import * as tf from '@tensorflow/tfjs'; import { ExtractWeightsFunction, ParamMapping, ConvParams, extractWeightsFactory } from '../common'; import { MobileNetV1, NetParams, PointwiseConvParams, PredictionLayerParams } from './types'; function extractorsFactory(extractWeights: ExtractWeightsFunction, paramMappings: ParamMapping[]) { function extractDepthwiseConvParams(numChannels: number, mappedPrefix: string): MobileNetV1.DepthwiseConvParams { const filters = tf.tensor4d(extractWeights(3 * 3 * numChannels), [3, 3, numChannels, 1]) const batch_norm_scale = tf.tensor1d(extractWeights(numChannels)) const batch_norm_offset = tf.tensor1d(extractWeights(numChannels)) const batch_norm_mean = tf.tensor1d(extractWeights(numChannels)) const batch_norm_variance = tf.tensor1d(extractWeights(numChannels)) paramMappings.push( { paramPath: `${mappedPrefix}/filters` }, { paramPath: `${mappedPrefix}/batch_norm_scale` }, { paramPath: `${mappedPrefix}/batch_norm_offset` }, { paramPath: `${mappedPrefix}/batch_norm_mean` }, { paramPath: `${mappedPrefix}/batch_norm_variance` } ) return { filters, batch_norm_scale, batch_norm_offset, batch_norm_mean, batch_norm_variance } } function extractConvParams( channelsIn: number, channelsOut: number, filterSize: number, mappedPrefix: string, isPointwiseConv?: boolean ): ConvParams { const filters = tf.tensor4d( extractWeights(channelsIn * channelsOut * filterSize * filterSize), [filterSize, filterSize, channelsIn, channelsOut] ) const bias = tf.tensor1d(extractWeights(channelsOut)) paramMappings.push( { paramPath: `${mappedPrefix}/filters` }, { paramPath: `${mappedPrefix}/${isPointwiseConv ? 'batch_norm_offset' : 'bias'}` } ) return { filters, bias } } function extractPointwiseConvParams( channelsIn: number, channelsOut: number, filterSize: number, mappedPrefix: string ): PointwiseConvParams { const { filters, bias } = extractConvParams(channelsIn, channelsOut, filterSize, mappedPrefix, true) return { filters, batch_norm_offset: bias } } function extractConvPairParams( channelsIn: number, channelsOut: number, mappedPrefix: string ): MobileNetV1.ConvPairParams { const depthwise_conv = extractDepthwiseConvParams(channelsIn, `${mappedPrefix}/depthwise_conv`) const pointwise_conv = extractPointwiseConvParams(channelsIn, channelsOut, 1, `${mappedPrefix}/pointwise_conv`) return { depthwise_conv, pointwise_conv } } function extractMobilenetV1Params(): MobileNetV1.Params { const conv_0 = extractPointwiseConvParams(3, 32, 3, 'mobilenetv1/conv_0') const conv_1 = extractConvPairParams(32, 64, 'mobilenetv1/conv_1') const conv_2 = extractConvPairParams(64, 128, 'mobilenetv1/conv_2') const conv_3 = extractConvPairParams(128, 128, 'mobilenetv1/conv_3') const conv_4 = extractConvPairParams(128, 256, 'mobilenetv1/conv_4') const conv_5 = extractConvPairParams(256, 256, 'mobilenetv1/conv_5') const conv_6 = extractConvPairParams(256, 512, 'mobilenetv1/conv_6') const conv_7 = extractConvPairParams(512, 512, 'mobilenetv1/conv_7') const conv_8 = extractConvPairParams(512, 512, 'mobilenetv1/conv_8') const conv_9 = extractConvPairParams(512, 512, 'mobilenetv1/conv_9') const conv_10 = extractConvPairParams(512, 512, 'mobilenetv1/conv_10') const conv_11 = extractConvPairParams(512, 512, 'mobilenetv1/conv_11') const conv_12 = extractConvPairParams(512, 1024, 'mobilenetv1/conv_12') const conv_13 = extractConvPairParams(1024, 1024, 'mobilenetv1/conv_13') return { conv_0, conv_1, conv_2, conv_3, conv_4, conv_5, conv_6, conv_7, conv_8, conv_9, conv_10, conv_11, conv_12, conv_13 } } function extractPredictionLayerParams(): PredictionLayerParams { const conv_0 = extractPointwiseConvParams(1024, 256, 1, 'prediction_layer/conv_0') const conv_1 = extractPointwiseConvParams(256, 512, 3, 'prediction_layer/conv_1') const conv_2 = extractPointwiseConvParams(512, 128, 1, 'prediction_layer/conv_2') const conv_3 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_3') const conv_4 = extractPointwiseConvParams(256, 128, 1, 'prediction_layer/conv_4') const conv_5 = extractPointwiseConvParams(128, 256, 3, 'prediction_layer/conv_5') const conv_6 = extractPointwiseConvParams(256, 64, 1, 'prediction_layer/conv_6') const conv_7 = extractPointwiseConvParams(64, 128, 3, 'prediction_layer/conv_7') const box_encoding_0_predictor = extractConvParams(512, 12, 1, 'prediction_layer/box_predictor_0/box_encoding_predictor') const class_predictor_0 = extractConvParams(512, 9, 1, 'prediction_layer/box_predictor_0/class_predictor') const box_encoding_1_predictor = extractConvParams(1024, 24, 1, 'prediction_layer/box_predictor_1/box_encoding_predictor') const class_predictor_1 = extractConvParams(1024, 18, 1, 'prediction_layer/box_predictor_1/class_predictor') const box_encoding_2_predictor = extractConvParams(512, 24, 1, 'prediction_layer/box_predictor_2/box_encoding_predictor') const class_predictor_2 = extractConvParams(512, 18, 1, 'prediction_layer/box_predictor_2/class_predictor') const box_encoding_3_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_3/box_encoding_predictor') const class_predictor_3 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_3/class_predictor') const box_encoding_4_predictor = extractConvParams(256, 24, 1, 'prediction_layer/box_predictor_4/box_encoding_predictor') const class_predictor_4 = extractConvParams(256, 18, 1, 'prediction_layer/box_predictor_4/class_predictor') const box_encoding_5_predictor = extractConvParams(128, 24, 1, 'prediction_layer/box_predictor_5/box_encoding_predictor') const class_predictor_5 = extractConvParams(128, 18, 1, 'prediction_layer/box_predictor_5/class_predictor') const box_predictor_0 = { box_encoding_predictor: box_encoding_0_predictor, class_predictor: class_predictor_0 } const box_predictor_1 = { box_encoding_predictor: box_encoding_1_predictor, class_predictor: class_predictor_1 } const box_predictor_2 = { box_encoding_predictor: box_encoding_2_predictor, class_predictor: class_predictor_2 } const box_predictor_3 = { box_encoding_predictor: box_encoding_3_predictor, class_predictor: class_predictor_3 } const box_predictor_4 = { box_encoding_predictor: box_encoding_4_predictor, class_predictor: class_predictor_4 } const box_predictor_5 = { box_encoding_predictor: box_encoding_5_predictor, class_predictor: class_predictor_5 } return { conv_0, conv_1, conv_2, conv_3, conv_4, conv_5, conv_6, conv_7, box_predictor_0, box_predictor_1, box_predictor_2, box_predictor_3, box_predictor_4, box_predictor_5 } } return { extractMobilenetV1Params, extractPredictionLayerParams } } export function extractParams(weights: Float32Array): { params: NetParams, paramMappings: ParamMapping[] } { const paramMappings: ParamMapping[] = [] const { extractWeights, getRemainingWeights } = extractWeightsFactory(weights) const { extractMobilenetV1Params, extractPredictionLayerParams } = extractorsFactory(extractWeights, paramMappings) const mobilenetv1 = extractMobilenetV1Params() const prediction_layer = extractPredictionLayerParams() const extra_dim = tf.tensor3d( extractWeights(5118 * 4), [1, 5118, 4] ) const output_layer = { extra_dim } paramMappings.push({ paramPath: 'output_layer/extra_dim' }) if (getRemainingWeights().length !== 0) { throw new Error(`weights remaing after extract: ${getRemainingWeights().length}`) } return { params: { mobilenetv1, prediction_layer, output_layer }, paramMappings } }