import * as tf from '../../dist/tfjs.esm.js'; import { ConvParams, depthwiseSeparableConv } from '../common'; import { NetInput, TNetInput, toNetInput } from '../dom'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops'; import { range } from '../utils'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; import { MainBlockParams, ReductionBlockParams, TinyXceptionParams } from './types'; function conv(x: tf.Tensor4D, params: ConvParams, stride: [number, number]): tf.Tensor4D { return tf.add(tf.conv2d(x, params.filters, stride, 'same'), params.bias) } function reductionBlock(x: tf.Tensor4D, params: ReductionBlockParams, isActivateInput: boolean = true): tf.Tensor4D { let out = isActivateInput ? tf.relu(x) : x out = depthwiseSeparableConv(out, params.separable_conv0, [1, 1]) out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]) out = tf.maxPool(out, [3, 3], [2, 2], 'same') out = tf.add(out, conv(x, params.expansion_conv, [2, 2])) return out } function mainBlock(x: tf.Tensor4D, params: MainBlockParams): tf.Tensor4D { let out = depthwiseSeparableConv(tf.relu(x), params.separable_conv0, [1, 1]) out = depthwiseSeparableConv(tf.relu(out), params.separable_conv1, [1, 1]) out = depthwiseSeparableConv(tf.relu(out), params.separable_conv2, [1, 1]) out = tf.add(out, x) return out } export class TinyXception extends NeuralNetwork { private _numMainBlocks: number constructor(numMainBlocks: number) { super('TinyXception') this._numMainBlocks = numMainBlocks } public forwardInput(input: NetInput): tf.Tensor4D { const { params } = this if (!params) { throw new Error('TinyXception - load model before inference') } return tf.tidy(() => { const batchTensor = tf.cast(input.toBatchTensor(112, true), 'float32'); const meanRgb = [122.782, 117.001, 104.298] const normalized = normalize(batchTensor, meanRgb).div(tf.scalar(256)) as tf.Tensor4D let out = tf.relu(conv(normalized, params.entry_flow.conv_in, [2, 2])) out = reductionBlock(out, params.entry_flow.reduction_block_0, false) out = reductionBlock(out, params.entry_flow.reduction_block_1) range(this._numMainBlocks, 0, 1).forEach((idx) => { out = mainBlock(out, params.middle_flow[`main_block_${idx}`]) }) out = reductionBlock(out, params.exit_flow.reduction_block) out = tf.relu(depthwiseSeparableConv(out, params.exit_flow.separable_conv, [1, 1])) return out }) } public async forward(input: TNetInput): Promise { return this.forwardInput(await toNetInput(input)) } protected getDefaultModelName(): string { return 'tiny_xception_model' } protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) { return extractParamsFromWeigthMap(weightMap, this._numMainBlocks) } protected extractParams(weights: Float32Array) { return extractParams(weights, this._numMainBlocks) } }