import * as tf from '@tensorflow/tfjs-core'; import { toNetInput } from '../dom'; import { NeuralNetwork } from '../NeuralNetwork'; import { normalize } from '../ops'; import { denseBlock3 } from './denseBlock'; import { extractParamsFromWeigthMapTiny } from './extractParamsFromWeigthMapTiny'; import { extractParamsTiny } from './extractParamsTiny'; export class TinyFaceFeatureExtractor extends NeuralNetwork { constructor() { super('TinyFaceFeatureExtractor'); } forwardInput(input) { const { params } = this; if (!params) { throw new Error('TinyFaceFeatureExtractor - load model before inference'); } return tf.tidy(() => { const batchTensor = input.toBatchTensor(112, true); const meanRgb = [122.782, 117.001, 104.298]; const normalized = normalize(batchTensor, meanRgb).div(tf.scalar(255)); let out = denseBlock3(normalized, params.dense0, true); out = denseBlock3(out, params.dense1); out = denseBlock3(out, params.dense2); out = tf.avgPool(out, [14, 14], [2, 2], 'valid'); return out; }); } async forward(input) { return this.forwardInput(await toNetInput(input)); } getDefaultModelName() { return 'face_feature_extractor_tiny_model'; } extractParamsFromWeigthMap(weightMap) { return extractParamsFromWeigthMapTiny(weightMap); } extractParams(weights) { return extractParamsTiny(weights); } } //# sourceMappingURL=TinyFaceFeatureExtractor.js.map