import * as tf from '@tensorflow/tfjs'; import { OutputLayerParams } from './types'; function getCenterCoordinatesAndSizesLayer(x: tf.Tensor2D) { const vec = tf.unstack(tf.transpose(x, [1, 0])) const sizes = [ tf.sub(vec[2], vec[0]), tf.sub(vec[3], vec[1]) ] const centers = [ tf.add(vec[0], tf.div(sizes[0], tf.scalar(2))), tf.add(vec[1], tf.div(sizes[1], tf.scalar(2))) ] return { sizes, centers } } function decodeBoxesLayer(x0: tf.Tensor2D, x1: tf.Tensor2D) { const { sizes, centers } = getCenterCoordinatesAndSizesLayer(x0) const vec = tf.unstack(tf.transpose(x1, [1, 0])) const div0_out = tf.div(tf.mul(tf.exp(tf.div(vec[2], tf.scalar(5))), sizes[0]), tf.scalar(2)) const add0_out = tf.add(tf.mul(tf.div(vec[0], tf.scalar(10)), sizes[0]), centers[0]) const div1_out = tf.div(tf.mul(tf.exp(tf.div(vec[3], tf.scalar(5))), sizes[1]), tf.scalar(2)) const add1_out = tf.add(tf.mul(tf.div(vec[1], tf.scalar(10)), sizes[1]), centers[1]) return tf.transpose( tf.stack([ tf.sub(add0_out, div0_out), tf.sub(add1_out, div1_out), tf.add(add0_out, div0_out), tf.add(add1_out, div1_out) ]), [1, 0] ) } export function outputLayer( boxPredictions: tf.Tensor4D, classPredictions: tf.Tensor4D, params: OutputLayerParams ) { return tf.tidy(() => { const batchSize = boxPredictions.shape[0] let boxes = decodeBoxesLayer( tf.reshape(tf.tile(params.extra_dim, [batchSize, 1, 1]), [-1, 4]) as tf.Tensor2D, tf.reshape(boxPredictions, [-1, 4]) as tf.Tensor2D ) boxes = tf.reshape( boxes, [batchSize, (boxes.shape[0] / batchSize), 4] ) const scoresAndClasses = tf.sigmoid(tf.slice(classPredictions, [0, 0, 1], [-1, -1, -1])) let scores = tf.slice(scoresAndClasses, [0, 0, 0], [-1, -1, 1]) as tf.Tensor scores = tf.reshape( scores, [batchSize, scores.shape[1] as number] ) const boxesByBatch = tf.unstack(boxes) as tf.Tensor2D[] const scoresByBatch = tf.unstack(scores) as tf.Tensor1D[] return { boxes: boxesByBatch, scores: scoresByBatch } }) }