * ${this.getOutputDepthSize()}; int in_d = d + offset_d; float result = ${this.getInputSamplingString()}; setOutput(result); } `}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function rJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockSize:a,dataFormat:o}=r,i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],u=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=l*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new nJ(f,a,o);return n.runWebGLProgram(m,[s],s.dtype)}var sJ={kernelName:ac,backendName:"webgl",kernelFunc:rJ},UN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=fr(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,c="",l="";n&&(r?c=`float activation(float a) { float b = getPreluActivationWeightsAtOutCoords(); ${n} }`:s?c=`float activation(float a) { float b = getLeakyreluAlphaAtOutCoords(); ${n} }`:c=` float activation(float x) { ${n} } `,l="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=` ${c} void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; ivec2 xRCCorner = coords.yz * strides - pads; int d2 = coords.w; int d1 = d2 / ${i}; int q = d2 - d1 * ${i}; int xRCorner = xRCCorner.x; int xCCorner = xRCCorner.y; // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations. for (int wR = 0; wR < ${a}; wR++) { int xR = xRCorner + wR * dilations[0]; if (xR < 0 || xR >= inDims[0]) { continue; } for (int wC = 0; wC < ${o}; wC++) { int xC = xCCorner + wC * dilations[1]; if (xC < 0 || xC >= inDims[1]) { continue; } float xVal = getX(batch, xR, xC, d1); float wVal = getW(wR, wC, d1, q); dotProd += xVal * wVal; } } float result = dotProd; ${u} ${l} setOutput(result); } `}},GN=class{constructor(e,t=!1,n=null,r=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=fr(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,c=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,d=u,p=` int xR; int xC; int xCOffset; vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g=0 && xR < inDims[0]) { `;for(let g=0;g<(d+1)/2;g++){let b=g*2;if(p+=` xC = xCCorner + ${b*c}; `,i===1){if(b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) { xTexelC${b} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${b}.zw = vec2(0.0); } xTexelC${b}Ready = 1; } `,c===1&&b>0?p+=` xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy); `:p+=` xCOffset = xC + 1 - 2; if (xCOffset >= 0 && xCOffset < inDims[1]) { previous = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { previous.zw = vec2(0.0); } xC${b} = vec4(previous.zw, xTexelC${b}.xy); } else { xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy); } `):p+=` if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) { xTexelC${b} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${b}.zw = vec2(0.0); } xTexelC${b}Ready = 1; } xC${b} = xTexelC${b}; `,b+1= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) { xTexelC${b+1} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${b+1}.zw = vec2(0.0); } xTexelC${b+1}Ready = 1; } `,c>1&&(p+=` xCOffset -= 2; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) { xTexelC${b} = getX(batch, xR, xCOffset, d1); xTexelC${b}Ready = 1; } `),p+=` xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy); `):v===1?p+=` xC${b+1} = xTexelC${b}; `:p+=` xCOffset = xC + ${v}; if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) { xTexelC${b+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${b+1}.zw = vec2(0.0); } xTexelC${b+1}Ready = 1; } xC${b+1} = xTexelC${b+1}; `}}else b= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) { xTexelC${b} = getX(batch, xR, xCOffset, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xCOffset + 1 >= inDims[1]) { xTexelC${b}.zw = vec2(0.0); } xTexelC${b}Ready = 1; } if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) { xTexelC${b+1} = getX(batch, xR, xC + 1, d1); // Need to manually clear unused channels in case // we're reading from recycled texture. if (xC + 2 >= inDims[1]) { xTexelC${b+1}.zw = vec2(0.0); } xTexelC${b+1}Ready = 1; } xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw); `,b+1= 0 && xCOffset < inDims[1]) { final = getX(batch, xR, xCOffset, d1); } xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy); `)):(p+=` if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) { xTexelC${b} = getX(batch, xR, xC, d1); if (xC + 1 >= inDims[1]) { xTexelC${b}.zw = vec2(0.0); } xTexelC${b}Ready = 1; } xCOffset = xC + strides[1]; if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) { xTexelC${b+1} = getX(batch, xR, xCOffset, d1); if (xCOffset + 1 >= inDims[1]) { xTexelC${b+1}.zw = vec2(0.); } xTexelC${b+1}Ready = 1; } xC${b} = vec4( xTexelC${b}.xy, xTexelC${b+1}.xy); `,b+1`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=E.computeConv2DInfo(s.shape,a.shape,o,u,i,l,!0),p;J().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new GN(d):p=new UN(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[s,a],"float32",h)}var oJ={kernelName:Ya,backendName:"webgl",kernelFunc:aJ},iJ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int wR = coords.x; int wC = coords.y; int d1 = coords.z; int dm = coords.w; int d2 = d1 * ${a} + dm; float dotProd = 0.0; // TO DO: Vec4 over the batch size for (int b = 0; b < ${e.batchSize}; b++) { for (int yR = 0; yR < ${e.outHeight}; yR++) { int xR = wR + yR * ${t} - ${r}; if (xR < 0 || xR >= ${e.inHeight}) { continue; } for (int yC = 0; yC < ${e.outWidth}; yC++) { int xC = wC + yC * ${n} - ${s}; if (xC < 0 || xC >= ${e.inWidth}) { continue; } float dyValue = getDy(b, yR, yC, d2); float xValue = getX(b, xR, xC, d1); dotProd += (xValue * dyValue); } } } setOutput(dotProd); } `}},cJ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=` const ivec2 pads = ivec2(${a}, ${o}); void main() { ivec4 coords = getOutputCoords(); int batch = coords[0]; int d1 = coords[3]; ivec2 dyCorner = coords.yz - pads; int dyRCorner = dyCorner.x; int dyCCorner = dyCorner.y; float dotProd = 0.0; for (int wR = 0; wR < ${t}; wR++) { float dyR = float(dyRCorner + wR) / ${r}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); int wRPerm = ${t} - 1 - wR; for (int wC = 0; wC < ${n}; wC++) { float dyC = float(dyCCorner + wC) / ${s}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); int wCPerm = ${n} - 1 - wC; // TO DO: Vec4 over the channelMul for (int dm = 0; dm < ${i}; dm++) { int d2 = d1 * ${i} + dm; float xValue = getDy(batch, idyR, idyC, d2); float wValue = getW(wRPerm, wCPerm, d1, dm); dotProd += xValue * wValue; } } } setOutput(dotProd); } `}};function uJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,dy:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,filterShape:u}=r,d=E.computeConv2DInfo(s.shape,u,o,i,c,l,!0),p=new iJ(d);return n.runWebGLProgram(p,[s,a],"float32")}var lJ={kernelName:Xp,backendName:"webgl",kernelFunc:uJ};function dJ(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,filter:a}=t,{strides:o,dilations:i,pad:c,dimRoundingMode:l,inputShape:u}=r,d=E.computeConv2DInfo(u,a.shape,o,i,c,l,!0),p=new cJ(d);return n.runWebGLProgram(p,[s,a],"float32")}var pJ={kernelName:Yp,backendName:"webgl",kernelFunc:dJ},hJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=` void main() { ivec2 coords = getOutputCoords(); float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0; setOutput(val); } `}};function fJ(e){let{inputs:t,backend:n}=e,{x:r}=t,s=[...r.shape,...r.shape],a=w.sizeFromShape(r.shape),o=be({inputs:{x:r},backend:n,attrs:{shape:[a]}}),i=new hJ(a),c=n.runWebGLProgram(i,[o],o.dtype),l=be({inputs:{x:c},backend:n,attrs:{shape:s}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),l}var mJ={kernelName:Zp,backendName:"webgl",kernelFunc:fJ},gJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:s,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:c,dilationWidth:l}=e,{top:u,left:d}=r;this.userCode=` const ivec2 strides = ivec2(${s}, ${a}); const ivec2 pads = ivec2(${u}, ${d}); const float neg_infinity = -3.4e38; void main() { ivec4 coords = getOutputCoords(); int batch = coords.x; int d1 = coords.w; ivec2 outTopLeftCorner = coords.yz * strides - pads; int hBeg = outTopLeftCorner.x; int wBeg = outTopLeftCorner.y; float curVal = neg_infinity; for (int h = 0; h < ${o}; h++) { int hIn = hBeg + h * ${c}; if (hIn >= 0 && hIn < ${t}) { for (int w = 0; w < ${i}; w++) { int wIn = wBeg + w * ${l}; if (wIn >= 0 && wIn < ${n}) { float xVal = getX(batch, hIn, wIn, d1); float wVal = getW(h, w, d1); float val = xVal + wVal; if (val > curVal) { curVal = val; } } } } } float result = curVal; setOutput(result); } `}};function bJ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a}=t,{strides:o,pad:i,dilations:c}=r,l=E.computeDilation2DInfo(s.shape,a.shape,o,i,"NHWC",c),u,d=new gJ(l);u=n.runWebGLProgram(d,[s,a],"float32");let p=be({inputs:{x:u},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(u),p}var yJ={kernelName:wl,backendName:"webgl",kernelFunc:bJ};function vJ(e){let{inputs:t,backend:n,attrs:r}=e,{equation:s}=r,a=t,{allDims:o,summedDims:i,idDims:c}=E.decodeEinsumEquation(s,a.length);E.checkEinsumDimSizes(o.length,c,a);let{path:l,steps:u}=E.getEinsumComputePath(i,c),d=u.length,p=null,h=o.length,f=[];for(let m=0;m=0&&(p=km({inputs:{x:p},backend:n,attrs:{axis:l[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var xJ={kernelName:eh,backendName:"webgl",kernelFunc:vJ},wJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",kJ=` vec4 result; result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0); result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0); result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0); result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0); return result; `,IJ=Xe({opSnippet:wJ,packedOpSnippet:kJ}),SJ={kernelName:Ja,backendName:"webgl",kernelFunc:IJ},CJ="return (b >= 1.0) ? a : a * (b + 1.0);",TJ=` vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.))); return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0)))); `,NJ=e=>{let{inputs:t,backend:n}=e,{dy:r,y:s}=t,a=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Od(TJ,r.shape,s.shape):new Eu(CJ,r.shape,s.shape);return n.runWebGLProgram(a,[r,s],r.dtype)},_J={kernelName:th,backendName:"webgl",kernelFunc:NJ},EJ=` return vec4(equal(a, b)); `,AJ="return float(a == b);",DJ=dn({opSnippet:AJ,packedOpSnippet:EJ,dtype:"bool",cpuKernelImpl:f7}),FJ={kernelName:ic,backendName:"webgl",kernelFunc:DJ},$J=` // Error function is calculated approximately with elementary function. // See "Handbook of Mathematical Functions with Formulas, // Graphs, and Mathematical Tables", Abramowitz and Stegun. float p = ${E.ERF_P}; float a1 = ${E.ERF_A1}; float a2 = ${E.ERF_A2}; float a3 = ${E.ERF_A3}; float a4 = ${E.ERF_A4}; float a5 = ${E.ERF_A5}; float sign = sign(x); x = abs(x); float t = 1.0 / (1.0 + p * x); return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x)); `,RJ=Xe({opSnippet:$J}),PJ={kernelName:oc,backendName:"webgl",kernelFunc:RJ},HN="return exp(x);",jN=Xe({opSnippet:HN,packedOpSnippet:HN,cpuKernelImpl:m7,dtype:"float32"}),OJ={kernelName:Qa,backendName:"webgl",kernelFunc:jN};function Kw(e){let{inputs:t,attrs:n,backend:r}=e,{dim:s}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),c=s;return s<0&&(w.assert(-(o+1)<=s,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+s+1),i.splice(c,0,1),be({inputs:{x:a},backend:r,attrs:{shape:i}})}var MJ={kernelName:cc,backendName:"webgl",kernelFunc:Kw},qN="return exp(x) - 1.0;",LJ=Xe({opSnippet:qN,packedOpSnippet:qN,cpuKernelImpl:g7}),BJ={kernelName:uc,backendName:"webgl",kernelFunc:LJ},KN=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let s=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${r}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=` const float exponentMultiplier = ${s}; float unaryOpComplex(float real, float expR, float imag, float expI) { ${o} } float mulMatDFT(int batch, int index) { float indexRatio = float(index) / float(${r}); float exponentMultiplierTimesIndexRatio = exponentMultiplier * indexRatio; float result = 0.0; for (int i = 0; i < ${r}; i++) { // x = (-2|2 * PI / N) * index * i; float x = exponentMultiplierTimesIndexRatio * float(i); float expR = cos(x); float expI = sin(x); float real = getReal(batch, i); float imag = getImag(batch, i); result += unaryOpComplex(real, expR, imag, expI) / ${a}; } return result; } void main() { ivec2 coords = getOutputCoords(); setOutput(mulMatDFT(coords[0], coords[1])); } `}};function XN(e,t,n){let r=n.texData.get(e.dataId),s=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=s/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),c=i.shape,l=new KN("real",c,t),u=new KN("imag",c,t),d=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:c},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:c}],p=n.runWebGLProgram(l,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Ca({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function zJ(e){let{inputs:t,backend:n}=e,{input:r}=t;return XN(r,!1,n)}var WJ={kernelName:nh,backendName:"webgl",kernelFunc:zJ},VJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=` void main() { // Input can be obtained from uniform value. setOutput(value); } `}};function Bd(e){let{backend:t,attrs:n}=e,{shape:r,value:s}=n,{dtype:a}=n;if(a=a||w.inferDtype(s),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(r));return o.fill(s),t.makeTensorInfo(r,a,o)}else{let o=new VJ(r,s),i=[[s]];return t.runWebGLProgram(o,[],a,i)}}var UJ={kernelName:kl,backendName:"webgl",kernelFunc:Bd},GJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int coordX = ${t} - x - 1; float outputValue; if(coordX >= 0 && coordX < ${t}) { outputValue = getImage(coords[0], coords[1], coordX, coords[3]); } else { outputValue = getImage(coords[0], coords[1], coords[2], coords[3]); } setOutput(outputValue); } `}},HJ={kernelName:lc,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,s=new GJ(n.shape);return r.runWebGLProgram(s,[n],n.dtype)}},YN="return floor(x);",jJ=Xe({opSnippet:YN,packedOpSnippet:YN,cpuKernelImpl:b7}),qJ={kernelName:eo,backendName:"webgl",kernelFunc:jJ},KJ=` float s = sign(a) * sign(b); int ia = round(a); int ib = round(b); if (ib != 0) { // Windows (D3D) wants guaranteed non-zero int division at compile-time. return float(idiv(ia, ib, s)); } else { return NAN; } `,XJ=` ivec4 ia = round(a); ivec4 ib = round(b); bvec4 cond = notEqual(ib, ivec4(0)); ivec4 result = ivec4(0); vec4 s = sign(a) * sign(b); // Windows (D3D) wants guaranteed non-zero int division at compile-time. if (cond[0]) { result[0] = idiv(ia[0], ib[0], s[0]); } if (cond[1]) { result[1] = idiv(ia[1], ib[1], s[1]); } if (cond[2]) { result[2] = idiv(ia[2], ib[2], s[2]); } if (cond[3]) { result[3] = idiv(ia[3], ib[3], s[3]); } return vec4(result); `,YJ=dn({opSnippet:KJ,packedOpSnippet:XJ,dtype:"int32"}),ZJ={kernelName:to,backendName:"webgl",kernelFunc:YJ},JJ=class{constructor(e){this.variableNames=["A"];let t=Tn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } setOutput(floor(value * 255.0 + 0.5)); } `}},QJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Tn(),[n,r]=e;this.outputShape=e,this.userCode=` void main() { ivec3 coords = getOutputCoords(); int texR = coords[0]; int texC = coords[1]; int depth = coords[2]; vec4 result = vec4(0.); for(int row=0; row<=1; row++) { for(int col=0; col<=1; col++) { texC = coords[1] + row; depth = coords[2] + col; vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0); vec4 values = ${t.texture2D}(A, uv); float value; if (depth == 0) { value = values.r; } else if (depth == 1) { value = values.g; } else if (depth == 2) { value = values.b; } else if (depth == 3) { value = values.a; } result[row * 2 + col] = floor(value * 255.0 + 0.5); } } ${t.output} = result; } `}},eQ={kernelName:Ih,backendName:"webgl",kernelFunc:tQ},Fu;function tQ(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:s}=t,{numChannels:a}=r,o=typeof HTMLVideoElement!="undefined"&&s instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&s instanceof HTMLImageElement,[c,l]=o?[s.videoWidth,s.videoHeight]:[s.width,s.height],u=[l,c],d=[l,c,a];(i||o)&&(Fu==null&&(Fu=document.createElement("canvas").getContext("2d")),Fu.canvas.width=c,Fu.canvas.height=l,Fu.drawImage(s,0,0,c,l),s=Fu.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=pr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),s);let h=J().getBool("WEBGL_PACK")?new QJ(d):new JJ(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function nQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=r,m=E.convertConv2DDataFormat(u),g=E.computeConv2DInfo(s.shape,a.shape,c,d,l,p,!1,m),b,v=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=LN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&s.shape[0]===1)b=BN({x:s,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let x=o!=null,k=i!=null,C=h==="leakyrelu",N=h?xm(h,!1):null,D=new MN(g,x,N,k,C),F=[s,a];if(o&&F.push(o),i&&F.push(i),C){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));F.push(O),v.push(O)}b=n.runWebGLProgram(D,F,"float32")}let y=be({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return v.push(b),v.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var rQ={kernelName:Mo,backendName:"webgl",kernelFunc:nQ};function sQ(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=r,f=[],m=u;m==null&&(m=[1,1]),w.assert(E.eitherStridesOrDilationsAreOne(c,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${c} and dilations '${m}'`);let g=E.computeConv2DInfo(s.shape,a.shape,c,m,l,d,!0),b=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,v=p?xm(p,b):null,y=[s,a],x=o!=null,k=i!=null,C=p==="leakyrelu";if(x&&y.push(o),k&&y.push(i),C){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));y.push(O),f.push(O)}let N;b?N=new GN(g,x,v,k,C):N=new UN(g,x,v,k,C);let D=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],F=n.runWebGLProgram(N,y,"float32",D);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),F}var aQ={kernelName:Lo,backendName:"webgl",kernelFunc:sQ},oQ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ft(t.length),s=ft(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=` ${r} strides = ${r}(${this.strides}); void main() { ${s} coords = getOutputCoords(); int flattenIndex = 0; for (int j = 0; j < ${this.sliceDim}; j++) { int index = round(getIndices(coords[0], j)); flattenIndex += index * ${a}; } setOutput(getX(flattenIndex, coords[1])); } `}};function iQ(e){let{inputs:t,backend:n}=e,{params:r,indices:s}=t,a=s.shape,o=a[a.length-1],i=w.sizeFromShape(r.shape),[c,l,u,d]=E.prepareAndValidate(r,s),p=be({inputs:{x:s},backend:n,attrs:{shape:[l,o]}}),h=be({inputs:{x:r},backend:n,attrs:{shape:[w.sizeFromShape(r.shape)/u,u]}});if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let b=n.readSync(s.dataId),v=n.bufferSync(r),y=y7(b,v,r.dtype,l,o,u,d,r.shape,i);return n.makeTensorInfo(c,r.dtype,y.values)}let f=new oQ(o,d,[l,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var cQ={kernelName:pc,backendName:"webgl",kernelFunc:iQ},uQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ft(this.rank),r=lQ(e,2);this.userCode=` void main() { ${n} resRC = getOutputCoords(); setOutput(getA(${r})); } `}};function lQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let s=0;s=0,()=>`GatherV2: the index value ${k} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(s,a,c,i),p=w.sizeFromShape(a.shape),h=[],f=be({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=be({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([s,a])||s.dtype==="string"){let x=n.bufferSync(m),k=n.bufferSync(f),C=v7(k,x,g);return h.forEach(N=>n.disposeIntermediateTensorInfo(N)),n.makeTensorInfo(d.outputShape,C.dtype,C.values)}let b=new uQ(f.shape,g),v=n.runWebGLProgram(b,[f,m],f.dtype);h.push(v);let y=be({inputs:{x:v},backend:n,attrs:{shape:d.outputShape}});return h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var dQ={kernelName:dc,backendName:"webgl",kernelFunc:ZN},pQ="return float(a > b);",hQ=` return vec4(greaterThan(a, b)); `,fQ=dn({opSnippet:pQ,packedOpSnippet:hQ,cpuKernelImpl:x7,dtype:"bool"}),mQ={kernelName:hc,backendName:"webgl",kernelFunc:fQ},gQ="return float(a >= b);",bQ=` return vec4(greaterThanEqual(a, b)); `,yQ=dn({opSnippet:gQ,packedOpSnippet:bQ,dtype:"bool",cpuKernelImpl:w7}),vQ={kernelName:ro,backendName:"webgl",kernelFunc:yQ};function xQ(e){let{inputs:t,backend:n}=e,{input:r}=t;return XN(r,!0,n)}var wQ={kernelName:rh,backendName:"webgl",kernelFunc:xQ},kQ="return float(!isnan(x) && !isinf(x));",IQ=Xe({opSnippet:kQ,dtype:"bool"}),SQ={kernelName:fc,backendName:"webgl",kernelFunc:IQ},CQ="return float(isinf(x));",TQ=Xe({opSnippet:CQ,dtype:"bool"}),NQ={kernelName:mc,backendName:"webgl",kernelFunc:TQ},_Q="return float(isnan(x));",EQ=Xe({opSnippet:_Q,dtype:"bool"}),AQ={kernelName:gc,backendName:"webgl",kernelFunc:EQ},DQ="return float(a < b);",FQ=` return vec4(lessThan(a, b)); `,$Q=dn({opSnippet:DQ,packedOpSnippet:FQ,cpuKernelImpl:k7,dtype:"bool"}),RQ={kernelName:bc,backendName:"webgl",kernelFunc:$Q},PQ="return float(a <= b);",OQ=` return vec4(lessThanEqual(a, b)); `,MQ=dn({opSnippet:PQ,packedOpSnippet:OQ,cpuKernelImpl:I7,dtype:"bool"}),LQ={kernelName:yc,backendName:"webgl",kernelFunc:MQ};function BQ(e){let{backend:t,attrs:n}=e,{start:r,stop:s,num:a}=n,o=S7(r,s,a);return t.makeTensorInfo([o.length],"float32",o)}var zQ={kernelName:ah,backendName:"webgl",kernelFunc:BQ},WQ=`if (x < 0.0) return NAN; return log(x);`,VQ=` vec4 result = log(x); vec4 isNaN = vec4(lessThan(x, vec4(0.0))); result.r = isNaN.r == 1.0 ? NAN : result.r; result.g = isNaN.g == 1.0 ? NAN : result.g; result.b = isNaN.b == 1.0 ? NAN : result.b; result.a = isNaN.a == 1.0 ? NAN : result.a; return result; `,UQ=Xe({opSnippet:WQ,packedOpSnippet:VQ,cpuKernelImpl:C7}),GQ={kernelName:oo,backendName:"webgl",kernelFunc:UQ},HQ="return log(1.0 + x);",jQ=Xe({opSnippet:HQ}),qQ={kernelName:vc,backendName:"webgl",kernelFunc:jQ},KQ="return float(a >= 1.0 && b >= 1.0);",XQ=` return vec4( vec4(greaterThanEqual(a, vec4(1.0))) * vec4(greaterThanEqual(b, vec4(1.0)))); `,YQ=dn({opSnippet:KQ,packedOpSnippet:XQ,dtype:"bool"}),ZQ={kernelName:xc,backendName:"webgl",kernelFunc:YQ},JQ="return float(!(x >= 1.0));",QQ=Xe({opSnippet:JQ}),eee={kernelName:Il,backendName:"webgl",kernelFunc:QQ},tee="return float(a >= 1.0 || b >= 1.0);",nee=` return min( vec4(greaterThanEqual(a, vec4(1.0))) + vec4(greaterThanEqual(b, vec4(1.0))), vec4(1.0)); `,ree=dn({opSnippet:tee,packedOpSnippet:nee,dtype:"bool"}),see={kernelName:Sl,backendName:"webgl",kernelFunc:ree},aee=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; int d = coords[3]; float x = getX(b, r, c, d); float sum = 0.0; for (int j = -${a}; j <= ${a}; j++) { int idx = d + j; if (idx >= 0 && idx <= ${o}) { float z = getX(b, r, c, idx); sum += z * z; } } float val = x * ${i}; setOutput(val); } `}},oee=class{constructor(e,t,n,r,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,c=`float(${n}) + float(${r}) * sum`;s===.5?i=`inversesqrt(${c})`:s===1?i=`1.0/(${c})`:i=`exp(log(${c}) * float(-${s}));`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords.x; int r = coords.y; int c = coords.z; int d = coords.w; bool hasNextCol = d < ${this.outputShape[3]}; bool hasNextRow = c < ${this.outputShape[2]}; vec4 sum = vec4(0.); vec4 xFragAtOutputCoords = getX(b, r, c, d); vec4 xAtOutputCoords = vec4( getChannel(xFragAtOutputCoords, vec2(c, d)), hasNextCol ? getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0, hasNextRow ? getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0, (hasNextRow && hasNextCol) ? getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0 ); int firstChannel = d - ${a}; vec2 cache = vec2(0.); if(firstChannel >= 0){ vec4 firstChannelFrag = getX(b, r, c, firstChannel); cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel)); if(hasNextRow){ cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel)); } } ivec2 depth = ivec2(d, d + 1); for (int j = - ${a}; j <= ${a}; j++) { ivec2 idx = depth + j; bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0)); bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o})); bool depthInRange = aboveLowerBound.x && belowUpperBound.x; bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y; if(depthInRange || depthPlusOneInRange){ vec4 z = vec4(0.); vec4 xFragAtCurrentDepth; z.xz = cache.xy; if(depthPlusOneInRange && hasNextCol){ xFragAtCurrentDepth = idx.y != d ? getX(b, r, c, idx.y) : xFragAtOutputCoords; z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y)); if(hasNextRow){ z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y)); } } cache.xy = z.yw; sum += z * z; } } vec4 result = xAtOutputCoords * ${i}; setOutput(result); } `}},iee=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{depthRadius:a,bias:o,alpha:i,beta:c}=r,l=J().getBool("WEBGL_PACK_NORMALIZATION")?new oee(s.shape,a,o,i,c):new aee(s.shape,a,o,i,c);return n.runWebGLProgram(l,[s],s.dtype)},cee={kernelName:Cl,backendName:"webgl",kernelFunc:iee},uee=class{constructor(e,t,n,r,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=s,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int r = coords[1]; int c = coords[2]; float result = 0.0; for (int d = 0; d < ${this.depth}; ++d) { int depthBegin = int(max(0.0, float(d - ${t}))); int depthEnd = int(min(float(${this.depth}), float(d + ${t} + 1))); const int MIN_DEPTH_BEGIN = 0; const int MAX_DEPTH_END = ${this.depth}; float norm = 0.0; for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) { if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd) { norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k); } else { break; } } norm = float(${r}) * norm + float(${n}); for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){ if (k < depthBegin){ continue; } else if (k >= depthBegin && k < depthEnd){ float dyi = -2.0 * float(${r}) * float(${s}) * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d) / norm; if (k == d) { dyi += pow(norm, -1.0 * ${s}); } if (k == coords[3]) { dyi *= getDy(b, r, c, d); result += dyi; } } else { break; } } } setOutput(result); } `}},lee=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s,y:a,dy:o}=t,{depthRadius:i,bias:c,alpha:l,beta:u}=r,d=new uee(s.shape,i,c,l,u);return n.runWebGLProgram(d,[s,a,o],s.dtype)},dee={kernelName:oh,backendName:"webgl",kernelFunc:lee};function pee(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=be({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=yi(i,e.dtype,"max",r),l=be({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),l}function JN(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{reductionIndices:a,keepDims:o}=r,i=s.shape.length,c=w.parseAxisParam(a,s.shape),l=c,u=E.getAxesPermutation(l,i),d=u!=null,p=n.shouldExecuteOnCPU([s]),h=s;if(d){if(p){let y=n.texData.get(h.dataId).values,x=new Array(i);for(let N=0;N`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${l}'`);let u=E.computePool2DInfo(s.shape,a,o,l,i,c);if(u.filterWidth===1&&u.filterHeight===1&&w.arraysEqual(u.inShape,u.outShape))return rr({inputs:{x:s},backend:n});let d=new Md(u,"max",!1);return n.runWebGLProgram(d,[s],s.dtype)}var vee={kernelName:uo,backendName:"webgl",kernelFunc:yee};function xee(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{filterSize:a,strides:o,pad:i,dataFormat:c,dimRoundingMode:l}=r,u=[1,1,1],d=E.computePool3DInfo(s.shape,a,o,u,i,l,c),p=new Hw(d,"max",!1);return n.runWebGLProgram(p,[s],s.dtype)}var wee={kernelName:Tl,backendName:"webgl",kernelFunc:xee},kee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=s-1-e.padInfo.top,i=a-1-e.padInfo.left,c=s*a-1;this.userCode=` const ivec2 pads = ivec2(${o}, ${i}); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 dyRCCorner = coords.yz - pads; int dyRCorner = dyRCCorner.x; int dyCCorner = dyRCCorner.y; // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wR = 0; wR < ${s}; wR += ${r}) { float dyR = float(dyRCorner + wR) / ${t}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${a}; wC++) { float dyC = float(dyCCorner + wC) / ${n}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(b, idyR, idyC, d); int maxPosValue = ${c} - int(getMaxPos(b, idyR, idyC, d)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wR * ${a} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } setOutput(dotProd); } `}},Iee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,c=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=c-1-e.padInfo.top,p=l-1-e.padInfo.left,h=i*c*l-1;this.userCode=` const ivec3 pads = ivec3(${u}, ${d}, ${p}); void main() { ivec5 coords = getOutputCoords(); int batch = coords.x; int ch = coords.u; ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads; int dyDCorner = dyCorner.x; int dyRCorner = dyCorner.y; int dyCCorner = dyCorner.z; // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get // dx(xD, xR, xC, ch). // ? = to be determined. : = across all values in that axis. float dotProd = 0.0; for (int wD = 0; wD < ${i}; wD += ${s}) { float dyD = float(dyDCorner + wD) / ${t}.0; if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) { continue; } int idyD = int(dyD); for (int wR = 0; wR < ${c}; wR += ${a}) { float dyR = float(dyRCorner + wR) / ${n}.0; if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) { continue; } int idyR = int(dyR); for (int wC = 0; wC < ${l}; wC += ${o}) { float dyC = float(dyCCorner + wC) / ${r}.0; if (dyC < 0.0 || dyC >= ${e.outWidth}.0 || fract(dyC) > 0.0) { continue; } int idyC = int(dyC); float dyValue = getDy(batch, idyD, idyR, idyC, ch); int maxPosValue = ${h} - int(getMaxPos(batch, idyD, idyR, idyC, ch)); // Get the current value, check it against the value from the // position matrix. int curPosValue = wD * ${c} * ${l} + wR * ${l} + wC; float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0); dotProd += dyValue * mask; } } } setOutput(dotProd); } `}};function See(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a}=t,o=a,{filterSize:i,strides:c,pad:l,dimRoundingMode:u}=r,d=[1,1,1],p=E.computePool3DInfo(o.shape,i,c,d,l,u),h=new Hw(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Iee(p),g=n.runWebGLProgram(m,[s,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Cee={kernelName:ch,backendName:"webgl",kernelFunc:See};function Tee(e){let{inputs:t,backend:n,attrs:r}=e,{dy:s,input:a,output:o}=t,i=a;Iu([a,o],"maxPoolGrad");let{filterSize:c,strides:l,pad:u,dimRoundingMode:d}=r,p=E.computePool2DInfo(i.shape,c,l,1,u,d),h=!0,f=new Md(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new kee(p),b=n.runWebGLProgram(g,[s,m],i.dtype);return n.disposeIntermediateTensorInfo(m),b}var Nee={kernelName:ih,backendName:"webgl",kernelFunc:Tee};function _ee(e,t,n,r){let s=new Md(n,"max",!1),a=r.runWebGLProgram(s,[e],"float32");s=new Md(n,"max",!0,!0,t);let o=r.runWebGLProgram(s,[e],"float32");return[a,o]}var Eee={kernelName:uh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:s,strides:a,pad:o,includeBatchInIndex:i}=t,c=n;w.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let l=[1,1];w.assert(E.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let u=E.computePool2DInfo(r.shape,s,a,l,o),[d,p]=_ee(r,i,u,c);return[d,p]}};function Aee(e,t,n,r){let s=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/s,i=be({inputs:{x:e},attrs:{shape:[o,s]},backend:r}),c=yi(i,"float32","mean",r),l=be({inputs:{x:c},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(c),l}var Dee={kernelName:lo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:s,axis:a}=t,o=n,i=r.shape.length,c=w.parseAxisParam(a,r.shape),l=c,u=E.getAxesPermutation(l,i),d=u!=null,p=o.shouldExecuteOnCPU([r]),h=[],f=r;if(d){if(p){let x=o.texData.get(f.dataId).values,k=new Array(i);for(let D=0;Dl[0]+e[u]+l[1]);let r=e.length,s=ft(r),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),c=n==="reflect"?0:1;if(r===1){this.userCode=` int start = ${a}; int end = ${o}; void main() { int outC = getOutputCoords(); if (outC < start) { outC = start * 2 - outC - ${c}; } else if(outC >= end) { outC = (end - 1) * 2 - outC + ${c}; } setOutput(getX(outC - start)); } `;return}this.userCode=` ${s} start = ${s}(${a}); ${s} end = ${s}(${o}); void main() { ${s} outC = getOutputCoords(); for (int i = 0; i < ${r}; i++) { if (outC[i] < start[i]) { outC[i] = start[i] * 2 - outC[i] - ${c}; } else if(outC[i] >= end[i]) { outC[i] = (end[i] - 1) * 2 - outC[i] + ${c}; } } ${s} coords = outC - start; setOutput(getX(${i})); } `}},Bee=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let r=e.length,s=ft(r),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Nn("rc",r),c=Nn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${c.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(r===1){let h=` ${s} source = rc; if (source < start) { source = start * 2 - source - ${d}; } else if (source >= end) { source = (end - 1) * 2 - source + ${d}; } source -= start; `;p=` ${s} rc = outputLoc; ${h} result[0] = getChannel(getX(${c.join()}), ${u}); ${i[r-1]} += 1; if(${l}) { ${h} result[1] = getChannel(getX(${c.join()}), ${u}); } `}else{let h=` ${s} source = rc; ${s} lt = ${s}(lessThan(source, start)); ${s} gte = ${s}(greaterThanEqual(source, end)); ${s} orig = 1 - (lt + gte); source = orig * source + lt * (start * 2 - source - ${d}) + gte * ((end - 1) * 2 - source + ${d}); source -= start; `;p=` ${s} rc = outputLoc; ${h} result[0] = getChannel(getX(${c.join()}), ${u}); ${i[r-1]} += 1; if(${l}) { ${h} result[1] = getChannel(getX(${c.join()}), ${u}); } rc = outputLoc; ${i[r-2]} += 1; if(${i[r-2]} < ${this.outputShape[r-2]}) { ${h} result[2] = getChannel(getX(${c.join()}), ${u}); ${i[r-1]} += 1; if(${l}) { ${h} result[3] = getChannel(getX(${c.join()}), ${u}); } } `}this.userCode=` const ${s} start = ${s}(${a}); const ${s} end = ${s}(${o}); void main() { ${s} outputLoc = getOutputCoords(); vec4 result = vec4(0.); ${p} setOutput(result); } `}},zee=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:s,mode:a}=n,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Bee(r.shape,s,a):new Lee(r.shape,s,a);return t.runWebGLProgram(o,[r],r.dtype)},Wee={kernelName:fo,backendName:"webgl",kernelFunc:zee},Vee=`if (b == 0.0) return NAN; return mod(a, b);`,Uee=` vec4 result = mod(a, b); vec4 isNaN = vec4(equal(b, vec4(0.0))); `+vm+` return result; `,Gee=dn({opSnippet:Vee,packedOpSnippet:Uee}),Hee={kernelName:wc,backendName:"webgl",kernelFunc:Gee},jee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; float r = random(seed); float cdf = 0.0; for (int i = 0; i < ${t-1}; i++) { cdf += getProbs(batch, i); if (r < cdf) { setOutput(float(i)); return; } } // If no other event happened, last event happened. setOutput(float(${t-1})); } `}},qee=` if (a == b) { return 1.0; }; return a / b;`,Kee=` // vec4 one = vec4(equal(a, b)); // return one + (vec4(1.0) - one) * a / b; vec4 result = a / b; if(a.x == b.x) { result.x = 1.; } if(a.y == b.y) { result.y = 1.; } if(a.z == b.z) { result.z = 1.; } if(a.w == b.w) { result.w = 1.; } return result; `,QN=dn({opSnippet:qee,packedOpSnippet:Kee,checkOutOfBounds:!0}),Xee={kernelName:Za,backendName:"webgl",kernelFunc:QN},e_="return a - b;",t_=dn({opSnippet:e_,packedOpSnippet:e_,supportsComplex:!0,cpuKernelImpl:G7}),Yee={kernelName:Fo,backendName:"webgl",kernelFunc:t_};function n_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{dim:a}=r,o=w.parseAxisParam([a],s.shape),i=JN({inputs:{x:s},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),c=E.expandShapeToKeepDim(i.shape,o),l=be({inputs:{x:i},backend:n,attrs:{shape:c}}),u=t_({inputs:{a:s,b:l},backend:n}),d=jN({inputs:{x:u},backend:n}),p=km({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:c}}),f=QN({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Zee={kernelName:Ao,backendName:"webgl",kernelFunc:n_};function Jee(e){let{inputs:t,backend:n,attrs:r}=e,{logits:s}=t,{numSamples:a,seed:o,normalized:i}=r,c=i?s:n_({inputs:{logits:s},backend:n,attrs:{dim:s.shape.length-1}}),l=c.shape[0],u=c.shape[1],d=new jee(l,u,a),p=[[o]],h=n.runWebGLProgram(d,[c],"int32",p);return i||n.disposeIntermediateTensorInfo(c),h}var Qee={kernelName:lh,backendName:"webgl",kernelFunc:Jee},r_="return -x;";function ete(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let a=n.texData.get(r.dataId),[o,i]=A7(a.values,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,o)}let s;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?s=new _u(r.shape,r_):s=new Sa(r.shape,r_),n.runWebGLProgram(s,[r],r.dtype)}var tte={kernelName:kc,backendName:"webgl",kernelFunc:ete},nte=os.nonMaxSuppressionV3Impl;function rte(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c}=r,l=n.readSync(s.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=nte(l,u,o,i,c);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var ste={kernelName:Sc,backendName:"webgl",kernelFunc:rte},ate=os.nonMaxSuppressionV4Impl;function ote(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,padToMaxOutputSize:l}=r,u=n.readSync(s.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=ate(u,d,o,i,c,l);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var ite={kernelName:Cc,backendName:"webgl",kernelFunc:ote},cte=os.nonMaxSuppressionV5Impl;function ute(e){E.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:s,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:c,softNmsSigma:l}=r,u=n.readSync(s.dataId),d=n.readSync(a.dataId),p=o,h=i,f=c,m=l,{selectedIndices:g,selectedScores:b}=cte(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var lte={kernelName:Tc,backendName:"webgl",kernelFunc:ute},dte=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=` void main() { ivec2 coords = getOutputCoords(); int index = round(getIndices(coords.x)); setOutput(mix(float(${r}), float(${n}), float(index == coords.y))); } `}},pte=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=w.sizeFromShape(s.shape),l=new dte(c,a,o,i),u=be({inputs:{x:s},backend:n,attrs:{shape:[c]}}),d=n.runWebGLProgram(l,[u],s.dtype);n.disposeIntermediateTensorInfo(u);let p=[...s.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},hte={kernelName:go,backendName:"webgl",kernelFunc:pte};function Nm(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let s=Ld({inputs:{input:r},backend:n}),a=Nm({inputs:{x:s},backend:n}),o=Tm({inputs:{input:r},backend:n}),i=Nm({inputs:{x:o},backend:n}),c=Ca({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Bd({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var fte={kernelName:Hc,backendName:"webgl",kernelFunc:Nm};function s_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let s=Ld({inputs:{input:r},backend:n}),a=s_({inputs:{x:s},backend:n}),o=Tm({inputs:{input:r},backend:n}),i=Nm({inputs:{x:o},backend:n}),c=Ca({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),c}else return Bd({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var mte={kernelName:Nc,backendName:"webgl",kernelFunc:s_};function gte(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return Kw({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=Kw({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=ON({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),l}var bte={kernelName:_c,backendName:"webgl",kernelFunc:gte},yte=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((c,l)=>c[0]+e[l]+c[1]);let r=e.length,s=ft(r),a=t.map(c=>c[0]).join(","),o=t.map((c,l)=>c[0]+e[l]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=` int start = ${a}; int end = ${o}; void main() { int outC = getOutputCoords(); if (outC < start || outC >= end) { setOutput(value); } else { setOutput(getX(outC - start)); } } `;return}this.userCode=` ${s} start = ${s}(${a}); ${s} end = ${s}(${o}); void main() { ${s} outC = getOutputCoords(); if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) { setOutput(value); } else { ${s} coords = outC - start; setOutput(getX(${i})); } } `}},vte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,s=ft(r),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Nn("rc",r),c=Nn("source",r),l=`${i[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${c.slice(-2).join()})`,d=[`${s} rc = outputLoc;`,`${i[r-1]} += 1; if(${l}) { `,r===1?"":`} rc = outputLoc; ${i[r-2]} += 1; if(${i[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${i[r-1]} += 1; if(${l}) {`],p=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=r===1?2:4;f{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{paddings:a,constantValue:o}=r;if(w.sizeFromShape(s.shape)===0){let l=a.map((u,d)=>u[0]+s.shape[d]+u[1]);return Bd({backend:n,attrs:{shape:l,value:o,dtype:s.dtype}})}let i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vte(s.shape,a,o):new yte(s.shape,a,o),c=[[o]];return n.runWebGLProgram(i,[s],s.dtype,c)},xte={kernelName:bo,backendName:"webgl",kernelFunc:a_},wte=` if(a < 0.0 && floor(b) < b){ return NAN; } if (b == 0.0) { return 1.0; } return (round(mod(b, 2.0)) != 1) ? pow(abs(a), b) : sign(a) * pow(abs(a), b); `,kte=` // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise. vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1))); vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1); vec4 result = multiplier * pow(abs(a), b); // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS bvec4 isExpZero = equal(b, vec4(0.0)); result.r = isExpZero.r ? 1.0 : result.r; result.g = isExpZero.g ? 1.0 : result.g; result.b = isExpZero.b ? 1.0 : result.b; result.a = isExpZero.a ? 1.0 : result.a; vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b)); `+vm+` return result; `,Ite=dn({opSnippet:wte,packedOpSnippet:kte}),Ste={kernelName:yo,backendName:"webgl",kernelFunc:Ite};function Cte(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{axis:a,keepDims:o}=r,i=s.shape.length,c=[],l=w.parseAxisParam(a,s.shape),u=l,d=E.getAxesPermutation(u,i),p=s;d!=null&&(p=_n({inputs:{x:s},backend:n,attrs:{perm:d}}),u=E.getInnerMostAxes(u.length,i),c.push(p)),E.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:b}=F7(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=E.computeOutAndReduceShapes(p.shape,u),g=w.sizeFromShape(m),b=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),v=Ah(s.dtype),y=yi(b,v,"prod",n);h=be({inputs:{x:y},backend:n,attrs:{shape:f}}),c.push(b),c.push(y)}if(o){c.push(h);let f=E.expandShapeToKeepDim(h.shape,l);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Tte={kernelName:Ec,backendName:"webgl",kernelFunc:Cte},o_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=$7(r,s,a,o);return t.makeTensorInfo([i.length],o,i)},Nte={kernelName:Nl,backendName:"webgl",kernelFunc:o_},_te="return 1.0 / x;",Ete=Xe({opSnippet:_te}),Ate={kernelName:Ac,backendName:"webgl",kernelFunc:Ete},Dte=jr+` return (x < 0.0) ? 0.0 : x; `,Fte=` vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,$te=Xe({opSnippet:Dte,packedOpSnippet:Fte}),Rte={kernelName:xo,backendName:"webgl",kernelFunc:$te},Pte=jr+` return (x < 0.0) ? 0.0 : min(6.0, x); `,Ote=` vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0))); bvec4 isNaN = isnan(x); result.r = isNaN.r ? x.r : result.r; result.g = isNaN.g ? x.g : result.g; result.b = isNaN.b ? x.b : result.b; result.a = isNaN.a ? x.a : result.a; return result; `,Mte=Xe({opSnippet:Pte,packedOpSnippet:Ote}),Lte={kernelName:ko,backendName:"webgl",kernelFunc:Mte},Bte=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${l[0]/u[0]}, ${l[1]/u[1]}); const vec2 inputShapeRC = vec2(${o}.0, ${i}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0))); ivec2 sourceCeilRC = ivec2( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d); float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d); float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d); float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d); vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC); float top = topLeft + (topRight - topLeft) * fracRC.y; float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y; float newValue = top + (bottom - top) * fracRC.x; setOutput(newValue); } `}},zte=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d;s?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${l[0]/u[0]}, ${l[1]/u[1]}, ${l[1]/u[1]}); const vec3 inputShapeRC = vec3(${o}.0, ${i}.0, ${i}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${d}; // Compute the four integer indices. ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0))); ivec3 sourceCeilRC = ivec3( min(inputShapeRC - 1.0, ceil(sourceFracIndexRC))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${c-1}; bool hasNextRow = coords.z < ${n-1}; // In parallel, construct four corners for all four components in // packed 2x2 cell. vec4 topLeft = vec4( getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 bottomLeft = vec4( getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0); vec4 topRight = vec4( getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0); vec4 bottomRight = vec4( getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d), hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0); vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC); vec4 top = mix(topLeft, topRight, fracRC.yyzz); vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz); vec4 newValue = mix(top, bottom, fracRC.x); setOutput(newValue); } `}};function Wte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zte(s.shape,c,l,a,o):new Bte(s.shape,c,l,a,o);return n.runWebGLProgram(u,[s],"float32")}var Vte={kernelName:wo,backendName:"webgl",kernelFunc:Wte},Ute=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/c[0],u=i[1]/c[1],d=1/l,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${l}); const float widthScale = float(${u}); const float invHeightScale = float(${d}); const float invWidthScale = float(${p}); const int winHeight = int(${h}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(startRLerp - float(winHeight / 2)); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(startCLerp - float(winWidth / 2)); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${o}) { continue; } float dxR = float(dyR) * heightScale; int topDxRIndex = int(floor(dxR)); int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0)); float dxRLerp = dxR - float(topDxRIndex); float inverseDxRLerp = 1.0 - dxRLerp; float dxC = float(dyC) * widthScale; int leftDxCIndex = int(floor(dxC)); int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0)); float dxCLerp = dxC - float(leftDxCIndex); float inverseDxCLerp = 1.0 - dxCLerp; if (r == topDxRIndex && c == leftDxCIndex) { // topLeft accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp; } if (r == topDxRIndex && c == rightDxCIndex) { // topRight accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp; } if (r == bottomDxRIndex && c == leftDxCIndex) { // bottomLeft accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp; } if (r == bottomDxRIndex && c == rightDxCIndex) { // bottomRight accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp; } } } // End loop over dy setOutput(accumulator); } `}};function Gte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Ute(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Hte={kernelName:hh,backendName:"webgl",kernelFunc:Gte},jte=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec2 effectiveInputOverOutputRatioRC = vec2( ${l[0]/u[0]}, ${l[1]/u[1]}); const vec2 inputShapeRC = vec2(${o}.0, ${i}.0); void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; ivec2 yRC = coords.yz; // Fractional source index. vec2 sourceFracIndexRC = ${p}; // Compute the coordinators of nearest neighbor point. ivec2 sourceNearestRC = ivec2( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d); setOutput(newValue); } `}},qte=class{constructor(e,t,n,r,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,c]=e;this.outputShape=[a,t,n,c];let l=[r&&t>1?o-1:o,r&&n>1?i-1:i],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],d=r?"0.5":"0.0",p;s?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=` const vec3 effectiveInputOverOutputRatioRC = vec3( ${l[0]/u[0]}, ${l[1]/u[1]}, ${l[1]/u[1]}); const vec3 inputShapeRC = vec3(${o}.0, ${i}.0, ${i}.0); float getAValue(int b, int r, int c, int d) { return getChannel(getA(b, r, c, d), vec2(c, d)); } void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; // Calculate values for next column in yRC.z. ivec3 yRC = coords.yzz + ivec3(0, 0, 1); // Fractional source index. vec3 sourceFracIndexRC = ${p}; // Compute the coordinators of nearest neighbor point. ivec3 sourceNearestRC = ivec3( min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d}))); // Should we calculate next column and row elements in 2x2 packed cell. bool hasNextCol = d < ${c-1}; bool hasNextRow = coords.z < ${n-1}; vec4 newValue = vec4( getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d), hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1) : 0.0, hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d) : 0.0, (hasNextRow && hasNextCol) ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0); setOutput(newValue); } `}};function Kte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s}=t,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new qte(s.shape,c,l,a,o):new jte(s.shape,c,l,a,o);return n.runWebGLProgram(u,[s],s.dtype)}var Xte={kernelName:_l,backendName:"webgl",kernelFunc:Kte},Yte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,s]=t,[,a,o]=e,i=[n&&a>1?r-1:r,n&&o>1?s-1:s],c=[n&&a>1?a-1:a,n&&o>1?o-1:o],l=i[0]/c[0],u=i[1]/c[1],d=1/l,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=` void main() { ivec4 coords = getOutputCoords(); int b = coords[0]; int d = coords[3]; int r = coords[1]; int c = coords[2]; float accumulator = 0.0; const float heightScale = float(${l}); const float widthScale = float(${u}); const float invHeightScale = float(${d}); const float invWidthScale = float(${p}); const int winHeight = int(${h}); const int winWidth = int(${f}); // Compute bounds for where in dy we will look float startRLerp = floor(float(r) * invHeightScale); int startDyR = int(floor(startRLerp - float(winHeight / 2))); float startCLerp = floor(float(c) * invWidthScale); int startDyC = int(floor(startCLerp - float(winWidth / 2))); // Loop over dy for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) { int dyR = dyROffset + startDyR; // Guard against the window exceeding the bounds of dy if (dyR < 0 || dyR >= ${a}) { continue; } for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) { int dyC = dyCOffset + startDyC; // Guard against the window exceeding the bounds of dy if (dyC < 0 || dyC >= ${o}) { continue; } float sourceFracRow = float(${i[0]}) * (float(dyR) / float(${c[0]})); float sourceFracCol = float(${i[1]}) * (float(dyC) / float(${c[1]})); int sourceNearestRow = int(min( float(int(${r}) - 1), ${n} ? float(round(sourceFracRow)) : float(floor(sourceFracRow)))); int sourceNearestCol = int(min( float(int(${s}) - 1), ${n} ? float(round(sourceFracCol)) : float(floor(sourceFracCol)))); if (r == sourceNearestRow && c == sourceNearestCol) { accumulator += getDy(b, dyR, dyC, d); } } } // End loop over dy setOutput(accumulator); } `}};function Zte(e){let{inputs:t,backend:n,attrs:r}=e,{images:s,dy:a}=t,{alignCorners:o}=r,i=new Yte(a.shape,s.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Jte={kernelName:ph,backendName:"webgl",kernelFunc:Zte},Qte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=` void main() { int coord = getOutputCoords(); setOutput(getX(${e[0]} - coord - 1)); } `;return}let r=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,s=e.map((o,i)=>r(i)).join(","),a=ft(n);this.userCode=` void main() { ${a} coords = getOutputCoords(); setOutput(getX(${s})); } `}},ene=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=Nn("rc",n),s=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,o=ft(n);n===1?this.userCode=` void main(){ int rc = getOutputCoords(); vec4 result = vec4(0.); result.r = getChannel(getX(${e[0]} - rc - 1), ${e[0]} - rc - 1); if(${s}){ result.g = getChannel(getX(${e[0]} - (rc + 1) - 1), ${e[0]} - (rc + 1) - 1); } setOutput(result); } `:this.userCode=` void main() { ${o} rc = getOutputCoords(); vec4 result = vec4(0.); result.r = ${i(r.slice())}; if(${s}){ result.g = ${c(r.slice())}; } if(${a}) { result.b = ${l(r.slice())}; if(${s}) { result.a = ${u(r.slice())}; } } setOutput(result); } `;function i(h){return d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((b,v)=>p(v,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function tne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=s.shape.length,i=w.parseAxisParam(a,s.shape);if(o===0)return rr({inputs:{x:s},backend:n});let c=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ene(s.shape,i):new Qte(s.shape,i);return n.runWebGLProgram(c,[s],s.dtype)}var nne={kernelName:Io,backendName:"webgl",kernelFunc:tne},rne=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],r=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=` vec3 fill = vec3(${t.join(",")}); float outputValue = fill[coords[3]];`,this.userCode=` void main() { ivec4 coords = getOutputCoords(); int x = coords[2]; int y = coords[1]; float coordXFloat = (float(x) - params[0]) * params[3] - (float(y) - params[1]) * params[2]; float coordYFloat = (float(x) - params[0]) * params[2] + (float(y) - params[1]) * params[3]; int coordX = int(round(coordXFloat + params[0])); int coordY = int(round(coordYFloat + params[1])); ${s} if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) { outputValue = getImage(coords[0], coordY, coordX, coords[3]); } setOutput(outputValue); } `}},sne={kernelName:jc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:s,fillValue:a,center:o}=t,i=n,c=new rne(r.shape,a),[l,u]=E.getImageCenter(o,r.shape[1],r.shape[2]),d=[[l,u,Math.sin(s),Math.cos(s)]];return i.runWebGLProgram(c,[r],r.dtype,d)}},ane=` // OpenGL ES does not support round function. // The algorithm is based on banker's rounding. float base = floor(x); if ((x - base) < 0.5) { return floor(x); } else if ((x - base) > 0.5) { return ceil(x); } else { if (mod(base, 2.0) == 0.0) { return base; } else { return base + 1.0; } } `,one=Xe({opSnippet:ane}),ine={kernelName:So,backendName:"webgl",kernelFunc:one},cne="return inversesqrt(x);",une=Xe({opSnippet:cne,cpuKernelImpl:R7}),lne={kernelName:Co,backendName:"webgl",kernelFunc:une},i_=class{constructor(e,t,n,r,s,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=ft(s.length),c=ft(a.length),l="";n===1?l="i":n===2&&(l="i, j");let u=`getIndices(${l})`,d="";r===1?d="i":r===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=` ${i} strides = ${i}(${s}); void main() { ${c} coords = getOutputCoords(); float sum = 0.0; bool found = false; for (int i = 0; i < ${e}; i++) { int flattenedIndex = 0; for (int j = 0; j < ${t}; j++) { int index = round(${u}); flattenedIndex += index * ${h}; } if (flattenedIndex == coords[0]) { sum += ${p}; found = true; } } setOutput(mix(getDefaultValue(), sum, float(found))); } `}};function dne(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s,updates:a}=t,{shape:o}=r,{sliceRank:i,numUpdates:c,sliceSize:l,strides:u,outputSize:d}=E.calculateShapes(a,s,o),p=[d/l,l];if(d===0)return n.makeTensorInfo(o,s.dtype);let h=be({inputs:{x:s},backend:n,attrs:{shape:[c,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[c,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new i_(c,i,h.shape.length,f.shape.length,u,p),b=n.runWebGLProgram(g,[f,h,m],f.dtype),v=be({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),v}var pne={kernelName:Fc,backendName:"webgl",kernelFunc:dne},hne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,s;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)s="resRC",r="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],c=[];for(let l=0;l= 1.0) { setOutput(getA(${s})); } else { setOutput(getB(${s})); } } `}};function fne(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=new hne(r.shape.length,s.shape,s.shape.length);return n.runWebGLProgram(o,[r,s,a],wr(s.dtype,a.dtype))}var mne={kernelName:$c,backendName:"webgl",kernelFunc:fne},gne=` // Stable and Attracting Fixed Point (0, 1) for Normalized Weights. // see: https://arxiv.org/abs/1706.02515 float scaleAlpha = ${E.SELU_SCALEALPHA}; float scale = ${E.SELU_SCALE}; return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0); `,bne=Xe({opSnippet:gne}),yne={kernelName:Rc,backendName:"webgl",kernelFunc:bne},c_="return 1.0 / (1.0 + exp(-1.0 * x));",vne=Xe({opSnippet:c_,packedOpSnippet:c_,cpuKernelImpl:P7}),xne={kernelName:No,backendName:"webgl",kernelFunc:vne},wne=` if (isnan(x)) { return 0.0; } return sign(x); `,kne=Xe({opSnippet:wne}),Ine={kernelName:Mc,backendName:"webgl",kernelFunc:kne},Sne=wN+` return sin(x); `,Cne=Xe({opSnippet:Sne}),Tne={kernelName:To,backendName:"webgl",kernelFunc:Cne},Nne=` float e2x = exp(x); return (e2x - 1.0 / e2x) / 2.0; `,_ne=Xe({opSnippet:Nne}),Ene={kernelName:Oc,backendName:"webgl",kernelFunc:_ne},Ane=` float epsilon = 1.1920928955078125e-7; float threshold = log(epsilon) + 2.0; bool too_large = x > -threshold; bool too_small = x < threshold; float result; float exp_x = exp(x); if (too_large){ result = x; } else if (too_small){ result = exp_x; } else{ result = log(exp_x + 1.0); } return result; `,Dne=Xe({opSnippet:Ane}),Fne={kernelName:Lc,backendName:"webgl",kernelFunc:Dne},$ne=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r;w.assert(s.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((b,v)=>b*v),c=[[0,0]];c.push(...o);for(let b=1+a.length;bn.disposeIntermediateTensorInfo(b)),g},Rne={kernelName:Bc,backendName:"webgl",kernelFunc:$ne};function Pne(e){let{inputs:t,backend:n}=e,{indices:r,values:s,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw: ${a.shape}`);if(r.shape.length!==2)throw new Error(`Indices must be a matrix, saw: ${r.shape}`);if(s.shape.length!==1)throw new Error(`Values must be a vector, saw: ${s.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw: ${o.shape}`);let i=n.readSync(r.dataId),c=n.readSync(s.dataId),l=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=M7(i,r.shape,r.dtype,c,s.dtype,l,u);return[n.makeTensorInfo(p,r.dtype,d),n.makeTensorInfo([p[0]],s.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],r.dtype,new Int32Array(m))]}var One={kernelName:fh,backendName:"webgl",kernelFunc:Pne};function Mne(e){let{inputs:t,backend:n}=e,{inputIndices:r,inputShape:s,newShape:a}=t;if(r.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(s.dataId)),i=n.readSync(r.dataId),c=Array.from(n.readSync(a.dataId)),[l,u,d]=L7(i,r.shape,r.dtype,o,c);return[n.makeTensorInfo(u,r.dtype,l),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Lne={kernelName:mh,backendName:"webgl",kernelFunc:Mne};function Bne(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[l,u]=cN(o,r.shape,r.dtype,i,c,!0);return n.makeTensorInfo(u,r.dtype,l)}var zne={kernelName:gh,backendName:"webgl",kernelFunc:Bne};function Wne(e){let{inputs:t,backend:n}=e,{data:r,indices:s,segmentIds:a}=t;if(r.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(s.shape.length!==1)throw new Error(`Indices should be a vector but received shape ${s.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape ${a.shape}`);let o=n.readSync(r.dataId),i=n.readSync(s.dataId),c=n.readSync(a.dataId),[l,u]=cN(o,r.shape,r.dtype,i,c);return n.makeTensorInfo(u,r.dtype,l)}var Vne={kernelName:bh,backendName:"webgl",kernelFunc:Wne};function Une(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:s,sparseValues:a,defaultValue:o}=t,{outputShape:i}=r,{sliceRank:c,numUpdates:l,strides:u,outputSize:d}=E.calculateShapes(a,s,i),p=!1,h=new i_(l,c,s.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,s,o],a.dtype),m=be({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var Gne={kernelName:yh,backendName:"webgl",kernelFunc:Une};function Hne(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{numOrSizeSplits:a,axis:o}=r,i=w.parseAxisParam(o,s.shape)[0],c=E.prepareSplitSize(s,a,i),l=s.shape.length,u=new Array(l).fill(0),d=s.shape.slice();return c.map(p=>{let h=[...d];h[i]=p;let f=Au({inputs:{x:s},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var jne={kernelName:zc,backendName:"webgl",kernelFunc:Hne},u_="return sqrt(x);",qne=Xe({opSnippet:u_,packedOpSnippet:u_,cpuKernelImpl:B7}),Kne={kernelName:_o,backendName:"webgl",kernelFunc:qne},Xne="return x * x;",Yne=Xe({opSnippet:Xne}),Zne={kernelName:El,backendName:"webgl",kernelFunc:Yne},l_="return (a - b) * (a - b);",Jne=dn({opSnippet:l_,packedOpSnippet:l_}),Qne={kernelName:Do,backendName:"webgl",kernelFunc:Jne};function ere({inputs:e,attrs:t,backend:n}){let{x:r}=e,s=jr+` return x > 0.0 ? 1.0 : float(${t.alpha}); `,a=new Sa(r.shape,s);return n.runWebGLProgram(a,[r],r.dtype)}var tre={kernelName:ta,backendName:"webgl",kernelFunc:ere},nre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,s=ft(n.length),a=ft(n.length),o="";if(r===1)o="coords * strides + begin";else{let i=0;o=n.map((c,l)=>(i++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${i-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=` ${s} begin = ${s}(${e}); ${s} strides = ${s}(${t}); void main() { ${a} coords = getOutputCoords(); setOutput(getX(${o})); } `}};function rre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:v,end:y,strides:x}=Gt.sliceInfo(s.shape,a,o,i,c,l,u,d,p),k;if(m)k=be({inputs:{x:s},backend:n,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let N=Gt.computeOutShape(v,y,x),D=Au({inputs:{x:s},backend:n,attrs:{begin:v,size:N}});k=be({inputs:{x:D},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(D)}else if(n.shouldExecuteOnCPU([s])){let D=n.readSync(s.dataId),F=ze(s.shape,s.dtype,D),O=z7(h,F,x,v);k=n.makeTensorInfo(f,s.dtype,O.values)}else{let D=new nre(v,x,h);k=n.runWebGLProgram(D,[s],s.dtype)}let C=be({inputs:{x:k},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(k),C}var sre={kernelName:Wc,backendName:"webgl",kernelFunc:rre};function are(e){let{inputs:t,backend:n,attrs:r}=e,{separator:s,nGramWidths:a,leftPad:o,rightPad:i,padWidth:c,preserveShortSequences:l}=r,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=W7(p,h,s,a,o,i,c,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var ore={kernelName:vh,backendName:"webgl",kernelFunc:are};function ire(e){let{inputs:t,backend:n,attrs:r}=e,{skipEmpty:s}=r,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[l,u,d]=V7(i,c,s),p=u.length;return[n.makeTensorInfo([p,2],"int32",l),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var cre={kernelName:xh,backendName:"webgl",kernelFunc:ire};function ure(e){let{inputs:t,backend:n,attrs:r}=e,{numBuckets:s}=r,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(s<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=U7(o,s);return n.makeTensorInfo(a.shape,"int32",i)}var lre={kernelName:wh,backendName:"webgl",kernelFunc:ure},dre="return tan(x);",pre=Xe({opSnippet:dre}),hre={kernelName:$o,backendName:"webgl",kernelFunc:pre},fre=` float e2x = exp(-2.0 * abs(x)); return sign(x) * (1.0 - e2x) / (1.0 + e2x); `,mre=Xe({opSnippet:fre}),gre={kernelName:Ro,backendName:"webgl",kernelFunc:mre},bre=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let s=0;s5){let c=n.readSync(s.dataId),l=s.dtype==="string"?c.map(p=>w.decodeString(p)):c,u=ze(s.shape,s.dtype,l),d=H7(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new bre(s.shape,a);return n.runWebGLProgram(o,[s],s.dtype)}var vre={kernelName:ea,backendName:"webgl",kernelFunc:d_},xre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=` void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // We compare elements pair-wise within a group of size 2 * inc. // The comparing rule for each group alternates between ascending // and descending. Within each group, we compare each pair at // positions i and i+inc. To decide whether an element at position i // is x0 or x1, we mod it by 2 * inc, if the result is smaller than // inc, it is in the first half of the group, we denote it as x0, // otherwise we denote it as x1. // For example, as shown in the Bitonic top K paper referenced above, // Figure5(a) shows that element[1] is in the // second half of the group when group size is 2, but it is in the // first half of the group when group size is 4. bool isFirstInPair = imod(elemIdx, 2 * inc) < inc; int i = isFirstInPair ? elemIdx : elemIdx - inc; int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc)); float x0 = i0 < n ? getX(batch, i0) : negativeInf; float x1 = i1 < n ? getX(batch, i1) : negativeInf; // Denotes which direction indices are in (ascending or descending). bool reverse = imod(elemIdx, 2 * dir) >= dir; bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0); if (reverse == isGreater) { // Elements in opposite order of direction int iTemp = i0; i0 = i1; i1 = iTemp; } if (isFirstInPair) { setOutput(float(i0)); } else { setOutput(float(i1)); } } `}},wre=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=` void main() { // Takes max of indices (0, k), (1, k + 1), (2, k + 2) ... ivec2 coords = getOutputCoords(); int batch = coords[0]; int elemIdx = coords[1]; // The output size is half of the previous size. // If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4), // we only need to output the indices at positions |, the indices at // positions _ can be thrown away, see Figure5(b) After Phase 2 // (Merge phase) in the Bitonic Top K paper referenced above. // For example, the paper shows we only need to output the orange bars. // The output sequence should look like this | | | | | | | |. // Because the sequence is halved, to map the output index back // to the previous sequence to find the corresponding value, // we need to double the index. When we double the index, // we basically interpolate a position, so 2i looks like // | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position // of each 2k positions by - elemIdx % k. E.g. for output at // index 4,5,6,7, we want to get the corresponding element at // original index 8,9,10,11, for output at index 8,9,10,11, // we want to get the corresponding element at original index // 16,17,18,19, so on and so forth. int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k)); int i0 = firstPass == 1 ? i : int(getIndices(batch, i)); int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k)); float x0 = getX(batch, i0); float x1 = i1 < n ? getX(batch, i1) : x0; setOutput(x0 >= x1 ? float(i0) : float(i1)); } `}};function vi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function p_(e){let t=1;for(;tc){let O=n.readSync(s.dataId),[$,P]=j7(O,l,s.dtype,a,o);return[n.makeTensorInfo($.shape,$.dtype,$.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,s.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(u===1)return[s,Bd({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let d=n.texData.get(s.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(s):s,m=w.sizeFromShape(l)/u,g=be({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&vi(n,h);let b=p_(a),v=p_(u),y=null,x=()=>y===null?[g,g]:[g,y],k=(O,$,P)=>{let T=x(),L=new xre(P),j=[[u],[y===null?1:0],[Number.NEGATIVE_INFINITY],[O],[$]],q=y;y=n.runWebGLProgram(L,T,"int32",j),vi(n,q)};for(let O=1;O=1;P/=2)k($,P,[m,v])}for(let O=v;O>b;O/=2){let $=x(),P=new wre([m,O/2]),L=[[u],[y===null?1:0],[b]],G=y;y=n.runWebGLProgram(P,$,"int32",L),vi(n,G);let j=b/2,q=j*2;for(let K=j;K>=1;K/=2)k(q,K,y.shape)}let C=y;y=Au({inputs:{x:y},backend:n,attrs:{begin:0,size:[m,a]}}),vi(n,C);let N=ZN({inputs:{x:g,indices:y},backend:n,attrs:{axis:1,batchDims:1}});vi(n,g);let D=l.slice(0,-1);D.push(a),C=y,y=be({inputs:{x:y},attrs:{shape:D},backend:n}),vi(n,C);let F=N;return N=be({inputs:{x:N},attrs:{shape:D},backend:n}),vi(n,F),[N,y]}var Ire={kernelName:Vc,backendName:"webgl",kernelFunc:kre},Sre=class{constructor(e,t,n,r,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(r){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=` float mapCoord(float outCoord, float len) { float inCoord = outCoord; if(${i} == 2) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; if (inCoord < sz2) { inCoord = sz2 * float(int(float(-inCoord / sz2))) + inCoord; } inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0; } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz2 = 2.0 * len; inCoord -= sz2 * float(int(float(inCoord / sz2))); if (inCoord >= len) { inCoord = sz2 - inCoord - 1.0; } } } return clamp(inCoord, 0.0, len - 1.0); } else if (${i} == 3) { if (inCoord < 0.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord += len * (float(int(float(-inCoord / sz))) + 1.0); } } else if (inCoord > len - 1.0) { if (len <= 1.0) { inCoord = 0.0; } else { float sz = len - 1.0; inCoord -= len * float(int(float(inCoord / sz))); } } return clamp(inCoord, 0.0, len - 1.0); } else if (${i} == 4) { return clamp(outCoord, 0.0, len - 1.0); } else { return outCoord; } } float readWithFillValue(int batch, int coordY, int coordX, int channel) { float outputValue; if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) { outputValue = getImage(batch, coordY, coordX, channel); } else { outputValue = float(${s}); } return outputValue; } void main() { ivec4 coords = getOutputCoords(); float outputValue; int batch = coords[0]; int x = coords[2]; int y = coords[1]; int channel = coords[3]; float xf = float(x); float yf = float(y); float a1 = getTransforms(batch, 0); float a2 = getTransforms(batch, 1); float a3 = getTransforms(batch, 2); float b1 = getTransforms(batch, 3); float b2 = getTransforms(batch, 4); float b3 = getTransforms(batch, 5); float c1 = getTransforms(batch, 6); float c2 = getTransforms(batch, 7); float projection = c1 * xf + c2 * yf + 1.0; if (projection == 0.0) { outputValue = float(${s}); } else { float inX = (a1 * xf + a2 * yf + a3) / projection; float inY = (b1 * xf + b2 * yf + b3) / projection; float mapX = mapCoord(inX, float(${t})); float mapY = mapCoord(inY, float(${e})); if (${o} == 1) { int coordY = int(round(mapY)); int coordX = int(round(mapX)); outputValue = readWithFillValue(batch, coordY, coordX, channel); } else { float yFloor = floor(mapY); float xFloor = floor(mapX); float yCeil = yFloor + 1.0; float xCeil = xFloor + 1.0; float valueYFloor = (xCeil - mapX) * readWithFillValue(batch, int(yFloor), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yFloor), int(xCeil), channel); float valueYCeil = (xCeil - mapX) * readWithFillValue(batch, int(yCeil), int(xFloor), channel) + (mapX - xFloor) * readWithFillValue(batch, int(yCeil), int(xCeil), channel); outputValue = (yCeil - mapY) * valueYFloor + (mapY - yFloor) * valueYCeil; } } setOutput(outputValue); } `}};function Cre(e){let{inputs:t,backend:n,attrs:r}=e,{image:s,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=r,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=new Sre(d,p,o,i,c,g);return n.runWebGLProgram(b,[s,a],"float32")}var Tre={kernelName:Uc,backendName:"webgl",kernelFunc:Cre};function Nre(e){let{inputs:t,attrs:n,backend:r}=e,{axis:s}=n,{x:a}=t;Iu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=r.readSync(a.dataId),{outputValues:i,outputShape:c,indices:l}=q7(o,s,a.shape,a.dtype);return[r.makeTensorInfo(c,a.dtype,i),r.makeTensorInfo([l.length],"int32",l)]}var _re={kernelName:kh,backendName:"webgl",kernelFunc:Nre};function Ere(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s,i=o.shape.length,c=s.shape[a],l=new Array(i-1),u=0;for(let m=0;mn.disposeIntermediateTensorInfo(m)),f}var Are={kernelName:Gc,backendName:"webgl",kernelFunc:Ere},Dre=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,s=e.inSize,a=e.numSegments,o=a*Math.ceil(s/n);this.outputShape=[r,o];let i="0.0",c="sumValue",l=Math.floor(n/4)*4,u=n%4,d=` sumValue += dot(values, segFilter); `,p="";s%n>0&&(p=` if (inIdx < 0 || inIdx >= ${s}) { return initializationValue; } `);let h="";s%n>0&&(h=` if (inIdx < 0 || inIdx >= ${s}) { return -1.0; } `),this.userCode=` const float initializationValue = ${i}; float getValue(int batch, int inIdx) { ${p} return getX(batch, inIdx); } float getSegmentIdAtIndex(int inIdx) { ${h} return getSegmentIds(inIdx); } void main() { ivec2 coords = getOutputCoords(); int batch = coords[0]; int outIdx = coords[1]; int inOffset = int(floor(float(outIdx) / float( ${a})) * float(${n})); int currentSeg = int(mod(float(outIdx), float(${a}))); float sumValue = 0.0; for (int i = 0; i < ${l}; i += 4) { int inIdx = inOffset + i; vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), getValue(batch, inIdx + 3) ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0 ); ${d} } int inIdx = inOffset + ${l}; if (${u===1}) { vec4 values = vec4( getValue(batch, inIdx), initializationValue, initializationValue, initializationValue ); int inIdxSeg = int(getSegmentIdAtIndex(inIdx)); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, 0, 0, 0 ); ${d} } else if (${u===2}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), initializationValue, initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, 0, 0 ); ${d} } else if (${u===3}) { vec4 values = vec4( getValue(batch, inIdx), getValue(batch, inIdx + 1), getValue(batch, inIdx + 2), initializationValue ); vec4 segFilter = vec4( int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0, int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0, 0 ); ${d} } setOutput(${c}); } `}};function Fre(e){let{inputs:t,backend:n,attrs:r}=e,{x:s,segmentIds:a}=t,{numSegments:o}=r,i=s.shape.length,c=[],l=0,u=E.getAxesPermutation([l],i),d=s;u!=null&&(d=_n({inputs:{x:s},backend:n,attrs:{perm:u}}),c.push(d),l=E.getInnerMostAxes(1,i)[0]);let p=E.segment_util.computeOutShape(d.shape,l,o),h=w.sizeFromShape([d.shape[l]]),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});c.push(f);let m=Ah(s.dtype),g=(x,k,C,N,D)=>{let F=x.shape[0],O=x.shape[1],$=E.segment_util.segOpComputeOptimalWindowSize(O,D),P={windowSize:$,inSize:O,batchSize:F,numSegments:D},T=new Dre(P,k),L=n.compileAndRun(T,[x,C],N);if(c.push(L),L.shape[1]===D)return L;let G=o_({backend:n,attrs:{start:0,stop:D,step:1,dtype:"float32"}}),j=d_({inputs:{x:G},backend:n,attrs:{reps:[O/$]}});return c.push(G),c.push(j),g(L,k,j,N,D)},b=g(f,"unsortedSegmentSum",a,m,o),v=be({inputs:{x:b},backend:n,attrs:{shape:p}}),y=v;if(u!=null){c.push(v);let x=E.getUndoAxesPermutation(u);y=_n({inputs:{x:y},backend:n,attrs:{perm:x}})}return c.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var $re={kernelName:Al,backendName:"webgl",kernelFunc:Fre},Rre=[cee,dee,j9,K9,Z9,eY,nY,aY,iY,uY,hY,mY,yY,wY,_Y,SY,DY,PY,$Y,BY,WY,UY,qY,eZ,nZ,sZ,lZ,pZ,gZ,vZ,N9,SZ,RZ,OZ,_Z,zZ,VZ,LZ,HZ,KZ,ZZ,QZ,tJ,sJ,lJ,pJ,oJ,mJ,yJ,xJ,SJ,_J,FJ,PJ,OJ,MJ,BJ,WJ,UJ,HJ,qJ,ZJ,eQ,rQ,aQ,cQ,dQ,mQ,vQ,T9,wQ,kZ,SQ,NQ,AQ,E9,RQ,LQ,zQ,qQ,GQ,ZQ,eee,see,hee,wee,vee,Cee,Nee,Eee,bee,Dee,$ee,Mee,Wee,Hee,Qee,R9,tte,ste,ite,lte,oZ,hte,mte,bte,xte,Ste,D9,Tte,Nte,iZ,Xee,Ate,Lte,Rte,O9,Vte,Hte,Xte,Jte,nne,sne,ine,lne,pne,mne,yne,xne,Ine,Tne,Ene,JY,Zee,Fne,Rne,One,Lne,zne,Vne,Gne,jne,Kne,Zne,Qne,tre,sre,ore,cre,lre,Yee,U9,hre,gre,vre,Ire,Tre,G9,_re,Are,$re,fte];for(let e of Rre)Fl(e);var Wt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wt||(Wt={}));var zd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(zd||(zd={}));var h_;function Pre(e){h_=e.wasm.cwrap(Oo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ore(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a,bias:o,preluActivationWeights:i}=t;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:c,transposeB:l,activation:u,leakyreluAlpha:d}=r,p=n.dataIdMap.get(s.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let D=n.dataIdMap.get(o.dataId);if(D.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${D.shape.length}.`);f=D.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=zd[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let b=c?s.shape[2]:s.shape[1],v=l?a.shape[1]:a.shape[2],y=s.shape[0],x=n.makeOutput([y,b,v],s.dtype),k=n.dataIdMap.get(x.dataId).id,C=new Uint8Array(new Int32Array(s.shape).buffer),N=new Uint8Array(new Int32Array(a.shape).buffer);return h_(p,C,s.shape.length,h,N,a.shape.length,c,l,g,f,m,d||0,k),x}var Mre={kernelName:Oo,backendName:"wasm",setupFunc:Pre,kernelFunc:Ore};function pn(e,t){let n;function r(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function s(a){let{backend:o,inputs:{x:i}}=a,c=o.dataIdMap.get(i.dataId).id,l=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||n(c,Wt[i.dtype],u),l}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Lre=pn(ji);function En(e,t,n){let r;function s(o){r=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:c}=o,{a:l,b:u}=c,d=i.dataIdMap.get(l.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:l.dtype,f=E.assertAndGetBroadcastShape(l.shape,u.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(u.shape).buffer),v=i.dataIdMap.get(m.dataId).id,y=()=>r(d,g,l.shape.length,p,b,u.shape.length,Wt[l.dtype],v);if(t&&l.dtype==="float32")return y(),m;let x=E.getBroadcastDims(l.shape,f),k=E.getBroadcastDims(u.shape,f),C=x.every((D,F)=>D===F),N=k.every((D,F)=>D===F);if(C&&N)return y(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${l.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:a}}var Bre=!0,zre=En(Js,Bre),f_;function Wre(e){f_=e.wasm.cwrap(Ba,null,["array","number","number","number"])}function Vre(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(r.shape)===0)return r;let s=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(s).buffer),o=n.dataIdMap.get(r.dataId).id;return f_(a,s.length,Wt[r.dtype],o),r}var Ure={kernelName:Ba,backendName:"wasm",setupFunc:Wre,kernelFunc:Vre};function _m(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),s=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(s),r}var Gre={kernelName:so,backendName:"wasm",kernelFunc:_m},m_;function Hre(e){m_=e.wasm.cwrap(Po,null,["number","array","number","number","number","array","number"])}function $u(e){let{inputs:t,backend:n,attrs:r}=e,[s,a]=qre(t.x.shape,r.perm),o=!0;for(let f=0;f=s&&(a===-1||r[a]>r[o])&&(a=o);r[a]=s}return[n,r]}var Kre={kernelName:Po,backendName:"wasm",kernelFunc:$u,setupFunc:Hre};function Ta(e,t,n){let r=e.shape,s=e.shape.length,a=w.parseAxisParam(t,r),o=a,i=E.getAxesPermutation(o,s),c=null,l=!1;if(i!=null){let u=new Array(s);for(let h=0;h`new shape: ${o}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:o,dtype:r.dtype}}var ise={kernelName:Dc,backendName:"wasm",kernelFunc:Vn},x_;function cse(e){x_=e.wasm.cwrap(Va,null,["number","array","number","number","array","number","number","number","number"])}function use(e){let{inputs:t,backend:n,attrs:r}=e,{a:s,b:a}=t,{transposeA:o,transposeB:i}=r;if(s.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let c=s.shape.length,l=a.shape.length,u=o?s.shape[c-2]:s.shape[c-1],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-1]:s.shape[c-2],h=i?a.shape[l-2]:a.shape[l-1],f=s.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=g===b||g===1||b===1;w.assert(c>=2&&l>=2&&v,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let x=(g>b?s.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${s.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let k=o?[g,u,p]:[g,p,u],C=i?[b,h,d]:[b,d,h],N=Vn({inputs:{x:s},backend:n,attrs:{shape:k}}),D=Vn({inputs:{x:a},backend:n,attrs:{shape:C}}),F=n.dataIdMap.get(N.dataId).id,O=n.dataIdMap.get(D.dataId).id,$=o?N.shape[2]:N.shape[1],P=i?D.shape[1]:D.shape[2],T=Math.max(g,b),L=n.makeOutput([T,$,P],N.dtype),G=n.dataIdMap.get(L.dataId).id,j=new Uint8Array(new Int32Array(N.shape).buffer),q=new Uint8Array(new Int32Array(D.shape).buffer);return x_(F,j,N.shape.length,O,q,D.shape.length,o,i,G),n.disposeData(N.dataId),n.disposeData(D.dataId),L.shape=x,L}var lse={kernelName:Va,backendName:"wasm",setupFunc:cse,kernelFunc:use};function Wd(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:s}=e,[a,o]=Gt.parseSliceParams(t,n,r),i=Gt.isSliceContinous(t.shape,a,o),c=s.readSync(t.dataId),l=s.makeOutput(o,t.dtype),u=w.computeStrides(t.shape),d=s.dataIdMap.get(l.dataId);if(i){let f=Gt.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=c.slice(f,f+w.sizeFromShape(o)):s.typedArrayFromHeap(l).set(c.subarray(f,f+w.sizeFromShape(o))),l}if(t.dtype==="string"){let f=am(c,a,o,t.shape,t.dtype);return d.stringBytes=f,l}let p=s.typedArrayFromHeap(l),h=t.shape.length;if(h===2)dse(c,u[0],p,a,o);else if(h===3)pse(c,u[0],u[1],p,a,o);else if(h===4)hse(c,u[0],u[1],u[2],p,a,o);else{let f=am(c,a,o,t.shape,t.dtype);p.set(f)}return l}function dse(e,t,n,r,s){let a=0,o=r[0],i=r[1],c=o+s[0];for(let l=o;lb*v),c=E.getReshaped(s.shape,a,i),l=E.getPermuted(c.length,a.length),u=E.getReshapedPermuted(s.shape,a,i),d=E.getSliceBeginCoords(o,a.length),p=E.getSliceSize(u,o,a.length),h=Vn({inputs:{x:s},backend:n,attrs:{shape:c}}),f=$u({inputs:{x:h},backend:n,attrs:{perm:l}}),m=Vn({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Wd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var gse={kernelName:nc,backendName:"wasm",kernelFunc:mse};function Vd(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,s=r.makeOutput(t.shape,n),a=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(s).set(a),s}var bse={kernelName:Ua,backendName:"wasm",kernelFunc:Vd},yse=pn(Ga),w_;function vse(e){w_=e.wasm.cwrap(Qs,null,["number","number","number","number"])}function xse(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{clipValueMin:a,clipValueMax:o}=r,i=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(c.dataId).id;return w_(i,a,o,l),c}var wse={kernelName:Qs,backendName:"wasm",setupFunc:vse,kernelFunc:xse};function k_(e){let{inputs:t,backend:n}=e,r=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],s=E.computeOutShape(t.map(h=>h.shape),r),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return _m({inputs:{x:a[0]},backend:n});let o=n.makeOutput(s,t[0].dtype);if(w.sizeFromShape(s)===0)return o;let i=a.map(h=>h.shape);if(E.assertParamsConsistent(i,r),a[0].dtype==="string"){let h=a.map(y=>{let x=w.sizeFromShape(y.shape.slice(r));return Vn({inputs:{x:y},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(y=>({vals:n.readSync(y.dataId),shape:y.shape}));s=E.computeOutShape(h.map(y=>y.shape),1);let m=h[0].shape[0]===1,g=bw(f,s,t[0].dtype,m),b=E.computeOutShape(a.map(y=>y.shape),r);o.shape=b;let v=n.dataIdMap.get(o.dataId);return v.stringBytes=E.fromStringArrayToUint8(g),h.forEach(y=>n.disposeData(y.dataId)),o}let c=w.sizeFromShape(a[0].shape.slice(0,r)),l=0,u=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(r));return l+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h`cumsum does not support ${s.dtype} tensors in the WASM backend`);let l=E.getAxesPermutation([a],c),u=s;l!==null&&(u=$u({inputs:{x:s},attrs:{perm:l},backend:n}));let d=E.getInnerMostAxes(1,c)[0];E.assertAxesAreInnerMostDims("cumsum",[d],c);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;T_(f,o?1:0,i?1:0,h,m,Wt[s.dtype]);let g=p;if(l!==null){let b=E.getUndoAxesPermutation(l);g=$u({inputs:{x:p},attrs:{perm:b},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var Ose={kernelName:Xa,backendName:"wasm",setupFunc:Rse,kernelFunc:Pse},N_;function Mse(e){N_=e.wasm.cwrap(ac,null,["number","number","number","array","number","array","array","number","number"])}function Lse(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{blockSize:a,dataFormat:o}=r,i=s.shape[0],c=o==="NHWC"?s.shape[1]:s.shape[2],l=o==="NHWC"?s.shape[2]:s.shape[3],u=o==="NHWC"?s.shape[3]:s.shape[1],d=c*a,p=l*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(s.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return N_(b,a,o==="NHWC"?1:0,v,s.shape.length-1,y,x,f.length,k),m}var Bse={kernelName:ac,backendName:"wasm",setupFunc:Mse,kernelFunc:Lse},__;function zse(e){__=e.wasm.cwrap(Ya,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Wse(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a}=t,o=r.dataIdMap.get(s.dataId).id,i=r.dataIdMap.get(a.dataId).id,{strides:c,dilations:l,pad:u,dimRoundingMode:d}=n,p=l==null?[1,1]:l,h=E.computeConv2DInfo(s.shape,a.shape,c,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,v=h.padInfo.bottom,y=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,C=h.strideHeight,N=h.strideWidth,D=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(h.outShape,"float32"),P=r.dataIdMap.get($.dataId).id;return __(o,s.shape[0],s.shape[1],s.shape[2],i,f,m,g,b,v,y,O,x,k,C,N,D,F,P),$}var Vse={kernelName:Ya,backendName:"wasm",setupFunc:zse,kernelFunc:Wse},Use=pn(Ja),Gse=!1,Hse=En(ic,Gse,"bool"),jse=pn(Qa,"float32");function Yw(e){let{inputs:t,attrs:n,backend:r}=e,{input:s}=t,{dim:a}=n,o=s.shape.length,i=s.shape.slice(),c=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),c=o+a+1),i.splice(c,0,1),Vn({inputs:{x:s},backend:r,attrs:{shape:i}})}var qse={kernelName:cc,backendName:"wasm",kernelFunc:Yw};function E_(e){let{attrs:{shape:t,value:n,dtype:r},backend:s}=e,a=s.makeOutput(t,r);return s.typedArrayFromHeap(a).fill(n),a}var Kse={kernelName:kl,backendName:"wasm",kernelFunc:E_},A_;function Xse(e){A_=e.wasm.cwrap(lc,null,["number","number","number","number","number","number"])}function Yse(e){let{inputs:t,backend:n}=e,{image:r}=t,s=n.makeOutput(r.shape,r.dtype),a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,[i,c,l,u]=r.shape;return A_(a,i,c,l,u,o),s}var Zse={kernelName:lc,backendName:"wasm",kernelFunc:Yse,setupFunc:Xse},Jse=pn(eo),Qse=!1,eae=En(to,Qse),D_;function tae(e){D_=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number"])}function nae(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:s}=r,{x:a,mean:o,variance:i,offset:c,scale:l}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=c!=null?t.dataIdMap.get(c.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return D_(u,d,p,h,f,s,g),m}var rae={kernelName:no,backendName:"wasm",setupFunc:tae,kernelFunc:nae},F_;function sae(e){F_=e.wasm.cwrap(Mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function aae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(s.shape,a.shape,c,u,l,p),g=zd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,v=r.dataIdMap.get(a.dataId).id,y=m.outChannels,x=0;if(o!=null){let se=r.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==y)throw new Error(`FusedConv2D bias shape (${se.shape}) does not match the number of output channels (${y})`);x=se.id}let k=m.filterHeight,C=m.filterWidth,N=m.padInfo.top,D=m.padInfo.right,F=m.padInfo.bottom,O=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,K=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(te.dataId).id,ae=i==null?0:r.dataIdMap.get(i.dataId).id;return F_(b,q,K,ee,v,k,C,x,N,D,F,O,j,$,P,T,L,G,y,g,ae,f||0,ne),te}var oae={kernelName:Mo,backendName:"wasm",setupFunc:sae,kernelFunc:aae},$_;function iae(e){$_=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cae(e){let{inputs:t,attrs:n,backend:r}=e,{x:s,filter:a,bias:o,preluActivationWeights:i}=t,{strides:c,pad:l,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=E.computeConv2DInfo(s.shape,a.shape,c,u,l,p,!0),g=zd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=r.dataIdMap.get(s.dataId).id,v=r.dataIdMap.get(a.dataId).id,y=m.outChannels,x=0;if(o!=null){let se=r.dataIdMap.get(o.dataId);if(se.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${se.shape.length}.`);if(se.shape[0]!==y)throw new Error(`FusedDepthwiseConv2D bias shape (${se.shape}) does not match the number of output channels (${y})`);x=se.id}let k=m.filterHeight,C=m.filterWidth,N=m.padInfo.top,D=m.padInfo.right,F=m.padInfo.bottom,O=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,T=m.strideHeight,L=m.strideWidth,G=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,K=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let te=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(te.dataId).id,ae=i==null?0:r.dataIdMap.get(i.dataId).id;return $_(b,q,K,ee,v,k,C,x,N,D,F,O,j,$,P,T,L,G,y,g,ae,f||0,ne),te}var uae={kernelName:Lo,backendName:"wasm",setupFunc:iae,kernelFunc:cae},R_;function lae(e){R_=e.wasm.cwrap(pc,null,["number","number","number","number","number","number","array","number"])}function dae(e){let{backend:t,inputs:n}=e,{params:r,indices:s}=n,[a,o,i,c]=uy.prepareAndValidate(r,s),l=t.makeOutput(a,r.dtype);if(o===0)return l;let u=s.shape,d=u[u.length-1],h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,g=new Uint8Array(new Int32Array(c).buffer),b=t.dataIdMap.get(l.dataId).id;return R_(h,Wt[r.dtype],m,o,d,i,g,b),l}var pae={kernelName:pc,backendName:"wasm",setupFunc:lae,kernelFunc:dae},P_;function hae(e){P_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function fae(e){let{backend:t,inputs:n,attrs:r}=e,{x:s,indices:a}=n,{axis:o,batchDims:i}=r,c=w.parseAxisParam(o,s.shape)[0],l=t.readSync(a.dataId),u=s.shape[c];for(let F=0;F=0,()=>`GatherV2: the index value ${O} is not in [0, ${u-1}]`)}let d=E.segment_util.collectGatherOpShapeInfo(s,a,c,i),p=Vn({inputs:{x:s},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=Vn({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,s.dtype);if(w.sizeFromShape(s.shape)===0)return g;let b=p.shape.length-1,y=t.dataIdMap.get(p.dataId).id,k=t.dataIdMap.get(f.dataId).id,C=t.dataIdMap.get(g.dataId).id,N=new Uint8Array(new Int32Array(w.computeStrides(p.shape)).buffer),D=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return P_(y,Wt[s.dtype],N,b,k,d.batchSize,D,C),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var mae={kernelName:dc,backendName:"wasm",setupFunc:hae,kernelFunc:fae},gae=!1,bae=En(hc,gae,"bool"),yae=!1,vae=En(ro,yae,"bool"),O_;function xae(e){O_=e.wasm.cwrap(ao,null,["number","number","number","number"])}function wae(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,s=r.dataIdMap.get(t.dataId).id,a=r.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let o=r.dataIdMap.get(a.dataId).id;O_(s,Wt[t.dtype],n,o)}return a}var kae={kernelName:ao,backendName:"wasm",setupFunc:xae,kernelFunc:wae},Iae=!1,Sae=En(bc,Iae,"bool"),Cae=!1,Tae=En(yc,Cae,"bool"),Nae=pn(oo),_ae=!1,Eae=En(xc,_ae,"bool"),M_;function Aae(e){M_=e.wasm.cwrap(io,null,["number","number","number","number"])}function Dae(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:s,keepDims:a}=r,{x:o}=n,c=t.dataIdMap.get(o.dataId).id,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ta(o,s,t);if(h){let y=t.dataIdMap.get(u.dataId).id;l=u,c=y}let f=l.shape.length;E.assertAxesAreInnerMostDims("max",d,f);let[m,g]=E.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),v=t.makeOutput(m,o.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(v.dataId).id;M_(c,Wt[o.dtype],b,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(v.shape,p);v.shape=y}return v}var Fae={kernelName:io,backendName:"wasm",setupFunc:Aae,kernelFunc:Dae},$ae=!1,Rae=En(co,$ae),L_;function Pae(e){L_=e.wasm.cwrap(uo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Oae(e){let{inputs:t,attrs:n,backend:r}=e,s=t.x,a=r.dataIdMap.get(s.dataId).id;w.assert(s.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${s.dtype}.`);let{filterSize:o,strides:i,pad:c,dimRoundingMode:l}=n,u=E.computePool2DInfo(s.shape,o,i,1,c,l),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,b=u.dilationHeight,v=u.dilationWidth,y=u.strideHeight,x=u.strideWidth,k=u.inChannels,C=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(u.outShape,"float32"),D=r.dataIdMap.get(N.dataId).id;return L_(a,s.shape[0],s.shape[1],s.shape[2],d,p,h,f,m,g,b,v,y,x,k,C,D),N}var Mae={kernelName:uo,backendName:"wasm",setupFunc:Pae,kernelFunc:Oae},B_;function Lae(e){B_=e.wasm.cwrap(lo,null,["number, number, number"])}function Bae(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ta(o,s,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(l=u,c=x,f=E.getInnerMostAxes(f.length,l.shape.length))}E.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=E.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),v=l;l.dtype!=="float32"&&(v=Vd({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),c=t.dataIdMap.get(v.dataId).id);let y=t.makeOutput(m,"float32");if(w.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;B_(c,b,x)}if(h&&t.disposeData(u.dataId),a){let x=E.expandShapeToKeepDim(y.shape,p);y.shape=x}return l.dtype!=="float32"&&t.disposeData(v.dataId),y}var zae={kernelName:lo,backendName:"wasm",setupFunc:Lae,kernelFunc:Bae},z_;function Wae(e){z_=e.wasm.cwrap(po,null,["number","number","number","number"])}function Vae(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ta(o,s,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,c=y)}let f=l.shape.length;E.assertAxesAreInnerMostDims("min",d,f);let[m,g]=E.computeOutAndReduceShapes(l.shape,d),b=w.sizeFromShape(g),v=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(v.dataId).id;z_(c,Wt[o.dtype],b,y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(v.shape,p);v.shape=y}return v}var Uae={kernelName:po,backendName:"wasm",setupFunc:Wae,kernelFunc:Vae},Gae=!1,Hae=En(ho,Gae),Zw;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Zw||(Zw={}));var W_;function jae(e){W_=e.wasm.cwrap(fo,null,["number","array","number","number","array","array","number","number"])}function qae(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,mode:s}}=e,a=r.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),d=r.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return W_(o,l,t.shape.length,Wt[t.dtype],p,h,Zw[s],c),i}var Kae={kernelName:fo,backendName:"wasm",kernelFunc:qae,setupFunc:jae},Xae=!0,Yae=En(mo,Xae),Zae=pn(kc);function Jw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],s=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:s,pSelectedScores:a,pValidOutputs:o}}var V_;function Jae(e){V_=e.wasm.cwrap(Sc,"number",["number","number","number","number","number"])}function Qae(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o}=r,{boxes:i,scores:c}=n,l=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(c.dataId).id,d=V_(l,u,a,s,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Jw(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var eoe={kernelName:Sc,backendName:"wasm",setupFunc:Jae,kernelFunc:Qae},U_;function toe(e){U_=e.wasm.cwrap(Cc,"number",["number","number","number","number","number","bool"])}function noe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=r,{boxes:c,scores:l}=n,u=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=U_(u,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Jw(t,p);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),v=t.makeOutput([],"int32",g);return[b,v]}var roe={kernelName:Cc,backendName:"wasm",setupFunc:toe,kernelFunc:noe},G_;function soe(e){G_=e.wasm.cwrap(Tc,"number",["number","number","number","number","number","number"])}function aoe(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:s,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=r,{boxes:c,scores:l}=n,u=t.dataIdMap.get(c.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=G_(u,d,a,s,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Jw(t,p);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),v=t.makeOutput([f],"float32",m);return[b,v]}var ooe={kernelName:Tc,backendName:"wasm",setupFunc:soe,kernelFunc:aoe},ioe=!1,coe=En(Ic,ioe,"bool"),H_;function uoe(e){H_=e.wasm.cwrap(go,null,["number","number","number","number","number"])}function loe(e){let{inputs:t,backend:n,attrs:r}=e,{indices:s}=t,{depth:a,onValue:o,offValue:i}=r,c=n.makeOutput([...s.shape,a],"int32"),l=n.dataIdMap.get(c.dataId).id,d=n.dataIdMap.get(s.dataId).id;return H_(d,a,o,i,l),c}var doe={kernelName:go,backendName:"wasm",setupFunc:uoe,kernelFunc:loe};function poe(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var hoe={kernelName:Nc,backendName:"wasm",kernelFunc:poe};function foe(e){let{inputs:t,backend:n,attrs:r}=e,{axis:s}=r;if(t.length===1)return Yw({inputs:{input:t[0]},backend:n,attrs:{dim:s}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{w.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],c=t.map(u=>{let d=Yw({inputs:{input:u},backend:n,attrs:{dim:s}});return i.push(d),d}),l=k_({inputs:c,backend:n,attrs:{axis:s}});return i.forEach(u=>n.disposeData(u.dataId)),l}var moe={kernelName:_c,backendName:"wasm",kernelFunc:foe},j_;function goe(e){j_=e.wasm.cwrap(bo,null,["number","array","number","number","array","array","number","number"])}function boe(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:s}}=e,a=r.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return E_({backend:n,attrs:{shape:a,value:s,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=r.map(m=>m[0]),p=r.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return j_(o,u,t.shape.length,Wt[t.dtype],h,f,s,l),i}var q_={kernelName:bo,backendName:"wasm",kernelFunc:boe,setupFunc:goe},yoe=!1,voe=En(yo,yoe),K_;function xoe(e){K_=e.wasm.cwrap(vo,null,["number","number","number"])}function woe(e){let{inputs:t,backend:n}=e,{x:r,alpha:s}=t,a=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(s.dataId).id,i=a,c=r,l=c;c.dtype!=="float32"&&(l=Vd({backend:n,inputs:{x:r},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(l.dataId).id);let u=n.makeOutput(r.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return K_(i,o,d),c.dtype!=="float32"&&n.disposeData(l.dataId),u}var koe={kernelName:vo,backendName:"wasm",setupFunc:xoe,kernelFunc:woe},X_;function Ioe(e){X_=e.wasm.cwrap(Ec,null,["number","number","number","number"])}function Soe(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ta(o,s,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,c=y,f=E.getInnerMostAxes(f.length,l.shape.length))}E.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=E.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),v=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(v.dataId).id;X_(c,b,Wt[v.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(v.shape,p);v.shape=y}return v}var Coe={kernelName:Ec,backendName:"wasm",setupFunc:Ioe,kernelFunc:Soe},Toe=e=>{let{backend:t,attrs:n}=e,{start:r,stop:s,step:a,dtype:o}=n,i=xw(r,s,a,o),c=t.makeOutput([i.length],o);return t.typedArrayFromHeap(c).set(i),c},Noe={kernelName:Nl,backendName:"wasm",kernelFunc:Toe},_oe=!0,Eoe=En(Za,_oe),Aoe=pn(xo),Doe=pn(ko),Y_;function Foe(e){Y_=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number"])}function $oe(e){let{backend:t,inputs:n,attrs:r}=e,{images:s}=n,{alignCorners:a,halfPixelCenters:o,size:i}=r,[c,l]=i,[u,d,p,h]=s.shape,f=[u,c,l,h],m=t.dataIdMap.get(s.dataId),g;m.dtype!=="float32"&&(g=Vd({backend:t,inputs:{x:s},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,v=t.makeOutput(f,"float32");if(w.sizeFromShape(s.shape)===0)return v;let y=t.dataIdMap.get(v.dataId).id;return Y_(b,u,d,p,h,c,l,a?1:0,o?1:0,y),g!=null&&t.disposeData(g.dataId),v}var Roe={kernelName:wo,backendName:"wasm",setupFunc:Foe,kernelFunc:$oe},Z_;function Poe(e){Z_=e.wasm.cwrap(Io,null,["number","array","number","array","number","number"])}function Ooe(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{dims:a}=r,o=w.parseAxisParam(a,s.shape);if(s.shape.length===0)return _m({inputs:{x:s},backend:n});let i=n.makeOutput(s.shape,s.dtype),c=n.dataIdMap.get(s.dataId).id,l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(s.shape).buffer);Z_(c,u,o.length,d,s.shape.length,l);let p=Vn({inputs:{x:i},attrs:{shape:s.shape},backend:n});return n.disposeData(i.dataId),p}var Moe={kernelName:Io,backendName:"wasm",kernelFunc:Ooe,setupFunc:Poe},J_;function Loe(e){J_=e.wasm.cwrap(jc,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Boe(e){let{inputs:t,backend:n,attrs:r}=e,{image:s}=t,{radians:a,fillValue:o,center:i}=r,c=n.makeOutput(s.shape,s.dtype),l=n.dataIdMap.get(s.dataId).id,u=n.dataIdMap.get(c.dataId).id,[d,p,h,f]=s.shape,[m,g]=E.getImageCenter(i,p,h),b=o===0,v=255,y=typeof o=="number"?[o,o,o,b?0:v]:[...o,v],x=new Uint8Array(new Int32Array(y).buffer);return J_(l,d,p,h,f,a,m,g,x,y.length,u),c}var zoe={kernelName:jc,backendName:"wasm",kernelFunc:Boe,setupFunc:Loe},Woe=pn(So),Voe=pn(Co),Q_;function Uoe(e){Q_=e.wasm.cwrap(Fc,null,["number","number","number","number","number","number","array","number","number"])}function Goe(e){let{backend:t,inputs:n,attrs:r}=e,{indices:s,updates:a}=n,{shape:o}=r,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:c,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=ly.calculateShapes(a,s,o),f=t.dataIdMap.get(s.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(d).buffer),v=t.dataIdMap.get(i.dataId).id;return Q_(f,g,Wt[a.dtype],c,l,u,b,p,v),i}var Hoe={kernelName:Fc,backendName:"wasm",setupFunc:Uoe,kernelFunc:Goe},eE;function joe(e){eE=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function qoe(e){let{inputs:t,backend:n}=e,{condition:r,t:s,e:a}=t,o=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(s.dataId).id,c=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(s.shape,s.dtype),u=n.dataIdMap.get(l.dataId).id,d=r.shape.length,p=s.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(s.shape.slice(1));return eE(o,i,c,h,u),l}var Koe={kernelName:$c,backendName:"wasm",kernelFunc:qoe,setupFunc:joe},tE;function Xoe(e){tE=e.wasm.cwrap(No,null,["number","number"])}function Yoe(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(s.dataId).id;return w.sizeFromShape(s.shape)===0||tE(r,a),s}var Zoe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Xoe,kernelFunc:Yoe},Joe=pn(To),nE;function Qoe(e){nE=e.wasm.cwrap(Ao,null,["number","number","number","number"])}function eie(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,s=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[r],c=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||nE(s,o,i,c),a}var tie={kernelName:Ao,backendName:"wasm",setupFunc:Qoe,kernelFunc:eie};function nie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,{blockShape:a,paddings:o}=r,i=w.sizeFromShape(a),c=[[0,0]];c.push(...o);for(let C=1+a.length;C{let p=[...u];p[i]=d;let h=Wd({inputs:{x:s},attrs:{begin:l,size:p},backend:r});return l[i]+=d,h})}var aie={kernelName:zc,backendName:"wasm",kernelFunc:sie},oie=pn(_o),iie=pn(El),cie=!0,uie=En(Do,cie),rE;function lie(e){rE=e.wasm.cwrap(ta,null,["number","number","number","number"])}function die(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:s}=r,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),c=t.dataIdMap.get(i.dataId).id;return rE(o,s,Wt[a.dtype],c),i}var pie={kernelName:ta,backendName:"wasm",setupFunc:lie,kernelFunc:die},sE;function hie(e){sE=e.wasm.cwrap(Wc,null,["number","array","number","array","array","array","array","array","number","number"])}function fie(e){let{backend:t,inputs:n,attrs:r}=e,{x:s}=n,{begin:a,end:o,strides:i,beginMask:c,endMask:l,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=r,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:v,end:y,strides:x}=Gt.sliceInfo(s.shape,a,o,i,c,l,u,d,p),k;if(m)k=Vn({inputs:{x:s},backend:t,attrs:{shape:f}});else if(g||b){w.assert(s.shape.length>=1,()=>`Input must have rank at least 1, got: ${s.shape.length}`);let C=Gt.computeOutShape(v,y,x),N=Wd({inputs:{x:s},backend:t,attrs:{begin:v,size:C}});k=Vn({inputs:{x:N},backend:t,attrs:{shape:f}}),t.disposeData(N.dataId)}else{let C=t.makeOutput(h,"float32"),N=t.dataIdMap.get(s.dataId).id,D=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),F=new Uint8Array(new Int32Array(v).buffer),O=new Uint8Array(new Int32Array(y).buffer),$=new Uint8Array(new Int32Array(x).buffer),P=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),L=t.dataIdMap.get(C.dataId).id;sE(N,D,s.shape.length,F,O,$,P,T,h.length,L),k=Vn({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}return k}var mie={kernelName:Wc,backendName:"wasm",setupFunc:hie,kernelFunc:fie},gie=!0,bie=En(Fo,gie),aE;function yie(e){aE=e.wasm.cwrap(Eo,null,["number","number","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:r}=e,{axis:s,keepDims:a}=r,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,c=i,l=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=Ta(o,s,t),f=d;if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,c=y,f=E.getInnerMostAxes(f.length,l.shape.length))}E.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=E.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),v=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(v.dataId).id;aE(c,b,Wt[v.dtype],y)}if(h&&t.disposeData(u.dataId),a){let y=E.expandShapeToKeepDim(v.shape,p);v.shape=y}return v}var xie={kernelName:Eo,backendName:"wasm",setupFunc:yie,kernelFunc:vie},wie=pn($o),kie=pn(Ro),oE;function Iie(e){oE=e.wasm.cwrap(ea,null,["number","array","number","array","number","number"])}function Sie(e){let{inputs:t,backend:n,attrs:r}=e,{x:s}=t,a=n.dataIdMap.get(s.dataId).id,{reps:o}=r,i=new Array(s.shape.length);for(let p=0;p{let{x:r}=e,{k:s,sorted:a}=n,o=t.dataIdMap.get(r.dataId).id,i=new Uint8Array(new Int32Array(r.shape).buffer),c=r.shape.slice();c[c.length-1]=s;let l=t.makeOutput(c,r.dtype),u=t.dataIdMap.get(l.dataId).id,d=t.makeOutput(c,"int32"),p=t.dataIdMap.get(d.dataId).id;return iE(o,i,r.shape.length,Wt[r.dtype],s,a,u,p),[l,d]},_ie={kernelName:Vc,backendName:"wasm",setupFunc:Tie,kernelFunc:Nie},cE;function Eie(e){cE=e.wasm.cwrap(Uc,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Aie(e){let{backend:t,inputs:n,attrs:r}=e,{image:s,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:c,outputShape:l}=r,[u,d,p,h]=s.shape,[f,m]=l!=null?l:[d,p],g=[u,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(s.shape)).buffer),v=t.makeOutput(g,s.dtype),y=t.dataIdMap.get(v.dataId).id,k=t.dataIdMap.get(s.dataId).id,N=t.dataIdMap.get(a.dataId).id,D=o==="nearest"?1:2,F;switch(i){case"constant":F=1;break;case"reflect":F=2;break;case"wrap":F=3;break;case"nearest":F=4;break;default:F=1;break}return cE(k,N,a.shape[0]>1,u,f,m,h,p,d,b,s.shape.length-1,D,F,c,y),v}var Die={kernelName:Uc,backendName:"wasm",setupFunc:Eie,kernelFunc:Aie};function Fie(e){let{inputs:t,backend:n,attrs:r}=e,{value:s}=t,{axis:a}=r;a<0&&(a+=s.shape.length);let o=s.shape[a],i=s.shape.length,c=new Array(i-1),l=0;for(let h=0;h({dataId:h,dtype:f,shape:c}))}var $ie={kernelName:Gc,backendName:"wasm",kernelFunc:Fie};function Rie(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var Pie={kernelName:Hc,backendName:"wasm",kernelFunc:Rie},Oie=[Lre,zre,Ure,Zre,ese,rse,ose,lse,gse,bse,yse,wse,kse,Cse,_se,Ese,Ase,$se,Ose,Bse,Vse,Use,Hse,jse,qse,Kse,Zse,Jse,eae,Mre,rae,oae,uae,pae,mae,bae,vae,Gre,kae,Sae,Tae,Nae,Eae,Fae,Rae,Mae,zae,Uae,Hae,Kae,Yae,Zae,eoe,roe,ooe,coe,doe,hoe,moe,q_,voe,koe,Coe,Noe,Eoe,Aoe,Doe,ise,Roe,Moe,zoe,Voe,Woe,Hoe,Koe,Zoe,Joe,fse,tie,rie,aie,oie,iie,uie,pie,mie,bie,xie,wie,kie,Cie,_ie,Die,Kre,$ie,Pie];for(let e of Oie)Fl(e);var Qw=J();Qw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Qw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Qw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var uE=Oa(SD()),Mie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Lie=Oa(CD()),lE=class extends fl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(pE),t1=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Pp(this,Ss())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,r,s){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null,refCount:s});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(r),c=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:c,shape:n,dtype:r,refCount:s}),this.wasm.tfjs.registerTensor(a,o,c),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),c)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:s}=this.dataIdMap.get(e);if(n==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(r)*w.bytesPerElement(n));return Wie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let s=this.dataIdNextNumber++;r={id:s},this.dataIdMap.set(r,{id:s,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,s,a);case"int32":return new Int32Array(r,s,a);case"bool":return new Uint8Array(r,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Bie(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(s=>{WebAssembly.instantiate(s,t).then(a=>{n(a.instance,a.module)})})}),{})}function dE(e,t,n){if(Em!=null)return Em;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Gd!=null&&Gd[r]!=null?Gd[r]:n+r}async function zie(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let s={};s.locateFile=(i,c)=>{if(i.endsWith(".worker.js")){let l=Mie,u=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?dE(e,t,Ud!=null?Ud:c):c+i},e1&&(s.instantiateWasm=Bie(dE(e,t,Ud!=null?Ud:"")));let a=!1;s.onAbort=()=>{if(a||Hd)return;Hd=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Em==null?(s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+uE.default.toString()],{type:"text/javascript"}),o=(0,uE.default)(s)):o=(0,Lie.default)(s),o.then(i=>{a=!0,Hd=!1;let c=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",c,["number"]),dispose:i.cwrap("dispose",c,[])},n({wasm:i})})})}function Wie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Vie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Em=null,Ud=null,Gd={},Hd=!1,e1=!1;function Uie(e,t=!1){if(by("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Hd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Em=e,e1=t}function Gie(e,t=!1){if(Hd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ud=e;else{Gd=e;let n=Vie.filter(r=>Gd[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}e1=t}var pE=-1,t1=-1;function Hie(e){pE=e}function jie(){if(t1===-1)throw new Error("WASM backend not initialized.");return t1}var qie="3.11.0",Kie=2;Ph("wasm",async()=>{let{wasm:e}=await zie();return new lE(e)},Kie);var Xie="3.11.0",Yie="3.11.0",Zie="3.11.0",Jie="3.11.0",Qie="3.11.0",ece="3.11.0",tce="3.11.0",nce="3.11.0",rce={tfjs:Xie,"tfjs-core":Yie,"tfjs-data":Zie,"tfjs-layers":Jie,"tfjs-converter":Qie,"tfjs-backend-cpu":ece,"tfjs-backend-webgl":tce,"tfjs-backend-wasm":nce};var N1={};Fp(N1,{AnchorPosition:()=>gs,DrawBox:()=>$m,DrawBoxOptions:()=>g1,DrawFaceLandmarks:()=>T1,DrawFaceLandmarksOptions:()=>C1,DrawTextField:()=>_a,DrawTextFieldOptions:()=>Yd,drawContour:()=>Ps,drawDetections:()=>pce,drawFaceExpressions:()=>bce,drawFaceLandmarks:()=>vce});function Ps(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:r,y:s},a)=>{let o=t[a];e.moveTo(o.x,o.y),e.lineTo(r,s)}),n){let r=t[t.length-1],s=t[0];if(!r||!s)return;e.moveTo(r.x,r.y),e.lineTo(s.x,s.y)}e.stroke()}var o1={};Fp(o1,{computeReshapedDimensions:()=>a1,getCenterPoint:()=>ki,isDimensions:()=>Dm,isEven:()=>Am,isFloat:()=>s1,isTensor:()=>xi,isTensor1D:()=>sce,isTensor2D:()=>r1,isTensor3D:()=>Os,isTensor4D:()=>mr,isValidNumber:()=>qr,isValidProbablitiy:()=>Ru,range:()=>fs,round:()=>wi});var An=class{constructor(t,n){if(!qr(t)||!qr(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new An(1/this.width,1/this.height)}};function xi(e,t){return e instanceof Ee&&e.shape.length===t}function sce(e){return xi(e,1)}function r1(e){return xi(e,2)}function Os(e){return xi(e,3)}function mr(e){return xi(e,4)}function s1(e){return e%1!=0}function Am(e){return e%2==0}function wi(e,t=2){let n=10**t;return Math.floor(e*n)/n}function Dm(e){return e&&e.width&&e.height}function a1({width:e,height:t},n){let r=n/Math.max(t,e);return new An(Math.round(e*r),Math.round(t*r))}function ki(e){return e.reduce((t,n)=>t.add(n),new Pe(0,0)).div(new Pe(e.length,e.length))}function fs(e,t,n){return Array(e).fill(0).map((r,s)=>t+s*n)}function qr(e){return!!e&&e!==1/0&&e!==-1/0&&!Number.isNaN(e)||e===0}function Ru(e){return qr(e)&&e>=0&&e<=1}var Pe=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new Pe(this.x+t.x,this.y+t.y)}sub(t){return new Pe(this.x-t.x,this.y-t.y)}mul(t){return new Pe(this.x*t.x,this.y*t.y)}div(t){return new Pe(this.x/t.x,this.y/t.y)}abs(){return new Pe(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new Pe(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(qr)}static assertIsValidBox(t,n,r=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let r=t||{},s=[r.left,r.top,r.right,r.bottom].every(qr),a=[r.x,r.y,r.width,r.height].every(qr);if(!a&&!s)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[o,i,c,l]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];ut.assertIsValidBox({x:o,y:i,width:c,height:l},"Box.constructor",n),this._x=o,this._y=i,this._width=c,this._height=l}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new Pe(this.left,this.top)}get topRight(){return new Pe(this.right,this.top)}get bottomLeft(){return new Pe(this.left,this.bottom)}get bottomRight(){return new Pe(this.right,this.bottom)}round(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new ut({x:t,y:n,width:r,height:s})}floor(){let[t,n,r,s]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new ut({x:t,y:n,width:r,height:s})}toSquare(){let{x:t,y:n,width:r,height:s}=this,a=Math.abs(r-s);return rn&&(i=-d+n+r,d=n),p>t&&(c=-p+t+s,p=t),l<1&&(c=2-l,l=1),u<1&&(c=2-u,u=1),{dy:o,edy:c,dx:a,edx:i,y:u,ey:p,x:l,ex:d,w:r,h:s}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Pu=class extends ut{constructor(t,n,r,s,a=!1){super({left:t,top:n,right:r,bottom:s},a)}};var Na=class{constructor(t,n,r,s,a){this._imageDims=new An(a.width,a.height),this._score=t,this._classScore=n,this._className=r,this._box=new ut(s).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Na(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var vt=class extends Na{constructor(t,n,r){super(t,t,"",n,r)}forSize(t,n){let{score:r,relativeBox:s,imageDims:a}=super.forSize(t,n);return new vt(r,s,a)}};function i1(e,t,n=!0){let r=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),s=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),a=r*s;return n?a/(e.area+t.area-a):a/Math.min(e.area,t.area)}function c1(e){let t=e.map(i=>i.x),n=e.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:o,boxIndex:i})).sort((o,i)=>o.score-i.score).map(o=>o.boxIndex),a=[];for(;s.length>0;){let o=s.pop();a.push(o);let i=s,c=[];for(let l=0;lc[u]<=n)}return a}function Kr(e,t){return M(()=>{let[n,r,s]=t,a=In([...e.shape.slice(0,3),1],n,"float32"),o=In([...e.shape.slice(0,3),1],r,"float32"),i=In([...e.shape.slice(0,3),1],s,"float32"),c=Ze([a,o,i],3);return fe(e,c)})}function l1(e,t=!1){return M(()=>{let[n,r]=e.shape.slice(1);if(n===r)return e;let s=Math.abs(n-r),a=Math.round(s*(t?.5:1)),o=n>r?2:1,i=p=>{let h=e.shape.slice();return h[o]=p,In(h,0,"float32")},c=i(a),l=s-c.shape[o],d=[t&&l?i(l):null,e,c].filter(p=>!!p).map(p=>ce(p,"float32"));return Ze(d,o)})}function ace(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let r=Math.floor(Math.random()*(n+1)),s=t[n];t[n]=t[r],t[r]=s}return t}function jd(e){return 1/(1+Math.exp(-e))}function oce(e){return Math.log(e/(1-e))}var Ou=class extends ut{constructor(t,n,r,s,a=!1){super({x:t,y:n,width:r,height:s},a)}};var ice=.5,cce=.43,uce=.45,gr=class{constructor(t,n,r=new Pe(0,0)){let{width:s,height:a}=n;this._imgDims=new An(s,a),this._shift=r,this._positions=t.map(o=>o.mul(new Pe(s,a)).add(r))}get shift(){return new Pe(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new Pe(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new Pe(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let a=t instanceof vt?t.box.floor():new ut(t);return this.shiftBy(a.x,a.y).align(null,n)}let{useDlibAlignment:r,minBoxPadding:s}={useDlibAlignment:!1,minBoxPadding:.2,...n};return r?this.alignDlib():this.alignMinBbox(s)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,r,s]=t,a=d=>s.sub(d).magnitude(),o=(a(n)+a(r))/2,i=Math.floor(o/uce),c=ki(t),l=Math.floor(Math.max(0,c.x-ice*i)),u=Math.floor(Math.max(0,c.y-cce*i));return new Ou(l,u,Math.min(i,this.imageWidth+l),Math.min(i,this.imageHeight+u))}alignMinBbox(t){let n=c1(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var hE=class extends gr{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],ki([t[3],t[4]])]}};var Mu=class extends gr{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(ki)}};var qd=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${wi(this.distance)})`:""}`}};var Kd=class extends ut{static assertIsValidLabeledBox(t,n){if(ut.assertIsValidBox(t,n),!qr(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Ms=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(r=>new Float32Array(r));return new Ms(t.label,n)}};var fE=class extends Kd{static assertIsValidPredictedBox(t,n){if(Kd.assertIsValidLabeledBox(t,n),!Ru(t.score)||!Ru(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,r,s){super(t,n);this._score=r,this._classScore=s}get score(){return this._score}get classScore(){return this._classScore}};function ms(e){return e.detection instanceof vt}function Ii(e,t){return{...e,...{detection:t}}}function d1(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:e,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Xd(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function Fm(e){let t="";if(!e&&Xd())try{e=ZA("fs")}catch(r){t=r.toString()}return{readFile:e?r=>new Promise((s,a)=>{e.readFile(r,(o,i)=>o?a(o):s(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function p1(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=global.Video||global.HTMLVideoElement,r=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},s=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(n)return new n;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},o=global.fetch,i=Fm();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:s,createVideoElement:a,fetch:o,...i}}function h1(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var sn;function lce(){if(!sn)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return sn}function f1(e){sn=e}function m1(){return h1()?f1(d1()):Xd()?f1(p1()):null}function dce(e){if(sn||m1(),!sn)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=sn.Canvas,Image:n=sn.Image}=e;sn.Canvas=t,sn.Image=n,sn.createCanvasElement=e.createCanvasElement||(()=>new t),sn.createImageElement=e.createImageElement||(()=>new n),sn.ImageData=e.ImageData||sn.ImageData,sn.Video=e.Video||sn.Video,sn.fetch=e.fetch||sn.fetch,sn.readFile=e.readFile||sn.readFile}var Je={getEnv:lce,setEnv:f1,initialize:m1,createBrowserEnv:d1,createFileSystem:Fm,createNodejsEnv:p1,monkeyPatch:dce,isBrowser:h1,isNodejs:Xd};m1();function Si(e){return!Je.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Un(e){let{Canvas:t,CanvasRenderingContext2D:n}=Je.getEnv();if(e instanceof n)return e;let r=Si(e);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let s=r.getContext("2d");if(!s)throw new Error("resolveContext2d - canvas 2d context is null");return s}var gs;(function(s){s.TOP_LEFT="TOP_LEFT",s.TOP_RIGHT="TOP_RIGHT",s.BOTTOM_LEFT="BOTTOM_LEFT",s.BOTTOM_RIGHT="BOTTOM_RIGHT"})(gs||(gs={}));var Yd=class{constructor(t={}){let{anchorPosition:n,backgroundColor:r,fontColor:s,fontSize:a,fontStyle:o,padding:i}=t;this.anchorPosition=n||gs.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=s||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=o||"Georgia",this.padding=i||4}},_a=class{constructor(t,n,r={}){this.text=typeof t=="string"?[t]:t instanceof _a?t.text:t,this.anchor=n,this.options=new Yd(r)}measureWidth(t){let{padding:n}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,s)=>r{let f=c+d.x,m=c+d.y+(h+1)*o;r.fillText(p,f,m)})}};var g1=class{constructor(t={}){let{boxColor:n,lineWidth:r,label:s,drawLabelOptions:a}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=s;let o={anchorPosition:gs.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Yd({...o,...a})}},$m=class{constructor(t,n={}){this.box=new ut(t),this.options=new g1(n)}draw(t){let n=Un(t),{boxColor:r,lineWidth:s}=this.options,{x:a,y:o,width:i,height:c}=this.box;n.strokeStyle=r,n.lineWidth=s,n.strokeRect(a,o,i,c);let{label:l}=this.options;l&&new _a([l],{x:a-s/2,y:o},this.options.drawLabelOptions).draw(t)}};function pce(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof vt?r.score:ms(r)?r.detection.score:void 0,a=r instanceof vt?r.box:ms(r)?r.detection.box:new ut(r),o=s?`${wi(s)}`:void 0;new $m(a,{label:o}).draw(e)})}function Zd(e){let{Image:t,Video:n}=Je.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function b1(e){return new Promise((t,n)=>{(e instanceof Je.getEnv().Canvas||Zd(e))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),n(a))}function s(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",s),a.currentTarget.removeEventListener("error",r),t(a))}e.addEventListener("load",s),e.addEventListener("error",r)})}function y1(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let s=Je.getEnv().createImageElement();s.onload=()=>t(s),s.onerror=n,s.src=r.result},r.onerror=n,r.readAsDataURL(e)})}function Ci(e){let{Image:t,Video:n}=Je.getEnv();return e instanceof t?new An(e.naturalWidth,e.naturalHeight):e instanceof n?new An(e.videoWidth,e.videoHeight):new An(e.width,e.height)}function Ti({width:e,height:t}){let{createCanvasElement:n}=Je.getEnv(),r=n();return r.width=e,r.height=t,r}function Jd(e,t){let{ImageData:n}=Je.getEnv();if(!(e instanceof n)&&!Zd(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:s}=t||Ci(e),a=Ti({width:r,height:s});return e instanceof n?Un(a).putImageData(e,0,0):Un(a).drawImage(e,0,0,r,s),a}async function v1(e,t){let n=t||Je.getEnv().createCanvasElement(),[r,s,a]=e.shape.slice(mr(e)?1:0),o=M(()=>e.as3D(r,s,a).toInt());return await Go.toPixels(o,n),o.dispose(),n}function Rm(e){let{Image:t,Canvas:n,Video:r}=Je.getEnv();return e instanceof t||e instanceof n||e instanceof r}function x1(e,t,n=!1){let{Image:r,Canvas:s}=Je.getEnv();if(!(e instanceof r||e instanceof s))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Ti({width:1,height:1});let a=Ci(e),o=t/Math.max(a.height,a.width),i=o*a.width,c=o*a.height,l=Ti({width:t,height:t}),u=e instanceof s?e:Jd(e),d=Math.abs(i-c)/2,p=n&&i0&&u.height>0&&Un(l).drawImage(u,p,h,i,c),l}var Ls=class{constructor(t,n=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=n,this._batchSize=t.length,t.forEach((r,s)=>{if(Os(r)){this._imageTensors[s]=r,this._inputDimensions[s]=r.shape;return}if(mr(r)){let o=r.shape[0];if(o!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${o} passed, but not supported in input array`);this._imageTensors[s]=r,this._inputDimensions[s]=r.shape.slice(1);return}let a=r instanceof Je.getEnv().Canvas?r:Jd(r);this._canvases[s]=a,this._inputDimensions[s]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return fs(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),r=this.getInputHeight(t);return a1({width:n,height:r},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,M(()=>{let r=fs(this.batchSize,0,1).map(a=>{let o=this.getInput(a);if(o instanceof Ee){let i=mr(o)?o:yn(o);return i=l1(i,n),(i.shape[1]!==t||i.shape[2]!==t)&&(i=Qn.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(o instanceof Je.getEnv().Canvas)return Go.fromPixels(x1(o,t,n));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${o}`)});return Ot(r.map(a=>ce(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof Ls)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=s=>Array.isArray(e)?` at input index ${s}:`:"",r=t.map(Si);return r.forEach((s,a)=>{if(!Rm(s)&&!Os(s)&&!mr(s))throw typeof t[a]=="string"?new Error(`toNetInput -${n(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${n(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(mr(s)){let o=s.shape[0];if(o!==1)throw new Error(`toNetInput -${n(a)} tf.Tensor4D with batchSize ${o} passed, but not supported in input array`)}}),await Promise.all(r.map(s=>Rm(s)&&b1(s))),new Ls(r,Array.isArray(e))}async function Lu(e,t){let{Canvas:n}=Je.getEnv(),r=e;if(!(e instanceof n)){let o=await gt(e);if(o.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=o.getInput(0);r=i instanceof n?i:await v1(i)}let s=Un(r);return t.map(o=>o instanceof vt?o.forSize(r.width,r.height).box.floor():o).map(o=>o.clipAtImageBorders(r.width,r.height)).map(({x:o,y:i,width:c,height:l})=>{let u=Ti({width:c,height:l});return c>0&&l>0&&Un(u).putImageData(s.getImageData(o,i,c,l),0,0),u})}async function Bu(e,t){if(!Os(e)&&!mr(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(mr(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return M(()=>{let[n,r,s]=e.shape.slice(mr(e)?1:0);return t.map(i=>i instanceof vt?i.forSize(r,n).box:i).map(i=>i.clipAtImageBorders(r,n)).map(({x:i,y:c,width:l,height:u})=>ou(e.as3D(n,r,s),[c,i,0],[u,l,s]))})}async function Bs(e,t){let{fetch:n}=Je.getEnv(),r=await n(e,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function hce(e){let t=await Bs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return y1(n)}async function w1(e){return(await Bs(e)).json()}async function fce(e){return new Float32Array(await(await Bs(e)).arrayBuffer())}function mE(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=Je.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=n,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(e),r.play()})}async function mce(e){let t=await Bs(e),n=await t.blob();if(!n.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${n.type}, for url: ${t.url}`);return mE(n)}function Pm(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let r=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(r,"");let s=e.split("/").filter(i=>i),a=e.endsWith(".json")?s[s.length-1]:n,o=r+(e.endsWith(".json")?s.slice(0,s.length-1):s).join("/");return o=e.startsWith("/")?`/${o}`:o,{modelBaseUri:o,manifestUri:o==="/"?`/${a}`:`${o}/${a}`}}async function k1(e,t){let{manifestUri:n,modelBaseUri:r}=Pm(e,t),s=await w1(n);return Jt.loadWeights(s,r)}function gce(e,t,n=!1){let{width:r,height:s}=n?Ci(t):t;return e.width=r,e.height=s,{width:r,height:s}}var hn=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:r}=this.traversePropertyPath(t);return n[r]}reassignParamFromPath(t,n){let{obj:r,objProp:s}=this.traversePropertyPath(t);r[s].dispose(),r[s]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof ra)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof ra))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let r=qn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await k1(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=Je.getEnv(),{manifestUri:r,modelBaseUri:s}=Pm(t,this.getDefaultModelName()),a=l=>Promise.all(l.map(u=>n(u).then(d=>d.buffer))),o=Jt.weightsLoaderFactory(a),i=JSON.parse((await n(r)).toString()),c=await o(i,s);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:n,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=r}extractWeights(t){let{paramMappings:n,params:r}=this.extractParams(t);this._paramMappings=n,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((a,o)=>{if(!a.nextObj.hasOwnProperty(o))throw new Error(`traversePropertyPath - object does not have property ${o}, for path ${t}`);return{obj:a.nextObj,objProp:o,nextObj:a.nextObj[o]}},{nextObj:this.params}),{obj:r,objProp:s}=n;if(!r||!s||!(r[s]instanceof Ee))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:s}}};function Gn(e,t,n){return M(()=>{let r=ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return r=Y(r,t.bias),r})}function Om(e,t,n=!1){return M(()=>{let r=je(n?Y(Rt(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Gn(e,t.conv0,[2,2])),s=Gn(r,t.conv1,[1,1]),a=je(Y(r,s)),o=Gn(a,t.conv2,[1,1]);return je(Y(r,Y(s,o)))})}function Qd(e,t,n=!1,r=!0){return M(()=>{let s=je(n?Y(Rt(e,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):Gn(e,t.conv0,r?[2,2]:[1,1])),a=Gn(s,t.conv1,[1,1]),o=je(Y(s,a)),i=Gn(o,t.conv2,[1,1]),c=je(Y(s,Y(a,i))),l=Gn(c,t.conv3,[1,1]);return je(Y(s,Y(a,Y(i,l))))})}function Ni(e,t,n="same",r=!1){return M(()=>{let s=Y(Rt(e,t.filters,[1,1],n),t.bias);return r?je(s):s})}function Dn(e,t){Object.keys(e).forEach(n=>{t.some(r=>r.originalPath===n)||e[n].dispose()})}function zu(e,t){return(n,r,s,a)=>{let o=Mr(e(n*r*s*s),[s,s,n,r]),i=Ge(e(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:o,bias:i}}}function Mm(e,t){return(n,r,s)=>{let a=Or(e(n*r),[n,r]),o=Ge(e(r));return t.push({paramPath:`${s}/weights`},{paramPath:`${s}/bias`}),{weights:a,bias:o}}}var Lm=class{constructor(t,n,r){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=r}};function Wu(e,t){return(n,r,s)=>{let a=Mr(e(3*3*n),[3,3,n,1]),o=Mr(e(n*r),[1,1,n,r]),i=Ge(e(r));return t.push({paramPath:`${s}/depthwise_filter`},{paramPath:`${s}/pointwise_filter`},{paramPath:`${s}/bias`}),new Lm(a,o,i)}}function Vu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),r=e(`${t}/pointwise_filter`,4),s=e(`${t}/bias`,1);return new Lm(n,r,s)}}function sr(e,t){return(n,r,s)=>{let a=e[n];if(!xi(a,r))throw new Error(`expected weightMap[${n}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:n,paramPath:s||n}),a}}function Fn(e){let t=e;function n(s){let a=t.slice(0,s);return t=t.slice(s),a}function r(){return t}return{extractWeights:n,getRemainingWeights:r}}function Bm(e,t){let n=zu(e,t),r=Wu(e,t);function s(o,i,c,l=!1){let u=l?n(o,i,3,`${c}/conv0`):r(o,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),p=r(i,i,`${c}/conv2`);return{conv0:u,conv1:d,conv2:p}}function a(o,i,c,l=!1){let{conv0:u,conv1:d,conv2:p}=s(o,i,c,l),h=r(i,i,`${c}/conv3`);return{conv0:u,conv1:d,conv2:p,conv3:h}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:a}}function gE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Fn(e),{extractDenseBlock4Params:s}=Bm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2"),c=s(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i,dense3:c}}}function zm(e){return t=>{let n=e(`${t}/filters`,4),r=e(`${t}/bias`,1);return{filters:n,bias:r}}}function Wm(e,t){let n=sr(e,t),r=zm(n),s=Vu(n);function a(i,c=!1){let l=c?r(`${i}/conv0`):s(`${i}/conv0`),u=s(`${i}/conv1`),d=s(`${i}/conv2`);return{conv0:l,conv1:u,conv2:d}}function o(i,c=!1){let l=c?r(`${i}/conv0`):s(`${i}/conv0`),u=s(`${i}/conv1`),d=s(`${i}/conv2`),p=s(`${i}/conv3`);return{conv0:l,conv1:u,conv2:d,conv3:p}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:o}}function bE(e){let t=[],{extractDenseBlock4Params:n}=Wm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return Dn(e,t),{params:r,paramMappings:t}}var ep=class extends hn{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Kr(r,[122.782,117.001,104.298]).div(255),o=Qd(a,n.dense0,!0);return o=Qd(o,n.dense1),o=Qd(o,n.dense2),o=Qd(o,n.dense3),o=ir(o,[7,7],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return bE(t)}extractParams(t){return gE(t)}};function tp(e,t){return M(()=>Y(Ae(e,t.weights),t.bias))}function yE(e,t,n){let r=[],{extractWeights:s,getRemainingWeights:a}=Fn(e),i=Mm(s,r)(t,n,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function vE(e){let t=[],n=sr(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:r("fc")};return Dn(e,t),{params:s,paramMappings:t}}function Vm(e){let t={},n={};return Object.keys(e).forEach(r=>{let s=r.startsWith("fc")?n:t;s[r]=e[r]}),{featureExtractorMap:t,classifierMap:n}}var np=class extends hn{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ls?this.faceFeatureExtractor.forwardInput(t):t;return tp(r.as2D(r.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return yE(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=Vm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),vE(r)}extractParams(t){let n=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),s=r*n+r,a=t.slice(0,t.length-s),o=t.slice(t.length-s);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(o)}};var I1=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Ea=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);I1.forEach((n,r)=>{this[n]=t[r]})}asSortedArray(){return I1.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Um=class extends np{constructor(t=new ep){super("FaceExpressionNet",t)}forwardInput(t){return M(()=>Pr(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),r=await this.forwardInput(n),s=await Promise.all(pt(r).map(async o=>{let i=o.dataSync();return o.dispose(),i}));r.dispose();let a=s.map(o=>new Ea(o));return n.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function S1(e){return e.expressions instanceof Ea}function Gm(e,t){return{...e,...{expressions:t}}}function bce(e,t,n=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let o=a instanceof Ea?a:S1(a)?a.expressions:void 0;if(!o)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=o.asSortedArray().filter(d=>d.probability>n),l=ms(a)?a.detection.box.bottomLeft:r||new Pe(0,0);new _a(c.map(d=>`${d.expression} (${wi(d.probability)})`),l).draw(e)})}function _i(e){return ms(e)&&e.landmarks instanceof gr&&e.unshiftedLandmarks instanceof gr&&e.alignedRect instanceof vt}function yce(e){let t=(i,c,l,u)=>Math.atan2(u-c,l-i)%Math.PI,n=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!e||!e._positions||e._positions.length!==68)return r;let s=e._positions;r.roll=-t(s[36]._x,s[36]._y,s[45]._x,s[45]._y),r.pitch=t(0,Math.abs(s[0]._x-s[30]._x)/s[30]._x,Math.PI,Math.abs(s[16]._x-s[30]._x)/s[30]._x);let a=s.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(e._imgDims._height/(o-a)/1.4-1),r}function Uu(e,t){let{box:n}=e.detection,r=t.shiftBy(n.x,n.y),s=r.align(),{imageDims:a}=e.detection,o=new vt(e.detection.score,s.rescale(a.reverse()),a),i=yce(t);return{...e,...{landmarks:r,unshiftedLandmarks:t,alignedRect:o,angle:i}}}var C1=class{constructor(t={}){let{drawLines:n=!0,drawPoints:r=!0,lineWidth:s,lineColor:a,pointSize:o,pointColor:i}=t;this.drawLines=n,this.drawPoints=r,this.lineWidth=s||1,this.pointSize=o||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},T1=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new C1(n)}draw(t){let n=Un(t),{drawLines:r,drawPoints:s,lineWidth:a,lineColor:o,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Mu&&(n.strokeStyle=o,n.lineWidth=a,Ps(n,this.faceLandmarks.getJawOutline()),Ps(n,this.faceLandmarks.getLeftEyeBrow()),Ps(n,this.faceLandmarks.getRightEyeBrow()),Ps(n,this.faceLandmarks.getNose()),Ps(n,this.faceLandmarks.getLeftEye(),!0),Ps(n,this.faceLandmarks.getRightEye(),!0),Ps(n,this.faceLandmarks.getMouth(),!0)),s){n.strokeStyle=c,n.fillStyle=c;let l=u=>{n.beginPath(),n.arc(u.x,u.y,i,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(l)}}};function vce(e,t){(Array.isArray(t)?t:[t]).forEach(r=>{let s=r instanceof gr?r:_i(r)?r.landmarks:void 0;if(!s)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new T1(s).draw(e)})}var xE="1.6.0";function wce(e,t){let n=zu(e,t),r=Wu(e,t);function s(o,i,c){let l=r(o,i,`${c}/separable_conv0`),u=r(i,i,`${c}/separable_conv1`),d=n(o,i,1,`${c}/expansion_conv`);return{separable_conv0:l,separable_conv1:u,expansion_conv:d}}function a(o,i){let c=r(o,o,`${i}/separable_conv0`),l=r(o,o,`${i}/separable_conv1`),u=r(o,o,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:l,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:a}}function wE(e,t){let n=[],{extractWeights:r,getRemainingWeights:s}=Fn(e),{extractConvParams:a,extractSeparableConvParams:o,extractReductionBlockParams:i,extractMainBlockParams:c}=wce(r,n),l=a(3,32,3,"entry_flow/conv_in"),u=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),p={conv_in:l,reduction_block_0:u,reduction_block_1:d},h={};fs(t,0,1).forEach(b=>{h[`main_block_${b}`]=c(128,`middle_flow/main_block_${b}`)});let f=i(128,256,"exit_flow/reduction_block"),m=o(256,512,"exit_flow/separable_conv"),g={reduction_block:f,separable_conv:m};if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:n,params:{entry_flow:p,middle_flow:h,exit_flow:g}}}function kce(e,t){let n=sr(e,t),r=zm(n),s=Vu(n);function a(i){let c=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),u=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:l,expansion_conv:u}}function o(i){let c=s(`${i}/separable_conv0`),l=s(`${i}/separable_conv1`),u=s(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:l,separable_conv2:u}}return{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}}function kE(e,t){let n=[],{extractConvParams:r,extractSeparableConvParams:s,extractReductionBlockParams:a,extractMainBlockParams:o}=kce(e,n),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),l=a("entry_flow/reduction_block_1"),u={conv_in:i,reduction_block_0:c,reduction_block_1:l},d={};fs(t,0,1).forEach(m=>{d[`main_block_${m}`]=o(`middle_flow/main_block_${m}`)});let p=a("exit_flow/reduction_block"),h=s("exit_flow/separable_conv"),f={reduction_block:p,separable_conv:h};return Dn(e,n),{params:{entry_flow:u,middle_flow:d,exit_flow:f},paramMappings:n}}function IE(e,t,n){return Y(Rt(e,t.filters,n,"same"),t.bias)}function _1(e,t,n=!0){let r=n?je(e):e;return r=Gn(r,t.separable_conv0,[1,1]),r=Gn(je(r),t.separable_conv1,[1,1]),r=Pt(r,[3,3],[2,2],"same"),r=Y(r,IE(e,t.expansion_conv,[2,2])),r}function Ice(e,t){let n=Gn(je(e),t.separable_conv0,[1,1]);return n=Gn(je(n),t.separable_conv1,[1,1]),n=Gn(je(n),t.separable_conv2,[1,1]),n=Y(n,e),n}var E1=class extends hn{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Kr(r,[122.782,117.001,104.298]).div(255),o=je(IE(a,n.entry_flow.conv_in,[2,2]));return o=_1(o,n.entry_flow.reduction_block_0,!1),o=_1(o,n.entry_flow.reduction_block_1),fs(this._numMainBlocks,0,1).forEach(i=>{o=Ice(o,n.middle_flow[`main_block_${i}`])}),o=_1(o,n.exit_flow.reduction_block),o=je(Gn(o,n.exit_flow.separable_conv,[1,1])),o})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return kE(t,this._numMainBlocks)}extractParams(t){return wE(t,this._numMainBlocks)}};function SE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Fn(e),s=Mm(n,t),a=s(512,1,"fc/age"),o=s(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:o}}}}function CE(e){let t=[],n=sr(e,t);function r(a){let o=n(`${a}/weights`,2),i=n(`${a}/bias`,1);return{weights:o,bias:i}}let s={fc:{age:r("fc/age"),gender:r("fc/gender")}};return Dn(e,t),{params:s,paramMappings:t}}var zs;(function(n){n.FEMALE="female",n.MALE="male"})(zs||(zs={}));var Hm=class extends hn{constructor(t=new E1(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return M(()=>{let r=t instanceof Ls?this.faceFeatureExtractor.forwardInput(t):t,s=ir(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=tp(s,n.fc.age).as1D(),o=tp(s,n.fc.gender);return{age:a,gender:o}})}forwardInput(t){return M(()=>{let{age:n,gender:r}=this.runNet(t);return{age:n,gender:Pr(r)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),r=await this.forwardInput(n),s=pt(r.age),a=pt(r.gender),o=s.map((c,l)=>({ageTensor:c,genderTensor:a[l]})),i=await Promise.all(o.map(async({ageTensor:c,genderTensor:l})=>{let u=c.dataSync()[0],d=l.dataSync()[0],p=d>.5,h=p?zs.MALE:zs.FEMALE,f=p?d:1-d;return c.dispose(),l.dispose(),{age:u,gender:h,genderProbability:f}}));return r.age.dispose(),r.gender.dispose(),n.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:r}=this.extractClassifierParams(t);this._params=n,this._paramMappings=r}extractClassifierParams(t){return SE(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:r}=Vm(t);return this.faceFeatureExtractor.loadFromWeightMap(n),CE(r)}extractParams(t){let n=512*1+1+(512*2+2),r=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(s)}};var rp=class extends np{postProcess(t,n,r){let s=r.map(({width:o,height:i})=>{let c=n/Math.max(i,o);return{width:o*c,height:i*c}}),a=s.length;return M(()=>{let o=(d,p)=>Ot([In([68],d,"float32"),In([68],p,"float32")],1).as2D(1,136).as1D(),i=(d,p)=>{let{width:h,height:f}=s[d];return p(h,f)?Math.abs(h-f)/2:0},c=d=>i(d,(p,h)=>pi(d,(p,h)=>ho(c(p),l(p))))).div(Ot(Array.from(Array(a),(d,p)=>o(s[p].width,s[p].height))))})}forwardInput(t){return M(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([r,s])=>({height:r,width:s})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),r=M(()=>pt(this.forwardInput(n))),s=await Promise.all(r.map(async(a,o)=>{let i=Array.from(a.dataSync()),c=i.filter((u,d)=>Am(d)),l=i.filter((u,d)=>!Am(d));return new Mu(Array(68).fill(0).map((u,d)=>new Pe(c[d],l[d])),{height:n.getInputHeight(o),width:n.getInputWidth(o)})}));return r.forEach(a=>a.dispose()),n.isBatchInput?s:s[0]}getClassifierChannelsOut(){return 136}};var Gu=class extends rp{constructor(t=new ep){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function TE(e){let t=[],{extractDenseBlock3Params:n}=Wm(e,t),r={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return Dn(e,t),{params:r,paramMappings:t}}function NE(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Fn(e),{extractDenseBlock3Params:s}=Bm(n,t),a=s(3,32,"dense0",!0),o=s(32,64,"dense1"),i=s(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:o,dense2:i}}}var A1=class extends hn{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(112,!0),"float32"),a=Kr(r,[122.782,117.001,104.298]).div(255),o=Om(a,n.dense0,!0);return o=Om(o,n.dense1),o=Om(o,n.dense2),o=ir(o,[14,14],[2,2],"valid"),o})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return TE(t)}extractParams(t){return NE(t)}};var jm=class extends rp{constructor(t=new A1){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var _E=class extends Gu{};function EE(e,t){return Y(V(e,t.weights),t.biases)}function D1(e,t,n,r,s="same"){let{filters:a,bias:o}=t.conv,i=Rt(e,a,n,s);return i=Y(i,o),i=EE(i,t.scale),r?je(i):i}function AE(e,t){return D1(e,t,[1,1],!0)}function F1(e,t){return D1(e,t,[1,1],!1)}function qm(e,t){return D1(e,t,[2,2],!0,"valid")}function Sce(e,t){function n(i,c,l){let u=e(i),d=u.length/(c*l*l);if(s1(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${u.length}, numFilters: ${c}, filterSize: ${l}`);return M(()=>Re(Mr(u,[c,d,l,l]),[2,3,1,0]))}function r(i,c,l,u){let d=n(i,c,l),p=Ge(e(c));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:d,bias:p}}function s(i,c){let l=Ge(e(i)),u=Ge(e(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:l,biases:u}}function a(i,c,l,u){let d=r(i,c,l,`${u}/conv`),p=s(c,`${u}/scale`);return{conv:d,scale:p}}function o(i,c,l,u,d=!1){let p=a((d?.5:1)*i,c,l,`${u}/conv1`),h=a(i,c,l,`${u}/conv2`);return{conv1:p,conv2:h}}return{extractConvLayerParams:a,extractResidualLayerParams:o}}function DE(e){let{extractWeights:t,getRemainingWeights:n}=Fn(e),r=[],{extractConvLayerParams:s,extractResidualLayerParams:a}=Sce(t,r),o=s(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),l=a(9216,32,3,"conv32_3"),u=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),p=a(36864,64,3,"conv64_2"),h=a(36864,64,3,"conv64_3"),f=a(147456,128,3,"conv128_down",!0),m=a(147456,128,3,"conv128_1"),g=a(147456,128,3,"conv128_2"),b=a(589824,256,3,"conv256_down",!0),v=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),x=a(589824,256,3,"conv256_down_out"),k=M(()=>Re(Or(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:o,conv32_1:i,conv32_2:c,conv32_3:l,conv64_down:u,conv64_1:d,conv64_2:p,conv64_3:h,conv128_down:f,conv128_1:m,conv128_2:g,conv256_down:b,conv256_1:v,conv256_2:y,conv256_down_out:x,fc:k},paramMappings:r}}function Cce(e,t){let n=sr(e,t);function r(o){let i=n(`${o}/scale/weights`,1),c=n(`${o}/scale/biases`,1);return{weights:i,biases:c}}function s(o){let i=n(`${o}/conv/filters`,4),c=n(`${o}/conv/bias`,1),l=r(o);return{conv:{filters:i,bias:c},scale:l}}function a(o){return{conv1:s(`${o}/conv1`),conv2:s(`${o}/conv2`)}}return{extractConvLayerParams:s,extractResidualLayerParams:a}}function FE(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:r}=Cce(e,t),s=n("conv32_down"),a=r("conv32_1"),o=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),l=r("conv64_1"),u=r("conv64_2"),d=r("conv64_3"),p=r("conv128_down"),h=r("conv128_1"),f=r("conv128_2"),m=r("conv256_down"),g=r("conv256_1"),b=r("conv256_2"),v=r("conv256_down_out"),{fc:y}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!r1(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let x={conv32_down:s,conv32_1:a,conv32_2:o,conv32_3:i,conv64_down:c,conv64_1:l,conv64_2:u,conv64_3:d,conv128_down:p,conv128_1:h,conv128_2:f,conv256_down:m,conv256_1:g,conv256_2:b,conv256_down_out:v,fc:y};return Dn(e,t),{params:x,paramMappings:t}}function Xr(e,t){let n=AE(e,t.conv1);return n=F1(n,t.conv2),n=Y(n,e),n=je(n),n}function sp(e,t){let n=qm(e,t.conv1);n=F1(n,t.conv2);let r=ir(e,2,2,"valid"),s=It(r.shape),a=r.shape[3]!==n.shape[3];if(r.shape[1]!==n.shape[1]||r.shape[2]!==n.shape[2]){let i=[...n.shape];i[1]=1;let c=It(i);n=Ze([n,c],1);let l=[...n.shape];l[2]=1;let u=It(l);n=Ze([n,u],2)}return r=a?Ze([r,s],3):r,n=Y(r,n),n=je(n),n}var Hu=class extends hn{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(150,!0),"float32"),a=Kr(r,[122.782,117.001,104.298]).div(255),o=qm(a,n.conv32_down);o=Pt(o,3,2,"valid"),o=Xr(o,n.conv32_1),o=Xr(o,n.conv32_2),o=Xr(o,n.conv32_3),o=sp(o,n.conv64_down),o=Xr(o,n.conv64_1),o=Xr(o,n.conv64_2),o=Xr(o,n.conv64_3),o=sp(o,n.conv128_down),o=Xr(o,n.conv128_1),o=Xr(o,n.conv128_2),o=sp(o,n.conv256_down),o=Xr(o,n.conv256_1),o=Xr(o,n.conv256_2),o=sp(o,n.conv256_down_out);let i=o.mean([1,2]);return Ae(i,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(o=>o<=0))return new Float32Array(128);let n=await gt(t),r=M(()=>pt(this.forwardInput(n))),s=await Promise.all(r.map(o=>o.data()));return r.forEach(o=>o.dispose()),n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return FE(t)}extractParams(t){return DE(t)}};function Tce(e){let t=new Hu;return t.extractWeights(e),t}function Km(e,t){return{...e,...{descriptor:t}}}function Nce(e){return typeof e.age=="number"}function Xm(e,t){return{...e,...{age:t}}}function _ce(e){return(e.gender===zs.MALE||e.gender===zs.FEMALE)&&Ru(e.genderProbability)}function Ym(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Ece(e,t){function n(c,l){let u=Mr(e(3*3*c),[3,3,c,1]),d=Ge(e(c)),p=Ge(e(c)),h=Ge(e(c)),f=Ge(e(c));return t.push({paramPath:`${l}/filters`},{paramPath:`${l}/batch_norm_scale`},{paramPath:`${l}/batch_norm_offset`},{paramPath:`${l}/batch_norm_mean`},{paramPath:`${l}/batch_norm_variance`}),{filters:u,batch_norm_scale:d,batch_norm_offset:p,batch_norm_mean:h,batch_norm_variance:f}}function r(c,l,u,d,p){let h=Mr(e(c*l*u*u),[u,u,c,l]),f=Ge(e(l));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${p?"batch_norm_offset":"bias"}`}),{filters:h,bias:f}}function s(c,l,u,d){let{filters:p,bias:h}=r(c,l,u,d,!0);return{filters:p,batch_norm_offset:h}}function a(c,l,u){let d=n(c,`${u}/depthwise_conv`),p=s(c,l,1,`${u}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:p}}function o(){let c=s(3,32,3,"mobilenetv1/conv_0"),l=a(32,64,"mobilenetv1/conv_1"),u=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),p=a(128,256,"mobilenetv1/conv_4"),h=a(256,256,"mobilenetv1/conv_5"),f=a(256,512,"mobilenetv1/conv_6"),m=a(512,512,"mobilenetv1/conv_7"),g=a(512,512,"mobilenetv1/conv_8"),b=a(512,512,"mobilenetv1/conv_9"),v=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),x=a(512,1024,"mobilenetv1/conv_12"),k=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:l,conv_2:u,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,conv_8:g,conv_9:b,conv_10:v,conv_11:y,conv_12:x,conv_13:k}}function i(){let c=s(1024,256,1,"prediction_layer/conv_0"),l=s(256,512,3,"prediction_layer/conv_1"),u=s(512,128,1,"prediction_layer/conv_2"),d=s(128,256,3,"prediction_layer/conv_3"),p=s(256,128,1,"prediction_layer/conv_4"),h=s(128,256,3,"prediction_layer/conv_5"),f=s(256,64,1,"prediction_layer/conv_6"),m=s(64,128,3,"prediction_layer/conv_7"),g=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),b=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),v=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),k=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),C=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),N=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),D=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),$=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:l,conv_2:u,conv_3:d,conv_4:p,conv_5:h,conv_6:f,conv_7:m,box_predictor_0:{box_encoding_predictor:g,class_predictor:b},box_predictor_1:{box_encoding_predictor:v,class_predictor:y},box_predictor_2:{box_encoding_predictor:x,class_predictor:k},box_predictor_3:{box_encoding_predictor:C,class_predictor:N},box_predictor_4:{box_encoding_predictor:D,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:$}}}return{extractMobilenetV1Params:o,extractPredictionLayerParams:i}}function $E(e){let t=[],{extractWeights:n,getRemainingWeights:r}=Fn(e),{extractMobilenetV1Params:s,extractPredictionLayerParams:a}=Ece(n,t),o=s(),i=a(),l={extra_dim:$h(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:o,prediction_layer:i,output_layer:l},paramMappings:t}}function Ace(e,t){let n=sr(e,t);function r(l,u,d){let p=n(`${l}/Conv2d_${u}_pointwise/weights`,4,`${d}/filters`),h=n(`${l}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:p,batch_norm_offset:h}}function s(l){let u=`mobilenetv1/conv_${l}`,d=`MobilenetV1/Conv2d_${l}_depthwise`,p=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,f=n(`${d}/depthwise_weights`,4,`${p}/filters`),m=n(`${d}/BatchNorm/gamma`,1,`${p}/batch_norm_scale`),g=n(`${d}/BatchNorm/beta`,1,`${p}/batch_norm_offset`),b=n(`${d}/BatchNorm/moving_mean`,1,`${p}/batch_norm_mean`),v=n(`${d}/BatchNorm/moving_variance`,1,`${p}/batch_norm_variance`);return{depthwise_conv:{filters:f,batch_norm_scale:m,batch_norm_offset:g,batch_norm_mean:b,batch_norm_variance:v},pointwise_conv:r("MobilenetV1",l,h)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:s(1),conv_2:s(2),conv_3:s(3),conv_4:s(4),conv_5:s(5),conv_6:s(6),conv_7:s(7),conv_8:s(8),conv_9:s(9),conv_10:s(10),conv_11:s(11),conv_12:s(12),conv_13:s(13)}}function o(l,u){let d=n(`${l}/weights`,4,`${u}/filters`),p=n(`${l}/biases`,1,`${u}/bias`);return{filters:d,bias:p}}function i(l){let u=o(`Prediction/BoxPredictor_${l}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${l}/box_encoding_predictor`),d=o(`Prediction/BoxPredictor_${l}/ClassPredictor`,`prediction_layer/box_predictor_${l}/class_predictor`);return{box_encoding_predictor:u,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function RE(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:r}=Ace(e,t),s=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Os(s))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${s}`);let a={mobilenetv1:n(),prediction_layer:r(),output_layer:{extra_dim:s}};return Dn(e,t),{params:a,paramMappings:t}}function _r(e,t,n){return M(()=>{let r=Rt(e,t.filters,n,"same");return r=Y(r,t.batch_norm_offset),en(r,0,6)})}var Dce=.0010000000474974513;function Fce(e,t,n){return M(()=>{let r=ua(e,t.filters,n,"same");return r=Cs(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Dce),en(r,0,6)})}function $ce(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function PE(e,t){return M(()=>{let n,r=_r(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,o)=>{let i=o+1,c=$ce(i);r=Fce(r,a.depthwise_conv,c),r=_r(r,a.pointwise_conv,[1,1]),i===11&&(n=r)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:n}})}function Rce(e,t,n){let r=e.arraySync(),s=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),o=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[n][0],r[n][2]),l=Math.min(r[n][1],r[n][3]),u=Math.max(r[n][0],r[n][2]),d=Math.max(r[n][1],r[n][3]),p=(o-s)*(i-a),h=(u-c)*(d-l);if(p<=0||h<=0)return 0;let f=Math.max(s,c),m=Math.max(a,l),g=Math.min(o,u),b=Math.min(i,d),v=Math.max(g-f,0)*Math.max(b-m,0);return v/(p+h-v)}function OE(e,t,n,r,s){let a=e.shape[0],o=Math.min(n,a),i=t.map((u,d)=>({score:u,boxIndex:d})).filter(u=>u.score>s).sort((u,d)=>d.score-u.score),c=u=>u<=r?1:0,l=[];return i.forEach(u=>{if(l.length>=o)return;let d=u.score;for(let p=l.length-1;p>=0;--p){let h=Rce(e,u.boxIndex,l[p]);if(h!==0&&(u.score*=c(h),u.score<=s))break}d===u.score&&l.push(u.boxIndex)}),l}function Pce(e){let t=pt(Re(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],r=[Y(t[0],ge(n[0],2)),Y(t[1],ge(n[1],2))];return{sizes:n,centers:r}}function Oce(e,t){let{sizes:n,centers:r}=Pce(e),s=pt(Re(t,[1,0])),a=ge(V(bn(ge(s[2],5)),n[0]),2),o=Y(V(ge(s[0],10),n[0]),r[0]),i=ge(V(bn(ge(s[3],5)),n[1]),2),c=Y(V(ge(s[1],10),n[1]),r[1]);return Re(Ot([fe(o,a),fe(c,i),Y(o,a),Y(c,i)]),[1,0])}function ME(e,t,n){return M(()=>{let r=e.shape[0],s=Oce(U(On(n.extra_dim,[r,1,1]),[-1,4]),U(e,[-1,4]));s=U(s,[r,s.shape[0]/r,4]);let a=cr(We(t,[0,0,1],[-1,-1,-1])),o=We(a,[0,0,0],[-1,-1,1]);o=U(o,[r,o.shape[1]]);let i=pt(s),c=pt(o);return{boxes:i,scores:c}})}function Ei(e,t){return M(()=>{let n=e.shape[0],r=U(Ni(e,t.box_encoding_predictor),[n,-1,1,4]),s=U(Ni(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:r,classPrediction:s}})}function LE(e,t,n){return M(()=>{let r=_r(e,n.conv_0,[1,1]),s=_r(r,n.conv_1,[2,2]),a=_r(s,n.conv_2,[1,1]),o=_r(a,n.conv_3,[2,2]),i=_r(o,n.conv_4,[1,1]),c=_r(i,n.conv_5,[2,2]),l=_r(c,n.conv_6,[1,1]),u=_r(l,n.conv_7,[2,2]),d=Ei(t,n.box_predictor_0),p=Ei(e,n.box_predictor_1),h=Ei(s,n.box_predictor_2),f=Ei(o,n.box_predictor_3),m=Ei(c,n.box_predictor_4),g=Ei(u,n.box_predictor_5),b=Ze([d.boxPredictionEncoding,p.boxPredictionEncoding,h.boxPredictionEncoding,f.boxPredictionEncoding,m.boxPredictionEncoding,g.boxPredictionEncoding],1),v=Ze([d.classPrediction,p.classPrediction,h.classPrediction,f.classPrediction,m.classPrediction,g.classPrediction],1);return{boxPredictions:b,classPredictions:v}})}var Er=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ai=class extends hn{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return M(()=>{let r=ce(t.toBatchTensor(512,!1),"float32"),s=fe(ge(r,127.5),1),a=PE(s,n.mobilenetv1),{boxPredictions:o,classPredictions:i}=LE(a.out,a.conv11,n.prediction_layer);return ME(o,i,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:r,minConfidence:s}=new Er(n),a=await gt(t),{boxes:o,scores:i}=this.forwardInput(a),c=o[0],l=i[0];for(let y=1;y{let[x,k]=[Math.max(0,b[y][0]),Math.min(1,b[y][2])].map(D=>D*g),[C,N]=[Math.max(0,b[y][1]),Math.min(1,b[y][3])].map(D=>D*m);return new vt(u[y],new Ou(C,x,N-C,k-x),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),l.dispose(),v}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return RE(t)}extractParams(t){return $E(t)}};function BE(e){let t=new Ai;return t.extractWeights(e),t}function Mce(e){return BE(e)}var zE=class extends Ai{};var WE=.4,VE=[new Pe(.738768,.874946),new Pe(2.42204,2.65704),new Pe(4.30971,7.04493),new Pe(10.246,4.59428),new Pe(12.6868,11.8741)],UE=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],GE=[117.001,114.697,97.404],HE="tiny_yolov2_model",jE="tiny_yolov2_separable_conv_model";var Zm=e=>typeof e=="number";function $1(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Zm(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Zm(t.x)&&Zm(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Zm)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function ju(e){return M(()=>{let t=V(e,Se(.10000000149011612));return Y(je(fe(e,t)),t)})}function Ws(e,t){return M(()=>{let n=ur(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Rt(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=V(n,t.bn.truediv),n=Y(n,t.conv.bias),ju(n)})}function Vs(e,t){return M(()=>{let n=ur(e,[[0,0],[1,1],[1,1],[0,0]]);return n=ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Y(n,t.bias),ju(n)})}function Lce(e,t){let n=zu(e,t);function r(o,i){let c=Ge(e(o)),l=Ge(e(o));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:l}}function s(o,i,c){let l=n(o,i,3,`${c}/conv`),u=r(i,`${c}/bn`);return{conv:l,bn:u}}let a=Wu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}}function qE(e,t,n,r){let{extractWeights:s,getRemainingWeights:a}=Fn(e),o=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:l}=Lce(s,o),u;if(t.withSeparableConvs){let[d,p,h,f,m,g,b,v,y]=r,x=t.isFirstLayerConv2d?i(d,p,3,"conv0"):l(d,p,"conv0"),k=l(p,h,"conv1"),C=l(h,f,"conv2"),N=l(f,m,"conv3"),D=l(m,g,"conv4"),F=l(g,b,"conv5"),O=v?l(b,v,"conv6"):void 0,$=y?l(v,y,"conv7"):void 0,P=i(y||v||b,5*n,1,"conv8");u={conv0:x,conv1:k,conv2:C,conv3:N,conv4:D,conv5:F,conv6:O,conv7:$,conv8:P}}else{let[d,p,h,f,m,g,b,v,y]=r,x=c(d,p,"conv0"),k=c(p,h,"conv1"),C=c(h,f,"conv2"),N=c(f,m,"conv3"),D=c(m,g,"conv4"),F=c(g,b,"conv5"),O=c(b,v,"conv6"),$=c(v,y,"conv7"),P=i(y,5*n,1,"conv8");u={conv0:x,conv1:k,conv2:C,conv3:N,conv4:D,conv5:F,conv6:O,conv7:$,conv8:P}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:u,paramMappings:o}}function Bce(e,t){let n=sr(e,t);function r(i){let c=n(`${i}/sub`,1),l=n(`${i}/truediv`,1);return{sub:c,truediv:l}}function s(i){let c=n(`${i}/filters`,4),l=n(`${i}/bias`,1);return{filters:c,bias:l}}function a(i){let c=s(`${i}/conv`),l=r(`${i}/bn`);return{conv:c,bn:l}}let o=Vu(n);return{extractConvParams:s,extractConvWithBatchNormParams:a,extractSeparableConvParams:o}}function KE(e,t){let n=[],{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:a}=Bce(e,n),o;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;o={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else o={conv0:s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:s("conv6"),conv7:s("conv7"),conv8:r("conv8")};return Dn(e,n),{params:o,paramMappings:n}}var bs=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var R1=class extends hn{constructor(t){super("TinyYolov2");$1(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let r=Ws(t,n.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Ws(r,n.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Ws(r,n.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Ws(r,n.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Ws(r,n.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Ws(r,n.conv5),r=Pt(r,[2,2],[1,1],"same"),r=Ws(r,n.conv6),r=Ws(r,n.conv7),Ni(r,n.conv8,"valid",!1)}runMobilenet(t,n){let r=this.config.isFirstLayerConv2d?ju(Ni(t,n.conv0,"valid",!1)):Vs(t,n.conv0);return r=Pt(r,[2,2],[2,2],"same"),r=Vs(r,n.conv1),r=Pt(r,[2,2],[2,2],"same"),r=Vs(r,n.conv2),r=Pt(r,[2,2],[2,2],"same"),r=Vs(r,n.conv3),r=Pt(r,[2,2],[2,2],"same"),r=Vs(r,n.conv4),r=Pt(r,[2,2],[2,2],"same"),r=Vs(r,n.conv5),r=Pt(r,[2,2],[1,1],"same"),r=n.conv6?Vs(r,n.conv6):r,r=n.conv7?Vs(r,n.conv7):r,Ni(r,n.conv8,"valid",!1)}forwardInput(t,n){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return M(()=>{let s=ce(t.toBatchTensor(n,!1),"float32");return s=this.config.meanRgb?Kr(s,this.config.meanRgb):s,s=s.div(255),this.config.withSeparableConvs?this.runMobilenet(s,r):this.runTinyYolov2(s,r)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:r,scoreThreshold:s}=new bs(n),a=await gt(t),o=await this.forwardInput(a,r),i=M(()=>pt(o)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},l=await this.extractBoxes(i,a.getReshapedInputDimensions(0),s);o.dispose(),i.dispose();let u=l.map(g=>g.box),d=l.map(g=>g.score),p=l.map(g=>g.classScore),h=l.map(g=>this.config.classes[g.label]);return u1(u.map(g=>g.rescale(r)),d,this.config.iouThreshold,!0).map(g=>new Na(d[g],p[g],h[g],u[g],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return KE(t,this.config)}extractParams(t){let n=this.config.filterSizes||R1.DEFAULT_FILTER_SIZES,r=n?n.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return qE(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,r){let{width:s,height:a}=n,o=Math.max(s,a),i=o/s,c=o/a,l=t.shape[1],u=this.config.anchors.length,[d,p,h]=M(()=>{let b=t.reshape([l,l,u,this.boxEncodingSize]),v=b.slice([0,0,0,0],[l,l,u,4]),y=b.slice([0,0,0,4],[l,l,u,1]),x=this.withClassScores?Pr(b.slice([0,0,0,5],[l,l,u,this.config.classes.length]),3):Se(0);return[v,y,x]}),f=[],m=await p.array(),g=await d.array();for(let b=0;br){let k=(v+jd(g[b][v][y][0]))/l*i,C=(b+jd(g[b][v][y][1]))/l*c,N=Math.exp(g[b][v][y][2])*this.config.anchors[y].x/l*i,D=Math.exp(g[b][v][y][3])*this.config.anchors[y].y/l*c,F=k-N/2,O=C-D/2,$={row:b,col:v,anchor:y},{classScore:P,label:T}=this.withClassScores?await this.extractPredictedClass(h,$):{classScore:1,label:0};f.push({box:new Pu(F,O,F+N,O+D),score:x,classScore:x*P,label:T,...$})}}return d.dispose(),p.dispose(),h.dispose(),f}async extractPredictedClass(t,n){let{row:r,col:s,anchor:a}=n,o=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>o[r][s][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},qu=R1;qu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var Ku=class extends qu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:WE,classes:["face"],...t?{anchors:UE,meanRgb:GE}:{anchors:VE,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new vt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?jE:HE}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function zce(e,t=!0){let n=new Ku(t);return n.extractWeights(e),n}var Jm=class extends bs{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var Ar=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function Di(e,t,n,r,s=({alignedRect:a})=>a){let a=e.map(c=>_i(c)?s(c):c.detection),o=r||(t instanceof Ee?await Bu(t,a):await Lu(t,a)),i=await n(o);return o.forEach(c=>c instanceof Ee&&c.dispose()),i}async function Xu(e,t,n,r,s){return Di([e],t,async a=>n(a[0]),r,s)}var XE=.4,YE=[new Pe(1.603231,2.094468),new Pe(6.041143,7.080126),new Pe(2.882459,3.518061),new Pe(4.266906,5.178857),new Pe(9.041765,10.66308)],ZE=[117.001,114.697,97.404];var Yu=class extends qu{constructor(){let t={withSeparableConvs:!0,iouThreshold:XE,classes:["face"],anchors:YE,meanRgb:ZE,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(s=>new vt(s.score,s.relativeBox,{width:s.imageWidth,height:s.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var Qe={ssdMobilenetv1:new Ai,tinyFaceDetector:new Yu,tinyYolov2:new Ku,faceLandmark68Net:new Gu,faceLandmark68TinyNet:new jm,faceRecognitionNet:new Hu,faceExpressionNet:new Um,ageGenderNet:new Hm},JE=(e,t)=>Qe.ssdMobilenetv1.locateFaces(e,t),Wce=(e,t)=>Qe.tinyFaceDetector.locateFaces(e,t),Vce=(e,t)=>Qe.tinyYolov2.locateFaces(e,t),QE=e=>Qe.faceLandmark68Net.detectLandmarks(e),Uce=e=>Qe.faceLandmark68TinyNet.detectLandmarks(e),Gce=e=>Qe.faceRecognitionNet.computeFaceDescriptor(e),Hce=e=>Qe.faceExpressionNet.predictExpressions(e),jce=e=>Qe.ageGenderNet.predictAgeAndGender(e),eA=e=>Qe.ssdMobilenetv1.load(e),qce=e=>Qe.tinyFaceDetector.load(e),Kce=e=>Qe.tinyYolov2.load(e),Xce=e=>Qe.faceLandmark68Net.load(e),Yce=e=>Qe.faceLandmark68TinyNet.load(e),Zce=e=>Qe.faceRecognitionNet.load(e),Jce=e=>Qe.faceExpressionNet.load(e),Qce=e=>Qe.ageGenderNet.load(e),eue=eA,tue=JE,nue=QE;var P1=class extends Ar{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},Zu=class extends P1{async run(){let t=await this.parentTask,n=await Di(t,this.input,async r=>Promise.all(r.map(s=>Qe.faceExpressionNet.predictExpressions(s))),this.extractedFaces);return t.map((r,s)=>Gm(r,n[s]))}withAgeAndGender(){return new Qu(this,this.input)}},Ju=class extends P1{async run(){let t=await this.parentTask;if(!t)return;let n=await Xu(t,this.input,r=>Qe.faceExpressionNet.predictExpressions(r),this.extractedFaces);return Gm(t,n)}withAgeAndGender(){return new el(this,this.input)}},Fi=class extends Zu{withAgeAndGender(){return new Ri(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},$i=class extends Ju{withAgeAndGender(){return new Pi(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var O1=class extends Ar{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.extractedFaces=r}},Qu=class extends O1{async run(){let t=await this.parentTask,n=await Di(t,this.input,async r=>Promise.all(r.map(s=>Qe.ageGenderNet.predictAgeAndGender(s))),this.extractedFaces);return t.map((r,s)=>{let{age:a,gender:o,genderProbability:i}=n[s];return Xm(Ym(r,o,i),a)})}withFaceExpressions(){return new Zu(this,this.input)}},el=class extends O1{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:r,genderProbability:s}=await Xu(t,this.input,a=>Qe.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Xm(Ym(t,r,s),n)}withFaceExpressions(){return new Ju(this,this.input)}},Ri=class extends Qu{withFaceExpressions(){return new Fi(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},Pi=class extends el{withFaceExpressions(){return new $i(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var Qm=class extends Ar{constructor(t,n){super();this.parentTask=t;this.input=n}},Aa=class extends Qm{async run(){let t=await this.parentTask;return(await Di(t,this.input,r=>Promise.all(r.map(s=>Qe.faceRecognitionNet.computeFaceDescriptor(s))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,s)=>Km(t[s],r))}withFaceExpressions(){return new Fi(this,this.input)}withAgeAndGender(){return new Ri(this,this.input)}},Da=class extends Qm{async run(){let t=await this.parentTask;if(!t)return;let n=await Xu(t,this.input,r=>Qe.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Km(t,n)}withFaceExpressions(){return new $i(this,this.input)}withAgeAndGender(){return new Pi(this,this.input)}};var eg=class extends Ar{constructor(t,n,r){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?Qe.faceLandmark68TinyNet:Qe.faceLandmark68Net}},tg=class extends eg{async run(){let t=await this.parentTask,n=t.map(a=>a.detection),r=this.input instanceof Ee?await Bu(this.input,n):await Lu(this.input,n),s=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof Ee&&a.dispose()),t.map((a,o)=>Uu(a,s[o]))}withFaceExpressions(){return new Fi(this,this.input)}withAgeAndGender(){return new Ri(this,this.input)}withFaceDescriptors(){return new Aa(this,this.input)}},ng=class extends eg{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,r=this.input instanceof Ee?await Bu(this.input,[n]):await Lu(this.input,[n]),s=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Ee&&a.dispose()),Uu(t,s)}withFaceExpressions(){return new $i(this,this.input)}withAgeAndGender(){return new Pi(this,this.input)}withFaceDescriptor(){return new Da(this,this.input)}};var rg=class extends Ar{constructor(t,n=new Er){super();this.input=t;this.options=n}},ap=class extends rg{async run(){let{input:t,options:n}=this,r;if(n instanceof Jm)r=Qe.tinyFaceDetector.locateFaces(t,n);else if(n instanceof Er)r=Qe.ssdMobilenetv1.locateFaces(t,n);else if(n instanceof bs)r=Qe.tinyYolov2.locateFaces(t,n);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,n)=>{this.run().then(r=>t(r.map(s=>Ii({},s)))).catch(r=>n(r))})}withFaceLandmarks(t=!1){return new tg(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Zu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Qu(this.runAndExtendWithFaceDetections(),this.input)}},sg=class extends rg{async run(){let t=await new ap(this.input,this.options),n=t[0];return t.forEach(r=>{r.score>n.score&&(n=r)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Ii({},n):void 0)})}withFaceLandmarks(t=!1){return new ng(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Ju(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new el(this.runAndExtendWithFaceDetection(),this.input)}};function rue(e,t=new Er){return new sg(e,t)}function ag(e,t=new Er){return new ap(e,t)}async function tA(e,t){return ag(e,new Er(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function sue(e,t={}){return ag(e,new bs(t)).withFaceLandmarks().withFaceDescriptors()}var aue=tA;function M1(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),r=Array.from(t);return Math.sqrt(n.map((s,a)=>s-r[a]).reduce((s,a)=>s+a**2,0))}var og=class{constructor(t,n=.6){this._distanceThreshold=n;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let s=1,a=()=>`person ${s++}`;this._labeledDescriptors=r.map(o=>{if(o instanceof Ms)return o;if(o instanceof Float32Array)return new Ms(a(),[o]);if(o.descriptor&&o.descriptor instanceof Float32Array)return new Ms(a(),[o.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(r=>M1(r,t)).reduce((r,s)=>r+s,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:r})=>new qd(r,this.computeMeanDistance(t,n))).reduce((n,r)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(r=>Ms.fromJSON(r));return new og(n,t.distanceThreshold)}};function oue(e){let t=new Yu;return t.extractWeights(e),t}function nA(e,t){let{width:n,height:r}=new An(t.width,t.height);if(n<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:r})}`);if(Array.isArray(e))return e.map(s=>nA(s,{width:n,height:r}));if(_i(e)){let s=e.detection.forSize(n,r),a=e.unshiftedLandmarks.forSize(s.box.width,s.box.height);return Uu(Ii(e,s),a)}return ms(e)?Ii(e,e.detection.forSize(n,r)):e instanceof gr||e instanceof vt?e.forSize(n,r):e}var iue=xE;return cue;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * ============================================================================= */ /** * @license * Copyright 2019 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google Inc. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC * * Use of this source code is governed by an MIT-style * license that can be found in the LICENSE file or at * https://opensource.org/licenses/MIT. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2020 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the License); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2021 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * https://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** * @license * Copyright 2018 Google LLC. All Rights Reserved. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ============================================================================= */ /** @license See the LICENSE file. */