import * as tf from '../../dist/tfjs.esm.js'; import { fullyConnectedLayer } from '../common/fullyConnectedLayer'; import { seperateWeightMaps } from '../faceProcessor/util'; import { TinyXception } from '../xception/TinyXception'; import { extractParams } from './extractParams'; import { extractParamsFromWeigthMap } from './extractParamsFromWeigthMap'; import { AgeAndGenderPrediction, Gender, NetOutput, NetParams } from './types'; import { NeuralNetwork } from '../NeuralNetwork'; import { NetInput, TNetInput, toNetInput } from '../dom/index'; export class AgeGenderNet extends NeuralNetwork { private _faceFeatureExtractor: TinyXception constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) { super('AgeGenderNet') this._faceFeatureExtractor = faceFeatureExtractor } public get faceFeatureExtractor(): TinyXception { return this._faceFeatureExtractor } public runNet(input: NetInput | tf.Tensor4D): NetOutput { const { params } = this if (!params) { throw new Error(`${this._name} - load model before inference`) } return tf.tidy(() => { const bottleneckFeatures = input instanceof NetInput ? this.faceFeatureExtractor.forwardInput(input) : input const pooled = tf.avgPool(bottleneckFeatures, [7, 7], [2, 2], 'valid').as2D(bottleneckFeatures.shape[0], -1) const age = fullyConnectedLayer(pooled, params.fc.age).as1D() const gender = fullyConnectedLayer(pooled, params.fc.gender) return { age, gender } }) } public forwardInput(input: NetInput | tf.Tensor4D): NetOutput { return tf.tidy(() => { const { age, gender } = this.runNet(input) return { age, gender: tf.softmax(gender) } }) } public async forward(input: TNetInput): Promise { return this.forwardInput(await toNetInput(input)) } public async predictAgeAndGender(input: TNetInput): Promise { const netInput = await toNetInput(input) const out = await this.forwardInput(netInput) const ages = tf.unstack(out.age) const genders = tf.unstack(out.gender) const ageAndGenderTensors = ages.map((ageTensor, i) => ({ ageTensor, genderTensor: genders[i] })) const predictionsByBatch = await Promise.all( ageAndGenderTensors.map(async ({ ageTensor, genderTensor }) => { const age = (await ageTensor.data())[0] const probMale = (await genderTensor.data())[0] const isMale = probMale > 0.5 const gender = isMale ? Gender.MALE : Gender.FEMALE const genderProbability = isMale ? probMale : (1 - probMale) ageTensor.dispose() genderTensor.dispose() return { age, gender, genderProbability } }) ) out.age.dispose() out.gender.dispose() return netInput.isBatchInput ? predictionsByBatch as AgeAndGenderPrediction[] : predictionsByBatch[0] as AgeAndGenderPrediction } protected getDefaultModelName(): string { return 'age_gender_model' } public dispose(throwOnRedispose: boolean = true) { this.faceFeatureExtractor.dispose(throwOnRedispose) super.dispose(throwOnRedispose) } public loadClassifierParams(weights: Float32Array) { const { params, paramMappings } = this.extractClassifierParams(weights) this._params = params this._paramMappings = paramMappings } public extractClassifierParams(weights: Float32Array) { return extractParams(weights) } protected extractParamsFromWeigthMap(weightMap: tf.NamedTensorMap) { const { featureExtractorMap, classifierMap } = seperateWeightMaps(weightMap) this.faceFeatureExtractor.loadFromWeightMap(featureExtractorMap) return extractParamsFromWeigthMap(classifierMap) } protected extractParams(weights: Float32Array) { const classifierWeightSize = (512 * 1 + 1) + (512 * 2 + 2) const featureExtractorWeights = weights.slice(0, weights.length - classifierWeightSize) const classifierWeights = weights.slice(weights.length - classifierWeightSize) this.faceFeatureExtractor.extractWeights(featureExtractorWeights) return this.extractClassifierParams(classifierWeights) } }