Compare commits
129 Commits
Author | SHA1 | Date |
---|---|---|
![]() |
189226d63a | |
![]() |
f587b44f66 | |
![]() |
e3f11b8533 | |
![]() |
171d17cadf | |
![]() |
e4cdf624c9 | |
![]() |
c633f9fbe4 | |
![]() |
ffc3c40362 | |
![]() |
a8193f9077 | |
![]() |
155f07dccd | |
![]() |
2f0469fe6e | |
![]() |
697b265337 | |
![]() |
4719b81587 | |
![]() |
fc9a39ea13 | |
![]() |
438897c5a2 | |
![]() |
f4d4780267 | |
![]() |
a5c767fdff | |
![]() |
1fa29b0fd3 | |
![]() |
472f2e4480 | |
![]() |
4433ce44bc | |
![]() |
4ca829f941 | |
![]() |
038349968c | |
![]() |
ae96c7b230 | |
![]() |
f9f036ba01 | |
![]() |
0736a99250 | |
![]() |
3ea729badb | |
![]() |
d36ed6d266 | |
![]() |
4061d4d62f | |
![]() |
b034c46f80 | |
![]() |
aefd776a9e | |
![]() |
20eb54beb4 | |
![]() |
e8301c5277 | |
![]() |
fba823ba50 | |
![]() |
a1cb6de1e8 | |
![]() |
fb3836019f | |
![]() |
15ae496f40 | |
![]() |
0009d1bc34 | |
![]() |
adc4b3a11d | |
![]() |
7e5a1289ff | |
![]() |
cd2c553737 | |
![]() |
a433fc0681 | |
![]() |
f9902b0459 | |
![]() |
bd5ab6bb0f | |
![]() |
96fed4f123 | |
![]() |
0cbfd9b01b | |
![]() |
dea225bbeb | |
![]() |
602e86cbec | |
![]() |
00bf49b24f | |
![]() |
fa33c1281c | |
![]() |
7f613367a3 | |
![]() |
4d65f459f9 | |
![]() |
d28e5d2142 | |
![]() |
6aeb292453 | |
![]() |
289faf17f2 | |
![]() |
7a6f7d96b7 | |
![]() |
870eebedfa | |
![]() |
1ed702f713 | |
![]() |
b2a988e436 | |
![]() |
5c38676a83 | |
![]() |
bac0ef10cf | |
![]() |
8baef0ef68 | |
![]() |
c5dbb9d4e9 | |
![]() |
a8021dc2a3 | |
![]() |
f946780bab | |
![]() |
8e7061a9aa | |
![]() |
cd904ca5dd | |
![]() |
496779fee2 | |
![]() |
4ba4a99ee1 | |
![]() |
31170e750b | |
![]() |
5f58cd376d | |
![]() |
07eb00d7d6 | |
![]() |
a1f7a0841f | |
![]() |
49a594a59b | |
![]() |
3b3ab219dc | |
![]() |
2fce7338dc | |
![]() |
6cafeafba1 | |
![]() |
d0f1349a23 | |
![]() |
cdb0e485f8 | |
![]() |
5bcc4d2a73 | |
![]() |
92008ed6f4 | |
![]() |
c1b38f99fe | |
![]() |
0c5251c219 | |
![]() |
fcf61e5c30 | |
![]() |
8c7e21b1c9 | |
![]() |
2841969df8 | |
![]() |
39b137ed63 | |
![]() |
c53becfc67 | |
![]() |
fd427cce39 | |
![]() |
43805b50c6 | |
![]() |
fc18d89ab6 | |
![]() |
0de113080c | |
![]() |
471ddb7549 | |
![]() |
70991235df | |
![]() |
c07be32e26 | |
![]() |
936ecba7ec | |
![]() |
63476fcbc0 | |
![]() |
62da12758f | |
![]() |
bd4d5935fe | |
![]() |
118fbaba4d | |
![]() |
e70d9bb18b | |
![]() |
f1a2ef34a5 | |
![]() |
e7fd0efd27 | |
![]() |
eb5501c672 | |
![]() |
8b304fa3d4 | |
![]() |
1824a62efb | |
![]() |
bd2317d42e | |
![]() |
1def723c7b | |
![]() |
d78dd3aae1 | |
![]() |
461e074993 | |
![]() |
1d30a9f816 | |
![]() |
fcbfc8589a | |
![]() |
c7b2c65c97 | |
![]() |
1b4580dd6e | |
![]() |
fdddee7101 | |
![]() |
aee959f464 | |
![]() |
f70e5615b4 | |
![]() |
4ba43e08ae | |
![]() |
c3049e7c29 | |
![]() |
e2609a0ef2 | |
![]() |
d13586f549 | |
![]() |
519e346f02 | |
![]() |
efb307d230 | |
![]() |
47f2b53e92 | |
![]() |
9b810d8028 | |
![]() |
f48cbda416 | |
![]() |
ac172b8be5 | |
![]() |
2c8c8c2c1c | |
![]() |
9fb3029211 | |
![]() |
225192d18d | |
![]() |
8dab959446 |
|
@ -0,0 +1,148 @@
|
||||||
|
{
|
||||||
|
"log": {
|
||||||
|
"enabled": false,
|
||||||
|
"debug": false,
|
||||||
|
"console": true,
|
||||||
|
"output": "build.log"
|
||||||
|
},
|
||||||
|
"profiles": {
|
||||||
|
"production": ["compile", "typings", "typedoc", "lint", "changelog"],
|
||||||
|
"development": ["serve", "watch", "compile"]
|
||||||
|
},
|
||||||
|
"clean": {
|
||||||
|
"locations": ["dist/*", "typedoc/*", "types/lib/src"]
|
||||||
|
},
|
||||||
|
"lint": {
|
||||||
|
"locations": [ "src/" ],
|
||||||
|
"rules": { }
|
||||||
|
},
|
||||||
|
"changelog": {
|
||||||
|
"log": "CHANGELOG.md"
|
||||||
|
},
|
||||||
|
"serve": {
|
||||||
|
"sslKey": "cert/https.key",
|
||||||
|
"sslCrt": "cert/https.crt",
|
||||||
|
"httpPort": 8000,
|
||||||
|
"httpsPort": 8001,
|
||||||
|
"documentRoot": ".",
|
||||||
|
"defaultFolder": "demo",
|
||||||
|
"defaultFile": "index.html"
|
||||||
|
},
|
||||||
|
"build": {
|
||||||
|
"global": {
|
||||||
|
"target": "es2018",
|
||||||
|
"treeShaking": true,
|
||||||
|
"ignoreAnnotations": true,
|
||||||
|
"sourcemap": false,
|
||||||
|
"banner": { "js": "/*\n Face-API\n homepage: <https://github.com/vladmandic/face-api>\n author: <https://github.com/vladmandic>'\n*/\n" }
|
||||||
|
},
|
||||||
|
"targets": [
|
||||||
|
{
|
||||||
|
"name": "tfjs/browser/tf-version",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "esm",
|
||||||
|
"input": "src/tfjs/tf-version.ts",
|
||||||
|
"output": "dist/tfjs.version.js"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "tfjs/node/cpu",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/tfjs/tf-node.ts",
|
||||||
|
"output": "dist/tfjs.esm.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/node/cpu",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.node.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "tfjs/node/gpu",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/tfjs/tf-node-gpu.ts",
|
||||||
|
"output": "dist/tfjs.esm.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/node/gpu",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.node-gpu.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "tfjs/node/wasm",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/tfjs/tf-node-wasm.ts",
|
||||||
|
"output": "dist/tfjs.esm.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/node/wasm",
|
||||||
|
"platform": "node",
|
||||||
|
"format": "cjs",
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.node-wasm.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "tfjs/browser/esm/nobundle",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "esm",
|
||||||
|
"input": "src/tfjs/tf-browser.ts",
|
||||||
|
"output": "dist/tfjs.esm.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/browser/esm/nobundle",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "esm",
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.esm-nobundle.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "tfjs/browser/esm/bundle",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "esm",
|
||||||
|
"input": "src/tfjs/tf-browser.ts",
|
||||||
|
"output": "dist/tfjs.esm.js"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/browser/iife/bundle",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "iife",
|
||||||
|
"globalName": "faceapi",
|
||||||
|
"minify": true,
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.js",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "faceapi/browser/esm/bundle",
|
||||||
|
"platform": "browser",
|
||||||
|
"format": "esm",
|
||||||
|
"sourcemap": true,
|
||||||
|
"input": "src/index.ts",
|
||||||
|
"output": "dist/face-api.esm.js",
|
||||||
|
"typings": "types/lib",
|
||||||
|
"typedoc": "typedoc",
|
||||||
|
"external": ["@tensorflow"]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"watch": {
|
||||||
|
"enabled": true,
|
||||||
|
"locations": [ "src/**" ]
|
||||||
|
},
|
||||||
|
"typescript": {
|
||||||
|
"allowJs": false
|
||||||
|
}
|
||||||
|
}
|
|
@ -7,7 +7,7 @@
|
||||||
"es2020": true
|
"es2020": true
|
||||||
},
|
},
|
||||||
"parser": "@typescript-eslint/parser",
|
"parser": "@typescript-eslint/parser",
|
||||||
"parserOptions": { "ecmaVersion": 2020 },
|
"parserOptions": { "ecmaVersion": "latest" },
|
||||||
"plugins": [
|
"plugins": [
|
||||||
"@typescript-eslint"
|
"@typescript-eslint"
|
||||||
],
|
],
|
||||||
|
@ -17,7 +17,6 @@
|
||||||
"plugin:import/warnings",
|
"plugin:import/warnings",
|
||||||
"plugin:node/recommended",
|
"plugin:node/recommended",
|
||||||
"plugin:promise/recommended",
|
"plugin:promise/recommended",
|
||||||
"plugin:json/recommended-with-comments",
|
|
||||||
"plugin:@typescript-eslint/eslint-recommended",
|
"plugin:@typescript-eslint/eslint-recommended",
|
||||||
"plugin:@typescript-eslint/recommended",
|
"plugin:@typescript-eslint/recommended",
|
||||||
"airbnb-base"
|
"airbnb-base"
|
||||||
|
@ -29,8 +28,11 @@
|
||||||
"@typescript-eslint/ban-ts-comment": "off",
|
"@typescript-eslint/ban-ts-comment": "off",
|
||||||
"@typescript-eslint/explicit-module-boundary-types": "off",
|
"@typescript-eslint/explicit-module-boundary-types": "off",
|
||||||
"@typescript-eslint/no-var-requires": "off",
|
"@typescript-eslint/no-var-requires": "off",
|
||||||
|
"@typescript-eslint/no-empty-object-type": "off",
|
||||||
|
"@typescript-eslint/no-require-imports": "off",
|
||||||
"camelcase": "off",
|
"camelcase": "off",
|
||||||
"class-methods-use-this": "off",
|
"class-methods-use-this": "off",
|
||||||
|
"default-param-last": "off",
|
||||||
"dot-notation": "off",
|
"dot-notation": "off",
|
||||||
"func-names": "off",
|
"func-names": "off",
|
||||||
"guard-for-in": "off",
|
"guard-for-in": "off",
|
||||||
|
@ -56,6 +58,7 @@
|
||||||
"no-restricted-syntax": "off",
|
"no-restricted-syntax": "off",
|
||||||
"no-return-assign": "off",
|
"no-return-assign": "off",
|
||||||
"no-underscore-dangle": "off",
|
"no-underscore-dangle": "off",
|
||||||
|
"no-promise-executor-return": "off",
|
||||||
"node/no-missing-import": ["error", { "tryExtensions": [".js", ".json", ".ts"] }],
|
"node/no-missing-import": ["error", { "tryExtensions": [".js", ".json", ".ts"] }],
|
||||||
"node/no-unpublished-import": "off",
|
"node/no-unpublished-import": "off",
|
||||||
"node/no-unpublished-require": "off",
|
"node/no-unpublished-require": "off",
|
||||||
|
|
|
@ -0,0 +1,13 @@
|
||||||
|
# These are supported funding model platforms
|
||||||
|
|
||||||
|
github: [vladmandic]
|
||||||
|
patreon: # Replace with a single Patreon username
|
||||||
|
open_collective: # Replace with a single Open Collective username
|
||||||
|
ko_fi: # Replace with a single Ko-fi username
|
||||||
|
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
|
||||||
|
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
|
||||||
|
liberapay: # Replace with a single Liberapay username
|
||||||
|
issuehunt: # Replace with a single IssueHunt username
|
||||||
|
otechie: # Replace with a single Otechie username
|
||||||
|
lfx_crowdfunding: # Replace with a single LFX Crowdfunding project-name e.g., cloud-foundry
|
||||||
|
custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']
|
|
@ -1,3 +1,2 @@
|
||||||
node_modules
|
node_modules
|
||||||
pnpm-lock.yaml
|
pnpm-lock.yaml
|
||||||
|
|
||||||
|
|
|
@ -2,3 +2,4 @@ node_modules
|
||||||
pnpm-lock.yaml
|
pnpm-lock.yaml
|
||||||
typedoc
|
typedoc
|
||||||
test
|
test
|
||||||
|
types/lib
|
||||||
|
|
6
.npmrc
6
.npmrc
|
@ -1 +1,5 @@
|
||||||
force = true
|
force=true
|
||||||
|
production=true
|
||||||
|
legacy-peer-deps=true
|
||||||
|
strict-peer-dependencies=false
|
||||||
|
node-options='--no-deprecation'
|
||||||
|
|
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"typescript.tsdk": "node_modules/typescript/lib"
|
||||||
|
}
|
270
CHANGELOG.md
270
CHANGELOG.md
|
@ -1,13 +1,163 @@
|
||||||
# @vladmandic/face-api
|
# @vladmandic/face-api
|
||||||
|
|
||||||
Version: **1.4.1**
|
Version: **1.7.15**
|
||||||
Description: **FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS**
|
Description: **FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS**
|
||||||
|
|
||||||
Author: **Vladimir Mandic <mandic00@live.com>**
|
Author: **Vladimir Mandic <mandic00@live.com>**
|
||||||
License: **MIT** </LICENSE>
|
License: **MIT**
|
||||||
Repository: **<git+https://github.com/vladmandic/face-api.git>**
|
Repository: **<https://github.com/vladmandic/face-api>**
|
||||||
|
|
||||||
## Changelog
|
## Changelog
|
||||||
|
|
||||||
|
### **1.7.15** 2025/02/05 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **origin/master** 2024/09/10 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.14** 2024/09/10 mandic00@live.com
|
||||||
|
|
||||||
|
- rebuild
|
||||||
|
- merge pull request #188 from rebser/master
|
||||||
|
- fixing leaking eventhandlers when using htmlcanvaselement
|
||||||
|
- rebuild types
|
||||||
|
- rebuild
|
||||||
|
|
||||||
|
### **1.7.13** 2024/01/17 mandic00@live.com
|
||||||
|
|
||||||
|
- merge pull request #186 from khwalkowicz/master
|
||||||
|
- feat: enable noimplicitany
|
||||||
|
|
||||||
|
### **release: 1.7.12** 2023/06/12 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.12** 2023/06/12 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.11** 2023/05/08 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.10** 2023/03/21 mandic00@live.com
|
||||||
|
|
||||||
|
- change typedefs
|
||||||
|
|
||||||
|
### **1.7.9** 2023/01/29 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.8** 2023/01/06 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.7** 2022/12/01 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.6** 2022/10/18 mandic00@live.com
|
||||||
|
|
||||||
|
- fix face angles (yaw, pitch, & roll) accuracy (#130)
|
||||||
|
|
||||||
|
### **1.7.5** 2022/10/09 mandic00@live.com
|
||||||
|
|
||||||
|
- create funding.yml
|
||||||
|
- add node-wasm demo
|
||||||
|
|
||||||
|
### **1.7.4** 2022/09/25 mandic00@live.com
|
||||||
|
|
||||||
|
- improve face compare performance
|
||||||
|
|
||||||
|
### **1.7.3** 2022/08/24 mandic00@live.com
|
||||||
|
|
||||||
|
- refresh release
|
||||||
|
|
||||||
|
### **1.7.2** 2022/08/23 mandic00@live.com
|
||||||
|
|
||||||
|
- document and remove optional dependencies
|
||||||
|
|
||||||
|
### **release: 1.7.1** 2022/07/25 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.7.1** 2022/07/25 mandic00@live.com
|
||||||
|
|
||||||
|
- refactor dependencies
|
||||||
|
- full rebuild
|
||||||
|
|
||||||
|
### **1.6.11** 2022/05/24 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.10** 2022/05/24 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.9** 2022/05/18 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.8** 2022/05/09 mandic00@live.com
|
||||||
|
|
||||||
|
- exclude impossible detected face boxes
|
||||||
|
|
||||||
|
### **1.6.7** 2022/04/01 mandic00@live.com
|
||||||
|
|
||||||
|
- fixed typo error (#97)
|
||||||
|
|
||||||
|
### **1.6.6** 2022/03/04 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.5** 2022/02/07 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.4** 2022/01/14 mandic00@live.com
|
||||||
|
|
||||||
|
- add node with wasm build target
|
||||||
|
|
||||||
|
### **1.6.3** 2022/01/06 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.2** 2022/01/01 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.6.1** 2021/12/09 mandic00@live.com
|
||||||
|
|
||||||
|
- rebuild
|
||||||
|
- release preview
|
||||||
|
- switch to custom tfjs and new typedefs
|
||||||
|
- rebuild
|
||||||
|
|
||||||
|
### **1.5.8** 2021/11/30 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.5.7** 2021/10/28 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.5.6** 2021/10/22 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **release: 1.5.5** 2021/10/19 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.5.5** 2021/10/19 mandic00@live.com
|
||||||
|
|
||||||
|
- allow backend change in demo via url params
|
||||||
|
- add node-match demo
|
||||||
|
- fix face matcher
|
||||||
|
|
||||||
|
### **1.5.4** 2021/09/29 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.5.3** 2021/09/16 mandic00@live.com
|
||||||
|
|
||||||
|
- simplify tfjs imports
|
||||||
|
- reduce bundle size
|
||||||
|
- enable webgl uniforms
|
||||||
|
|
||||||
|
### **1.5.2** 2021/09/10 mandic00@live.com
|
||||||
|
|
||||||
|
- redesign build platform
|
||||||
|
|
||||||
|
### **1.5.1** 2021/09/08 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **1.4.2** 2021/08/31 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
|
### **release: 1.4.1** 2021/07/29 mandic00@live.com
|
||||||
|
|
||||||
|
|
||||||
### **1.4.1** 2021/07/29 mandic00@live.com
|
### **1.4.1** 2021/07/29 mandic00@live.com
|
||||||
|
|
||||||
|
@ -107,111 +257,61 @@ Repository: **<git+https://github.com/vladmandic/face-api.git>**
|
||||||
|
|
||||||
- add badges
|
- add badges
|
||||||
- optimize for npm
|
- optimize for npm
|
||||||
|
- 0.30.6
|
||||||
### **0.30.6** 2021/03/08 mandic00@live.com
|
|
||||||
|
|
||||||
- added typings for face angle
|
- added typings for face angle
|
||||||
- disable landmark printing
|
- disable landmark printing
|
||||||
|
- 0.30.5
|
||||||
### **0.30.5** 2021/03/07 mandic00@live.com
|
|
||||||
|
|
||||||
- enabled live demo on gitpages
|
- enabled live demo on gitpages
|
||||||
|
- 0.30.4
|
||||||
### **0.30.4** 2021/03/07 mandic00@live.com
|
|
||||||
|
|
||||||
- added face angle calculations
|
- added face angle calculations
|
||||||
- added documentation
|
- added documentation
|
||||||
- package update
|
- package update
|
||||||
|
- 0.30.3
|
||||||
### **0.30.3** 2021/03/04 mandic00@live.com
|
- 0.30.2
|
||||||
|
- 0.30.1
|
||||||
|
- 0.13.3
|
||||||
### **0.30.2** 2021/02/26 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.30.1** 2021/02/25 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.13.3** 2021/02/21 mandic00@live.com
|
|
||||||
|
|
||||||
- added note-cpu target
|
- added note-cpu target
|
||||||
- merge pull request #39 from xemle/feature/node-cpu
|
- merge pull request #39 from xemle/feature/node-cpu
|
||||||
- add node-cpu build for non supported systems of libtensorflow
|
- add node-cpu build for non supported systems of libtensorflow
|
||||||
|
- 0.13.2
|
||||||
### **0.13.2** 2021/02/20 mandic00@live.com
|
- 0.13.1
|
||||||
|
- 0.12.10
|
||||||
|
- exception handling
|
||||||
### **0.13.1** 2021/02/20 mandic00@live.com
|
- 0.12.9
|
||||||
|
- exception handling
|
||||||
|
- 0.12.8
|
||||||
### **0.12.10** 2021/02/20 mandic00@live.com
|
|
||||||
|
|
||||||
- exception handling
|
- exception handling
|
||||||
|
|
||||||
### **0.12.9** 2021/02/20 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.12.8** 2021/02/20 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.12.7** 2021/02/17 mandic00@live.com
|
### **0.12.7** 2021/02/17 mandic00@live.com
|
||||||
|
|
||||||
- 0.12.7
|
- 0.12.7
|
||||||
|
- 0.12.6
|
||||||
### **0.12.6** 2021/02/13 mandic00@live.com
|
- 0.12.5
|
||||||
|
- 0.12.4
|
||||||
|
- 0.12.3
|
||||||
### **0.12.5** 2021/02/12 mandic00@live.com
|
- 0.12.2
|
||||||
|
|
||||||
|
|
||||||
### **0.12.4** 2021/02/06 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.12.3** 2021/02/06 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.12.2** 2021/02/02 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **update for tfjs 3.0.0** 2021/01/29 mandic00@live.com
|
### **update for tfjs 3.0.0** 2021/01/29 mandic00@live.com
|
||||||
|
|
||||||
|
- 0.12.1
|
||||||
### **0.12.1** 2021/01/29 mandic00@live.com
|
|
||||||
|
|
||||||
- rebuild
|
- rebuild
|
||||||
|
- 0.11.6
|
||||||
### **0.11.6** 2021/01/24 mandic00@live.com
|
|
||||||
|
|
||||||
- add check for null face descriptor
|
- add check for null face descriptor
|
||||||
- merge pull request #34 from patrickhulce/patch-1
|
- merge pull request #34 from patrickhulce/patch-1
|
||||||
- fix: return empty descriptor for zero-sized faces
|
- fix: return empty descriptor for zero-sized faces
|
||||||
|
- 0.11.5
|
||||||
### **0.11.5** 2021/01/22 mandic00@live.com
|
- 0.11.4
|
||||||
|
- 0.11.3
|
||||||
|
|
||||||
### **0.11.4** 2021/01/22 mandic00@live.com
|
|
||||||
|
|
||||||
|
|
||||||
### **0.11.3** 2021/01/20 mandic00@live.com
|
|
||||||
|
|
||||||
- fix typo
|
- fix typo
|
||||||
- enable full minification
|
- enable full minification
|
||||||
|
- 0.11.2
|
||||||
### **0.11.2** 2021/01/12 mandic00@live.com
|
|
||||||
|
|
||||||
- full rebuild
|
- full rebuild
|
||||||
|
- 0.11.1
|
||||||
### **0.11.1** 2021/01/10 mandic00@live.com
|
|
||||||
|
|
||||||
- added live webcam demo
|
- added live webcam demo
|
||||||
|
- 0.10.2
|
||||||
### **0.10.2** 2021/01/03 mandic00@live.com
|
|
||||||
|
|
||||||
- ts linting
|
- ts linting
|
||||||
- version bump
|
- version bump
|
||||||
|
- 0.10.1
|
||||||
### **0.10.1** 2020/12/23 mandic00@live.com
|
|
||||||
|
|
||||||
- full re-lint and typings generation
|
- full re-lint and typings generation
|
||||||
- rebuild
|
- rebuild
|
||||||
|
|
||||||
|
|
240
README.md
240
README.md
|
@ -53,18 +53,18 @@ Example can be accessed directly using Git pages using URL:
|
||||||
|
|
||||||
### NodeJS
|
### NodeJS
|
||||||
|
|
||||||
Three NodeJS examples are:
|
NodeJS examples are:
|
||||||
|
|
||||||
|
- `/demo/node-simple.js`:
|
||||||
|
Simplest possible NodeJS demo for FaceAPI in under 30 lines of JavaScript code
|
||||||
- `/demo/node.js`:
|
- `/demo/node.js`:
|
||||||
Regular usage of `FaceAPI` from `NodeJS`
|
Using `TFJS` native methods to load images without external dependencies
|
||||||
Using `TFJS` native methods to load images without external dependencies
|
- `/demo/node-canvas.js` and `/demo/node-image.js`:
|
||||||
- `/demo/node-canvas.js`:
|
|
||||||
Regular usage of `FaceAPI` from `NodeJS`
|
|
||||||
Using external `canvas` module to load images
|
Using external `canvas` module to load images
|
||||||
Which also allows for image drawing and saving inside `NodeJS` environment
|
Which also allows for image drawing and saving inside `NodeJS` environment
|
||||||
- `/demo/node-wasm.js`:
|
- `/demo/node-match.js`:
|
||||||
Same as `node-canvas`, but using `WASM` backend in `NodeJS` environment
|
Simple demo that compares face similarity from a given image
|
||||||
Because why not :)
|
to a second image or list of images in a folder
|
||||||
- `/demo/node-multiprocess.js`:
|
- `/demo/node-multiprocess.js`:
|
||||||
Multiprocessing showcase that uses pool of worker processes
|
Multiprocessing showcase that uses pool of worker processes
|
||||||
(`node-multiprocess-worker.js`)
|
(`node-multiprocess-worker.js`)
|
||||||
|
@ -104,8 +104,11 @@ Three NodeJS examples are:
|
||||||
2021-03-14 08:42:09 STATE: Main: worker exit: 1888019 0
|
2021-03-14 08:42:09 STATE: Main: worker exit: 1888019 0
|
||||||
```
|
```
|
||||||
|
|
||||||
Note that `@tensorflow/tfjs-node` or `@tensorflow/tfjs-node-gpu`
|
### NodeJS Notes
|
||||||
must be installed before using NodeJS example
|
- Supported NodeJS versions are **14** up to **22**
|
||||||
|
NodeJS version **23** and higher are not supported due to incompatibility with TensorFlow/JS
|
||||||
|
- `@tensorflow/tfjs-node` or `@tensorflow/tfjs-node-gpu`
|
||||||
|
must be installed before using any **NodeJS** examples
|
||||||
|
|
||||||
<br><hr><br>
|
<br><hr><br>
|
||||||
|
|
||||||
|
@ -133,8 +136,6 @@ Simply include latest version of `FaceAPI` directly from a CDN in your HTML:
|
||||||
*without* TFJS pre-bundled
|
*without* TFJS pre-bundled
|
||||||
- `dist/face-api.node-gpu.js`: CommonJS format for server-side NodeJS execution
|
- `dist/face-api.node-gpu.js`: CommonJS format for server-side NodeJS execution
|
||||||
*without* TFJS pre-bundled and optimized for CUDA GPU acceleration
|
*without* TFJS pre-bundled and optimized for CUDA GPU acceleration
|
||||||
- `dist/face-api.node-cpu.js`: CommonJS format for server-side NodeJS execution
|
|
||||||
*without* TFJS pre-bundled and using JS engine for platforms where tensorflow binary library version is not available
|
|
||||||
|
|
||||||
Defaults are:
|
Defaults are:
|
||||||
|
|
||||||
|
@ -260,7 +261,7 @@ If you want to GPU Accelerated execution in NodeJS, you must have CUDA libraries
|
||||||
Then install appropriate version of `FaceAPI`:
|
Then install appropriate version of `FaceAPI`:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
npm install @tensorflow/tfjs-node
|
npm install @tensorflow/tfjs-node-gpu
|
||||||
npm install @vladmandic/face-api
|
npm install @vladmandic/face-api
|
||||||
```
|
```
|
||||||
|
|
||||||
|
@ -271,18 +272,24 @@ And then use with:
|
||||||
const faceapi = require('@vladmandic/face-api/dist/face-api.node-gpu.js'); // this loads face-api version with correct bindings for tfjs-node-gpu
|
const faceapi = require('@vladmandic/face-api/dist/face-api.node-gpu.js'); // this loads face-api version with correct bindings for tfjs-node-gpu
|
||||||
```
|
```
|
||||||
|
|
||||||
If you want to use `FaceAPI` in a NodeJS on platforms where NodeJS binary libraries are not supported, you can use JavaScript CPU backend.
|
If you want to use `FaceAPI` in a NodeJS on platforms where **tensorflow** binary libraries are not supported, you can use NodeJS **WASM** backend.
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
npm install @tensorflow/tfjs
|
npm install @tensorflow/tfjs
|
||||||
|
npm install @tensorflow/tfjs-backend-wasm
|
||||||
npm install @vladmandic/face-api
|
npm install @vladmandic/face-api
|
||||||
```
|
```
|
||||||
|
|
||||||
And then use with:
|
And then use with:
|
||||||
|
|
||||||
```js
|
```js
|
||||||
const tf = require('@tensorflow/tfjs')
|
const tf = require('@tensorflow/tfjs');
|
||||||
const faceapi = require('@vladmandic/face-api/dist/face-api.node-cpu.js');
|
const wasm = require('@tensorflow/tfjs-backend-wasm');
|
||||||
|
const faceapi = require('@vladmandic/face-api/dist/face-api.node-wasm.js'); // use this when using face-api in dev mode
|
||||||
|
wasm.setWasmPaths('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm/dist/');
|
||||||
|
await tf.setBackend('wasm');
|
||||||
|
await tf.ready();
|
||||||
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
If you want to use graphical functions inside NodeJS,
|
If you want to use graphical functions inside NodeJS,
|
||||||
|
@ -310,12 +317,14 @@ faceapi.env.monkeyPatch({ Canvas, Image, ImageData })
|
||||||
|
|
||||||
## Weights
|
## Weights
|
||||||
|
|
||||||
Pretrained models and their weights are includes in `./model`.
|
Pretrained models and their weights are included in `./model`.
|
||||||
|
|
||||||
<br><hr><br>
|
<br><hr><br>
|
||||||
|
|
||||||
## Test & Dev Web Server
|
## Test & Dev Web Server
|
||||||
|
|
||||||
|
To install development dependencies, use `npm install --production=false`
|
||||||
|
|
||||||
Built-in test&dev web server can be started using
|
Built-in test&dev web server can be started using
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
|
@ -327,38 +336,47 @@ By default it starts HTTP server on port 8000 and HTTPS server on port 8001 and
|
||||||
- <https://localhost:8001/demo/index.html>
|
- <https://localhost:8001/demo/index.html>
|
||||||
- <https://localhost:8001/demo/webcam.html>
|
- <https://localhost:8001/demo/webcam.html>
|
||||||
|
|
||||||
```json
|
```js
|
||||||
2021-07-29 09:03:02 INFO: @vladmandic/face-api version 1.3.1
|
2022-01-14 09:56:19 INFO: @vladmandic/face-api version 1.6.4
|
||||||
2021-07-29 09:03:02 INFO: User: vlado Platform: linux Arch: x64 Node: v16.5.0
|
2022-01-14 09:56:19 INFO: User: vlado Platform: linux Arch: x64 Node: v17.2.0
|
||||||
2021-07-29 09:03:02 INFO: Build: file startup all target: es2018
|
2022-01-14 09:56:19 INFO: Application: { name: '@vladmandic/face-api', version: '1.6.4' }
|
||||||
2021-07-29 09:03:02 STATE: HTTP server listening: 8000
|
2022-01-14 09:56:19 INFO: Environment: { profile: 'development', config: '.build.json', package: 'package.json', tsconfig: true, eslintrc: true, git: true }
|
||||||
2021-07-29 09:03:02 STATE: HTTP2 server listening: 8001
|
2022-01-14 09:56:19 INFO: Toolchain: { build: '0.6.7', esbuild: '0.14.11', typescript: '4.5.4', typedoc: '0.22.10', eslint: '8.6.0' }
|
||||||
2021-07-29 09:03:02 STATE: Build for: node type: tfjs: { imports: 1, importBytes: 143, outputBytes: 1327, outputFiles: 'dist/tfjs.esm.js' }
|
2022-01-14 09:56:19 INFO: Build: { profile: 'development', steps: [ 'serve', 'watch', 'compile' ] }
|
||||||
2021-07-29 09:03:02 STATE: Build for: node type: node: { imports: 162, importBytes: 234303, outputBytes: 175090, outputFiles: 'dist/face-api.node.js' }
|
2022-01-14 09:56:19 STATE: WebServer: { ssl: false, port: 8000, root: '.' }
|
||||||
2021-07-29 09:03:02 STATE: Monitoring: [ 'package.json', 'demo', 'src', [length]: 3 ]
|
2022-01-14 09:56:19 STATE: WebServer: { ssl: true, port: 8001, root: '.', sslKey: 'build/cert/https.key', sslCrt: 'build/cert/https.crt' }
|
||||||
2021-07-29 09:03:02 STATE: Build for: nodeGPU type: tfjs: { imports: 1, importBytes: 147, outputBytes: 1335, outputFiles: 'dist/tfjs.esm.js' }
|
2022-01-14 09:56:19 STATE: Watch: { locations: [ 'src/**', 'README.md', 'src/**', 'src/**' ] }
|
||||||
2021-07-29 09:03:02 STATE: Build for: nodeGPU type: node: { imports: 162, importBytes: 234311, outputBytes: 175098, outputFiles: 'dist/face-api.node-gpu.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/node/cpu', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 143, outputBytes: 1276 }
|
||||||
2021-07-29 09:03:02 STATE: Build for: nodeCPU type: tfjs: { imports: 1, importBytes: 138, outputBytes: 1326, outputFiles: 'dist/tfjs.esm.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'faceapi/node/cpu', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node.js', files: 162, inputBytes: 234787, outputBytes: 175203 }
|
||||||
2021-07-29 09:03:02 STATE: Build for: nodeCPU type: node: { imports: 162, importBytes: 234302, outputBytes: 175089, outputFiles: 'dist/face-api.node-cpu.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/node/gpu', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node-gpu.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 147, outputBytes: 1296 }
|
||||||
2021-07-29 09:03:02 STATE: Build for: browserNoBundle type: tfjs: { imports: 1, importBytes: 276, outputBytes: 277, outputFiles: 'dist/tfjs.esm.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'faceapi/node/gpu', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node-gpu.js', files: 162, inputBytes: 234807, outputBytes: 175219 }
|
||||||
2021-07-29 09:03:02 STATE: Build for: browserNoBundle type: esm: { imports: 162, importBytes: 233253, outputBytes: 168850, outputFiles: 'dist/face-api.esm-nobundle.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/node/wasm', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node-wasm.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 185, outputBytes: 1367 }
|
||||||
2021-07-29 09:03:03 STATE: Build for: browserBundle type: tfjs: { modules: 1352, moduleBytes: 4369745, imports: 7, importBytes: 276, outputBytes: 2362345, outputFiles: 'dist/tfjs.esm.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'faceapi/node/wasm', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node-wasm.js', files: 162, inputBytes: 234878, outputBytes: 175294 }
|
||||||
2021-07-29 09:03:03 STATE: Build for: browserBundle type: iife: { imports: 162, importBytes: 2595321, outputBytes: 2482864, outputFiles: 'dist/face-api.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/browser/tf-version', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-version.ts', output: 'dist/tfjs.version.js', files: 1, inputBytes: 1063, outputBytes: 1662 }
|
||||||
2021-07-29 09:03:04 STATE: Build for: browserBundle type: esm: { imports: 162, importBytes: 2595321, outputBytes: 2360761, outputFiles: 'dist/face-api.esm.js' }
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/browser/esm/nobundle', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-browser.ts', output: 'dist/tfjs.esm.js', files: 2, inputBytes: 2172, outputBytes: 811 }
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 text/html; charset=utf-8 1269 /demo/webcam.html ::ffff:192.168.0.200
|
2022-01-14 09:56:19 STATE: Compile: { name: 'faceapi/browser/esm/nobundle', format: 'esm', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.esm-nobundle.js', files: 162, inputBytes: 234322, outputBytes: 169437 }
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 text/javascript; charset=utf-8 7971 /demo/webcam.js ::ffff:192.168.0.200
|
2022-01-14 09:56:19 STATE: Compile: { name: 'tfjs/browser/esm/bundle', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-browser.ts', output: 'dist/tfjs.esm.js', files: 11, inputBytes: 2172, outputBytes: 2444105 }
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 text/javascript; charset=utf-8 2360761 /dist/face-api.esm.js ::ffff:192.168.0.200
|
2022-01-14 09:56:20 STATE: Compile: { name: 'faceapi/browser/iife/bundle', format: 'iife', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.js', files: 162, inputBytes: 2677616, outputBytes: 1252572 }
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 application/json; charset=utf-8 28233 /model/ssd_mobilenetv1_model-weights_manifest.json ::ffff:192.168.0.200
|
2022-01-14 09:56:20 STATE: Compile: { name: 'faceapi/browser/esm/bundle', format: 'esm', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.esm.js', files: 162, inputBytes: 2677616, outputBytes: 2435063 }
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 image/x-icon 5063 /favicon.ico ::ffff:192.168.0.200
|
2022-01-14 09:56:20 INFO: Listening...
|
||||||
2021-07-29 09:03:23 DATA: GET/2.0 200 application/octet-stream 5616957 /model/ssd_mobilenetv1_model.bin ::ffff:192.168.0.200
|
...
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/json; charset=utf-8 8392 /model/age_gender_model-weights_manifest.json ::ffff:192.168.0.200
|
2022-01-14 09:56:46 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'text/html', size: 1047, url: '/', remote: '::1' }
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/octet-stream 429708 /model/age_gender_model.bin ::ffff:192.168.0.200
|
2022-01-14 09:56:46 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'text/javascript', size: 6919, url: '/index.js', remote: '::1' }
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/json; charset=utf-8 8485 /model/face_landmark_68_model-weights_manifest.json ::ffff:192.168.0.200
|
2022-01-14 09:56:46 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'text/javascript', size: 2435063, url: '/dist/face-api.esm.js', remote: '::1' }
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/octet-stream 356840 /model/face_landmark_68_model.bin ::ffff:192.168.0.200
|
2022-01-14 09:56:47 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 4125244, url: '/dist/face-api.esm.js.map', remote: '::1' }
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/json; charset=utf-8 19615 /model/face_recognition_model-weights_manifest.json ::ffff:192.168.0.200
|
2022-01-14 09:56:47 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 3219, url: '/model/tiny_face_detector_model-weights_manifest.json', remote: '::1' }
|
||||||
2021-07-29 09:03:24 DATA: GET/2.0 200 application/octet-stream 6444032 /model/face_recognition_model.bin ::ffff:192.168.0.200
|
2022-01-14 09:56:47 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 193321, url: '/model/tiny_face_detector_model.bin', remote: '::1' }
|
||||||
2021-07-29 09:03:25 DATA: GET/2.0 200 application/json; charset=utf-8 6980 /model/face_expression_model-weights_manifest.json ::ffff:192.168.0.200
|
2022-01-14 09:56:47 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 28233, url: '/model/ssd_mobilenetv1_model-weights_manifest.json', remote: '::1' }
|
||||||
2021-07-29 09:03:25 DATA: GET/2.0 200 application/octet-stream 329468 /model/face_expression_model.bin ::ffff:192.168.0.200
|
2022-01-14 09:56:47 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 5616957, url: '/model/ssd_mobilenetv1_model.bin', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 8392, url: '/model/age_gender_model-weights_manifest.json', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 429708, url: '/model/age_gender_model.bin', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 8485, url: '/model/face_landmark_68_model-weights_manifest.json', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 356840, url: '/model/face_landmark_68_model.bin', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 19615, url: '/model/face_recognition_model-weights_manifest.json', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 6444032, url: '/model/face_recognition_model.bin', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/json', size: 6980, url: '/model/face_expression_model-weights_manifest.json', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'application/octet-stream', size: 329468, url: '/model/face_expression_model.bin', remote: '::1' }
|
||||||
|
2022-01-14 09:56:48 DATA: HTTPS: { method: 'GET', ver: '2.0', status: 200, mime: 'image/jpeg', size: 144516, url: '/sample1.jpg', remote: '::1' }
|
||||||
```
|
```
|
||||||
|
|
||||||
<br><hr><br>
|
<br><hr><br>
|
||||||
|
@ -382,38 +400,41 @@ cd face-api
|
||||||
Then install all dependencies and run rebuild:
|
Then install all dependencies and run rebuild:
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
npm install
|
npm install --production=false
|
||||||
npm run build
|
npm run build
|
||||||
```
|
```
|
||||||
|
|
||||||
Build process uses script `build.js` that creates optimized build for each target:
|
Build process uses `@vladmandic/build` module that creates optimized build for each target:
|
||||||
|
|
||||||
```text
|
```js
|
||||||
> @vladmandic/face-api@1.0.2 build
|
> @vladmandic/face-api@1.7.1 build /home/vlado/dev/face-api
|
||||||
> rimraf dist/* types/* typedoc/* && node server/build.js
|
> node build.js
|
||||||
```
|
|
||||||
|
|
||||||
```json
|
2022-07-25 08:21:05 INFO: Application: { name: '@vladmandic/face-api', version: '1.7.1' }
|
||||||
2021-07-29 09:01:33 INFO: @vladmandic/face-api version 1.3.1
|
2022-07-25 08:21:05 INFO: Environment: { profile: 'production', config: '.build.json', package: 'package.json', tsconfig: true, eslintrc: true, git: true }
|
||||||
2021-07-29 09:01:33 INFO: User: vlado Platform: linux Arch: x64 Node: v16.5.0
|
2022-07-25 08:21:05 INFO: Toolchain: { build: '0.7.7', esbuild: '0.14.50', typescript: '4.7.4', typedoc: '0.23.9', eslint: '8.20.0' }
|
||||||
2021-07-29 09:01:33 INFO: Toolchain: tfjs: 3.8.0 esbuild 0.12.16; typescript 4.3.5; typedoc: 0.21.4 eslint: 7.31.0
|
2022-07-25 08:21:05 INFO: Build: { profile: 'production', steps: [ 'clean', 'compile', 'typings', 'typedoc', 'lint', 'changelog' ] }
|
||||||
2021-07-29 09:01:33 INFO: Build: file startup all target: es2018
|
2022-07-25 08:21:05 STATE: Clean: { locations: [ 'dist/*', 'typedoc/*', 'types/lib/src' ] }
|
||||||
2021-07-29 09:01:33 STATE: Build for: node type: tfjs: { imports: 1, importBytes: 143, outputBytes: 1327, outputFiles: 'dist/tfjs.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/node/cpu', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 143, outputBytes: 614 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: node type: node: { imports: 162, importBytes: 234303, outputBytes: 175090, outputFiles: 'dist/face-api.node.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/node/cpu', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node.js', files: 162, inputBytes: 234137, outputBytes: 85701 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: nodeGPU type: tfjs: { imports: 1, importBytes: 147, outputBytes: 1335, outputFiles: 'dist/tfjs.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/node/gpu', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node-gpu.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 147, outputBytes: 618 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: nodeGPU type: node: { imports: 162, importBytes: 234311, outputBytes: 175098, outputFiles: 'dist/face-api.node-gpu.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/node/gpu', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node-gpu.js', files: 162, inputBytes: 234141, outputBytes: 85705 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: nodeCPU type: tfjs: { imports: 1, importBytes: 138, outputBytes: 1326, outputFiles: 'dist/tfjs.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/node/wasm', format: 'cjs', platform: 'node', input: 'src/tfjs/tf-node-wasm.ts', output: 'dist/tfjs.esm.js', files: 1, inputBytes: 185, outputBytes: 670 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: nodeCPU type: node: { imports: 162, importBytes: 234302, outputBytes: 175089, outputFiles: 'dist/face-api.node-cpu.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/node/wasm', format: 'cjs', platform: 'node', input: 'src/index.ts', output: 'dist/face-api.node-wasm.js', files: 162, inputBytes: 234193, outputBytes: 85755 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: browserNoBundle type: tfjs: { imports: 1, importBytes: 276, outputBytes: 277, outputFiles: 'dist/tfjs.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/browser/tf-version', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-version.ts', output: 'dist/tfjs.version.js', files: 1, inputBytes: 1063, outputBytes: 400 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: browserNoBundle type: esm: { imports: 162, importBytes: 233253, outputBytes: 168850, outputFiles: 'dist/face-api.esm-nobundle.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/browser/esm/nobundle', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-browser.ts', output: 'dist/tfjs.esm.js', files: 2, inputBytes: 910, outputBytes: 527 }
|
||||||
2021-07-29 09:01:33 STATE: Build for: browserBundle type: tfjs: { modules: 1352, moduleBytes: 4369745, imports: 7, importBytes: 276, outputBytes: 2362345, outputFiles: 'dist/tfjs.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/browser/esm/nobundle', format: 'esm', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.esm-nobundle.js', files: 162, inputBytes: 234050, outputBytes: 82787 }
|
||||||
2021-07-29 09:01:34 STATE: Build for: browserBundle type: iife: { imports: 162, importBytes: 2595321, outputBytes: 2482864, outputFiles: 'dist/face-api.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'tfjs/browser/esm/bundle', format: 'esm', platform: 'browser', input: 'src/tfjs/tf-browser.ts', output: 'dist/tfjs.esm.js', files: 11, inputBytes: 910, outputBytes: 1184871 }
|
||||||
2021-07-29 09:01:35 STATE: Build for: browserBundle type: esm: { imports: 162, importBytes: 2595321, outputBytes: 2360761, outputFiles: 'dist/face-api.esm.js' }
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/browser/iife/bundle', format: 'iife', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.js', files: 162, inputBytes: 1418394, outputBytes: 1264631 }
|
||||||
2021-07-29 09:01:35 INFO: Running Linter: [ 'server/', 'demo/', 'src/', 'test/', [length]: 4 ]
|
2022-07-25 08:21:05 STATE: Compile: { name: 'faceapi/browser/esm/bundle', format: 'esm', platform: 'browser', input: 'src/index.ts', output: 'dist/face-api.esm.js', files: 162, inputBytes: 1418394, outputBytes: 1264150 }
|
||||||
2021-07-29 09:01:55 INFO: Linter complete: files: 183 errors: 0 warnings: 0
|
2022-07-25 08:21:07 STATE: Typings: { input: 'src/index.ts', output: 'types/lib', files: 93 }
|
||||||
2021-07-29 09:01:55 INFO: Compile typings: [ 'src/index.ts', [length]: 1 ]
|
2022-07-25 08:21:09 STATE: TypeDoc: { input: 'src/index.ts', output: 'typedoc', objects: 154, generated: true }
|
||||||
2021-07-29 09:01:59 INFO: Update Change log: [ '/home/vlado/dev/face-api/CHANGELOG.md', [length]: 1 ]
|
2022-07-25 08:21:13 STATE: Lint: { locations: [ 'src/' ], files: 174, errors: 0, warnings: 0 }
|
||||||
2021-07-29 09:01:59 INFO: Generate TypeDocs: [ 'src/index.ts', [length]: 1 ]
|
2022-07-25 08:21:14 STATE: ChangeLog: { repository: 'https://github.com/vladmandic/face-api', branch: 'master', output: 'CHANGELOG.md' }
|
||||||
|
2022-07-25 08:21:14 INFO: Done...
|
||||||
|
2022-07-25 08:21:14 STATE: Copy: { input: 'types/lib/dist/tfjs.esm.d.ts' }
|
||||||
|
2022-07-25 08:21:15 STATE: API-Extractor: { succeeeded: true, errors: 0, warnings: 417 }
|
||||||
|
2022-07-25 08:21:15 INFO: FaceAPI Build complete...
|
||||||
```
|
```
|
||||||
|
|
||||||
<br><hr><br>
|
<br><hr><br>
|
||||||
|
@ -428,18 +449,14 @@ Build process uses script `build.js` that creates optimized build for each targe
|
||||||
|
|
||||||
## Note
|
## Note
|
||||||
|
|
||||||
This is updated **face-api.js** with latest available TensorFlow/JS as the original is not compatible with **tfjs 2.0+**.
|
This is updated **face-api.js** with latest available TensorFlow/JS as the original is not compatible with **tfjs >=2.0**.
|
||||||
Forked from [face-api.js](https://github.com/justadudewhohacks/face-api.js) version **0.22.2** which was released on March 22nd, 2020
|
Forked from [face-api.js](https://github.com/justadudewhohacks/face-api.js) version **0.22.2** which was released on March 22nd, 2020
|
||||||
|
|
||||||
Currently based on **`TensorFlow/JS` 3.6.1**
|
*Why?* I needed a FaceAPI that does not cause version conflict with newer versions of TensorFlow
|
||||||
|
And since the original FaceAPI was open-source, I've released this version as well
|
||||||
|
|
||||||
*Why?* I needed FaceAPI that does not cause version conflict with newer versions of TensorFlow
|
Changes ended up being too large for a simple pull request and it ended up being a full-fledged version on its own
|
||||||
And since original FaceAPI was open-source, I've released this version as well
|
Plus many features were added since the original inception
|
||||||
|
|
||||||
Changes ended up being too large for a simple pull request
|
|
||||||
and it ended up being a full-fledged version on its own
|
|
||||||
|
|
||||||
Plus many features were added since original inception
|
|
||||||
|
|
||||||
Although a lot of work has gone into this version of `FaceAPI` and it will continue to be maintained,
|
Although a lot of work has gone into this version of `FaceAPI` and it will continue to be maintained,
|
||||||
at this time it is completely superseded by my newer library `Human` which covers the same use cases,
|
at this time it is completely superseded by my newer library `Human` which covers the same use cases,
|
||||||
|
@ -454,29 +471,34 @@ but extends it with newer AI models, additional detection details, compatibility
|
||||||
|
|
||||||
Compared to [face-api.js](https://github.com/justadudewhohacks/face-api.js) version **0.22.2**:
|
Compared to [face-api.js](https://github.com/justadudewhohacks/face-api.js) version **0.22.2**:
|
||||||
|
|
||||||
- Compatible with `TensorFlow/JS 2.0+ & 3.0+`
|
- Compatible with `TensorFlow/JS 2.0+, 3.0+ and 4.0+`
|
||||||
- Compatible with `WebGL`, `CPU` and `WASM` TFJS Browser backends
|
Currently using **`TensorFlow/JS` 4.16**
|
||||||
- Compatible with both `tfjs-node` and `tfjs-node-gpu` TFJS NodeJS backends
|
Original `face-api.js` is based on `TFJS` **1.7.4**
|
||||||
- Updated all type castings for TypeScript type checking to `TypeScript 4.3`
|
- Compatible with `WebGL`, `CPU` and `WASM` TFJS Browser backends
|
||||||
- Switched bundling from `UMD` to `ESM` + `CommonJS` with fallback to `IIFE`
|
- Compatible with both `tfjs-node` and `tfjs-node-gpu` TFJS NodeJS backends
|
||||||
Resulting code is optimized per-platform instead of being universal
|
- Updated all type castings for TypeScript type checking to `TypeScript 5.3`
|
||||||
Fully tree shakable when imported as an `ESM` module
|
- Switched bundling from `UMD` to `ESM` + `CommonJS` with fallback to `IIFE`
|
||||||
Browser bundle process uses `ESBuild` instead of `Rollup`
|
Resulting code is optimized per-platform instead of being universal
|
||||||
- Typescript build process now targets `ES2018` and instead of dual `ES5`/`ES6`
|
Fully tree shakable when imported as an `ESM` module
|
||||||
Resulting code is clean ES2018 JavaScript without polyfills
|
Browser bundle process uses `ESBuild` instead of `Rollup`
|
||||||
- Removed old tests, docs, examples
|
- Added separate `face-api` versions with `tfjs` pre-bundled and without `tfjs`
|
||||||
- Removed old package dependencies (`karma`, `jasmine`, `babel`, etc.)
|
When using `-nobundle` version, user can load any version of `tfjs` manually
|
||||||
- Updated all package dependencies
|
- Typescript build process now targets `ES2018` and instead of dual `ES5`/`ES6`
|
||||||
- Updated TensorFlow/JS dependencies since backends were removed from `@tensorflow/tfjs-core`
|
Resulting code is clean ES2018 JavaScript without polyfills
|
||||||
- Updated `mobileNetv1` model due to `batchNorm()` dependency
|
- Removed old tests, docs, examples
|
||||||
- Added `version` class that returns JSON object with version of FaceAPI as well as linked TFJS
|
- Removed old package dependencies (`karma`, `jasmine`, `babel`, etc.)
|
||||||
- Added test/dev built-in HTTP & HTTPS Web server
|
- Updated all package dependencies
|
||||||
- Removed `mtcnn` and `tinyYolov2` models as they were non-functional in latest public version of `FaceAPI`
|
- Updated TensorFlow/JS dependencies since backends were removed from `@tensorflow/tfjs-core`
|
||||||
Which means valid models are **tinyFaceDetector** and **mobileNetv1**
|
- Updated `mobileNetv1` model due to `batchNorm()` dependency
|
||||||
*If there is a demand, I can re-implement them back.*
|
- Added `version` class that returns JSON object with version of FaceAPI as well as linked TFJS
|
||||||
- Added `face angle` calculations that returns `roll`, `yaw` and `pitch`
|
- Added test/dev built-in HTTP & HTTPS Web server
|
||||||
- Added `typdoc` automatic API specification generation during build
|
- Removed `mtcnn` and `tinyYolov2` models as they were non-functional in latest public version of `FaceAPI`
|
||||||
- Added `changelog` automatic generation during build
|
Which means valid models are **tinyFaceDetector** and **mobileNetv1**
|
||||||
|
*If there is a demand, I can re-implement them back.*
|
||||||
|
- Added `face angle` calculations that returns `roll`, `yaw` and `pitch`
|
||||||
|
- Added `typdoc` automatic API specification generation during build
|
||||||
|
- Added `changelog` automatic generation during build
|
||||||
|
- New process to generate **TypeDocs** bundle using API-Extractor
|
||||||
|
|
||||||
<br>
|
<br>
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,38 @@
|
||||||
|
{
|
||||||
|
"$schema": "https://developer.microsoft.com/json-schemas/api-extractor/v7/api-extractor.schema.json",
|
||||||
|
"mainEntryPointFilePath": "types/lib/src/index.d.ts",
|
||||||
|
"bundledPackages": ["@tensorflow/tfjs-core", "@tensorflow/tfjs-converter", "@types/offscreencanvas"],
|
||||||
|
"compiler": {
|
||||||
|
"skipLibCheck": false
|
||||||
|
},
|
||||||
|
"newlineKind": "lf",
|
||||||
|
"dtsRollup": {
|
||||||
|
"enabled": true,
|
||||||
|
"untrimmedFilePath": "types/face-api.d.ts"
|
||||||
|
},
|
||||||
|
"docModel": { "enabled": false },
|
||||||
|
"tsdocMetadata": {
|
||||||
|
"enabled": false
|
||||||
|
},
|
||||||
|
"apiReport": { "enabled": false },
|
||||||
|
"messages": {
|
||||||
|
"compilerMessageReporting": {
|
||||||
|
"default": {
|
||||||
|
"logLevel": "warning"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"extractorMessageReporting": {
|
||||||
|
"default": {
|
||||||
|
"logLevel": "warning"
|
||||||
|
},
|
||||||
|
"ae-missing-release-tag": {
|
||||||
|
"logLevel": "none"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"tsdocMessageReporting": {
|
||||||
|
"default": {
|
||||||
|
"logLevel": "warning"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
|
@ -0,0 +1,77 @@
|
||||||
|
const fs = require('fs');
|
||||||
|
const log = require('@vladmandic/pilogger');
|
||||||
|
const Build = require('@vladmandic/build').Build;
|
||||||
|
const APIExtractor = require('@microsoft/api-extractor');
|
||||||
|
|
||||||
|
const regEx = [
|
||||||
|
{ search: 'types="@webgpu/types/dist"', replace: 'path="../src/types/webgpu.d.ts"' },
|
||||||
|
{ search: 'types="offscreencanvas"', replace: 'path="../src/types/offscreencanvas.d.ts"' },
|
||||||
|
];
|
||||||
|
|
||||||
|
function copyFile(src, dst) {
|
||||||
|
if (!fs.existsSync(src)) {
|
||||||
|
log.warn('Copy:', { input: src, output: dst });
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
log.state('Copy:', { input: src, output: dst });
|
||||||
|
const buffer = fs.readFileSync(src);
|
||||||
|
fs.writeFileSync(dst, buffer);
|
||||||
|
}
|
||||||
|
|
||||||
|
function writeFile(str, dst) {
|
||||||
|
log.state('Write:', { output: dst });
|
||||||
|
fs.writeFileSync(dst, str);
|
||||||
|
}
|
||||||
|
|
||||||
|
function regExFile(src, entries) {
|
||||||
|
if (!fs.existsSync(src)) {
|
||||||
|
log.warn('Filter:', { src });
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
log.state('Filter:', { input: src });
|
||||||
|
for (const entry of entries) {
|
||||||
|
const buffer = fs.readFileSync(src, 'UTF-8');
|
||||||
|
const lines = buffer.split(/\r?\n/);
|
||||||
|
const out = [];
|
||||||
|
for (const line of lines) {
|
||||||
|
if (line.includes(entry.search)) out.push(line.replace(entry.search, entry.replace));
|
||||||
|
else out.push(line);
|
||||||
|
}
|
||||||
|
fs.writeFileSync(src, out.join('\n'));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const apiIgnoreList = ['ae-forgotten-export', 'ae-unresolved-link', 'tsdoc-param-tag-missing-hyphen'];
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
// run production build
|
||||||
|
const build = new Build();
|
||||||
|
await build.run('production');
|
||||||
|
// patch tfjs typedefs
|
||||||
|
log.state('Copy:', { input: 'types/lib/dist/tfjs.esm.d.ts' });
|
||||||
|
copyFile('types/lib/dist/tfjs.esm.d.ts', 'dist/tfjs.esm.d.ts');
|
||||||
|
// run api-extractor to create typedef rollup
|
||||||
|
const extractorConfig = APIExtractor.ExtractorConfig.loadFileAndPrepare('api-extractor.json');
|
||||||
|
const extractorResult = APIExtractor.Extractor.invoke(extractorConfig, {
|
||||||
|
localBuild: true,
|
||||||
|
showVerboseMessages: false,
|
||||||
|
messageCallback: (msg) => {
|
||||||
|
msg.handled = true;
|
||||||
|
if (msg.logLevel === 'none' || msg.logLevel === 'verbose' || msg.logLevel === 'info') return;
|
||||||
|
if (msg.sourceFilePath?.includes('/node_modules/')) return;
|
||||||
|
if (apiIgnoreList.reduce((prev, curr) => prev || msg.messageId.includes(curr), false)) return;
|
||||||
|
log.data('API', { level: msg.logLevel, category: msg.category, id: msg.messageId, file: msg.sourceFilePath, line: msg.sourceFileLine, text: msg.text });
|
||||||
|
},
|
||||||
|
});
|
||||||
|
log.state('API-Extractor:', { succeeeded: extractorResult.succeeded, errors: extractorResult.errorCount, warnings: extractorResult.warningCount });
|
||||||
|
regExFile('types/face-api.d.ts', regEx);
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.esm-nobundle.d.ts');
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.esm.d.ts');
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.d.ts');
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.node.d.ts');
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.node-gpu.d.ts');
|
||||||
|
writeFile('export * from \'../types/face-api\';', 'dist/face-api.node-wasm.d.ts');
|
||||||
|
log.info('FaceAPI Build complete...');
|
||||||
|
}
|
||||||
|
|
||||||
|
main();
|
|
@ -11,7 +11,7 @@
|
||||||
<link rel="shortcut icon" href="../favicon.ico" type="image/x-icon">
|
<link rel="shortcut icon" href="../favicon.ico" type="image/x-icon">
|
||||||
<script src="./index.js" type="module"></script>
|
<script src="./index.js" type="module"></script>
|
||||||
</head>
|
</head>
|
||||||
<body style="font-family: monospace; background: black; color: white; font-size: 16px; line-height: 22px; margin: 0;">
|
<body style="font-family: monospace; background: black; color: white; font-size: 16px; line-height: 22px; margin: 0; overflow-x: hidden;">
|
||||||
<div id="log"></div>
|
<div id="log"></div>
|
||||||
</body>
|
</body>
|
||||||
</html>
|
</html>
|
||||||
|
|
|
@ -1,25 +1,25 @@
|
||||||
import * as faceapi from '../dist/face-api.esm.js';
|
/**
|
||||||
|
* FaceAPI Demo for Browsers
|
||||||
|
* Loaded via `index.html`
|
||||||
|
*/
|
||||||
|
|
||||||
|
import * as faceapi from '../dist/face-api.esm.js'; // use when in dev mode
|
||||||
|
// import * as faceapi from '@vladmandic/face-api'; // use when downloading face-api as npm
|
||||||
|
|
||||||
// configuration options
|
// configuration options
|
||||||
const modelPath = '../model/'; // path to model folder that will be loaded using http
|
const modelPath = '../model/'; // path to model folder that will be loaded using http
|
||||||
// const modelPath = 'https://vladmandic.github.io/face-api/model/'; // path to model folder that will be loaded using http
|
// const modelPath = 'https://cdn.jsdelivr.net/npm/@vladmandic/face-api/model/'; // path to model folder that will be loaded using http
|
||||||
const imgSize = 800; // maximum image size in pixels
|
const imgSize = 800; // maximum image size in pixels
|
||||||
const minScore = 0.3; // minimum score
|
const minScore = 0.3; // minimum score
|
||||||
const maxResults = 10; // maximum number of results to return
|
const maxResults = 10; // maximum number of results to return
|
||||||
const samples = ['sample1.jpg', 'sample2.jpg', 'sample3.jpg', 'sample4.jpg', 'sample5.jpg', 'sample6.jpg']; // sample images to be loaded using http
|
const samples = ['sample1.jpg', 'sample2.jpg', 'sample3.jpg', 'sample4.jpg', 'sample5.jpg', 'sample6.jpg']; // sample images to be loaded using http
|
||||||
|
|
||||||
// helper function to pretty-print json object to string
|
// helper function to pretty-print json object to string
|
||||||
function str(json) {
|
const str = (json) => (json ? JSON.stringify(json).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ') : '');
|
||||||
let text = '<font color="lightblue">';
|
|
||||||
text += json ? JSON.stringify(json).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ') : '';
|
|
||||||
text += '</font>';
|
|
||||||
return text;
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function to print strings to html document as a log
|
// helper function to print strings to html document as a log
|
||||||
function log(...txt) {
|
function log(...txt) {
|
||||||
// eslint-disable-next-line no-console
|
console.log(...txt); // eslint-disable-line no-console
|
||||||
console.log(...txt);
|
|
||||||
const div = document.getElementById('log');
|
const div = document.getElementById('log');
|
||||||
if (div) div.innerHTML += `<br>${txt}`;
|
if (div) div.innerHTML += `<br>${txt}`;
|
||||||
}
|
}
|
||||||
|
@ -33,11 +33,9 @@ function faces(name, title, id, data) {
|
||||||
canvas.style.position = 'absolute';
|
canvas.style.position = 'absolute';
|
||||||
canvas.style.left = `${img.offsetLeft}px`;
|
canvas.style.left = `${img.offsetLeft}px`;
|
||||||
canvas.style.top = `${img.offsetTop}px`;
|
canvas.style.top = `${img.offsetTop}px`;
|
||||||
// @ts-ignore
|
|
||||||
canvas.width = img.width;
|
canvas.width = img.width;
|
||||||
// @ts-ignore
|
|
||||||
canvas.height = img.height;
|
canvas.height = img.height;
|
||||||
const ctx = canvas.getContext('2d');
|
const ctx = canvas.getContext('2d', { willReadFrequently: true });
|
||||||
if (!ctx) return;
|
if (!ctx) return;
|
||||||
// draw title
|
// draw title
|
||||||
ctx.font = '1rem sans-serif';
|
ctx.font = '1rem sans-serif';
|
||||||
|
@ -53,6 +51,7 @@ function faces(name, title, id, data) {
|
||||||
ctx.beginPath();
|
ctx.beginPath();
|
||||||
ctx.rect(person.detection.box.x, person.detection.box.y, person.detection.box.width, person.detection.box.height);
|
ctx.rect(person.detection.box.x, person.detection.box.y, person.detection.box.width, person.detection.box.height);
|
||||||
ctx.stroke();
|
ctx.stroke();
|
||||||
|
// draw text labels
|
||||||
ctx.globalAlpha = 1;
|
ctx.globalAlpha = 1;
|
||||||
ctx.fillText(`${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 18);
|
ctx.fillText(`${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 18);
|
||||||
ctx.fillText(`${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 2);
|
ctx.fillText(`${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 2);
|
||||||
|
@ -72,8 +71,7 @@ function faces(name, title, id, data) {
|
||||||
|
|
||||||
// helper function to draw processed image and its results
|
// helper function to draw processed image and its results
|
||||||
function print(title, img, data) {
|
function print(title, img, data) {
|
||||||
// eslint-disable-next-line no-console
|
console.log('Results:', title, img, data); // eslint-disable-line no-console
|
||||||
console.log('Results:', title, img, data);
|
|
||||||
const el = new Image();
|
const el = new Image();
|
||||||
el.id = Math.floor(Math.random() * 100000).toString();
|
el.id = Math.floor(Math.random() * 100000).toString();
|
||||||
el.src = img;
|
el.src = img;
|
||||||
|
@ -96,7 +94,7 @@ async function image(url) {
|
||||||
const canvas = document.createElement('canvas');
|
const canvas = document.createElement('canvas');
|
||||||
canvas.height = img.height;
|
canvas.height = img.height;
|
||||||
canvas.width = img.width;
|
canvas.width = img.width;
|
||||||
const ctx = canvas.getContext('2d');
|
const ctx = canvas.getContext('2d', { willReadFrequently: true });
|
||||||
if (ctx) ctx.drawImage(img, 0, 0, img.width, img.height);
|
if (ctx) ctx.drawImage(img, 0, 0, img.width, img.height);
|
||||||
// return generated canvas to be used by tfjs during detection
|
// return generated canvas to be used by tfjs during detection
|
||||||
resolve(canvas);
|
resolve(canvas);
|
||||||
|
@ -111,18 +109,23 @@ async function main() {
|
||||||
log('FaceAPI Test');
|
log('FaceAPI Test');
|
||||||
|
|
||||||
// if you want to use wasm backend location for wasm binaries must be specified
|
// if you want to use wasm backend location for wasm binaries must be specified
|
||||||
// await faceapi.tf.setWasmPaths('../node_modules/@tensorflow/tfjs-backend-wasm/dist/');
|
// await faceapi.tf?.setWasmPaths(`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${faceapi.tf.version_core}/dist/`);
|
||||||
// await faceapi.tf.setBackend('wasm');
|
// await faceapi.tf?.setBackend('wasm');
|
||||||
|
// log(`WASM SIMD: ${await faceapi.tf?.env().getAsync('WASM_HAS_SIMD_SUPPORT')} Threads: ${await faceapi.tf?.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT') ? 'Multi' : 'Single'}`);
|
||||||
|
|
||||||
// default is webgl backend
|
// default is webgl backend
|
||||||
await faceapi.tf.setBackend('webgl');
|
await faceapi.tf.setBackend('webgl');
|
||||||
|
await faceapi.tf.ready();
|
||||||
|
|
||||||
|
// tfjs optimizations
|
||||||
|
if (faceapi.tf?.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) faceapi.tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);
|
||||||
|
if (faceapi.tf?.env().flagRegistry.WEBGL_EXP_CONV) faceapi.tf.env().set('WEBGL_EXP_CONV', true);
|
||||||
|
if (faceapi.tf?.env().flagRegistry.WEBGL_EXP_CONV) faceapi.tf.env().set('WEBGL_EXP_CONV', true);
|
||||||
await faceapi.tf.enableProdMode();
|
await faceapi.tf.enableProdMode();
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
|
||||||
await faceapi.tf.ready();
|
await faceapi.tf.ready();
|
||||||
|
|
||||||
// check version
|
// check version
|
||||||
log(`Version: FaceAPI ${str(faceapi?.version.faceapi || '(not loaded)')} TensorFlow/JS ${str(faceapi?.tf?.version_core || '(not loaded)')} Backend: ${str(faceapi?.tf?.getBackend() || '(not loaded)')}`);
|
log(`Version: FaceAPI ${str(faceapi?.version || '(not loaded)')} TensorFlow/JS ${str(faceapi?.tf?.version_core || '(not loaded)')} Backend: ${str(faceapi?.tf?.getBackend() || '(not loaded)')}`);
|
||||||
log(`Flags: ${JSON.stringify(faceapi?.tf?.ENV.flags || { tf: 'not loaded' })}`);
|
log(`Flags: ${JSON.stringify(faceapi?.tf?.ENV.flags || { tf: 'not loaded' })}`);
|
||||||
|
|
||||||
// load face-api models
|
// load face-api models
|
||||||
|
@ -140,16 +143,9 @@ async function main() {
|
||||||
const engine = await faceapi.tf.engine();
|
const engine = await faceapi.tf.engine();
|
||||||
log(`TF Engine State: ${str(engine.state)}`);
|
log(`TF Engine State: ${str(engine.state)}`);
|
||||||
|
|
||||||
// const testT = faceapi.tf.tensor([0]);
|
|
||||||
// const testF = testT.toFloat();
|
|
||||||
// console.log(testT.print(), testF.print());
|
|
||||||
// testT.dispose();
|
|
||||||
// testF.dispose();
|
|
||||||
|
|
||||||
// loop through all images and try to process them
|
// loop through all images and try to process them
|
||||||
log(`Start processing: ${samples.length} images ...<br>`);
|
log(`Start processing: ${samples.length} images ...<br>`);
|
||||||
for (const img of samples) {
|
for (const img of samples) {
|
||||||
// new line
|
|
||||||
document.body.appendChild(document.createElement('br'));
|
document.body.appendChild(document.createElement('br'));
|
||||||
// load and resize image
|
// load and resize image
|
||||||
const canvas = await image(img);
|
const canvas = await image(img);
|
||||||
|
@ -163,7 +159,7 @@ async function main() {
|
||||||
.withFaceDescriptors()
|
.withFaceDescriptors()
|
||||||
.withAgeAndGender();
|
.withAgeAndGender();
|
||||||
// print results to screen
|
// print results to screen
|
||||||
print('TinyFace Detector', img, dataTinyYolo);
|
print('TinyFace:', img, dataTinyYolo);
|
||||||
// actual model execution
|
// actual model execution
|
||||||
const dataSSDMobileNet = await faceapi
|
const dataSSDMobileNet = await faceapi
|
||||||
.detectAllFaces(canvas, optionsSSDMobileNet)
|
.detectAllFaces(canvas, optionsSSDMobileNet)
|
||||||
|
@ -172,11 +168,9 @@ async function main() {
|
||||||
.withFaceDescriptors()
|
.withFaceDescriptors()
|
||||||
.withAgeAndGender();
|
.withAgeAndGender();
|
||||||
// print results to screen
|
// print results to screen
|
||||||
print('SSD MobileNet', img, dataSSDMobileNet);
|
print('SSDMobileNet:', img, dataSSDMobileNet);
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
log(`Image: ${img} Error during processing ${str(err)}`);
|
log(`Image: ${img} Error during processing ${str(err)}`);
|
||||||
// eslint-disable-next-line no-console
|
|
||||||
console.error(err);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,15 +1,20 @@
|
||||||
// @ts-nocheck
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Uses external library [canvas](https://www.npmjs.com/package/canvas) to decode image
|
||||||
|
* - Loads image from provided param
|
||||||
|
* - Outputs results to console
|
||||||
|
*/
|
||||||
|
|
||||||
|
// canvas library provides full canvas (load/draw/write) functionality for nodejs
|
||||||
|
// must be installed manually as it just a demo dependency and not actual face-api dependency
|
||||||
|
const canvas = require('canvas'); // eslint-disable-line node/no-missing-require
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
const process = require('process');
|
|
||||||
const path = require('path');
|
const path = require('path');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
const process = require('process');
|
||||||
const log = require('@vladmandic/pilogger');
|
const log = require('@vladmandic/pilogger');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require, no-unused-vars, @typescript-eslint/no-unused-vars
|
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
|
||||||
const tf = require('@tensorflow/tfjs-node');
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
const canvas = require('canvas');
|
|
||||||
const faceapi = require('../dist/face-api.node.js'); // this is equivalent to '@vladmandic/faceapi'
|
|
||||||
|
|
||||||
const modelPathRoot = '../model';
|
const modelPathRoot = '../model';
|
||||||
const imgPathRoot = './demo'; // modify to include your sample images
|
const imgPathRoot = './demo'; // modify to include your sample images
|
||||||
|
@ -52,11 +57,9 @@ async function main() {
|
||||||
faceapi.env.monkeyPatch({ Canvas: canvas.Canvas, Image: canvas.Image, ImageData: canvas.ImageData });
|
faceapi.env.monkeyPatch({ Canvas: canvas.Canvas, Image: canvas.Image, ImageData: canvas.ImageData });
|
||||||
|
|
||||||
await faceapi.tf.setBackend('tensorflow');
|
await faceapi.tf.setBackend('tensorflow');
|
||||||
await faceapi.tf.enableProdMode();
|
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
|
||||||
await faceapi.tf.ready();
|
await faceapi.tf.ready();
|
||||||
|
|
||||||
log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version.faceapi} Backend: ${faceapi.tf?.getBackend()}`);
|
log.state(`Version: FaceAPI ${faceapi.version} TensorFlow/JS ${tf.version_core} Backend: ${faceapi.tf?.getBackend()}`);
|
||||||
|
|
||||||
log.info('Loading FaceAPI models');
|
log.info('Loading FaceAPI models');
|
||||||
const modelPath = path.join(__dirname, modelPathRoot);
|
const modelPath = path.join(__dirname, modelPathRoot);
|
||||||
|
@ -80,7 +83,7 @@ async function main() {
|
||||||
for (const face of result) print(face);
|
for (const face of result) print(face);
|
||||||
}
|
}
|
||||||
const t1 = process.hrtime.bigint();
|
const t1 = process.hrtime.bigint();
|
||||||
log.info('Processed', numImages, 'images in', Math.trunc(parseInt(t1 - t0) / 1000 / 1000), 'ms');
|
log.info('Processed', numImages, 'images in', Math.trunc(Number((t1 - t0).toString()) / 1000 / 1000), 'ms');
|
||||||
} else {
|
} else {
|
||||||
const param = process.argv[2];
|
const param = process.argv[2];
|
||||||
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
|
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
|
||||||
|
|
|
@ -0,0 +1,35 @@
|
||||||
|
/**
|
||||||
|
* FaceAPI demo that loads two images and finds similarity most prominant face in each image
|
||||||
|
*/
|
||||||
|
|
||||||
|
const fs = require('fs');
|
||||||
|
const tf = require('@tensorflow/tfjs-node');
|
||||||
|
const faceapi = require('../dist/face-api.node');
|
||||||
|
|
||||||
|
let optionsSSDMobileNet;
|
||||||
|
|
||||||
|
const getDescriptors = async (imageFile) => {
|
||||||
|
const buffer = fs.readFileSync(imageFile);
|
||||||
|
const tensor = tf.node.decodeImage(buffer, 3);
|
||||||
|
const faces = await faceapi.detectAllFaces(tensor, optionsSSDMobileNet)
|
||||||
|
.withFaceLandmarks()
|
||||||
|
.withFaceDescriptors();
|
||||||
|
tf.dispose(tensor);
|
||||||
|
return faces.map((face) => face.descriptor);
|
||||||
|
};
|
||||||
|
|
||||||
|
const main = async (file1, file2) => {
|
||||||
|
console.log('input images:', file1, file2); // eslint-disable-line no-console
|
||||||
|
await tf.ready();
|
||||||
|
await faceapi.nets.ssdMobilenetv1.loadFromDisk('model');
|
||||||
|
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.5, maxResults: 1 });
|
||||||
|
await faceapi.nets.faceLandmark68Net.loadFromDisk('model');
|
||||||
|
await faceapi.nets.faceRecognitionNet.loadFromDisk('model');
|
||||||
|
const desc1 = await getDescriptors(file1);
|
||||||
|
const desc2 = await getDescriptors(file2);
|
||||||
|
const distance = faceapi.euclideanDistance(desc1[0], desc2[0]); // only compare first found face in each image
|
||||||
|
console.log('distance between most prominant detected faces:', distance); // eslint-disable-line no-console
|
||||||
|
console.log('similarity between most prominant detected faces:', 1 - distance); // eslint-disable-line no-console
|
||||||
|
};
|
||||||
|
|
||||||
|
main('demo/sample1.jpg', 'demo/sample2.jpg');
|
|
@ -1,11 +1,18 @@
|
||||||
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Uses external library [@canvas/image](https://www.npmjs.com/package/@canvas/image) to decode image
|
||||||
|
* - Loads image from provided param
|
||||||
|
* - Outputs results to console
|
||||||
|
*/
|
||||||
|
|
||||||
|
// @canvas/image can decode jpeg, png, webp
|
||||||
|
// must be installed manually as it just a demo dependency and not actual face-api dependency
|
||||||
|
const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const tf = require('@tensorflow/tfjs-node');
|
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const image = require('@canvas/image'); // @canvas/image can decode jpeg, png, webp
|
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const log = require('@vladmandic/pilogger');
|
const log = require('@vladmandic/pilogger');
|
||||||
const faceapi = require('../dist/face-api.node.js'); // this is equivalent to '@vladmandic/faceapi'
|
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
|
||||||
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
|
|
||||||
const modelPath = 'model/';
|
const modelPath = 'model/';
|
||||||
const imageFile = 'demo/sample1.jpg';
|
const imageFile = 'demo/sample1.jpg';
|
||||||
|
@ -41,7 +48,7 @@ async function main() {
|
||||||
.withFaceExpressions()
|
.withFaceExpressions()
|
||||||
.withFaceDescriptors()
|
.withFaceDescriptors()
|
||||||
.withAgeAndGender();
|
.withAgeAndGender();
|
||||||
log.data('results:', result);
|
log.data('results:', result.length);
|
||||||
}
|
}
|
||||||
|
|
||||||
main();
|
main();
|
||||||
|
|
|
@ -0,0 +1,84 @@
|
||||||
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Analyzes face descriptors from source (image file or folder containing multiple image files)
|
||||||
|
* - Analyzes face descriptor from target
|
||||||
|
* - Finds best match
|
||||||
|
*/
|
||||||
|
|
||||||
|
const fs = require('fs');
|
||||||
|
const path = require('path');
|
||||||
|
const log = require('@vladmandic/pilogger');
|
||||||
|
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
|
||||||
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
|
|
||||||
|
let optionsSSDMobileNet;
|
||||||
|
const minConfidence = 0.1;
|
||||||
|
const distanceThreshold = 0.5;
|
||||||
|
const modelPath = 'model';
|
||||||
|
const labeledFaceDescriptors = [];
|
||||||
|
|
||||||
|
async function initFaceAPI() {
|
||||||
|
await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
|
||||||
|
await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
|
||||||
|
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
|
||||||
|
await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
|
||||||
|
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults: 1 });
|
||||||
|
}
|
||||||
|
|
||||||
|
async function getDescriptors(imageFile) {
|
||||||
|
const buffer = fs.readFileSync(imageFile);
|
||||||
|
const tensor = tf.node.decodeImage(buffer, 3);
|
||||||
|
const faces = await faceapi.detectAllFaces(tensor, optionsSSDMobileNet)
|
||||||
|
.withFaceLandmarks()
|
||||||
|
.withFaceExpressions()
|
||||||
|
.withFaceDescriptors();
|
||||||
|
tf.dispose(tensor);
|
||||||
|
return faces.map((face) => face.descriptor);
|
||||||
|
}
|
||||||
|
|
||||||
|
async function registerImage(inputFile) {
|
||||||
|
if (!inputFile.toLowerCase().endsWith('jpg') && !inputFile.toLowerCase().endsWith('png') && !inputFile.toLowerCase().endsWith('gif')) return;
|
||||||
|
log.data('Registered:', inputFile);
|
||||||
|
const descriptors = await getDescriptors(inputFile);
|
||||||
|
for (const descriptor of descriptors) {
|
||||||
|
const labeledFaceDescriptor = new faceapi.LabeledFaceDescriptors(inputFile, [descriptor]);
|
||||||
|
labeledFaceDescriptors.push(labeledFaceDescriptor);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
async function findBestMatch(inputFile) {
|
||||||
|
const matcher = new faceapi.FaceMatcher(labeledFaceDescriptors, distanceThreshold);
|
||||||
|
const descriptors = await getDescriptors(inputFile);
|
||||||
|
const matches = [];
|
||||||
|
for (const descriptor of descriptors) {
|
||||||
|
const match = await matcher.findBestMatch(descriptor);
|
||||||
|
matches.push(match);
|
||||||
|
}
|
||||||
|
return matches;
|
||||||
|
}
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
log.header();
|
||||||
|
if (process.argv.length !== 4) {
|
||||||
|
log.error(process.argv[1], 'Expected <source image or folder> <target image>');
|
||||||
|
process.exit(1);
|
||||||
|
}
|
||||||
|
await initFaceAPI();
|
||||||
|
log.info('Input:', process.argv[2]);
|
||||||
|
if (fs.statSync(process.argv[2]).isFile()) {
|
||||||
|
await registerImage(process.argv[2]); // register image
|
||||||
|
} else if (fs.statSync(process.argv[2]).isDirectory()) {
|
||||||
|
const dir = fs.readdirSync(process.argv[2]);
|
||||||
|
for (const f of dir) await registerImage(path.join(process.argv[2], f)); // register all images in a folder
|
||||||
|
}
|
||||||
|
log.info('Comparing:', process.argv[3], 'Descriptors:', labeledFaceDescriptors.length);
|
||||||
|
if (labeledFaceDescriptors.length > 0) {
|
||||||
|
const bestMatch = await findBestMatch(process.argv[3]); // find best match to all registered images
|
||||||
|
log.data('Match:', bestMatch);
|
||||||
|
} else {
|
||||||
|
log.warn('No registered faces');
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
main();
|
|
@ -1,14 +1,16 @@
|
||||||
// @ts-nocheck
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Used by `node-multiprocess.js`
|
||||||
|
*/
|
||||||
|
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
const path = require('path');
|
const path = require('path');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const log = require('@vladmandic/pilogger');
|
const log = require('@vladmandic/pilogger');
|
||||||
|
|
||||||
// workers actual import tfjs and faceapi modules
|
// workers actual import tfjs and faceapi modules
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
|
||||||
const tf = require('@tensorflow/tfjs-node');
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
const faceapi = require('../dist/face-api.node.js'); // this is equivalent to '@vladmandic/faceapi'
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
|
|
||||||
// options used by faceapi
|
// options used by faceapi
|
||||||
const modelPathRoot = '../model';
|
const modelPathRoot = '../model';
|
||||||
|
@ -53,7 +55,7 @@ async function main() {
|
||||||
await faceapi.tf.enableProdMode();
|
await faceapi.tf.enableProdMode();
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
await faceapi.tf.ENV.set('DEBUG', false);
|
||||||
await faceapi.tf.ready();
|
await faceapi.tf.ready();
|
||||||
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${faceapi.tf.version_core} FaceAPI ${faceapi.version.faceapi} Backend: ${faceapi.tf.getBackend()}`);
|
log.state('Worker: PID:', process.pid, `TensorFlow/JS ${faceapi.tf.version_core} FaceAPI ${faceapi.version} Backend: ${faceapi.tf.getBackend()}`);
|
||||||
|
|
||||||
// and load and initialize facepi models
|
// and load and initialize facepi models
|
||||||
const modelPath = path.join(__dirname, modelPathRoot);
|
const modelPath = path.join(__dirname, modelPathRoot);
|
||||||
|
|
|
@ -1,11 +1,14 @@
|
||||||
// @ts-nocheck
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Starts multiple worker processes and uses them as worker pool to process all input images
|
||||||
|
* - Images are enumerated in main process and sent for processing to worker processes via ipc
|
||||||
|
*/
|
||||||
|
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
const path = require('path');
|
const path = require('path');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const log = require('@vladmandic/pilogger'); // this is my simple logger with few extra features
|
const log = require('@vladmandic/pilogger'); // this is my simple logger with few extra features
|
||||||
const child_process = require('child_process');
|
const child_process = require('child_process');
|
||||||
// note that main process import faceapi or tfjs at all
|
// note that main process does not need to import faceapi or tfjs at all as processing is done in a worker process
|
||||||
|
|
||||||
const imgPathRoot = './demo'; // modify to include your sample images
|
const imgPathRoot = './demo'; // modify to include your sample images
|
||||||
const numWorkers = 4; // how many workers will be started
|
const numWorkers = 4; // how many workers will be started
|
||||||
|
@ -33,14 +36,14 @@ function waitCompletion() {
|
||||||
if (activeWorkers > 0) setImmediate(() => waitCompletion());
|
if (activeWorkers > 0) setImmediate(() => waitCompletion());
|
||||||
else {
|
else {
|
||||||
t[1] = process.hrtime.bigint();
|
t[1] = process.hrtime.bigint();
|
||||||
log.info('Processed:', numImages, 'images in', 'total:', Math.trunc(parseInt(t[1] - t[0]) / 1000000), 'ms', 'working:', Math.trunc(parseInt(t[1] - t[2]) / 1000000), 'ms', 'average:', Math.trunc(parseInt(t[1] - t[2]) / numImages / 1000000), 'ms');
|
log.info('Processed:', numImages, 'images in', 'total:', Math.trunc(Number(t[1] - t[0]) / 1000000), 'ms', 'working:', Math.trunc(Number(t[1] - t[2]) / 1000000), 'ms', 'average:', Math.trunc(Number(t[1] - t[2]) / numImages / 1000000), 'ms');
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function measureLatency() {
|
function measureLatency() {
|
||||||
t[3] = process.hrtime.bigint();
|
t[3] = process.hrtime.bigint();
|
||||||
const latencyInitialization = Math.trunc(parseInt(t[2] - t[0]) / 1000 / 1000);
|
const latencyInitialization = Math.trunc(Number(t[2] - t[0]) / 1000 / 1000);
|
||||||
const latencyRoundTrip = Math.trunc(parseInt(t[3] - t[2]) / 1000 / 1000);
|
const latencyRoundTrip = Math.trunc(Number(t[3] - t[2]) / 1000 / 1000);
|
||||||
log.info('Latency: worker initializtion: ', latencyInitialization, 'message round trip:', latencyRoundTrip);
|
log.info('Latency: worker initializtion: ', latencyInitialization, 'message round trip:', latencyRoundTrip);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,31 @@
|
||||||
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Loads image
|
||||||
|
* - Outputs results to console
|
||||||
|
*/
|
||||||
|
|
||||||
|
const fs = require('fs');
|
||||||
|
|
||||||
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
|
|
||||||
|
async function main() {
|
||||||
|
await faceapi.nets.ssdMobilenetv1.loadFromDisk('model'); // load models from a specific patch
|
||||||
|
await faceapi.nets.faceLandmark68Net.loadFromDisk('model');
|
||||||
|
await faceapi.nets.ageGenderNet.loadFromDisk('model');
|
||||||
|
await faceapi.nets.faceRecognitionNet.loadFromDisk('model');
|
||||||
|
await faceapi.nets.faceExpressionNet.loadFromDisk('model');
|
||||||
|
const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.1, maxResults: 10 }); // set model options
|
||||||
|
const buffer = fs.readFileSync('demo/sample1.jpg'); // load jpg image as binary
|
||||||
|
const decodeT = faceapi.tf.node.decodeImage(buffer, 3); // decode binary buffer to rgb tensor
|
||||||
|
const expandT = faceapi.tf.expandDims(decodeT, 0); // add batch dimension to tensor
|
||||||
|
const result = await faceapi.detectAllFaces(expandT, options) // run detection
|
||||||
|
.withFaceLandmarks()
|
||||||
|
.withFaceExpressions()
|
||||||
|
.withFaceDescriptors()
|
||||||
|
.withAgeAndGender();
|
||||||
|
faceapi.tf.dispose([decodeT, expandT]); // dispose tensors to avoid memory leaks
|
||||||
|
console.log({ result }); // eslint-disable-line no-console
|
||||||
|
}
|
||||||
|
|
||||||
|
main();
|
|
@ -1,97 +1,53 @@
|
||||||
// @ts-nocheck
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS using WASM
|
||||||
|
* - Loads WASM binaries from external CDN
|
||||||
|
* - Loads image
|
||||||
|
* - Outputs results to console
|
||||||
|
*/
|
||||||
|
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
const process = require('process');
|
const image = require('@canvas/image'); // eslint-disable-line node/no-missing-require
|
||||||
const path = require('path');
|
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const log = require('@vladmandic/pilogger');
|
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require, no-unused-vars, @typescript-eslint/no-unused-vars
|
|
||||||
const tf = require('@tensorflow/tfjs');
|
const tf = require('@tensorflow/tfjs');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
const wasm = require('@tensorflow/tfjs-backend-wasm');
|
||||||
require('@tensorflow/tfjs-backend-wasm');
|
const faceapi = require('../dist/face-api.node-wasm.js'); // use this when using face-api in dev mode
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require, no-unused-vars
|
|
||||||
const canvas = require('canvas');
|
|
||||||
const faceapi = require('../dist/face-api.node-cpu.js'); // this is equivalent to '@vladmandic/faceapi'
|
|
||||||
|
|
||||||
const modelPathRoot = '../model';
|
async function readImage(imageFile) {
|
||||||
const imgPathRoot = './demo'; // modify to include your sample images
|
const buffer = fs.readFileSync(imageFile); // read image from disk
|
||||||
const minConfidence = 0.15;
|
const canvas = await image.imageFromBuffer(buffer); // decode to canvas
|
||||||
const maxResults = 5;
|
const imageData = image.getImageData(canvas); // read decoded image data from canvas
|
||||||
let optionsSSDMobileNet;
|
const tensor = tf.tidy(() => { // create tensor from image data
|
||||||
|
const data = tf.tensor(Array.from(imageData?.data || []), [canvas.height, canvas.width, 4], 'int32'); // create rgba image tensor from flat array and flip to height x width
|
||||||
async function image(input) {
|
const channels = tf.split(data, 4, 2); // split rgba to channels
|
||||||
const img = await canvas.loadImage(input);
|
const rgb = tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb
|
||||||
const c = canvas.createCanvas(img.width, img.height);
|
const squeeze = tf.squeeze(rgb); // move extra dim from the end of tensor and use it as batch number instead
|
||||||
const ctx = c.getContext('2d');
|
return squeeze;
|
||||||
ctx.drawImage(img, 0, 0, img.width, img.height);
|
});
|
||||||
// const out = fs.createWriteStream('test.jpg');
|
console.log(`Image: ${imageFile} [${canvas.width} x ${canvas.height} Tensor: ${tensor.shape}, Size: ${tensor.size}`); // eslint-disable-line no-console
|
||||||
// const stream = c.createJPEGStream({ quality: 0.6, progressive: true, chromaSubsampling: true });
|
return tensor;
|
||||||
// stream.pipe(out);
|
|
||||||
return c;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
async function detect(tensor) {
|
async function main() {
|
||||||
const result = await faceapi
|
wasm.setWasmPaths('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm/dist/', true);
|
||||||
.detectAllFaces(tensor, optionsSSDMobileNet)
|
await tf.setBackend('wasm');
|
||||||
|
await tf.ready();
|
||||||
|
console.log(`Version: FaceAPI ${faceapi.version} TensorFlow/JS ${tf.version_core} Backend: ${faceapi.tf.getBackend()}`); // eslint-disable-line no-console
|
||||||
|
await faceapi.nets.ssdMobilenetv1.loadFromDisk('model'); // load models from a specific patch
|
||||||
|
await faceapi.nets.faceLandmark68Net.loadFromDisk('model');
|
||||||
|
await faceapi.nets.ageGenderNet.loadFromDisk('model');
|
||||||
|
await faceapi.nets.faceRecognitionNet.loadFromDisk('model');
|
||||||
|
await faceapi.nets.faceExpressionNet.loadFromDisk('model');
|
||||||
|
const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.1, maxResults: 10 }); // set model options
|
||||||
|
const tensor = await readImage('demo/sample1.jpg');
|
||||||
|
const t0 = performance.now();
|
||||||
|
const result = await faceapi.detectAllFaces(tensor, options) // run detection
|
||||||
.withFaceLandmarks()
|
.withFaceLandmarks()
|
||||||
.withFaceExpressions()
|
.withFaceExpressions()
|
||||||
.withFaceDescriptors()
|
.withFaceDescriptors()
|
||||||
.withAgeAndGender();
|
.withAgeAndGender();
|
||||||
return result;
|
tf.dispose(tensor); // dispose tensors to avoid memory leaks
|
||||||
}
|
const t1 = performance.now();
|
||||||
|
console.log('Time', t1 - t0); // eslint-disable-line no-console
|
||||||
function print(face) {
|
console.log('Result', result); // eslint-disable-line no-console
|
||||||
const expression = Object.entries(face.expressions).reduce((acc, val) => ((val[1] > acc[1]) ? val : acc), ['', 0]);
|
|
||||||
const box = [face.alignedRect._box._x, face.alignedRect._box._y, face.alignedRect._box._width, face.alignedRect._box._height];
|
|
||||||
const gender = `Gender: ${Math.round(100 * face.genderProbability)}% ${face.gender}`;
|
|
||||||
log.data(`Detection confidence: ${Math.round(100 * face.detection._score)}% ${gender} Age: ${Math.round(10 * face.age) / 10} Expression: ${Math.round(100 * expression[1])}% ${expression[0]} Box: ${box.map((a) => Math.round(a))}`);
|
|
||||||
}
|
|
||||||
|
|
||||||
async function main() {
|
|
||||||
log.header();
|
|
||||||
log.info('FaceAPI single-process test');
|
|
||||||
|
|
||||||
faceapi.env.monkeyPatch({ Canvas: canvas.Canvas, Image: canvas.Image, ImageData: canvas.ImageData });
|
|
||||||
|
|
||||||
await faceapi.tf.setBackend('wasm');
|
|
||||||
await faceapi.tf.enableProdMode();
|
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
|
||||||
await faceapi.tf.ready();
|
|
||||||
|
|
||||||
log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version.faceapi} Backend: ${faceapi.tf?.getBackend()}`);
|
|
||||||
|
|
||||||
log.info('Loading FaceAPI models');
|
|
||||||
const modelPath = path.join(__dirname, modelPathRoot);
|
|
||||||
await faceapi.nets.ssdMobilenetv1.loadFromDisk(modelPath);
|
|
||||||
await faceapi.nets.ageGenderNet.loadFromDisk(modelPath);
|
|
||||||
await faceapi.nets.faceLandmark68Net.loadFromDisk(modelPath);
|
|
||||||
await faceapi.nets.faceRecognitionNet.loadFromDisk(modelPath);
|
|
||||||
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
|
|
||||||
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
|
|
||||||
|
|
||||||
if (process.argv.length !== 3) {
|
|
||||||
const t0 = process.hrtime.bigint();
|
|
||||||
const dir = fs.readdirSync(imgPathRoot);
|
|
||||||
let numImages = 0;
|
|
||||||
for (const img of dir) {
|
|
||||||
if (!img.toLocaleLowerCase().endsWith('.jpg')) continue;
|
|
||||||
numImages += 1;
|
|
||||||
const c = await image(path.join(imgPathRoot, img));
|
|
||||||
const result = await detect(c);
|
|
||||||
log.data('Image:', img, 'Detected faces:', result.length);
|
|
||||||
for (const face of result) print(face);
|
|
||||||
}
|
|
||||||
const t1 = process.hrtime.bigint();
|
|
||||||
log.info('Processed', numImages, 'images in', Math.trunc(parseInt(t1 - t0) / 1000 / 1000), 'ms');
|
|
||||||
} else {
|
|
||||||
const param = process.argv[2];
|
|
||||||
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
|
|
||||||
const c = await image(param);
|
|
||||||
const result = await detect(c);
|
|
||||||
log.data('Image:', param, 'Detected faces:', result.length);
|
|
||||||
for (const face of result) print(face);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
main();
|
main();
|
||||||
|
|
29
demo/node.js
29
demo/node.js
|
@ -1,21 +1,25 @@
|
||||||
// @ts-nocheck
|
/**
|
||||||
|
* FaceAPI Demo for NodeJS
|
||||||
|
* - Uses external library [node-fetch](https://www.npmjs.com/package/node-fetch) to load images via http
|
||||||
|
* - Loads image from provided param
|
||||||
|
* - Outputs results to console
|
||||||
|
*/
|
||||||
|
|
||||||
const fs = require('fs');
|
const fs = require('fs');
|
||||||
const process = require('process');
|
const process = require('process');
|
||||||
const path = require('path');
|
const path = require('path');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const log = require('@vladmandic/pilogger');
|
const log = require('@vladmandic/pilogger');
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
|
||||||
const fetch = require('node-fetch').default;
|
const tf = require('@tensorflow/tfjs-node'); // in nodejs environments tfjs-node is required to be loaded before face-api
|
||||||
// eslint-disable-next-line import/no-extraneous-dependencies, node/no-unpublished-require
|
const faceapi = require('../dist/face-api.node.js'); // use this when using face-api in dev mode
|
||||||
const tf = require('@tensorflow/tfjs-node');
|
// const faceapi = require('@vladmandic/face-api'); // use this when face-api is installed as module (majority of use cases)
|
||||||
const faceapi = require('../dist/face-api.node.js'); // this is equivalent to '@vladmandic/faceapi'
|
|
||||||
|
|
||||||
const modelPathRoot = '../model';
|
const modelPathRoot = '../model';
|
||||||
const imgPathRoot = './demo'; // modify to include your sample images
|
const imgPathRoot = './demo'; // modify to include your sample images
|
||||||
const minConfidence = 0.15;
|
const minConfidence = 0.15;
|
||||||
const maxResults = 5;
|
const maxResults = 5;
|
||||||
let optionsSSDMobileNet;
|
let optionsSSDMobileNet;
|
||||||
|
let fetch; // dynamically imported later
|
||||||
|
|
||||||
async function image(input) {
|
async function image(input) {
|
||||||
// read input image file and create tensor to be used for processing
|
// read input image file and create tensor to be used for processing
|
||||||
|
@ -89,12 +93,13 @@ async function main() {
|
||||||
log.header();
|
log.header();
|
||||||
log.info('FaceAPI single-process test');
|
log.info('FaceAPI single-process test');
|
||||||
|
|
||||||
|
// eslint-disable-next-line node/no-extraneous-import
|
||||||
|
fetch = (await import('node-fetch')).default; // eslint-disable-line node/no-missing-import
|
||||||
|
|
||||||
await faceapi.tf.setBackend('tensorflow');
|
await faceapi.tf.setBackend('tensorflow');
|
||||||
await faceapi.tf.enableProdMode();
|
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
|
||||||
await faceapi.tf.ready();
|
await faceapi.tf.ready();
|
||||||
|
|
||||||
log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version.faceapi} Backend: ${faceapi.tf?.getBackend()}`);
|
log.state(`Version: TensorFlow/JS ${faceapi.tf?.version_core} FaceAPI ${faceapi.version} Backend: ${faceapi.tf?.getBackend()}`);
|
||||||
|
|
||||||
log.info('Loading FaceAPI models');
|
log.info('Loading FaceAPI models');
|
||||||
const modelPath = path.join(__dirname, modelPathRoot);
|
const modelPath = path.join(__dirname, modelPathRoot);
|
||||||
|
@ -105,7 +110,7 @@ async function main() {
|
||||||
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
|
await faceapi.nets.faceExpressionNet.loadFromDisk(modelPath);
|
||||||
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
|
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence, maxResults });
|
||||||
|
|
||||||
if (process.argv.length !== 3) {
|
if (process.argv.length !== 4) {
|
||||||
const t0 = process.hrtime.bigint();
|
const t0 = process.hrtime.bigint();
|
||||||
const dir = fs.readdirSync(imgPathRoot);
|
const dir = fs.readdirSync(imgPathRoot);
|
||||||
for (const img of dir) {
|
for (const img of dir) {
|
||||||
|
@ -117,7 +122,7 @@ async function main() {
|
||||||
tensor.dispose();
|
tensor.dispose();
|
||||||
}
|
}
|
||||||
const t1 = process.hrtime.bigint();
|
const t1 = process.hrtime.bigint();
|
||||||
log.info('Processed', dir.length, 'images in', Math.trunc(parseInt(t1 - t0) / 1000 / 1000), 'ms');
|
log.info('Processed', dir.length, 'images in', Math.trunc(Number((t1 - t0)) / 1000 / 1000), 'ms');
|
||||||
} else {
|
} else {
|
||||||
const param = process.argv[2];
|
const param = process.argv[2];
|
||||||
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
|
if (fs.existsSync(param) || param.startsWith('http:') || param.startsWith('https:')) {
|
||||||
|
|
|
@ -1,8 +1,14 @@
|
||||||
import * as faceapi from '../dist/face-api.esm.js';
|
/**
|
||||||
|
* FaceAPI Demo for Browsers
|
||||||
|
* Loaded via `webcam.html`
|
||||||
|
*/
|
||||||
|
|
||||||
|
import * as faceapi from '../dist/face-api.esm.js'; // use when in dev mode
|
||||||
|
// import * as faceapi from '@vladmandic/face-api'; // use when downloading face-api as npm
|
||||||
|
|
||||||
// configuration options
|
// configuration options
|
||||||
const modelPath = '../model/'; // path to model folder that will be loaded using http
|
const modelPath = '../model/'; // path to model folder that will be loaded using http
|
||||||
// const modelPath = 'https://vladmandic.github.io/face-api/model/'; // path to model folder that will be loaded using http
|
// const modelPath = 'https://cdn.jsdelivr.net/npm/@vladmandic/face-api/model/'; // path to model folder that will be loaded using http
|
||||||
const minScore = 0.2; // minimum score
|
const minScore = 0.2; // minimum score
|
||||||
const maxResults = 5; // maximum number of results to return
|
const maxResults = 5; // maximum number of results to return
|
||||||
let optionsSSDMobileNet;
|
let optionsSSDMobileNet;
|
||||||
|
@ -17,15 +23,14 @@ function str(json) {
|
||||||
|
|
||||||
// helper function to print strings to html document as a log
|
// helper function to print strings to html document as a log
|
||||||
function log(...txt) {
|
function log(...txt) {
|
||||||
// eslint-disable-next-line no-console
|
console.log(...txt); // eslint-disable-line no-console
|
||||||
console.log(...txt);
|
|
||||||
const div = document.getElementById('log');
|
const div = document.getElementById('log');
|
||||||
if (div) div.innerHTML += `<br>${txt}`;
|
if (div) div.innerHTML += `<br>${txt}`;
|
||||||
}
|
}
|
||||||
|
|
||||||
// helper function to draw detected faces
|
// helper function to draw detected faces
|
||||||
function drawFaces(canvas, data, fps) {
|
function drawFaces(canvas, data, fps) {
|
||||||
const ctx = canvas.getContext('2d');
|
const ctx = canvas.getContext('2d', { willReadFrequently: true });
|
||||||
if (!ctx) return;
|
if (!ctx) return;
|
||||||
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
||||||
// draw title
|
// draw title
|
||||||
|
@ -42,18 +47,18 @@ function drawFaces(canvas, data, fps) {
|
||||||
ctx.rect(person.detection.box.x, person.detection.box.y, person.detection.box.width, person.detection.box.height);
|
ctx.rect(person.detection.box.x, person.detection.box.y, person.detection.box.width, person.detection.box.height);
|
||||||
ctx.stroke();
|
ctx.stroke();
|
||||||
ctx.globalAlpha = 1;
|
ctx.globalAlpha = 1;
|
||||||
// const expression = person.expressions.sort((a, b) => Object.values(a)[0] - Object.values(b)[0]);
|
// draw text labels
|
||||||
const expression = Object.entries(person.expressions).sort((a, b) => b[1] - a[1]);
|
const expression = Object.entries(person.expressions).sort((a, b) => b[1] - a[1]);
|
||||||
ctx.fillStyle = 'black';
|
ctx.fillStyle = 'black';
|
||||||
ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 59);
|
ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 59);
|
||||||
ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 41);
|
ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 41);
|
||||||
ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 23);
|
ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 23);
|
||||||
ctx.fillText(`roll:${person.angle.roll.toFixed(3)} pitch:${person.angle.pitch.toFixed(3)} yaw:${person.angle.yaw.toFixed(3)}`, person.detection.box.x, person.detection.box.y - 5);
|
ctx.fillText(`roll:${person.angle.roll}° pitch:${person.angle.pitch}° yaw:${person.angle.yaw}°`, person.detection.box.x, person.detection.box.y - 5);
|
||||||
ctx.fillStyle = 'lightblue';
|
ctx.fillStyle = 'lightblue';
|
||||||
ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 60);
|
ctx.fillText(`gender: ${Math.round(100 * person.genderProbability)}% ${person.gender}`, person.detection.box.x, person.detection.box.y - 60);
|
||||||
ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 42);
|
ctx.fillText(`expression: ${Math.round(100 * expression[0][1])}% ${expression[0][0]}`, person.detection.box.x, person.detection.box.y - 42);
|
||||||
ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 24);
|
ctx.fillText(`age: ${Math.round(person.age)} years`, person.detection.box.x, person.detection.box.y - 24);
|
||||||
ctx.fillText(`roll:${person.angle.roll.toFixed(3)} pitch:${person.angle.pitch.toFixed(3)} yaw:${person.angle.yaw.toFixed(3)}`, person.detection.box.x, person.detection.box.y - 6);
|
ctx.fillText(`roll:${person.angle.roll}° pitch:${person.angle.pitch}° yaw:${person.angle.yaw}°`, person.detection.box.x, person.detection.box.y - 6);
|
||||||
// draw face points for each face
|
// draw face points for each face
|
||||||
ctx.globalAlpha = 0.8;
|
ctx.globalAlpha = 0.8;
|
||||||
ctx.fillStyle = 'lightblue';
|
ctx.fillStyle = 'lightblue';
|
||||||
|
@ -61,7 +66,6 @@ function drawFaces(canvas, data, fps) {
|
||||||
for (let i = 0; i < person.landmarks.positions.length; i++) {
|
for (let i = 0; i < person.landmarks.positions.length; i++) {
|
||||||
ctx.beginPath();
|
ctx.beginPath();
|
||||||
ctx.arc(person.landmarks.positions[i].x, person.landmarks.positions[i].y, pointSize, 0, 2 * Math.PI);
|
ctx.arc(person.landmarks.positions[i].x, person.landmarks.positions[i].y, pointSize, 0, 2 * Math.PI);
|
||||||
// ctx.fillText(`${i}`, person.landmarks.positions[i].x + 4, person.landmarks.positions[i].y + 4);
|
|
||||||
ctx.fill();
|
ctx.fill();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -95,7 +99,6 @@ async function setupCamera() {
|
||||||
const canvas = document.getElementById('canvas');
|
const canvas = document.getElementById('canvas');
|
||||||
if (!video || !canvas) return null;
|
if (!video || !canvas) return null;
|
||||||
|
|
||||||
let msg = '';
|
|
||||||
log('Setting up camera');
|
log('Setting up camera');
|
||||||
// setup webcam. note that navigator.mediaDevices requires that page is accessed via https
|
// setup webcam. note that navigator.mediaDevices requires that page is accessed via https
|
||||||
if (!navigator.mediaDevices) {
|
if (!navigator.mediaDevices) {
|
||||||
|
@ -103,23 +106,19 @@ async function setupCamera() {
|
||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
let stream;
|
let stream;
|
||||||
const constraints = {
|
const constraints = { audio: false, video: { facingMode: 'user', resizeMode: 'crop-and-scale' } };
|
||||||
audio: false,
|
|
||||||
video: { facingMode: 'user', resizeMode: 'crop-and-scale' },
|
|
||||||
};
|
|
||||||
if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth };
|
if (window.innerWidth > window.innerHeight) constraints.video.width = { ideal: window.innerWidth };
|
||||||
else constraints.video.height = { ideal: window.innerHeight };
|
else constraints.video.height = { ideal: window.innerHeight };
|
||||||
try {
|
try {
|
||||||
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
stream = await navigator.mediaDevices.getUserMedia(constraints);
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
if (err.name === 'PermissionDeniedError' || err.name === 'NotAllowedError') msg = 'camera permission denied';
|
if (err.name === 'PermissionDeniedError' || err.name === 'NotAllowedError') log(`Camera Error: camera permission denied: ${err.message || err}`);
|
||||||
else if (err.name === 'SourceUnavailableError') msg = 'camera not available';
|
if (err.name === 'SourceUnavailableError') log(`Camera Error: camera not available: ${err.message || err}`);
|
||||||
log(`Camera Error: ${msg}: ${err.message || err}`);
|
|
||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
// @ts-ignore
|
if (stream) {
|
||||||
if (stream) video.srcObject = stream;
|
video.srcObject = stream;
|
||||||
else {
|
} else {
|
||||||
log('Camera Error: stream empty');
|
log('Camera Error: stream empty');
|
||||||
return null;
|
return null;
|
||||||
}
|
}
|
||||||
|
@ -128,31 +127,23 @@ async function setupCamera() {
|
||||||
if (settings.deviceId) delete settings.deviceId;
|
if (settings.deviceId) delete settings.deviceId;
|
||||||
if (settings.groupId) delete settings.groupId;
|
if (settings.groupId) delete settings.groupId;
|
||||||
if (settings.aspectRatio) settings.aspectRatio = Math.trunc(100 * settings.aspectRatio) / 100;
|
if (settings.aspectRatio) settings.aspectRatio = Math.trunc(100 * settings.aspectRatio) / 100;
|
||||||
log(`Camera active: ${track.label}`); // ${str(constraints)}
|
log(`Camera active: ${track.label}`);
|
||||||
log(`Camera settings: ${str(settings)}`);
|
log(`Camera settings: ${str(settings)}`);
|
||||||
canvas.addEventListener('click', () => {
|
canvas.addEventListener('click', () => {
|
||||||
// @ts-ignore
|
|
||||||
if (video && video.readyState >= 2) {
|
if (video && video.readyState >= 2) {
|
||||||
// @ts-ignore
|
|
||||||
if (video.paused) {
|
if (video.paused) {
|
||||||
// @ts-ignore
|
|
||||||
video.play();
|
video.play();
|
||||||
detectVideo(video, canvas);
|
detectVideo(video, canvas);
|
||||||
} else {
|
} else {
|
||||||
// @ts-ignore
|
|
||||||
video.pause();
|
video.pause();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// @ts-ignore
|
|
||||||
log(`Camera state: ${video.paused ? 'paused' : 'playing'}`);
|
log(`Camera state: ${video.paused ? 'paused' : 'playing'}`);
|
||||||
});
|
});
|
||||||
return new Promise((resolve) => {
|
return new Promise((resolve) => {
|
||||||
video.onloadeddata = async () => {
|
video.onloadeddata = async () => {
|
||||||
// @ts-ignore
|
|
||||||
canvas.width = video.videoWidth;
|
canvas.width = video.videoWidth;
|
||||||
// @ts-ignore
|
|
||||||
canvas.height = video.videoHeight;
|
canvas.height = video.videoHeight;
|
||||||
// @ts-ignore
|
|
||||||
video.play();
|
video.play();
|
||||||
detectVideo(video, canvas);
|
detectVideo(video, canvas);
|
||||||
resolve(true);
|
resolve(true);
|
||||||
|
@ -170,7 +161,6 @@ async function setupFaceAPI() {
|
||||||
await faceapi.nets.faceRecognitionNet.load(modelPath);
|
await faceapi.nets.faceRecognitionNet.load(modelPath);
|
||||||
await faceapi.nets.faceExpressionNet.load(modelPath);
|
await faceapi.nets.faceExpressionNet.load(modelPath);
|
||||||
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence: minScore, maxResults });
|
optionsSSDMobileNet = new faceapi.SsdMobilenetv1Options({ minConfidence: minScore, maxResults });
|
||||||
|
|
||||||
// check tf engine state
|
// check tf engine state
|
||||||
log(`Models loaded: ${str(faceapi.tf.engine().state.numTensors)} tensors`);
|
log(`Models loaded: ${str(faceapi.tf.engine().state.numTensors)} tensors`);
|
||||||
}
|
}
|
||||||
|
@ -180,19 +170,21 @@ async function main() {
|
||||||
log('FaceAPI WebCam Test');
|
log('FaceAPI WebCam Test');
|
||||||
|
|
||||||
// if you want to use wasm backend location for wasm binaries must be specified
|
// if you want to use wasm backend location for wasm binaries must be specified
|
||||||
// await faceapi.tf.setWasmPaths('../node_modules/@tensorflow/tfjs-backend-wasm/dist/');
|
// await faceapi.tf?.setWasmPaths(`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${faceapi.tf.version_core}/dist/`);
|
||||||
// await faceapi.tf.setBackend('wasm');
|
// await faceapi.tf?.setBackend('wasm');
|
||||||
|
// log(`WASM SIMD: ${await faceapi.tf?.env().getAsync('WASM_HAS_SIMD_SUPPORT')} Threads: ${await faceapi.tf?.env().getAsync('WASM_HAS_MULTITHREAD_SUPPORT') ? 'Multi' : 'Single'}`);
|
||||||
|
|
||||||
// default is webgl backend
|
// default is webgl backend
|
||||||
await faceapi.tf.setBackend('webgl');
|
await faceapi.tf.setBackend('webgl');
|
||||||
|
|
||||||
await faceapi.tf.enableProdMode();
|
|
||||||
await faceapi.tf.ENV.set('DEBUG', false);
|
|
||||||
await faceapi.tf.ready();
|
await faceapi.tf.ready();
|
||||||
|
|
||||||
|
// tfjs optimizations
|
||||||
|
if (faceapi.tf?.env().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY) faceapi.tf.env().set('CANVAS2D_WILL_READ_FREQUENTLY', true);
|
||||||
|
if (faceapi.tf?.env().flagRegistry.WEBGL_EXP_CONV) faceapi.tf.env().set('WEBGL_EXP_CONV', true);
|
||||||
|
if (faceapi.tf?.env().flagRegistry.WEBGL_EXP_CONV) faceapi.tf.env().set('WEBGL_EXP_CONV', true);
|
||||||
|
|
||||||
// check version
|
// check version
|
||||||
log(`Version: FaceAPI ${str(faceapi?.version.faceapi || '(not loaded)')} TensorFlow/JS ${str(faceapi?.tf?.version_core || '(not loaded)')} Backend: ${str(faceapi?.tf?.getBackend() || '(not loaded)')}`);
|
log(`Version: FaceAPI ${str(faceapi?.version || '(not loaded)')} TensorFlow/JS ${str(faceapi.tf?.version_core || '(not loaded)')} Backend: ${str(faceapi.tf?.getBackend() || '(not loaded)')}`);
|
||||||
// log(`Flags: ${JSON.stringify(faceapi?.tf?.ENV.flags || { tf: 'not loaded' })}`);
|
|
||||||
|
|
||||||
await setupFaceAPI();
|
await setupFaceAPI();
|
||||||
await setupCamera();
|
await setupCamera();
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1 @@
|
||||||
|
export * from '../types/face-api';
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,28 @@
|
||||||
|
/*
|
||||||
|
import '@tensorflow/tfjs-core';
|
||||||
|
import '@tensorflow/tfjs-core/dist/types';
|
||||||
|
import '@tensorflow/tfjs-core/dist/register_all_gradients';
|
||||||
|
import '@tensorflow/tfjs-core/dist/public/chained_ops/register_all_chained_ops';
|
||||||
|
import '@tensorflow/tfjs-data';
|
||||||
|
import '@tensorflow/tfjs-layers';
|
||||||
|
import '@tensorflow/tfjs-converter';
|
||||||
|
import '@tensorflow/tfjs-backend-cpu';
|
||||||
|
import '@tensorflow/tfjs-backend-webgl';
|
||||||
|
import '@tensorflow/tfjs-backend-wasm';
|
||||||
|
import '@tensorflow/tfjs-backend-webgpu';
|
||||||
|
*/
|
||||||
|
|
||||||
|
export declare const version: {
|
||||||
|
'tfjs-core': string;
|
||||||
|
'tfjs-backend-cpu': string;
|
||||||
|
'tfjs-backend-webgl': string;
|
||||||
|
'tfjs-data': string;
|
||||||
|
'tfjs-layers': string;
|
||||||
|
'tfjs-converter': string;
|
||||||
|
tfjs: string;
|
||||||
|
};
|
||||||
|
|
||||||
|
export { io, browser, image } from '@tensorflow/tfjs-core';
|
||||||
|
export { tensor, tidy, softmax, unstack, relu, add, conv2d, cast, zeros, concat, avgPool, stack, fill, transpose, tensor1d, tensor2d, tensor3d, tensor4d, maxPool, matMul, mul, sub, scalar } from '@tensorflow/tfjs-core';
|
||||||
|
export { div, pad, slice, reshape, slice3d, expandDims, depthwiseConv2d, separableConv2d, sigmoid, exp, tile, batchNorm, clipByValue } from '@tensorflow/tfjs-core';
|
||||||
|
export { ENV, Variable, Tensor, TensorLike, Rank, Tensor1D, Tensor2D, Tensor3D, Tensor4D, Tensor5D, NamedTensorMap } from '@tensorflow/tfjs-core';
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,9 @@
|
||||||
|
export declare const version: {
|
||||||
|
'tfjs-core': string;
|
||||||
|
'tfjs-backend-cpu': string;
|
||||||
|
'tfjs-backend-webgl': string;
|
||||||
|
'tfjs-data': string;
|
||||||
|
'tfjs-layers': string;
|
||||||
|
'tfjs-converter': string;
|
||||||
|
tfjs: string;
|
||||||
|
};
|
|
@ -0,0 +1,7 @@
|
||||||
|
/*
|
||||||
|
Face-API
|
||||||
|
homepage: <https://github.com/vladmandic/face-api>
|
||||||
|
author: <https://github.com/vladmandic>'
|
||||||
|
*/
|
||||||
|
|
||||||
|
var e="4.22.0";var s="4.22.0";var t="4.22.0";var n="4.22.0";var i="4.22.0";var w={tfjs:e,"tfjs-core":e,"tfjs-converter":s,"tfjs-backend-cpu":t,"tfjs-backend-webgl":n,"tfjs-backend-wasm":i};export{w as version};
|
67
package.json
67
package.json
|
@ -1,12 +1,12 @@
|
||||||
{
|
{
|
||||||
"name": "@vladmandic/face-api",
|
"name": "@vladmandic/face-api",
|
||||||
"version": "1.4.1",
|
"version": "1.7.15",
|
||||||
"description": "FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS",
|
"description": "FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS",
|
||||||
"sideEffects": false,
|
"sideEffects": false,
|
||||||
"main": "dist/face-api.node.js",
|
"main": "dist/face-api.node.js",
|
||||||
"module": "dist/face-api.esm.js",
|
"module": "dist/face-api.esm.js",
|
||||||
"browser": "dist/face-api.esm.js",
|
"browser": "dist/face-api.esm.js",
|
||||||
"types": "types/index.d.ts",
|
"types": "types/face-api.d.ts",
|
||||||
"author": "Vladimir Mandic <mandic00@live.com>",
|
"author": "Vladimir Mandic <mandic00@live.com>",
|
||||||
"bugs": {
|
"bugs": {
|
||||||
"url": "https://github.com/vladmandic/face-api/issues"
|
"url": "https://github.com/vladmandic/face-api/issues"
|
||||||
|
@ -21,10 +21,10 @@
|
||||||
"url": "git+https://github.com/vladmandic/face-api.git"
|
"url": "git+https://github.com/vladmandic/face-api.git"
|
||||||
},
|
},
|
||||||
"scripts": {
|
"scripts": {
|
||||||
"start": "node --trace-warnings demo/node.js",
|
"start": "node --no-warnings demo/node.js",
|
||||||
"dev": "node --trace-warnings server/serve.js",
|
"build": "node build.js",
|
||||||
"build": "rimraf dist/* types/* typedoc/* && node server/build.js",
|
"dev": "build --profile development",
|
||||||
"lint": "eslint src/**/* demo/*.js server/*.js",
|
"lint": "eslint src/ demo/",
|
||||||
"test": "node --trace-warnings test/test-node.js",
|
"test": "node --trace-warnings test/test-node.js",
|
||||||
"scan": "npx auditjs@latest ossi --dev --quiet"
|
"scan": "npx auditjs@latest ossi --dev --quiet"
|
||||||
},
|
},
|
||||||
|
@ -42,31 +42,38 @@
|
||||||
"tfjs"
|
"tfjs"
|
||||||
],
|
],
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
"@canvas/image": "^1.0.1",
|
"@canvas/image": "^2.0.0",
|
||||||
"@tensorflow/tfjs": "^3.8.0",
|
"@microsoft/api-extractor": "^7.49.2",
|
||||||
"@tensorflow/tfjs-backend-wasm": "^3.8.0",
|
"@tensorflow/tfjs": "^4.22.0",
|
||||||
"@tensorflow/tfjs-node": "^3.8.0",
|
"@tensorflow/tfjs-backend-cpu": "^4.22.0",
|
||||||
"@tensorflow/tfjs-node-gpu": "^3.8.0",
|
"@tensorflow/tfjs-backend-wasm": "^4.22.0",
|
||||||
"@types/node": "^16.4.6",
|
"@tensorflow/tfjs-backend-webgl": "^4.22.0",
|
||||||
"@typescript-eslint/eslint-plugin": "^4.28.5",
|
"@tensorflow/tfjs-backend-webgpu": "4.22.0",
|
||||||
"@typescript-eslint/parser": "^4.28.5",
|
"@tensorflow/tfjs-converter": "^4.22.0",
|
||||||
"@vladmandic/pilogger": "^0.2.17",
|
"@tensorflow/tfjs-core": "^4.22.0",
|
||||||
"canvas": "^2.8.0",
|
"@tensorflow/tfjs-data": "^4.22.0",
|
||||||
"chokidar": "^3.5.2",
|
"@tensorflow/tfjs-layers": "^4.22.0",
|
||||||
"dayjs": "^1.10.6",
|
"@tensorflow/tfjs-node": "^4.22.0",
|
||||||
"esbuild": "^0.12.16",
|
"@tensorflow/tfjs-node-gpu": "^4.22.0",
|
||||||
"eslint": "^7.31.0",
|
"@types/node": "^22.13.1",
|
||||||
"eslint-config-airbnb-base": "^14.2.1",
|
"@types/offscreencanvas": "^2019.7.3",
|
||||||
"eslint-plugin-import": "^2.23.4",
|
"@typescript-eslint/eslint-plugin": "^8.5.0",
|
||||||
"eslint-plugin-json": "^3.0.0",
|
"@typescript-eslint/parser": "^8.5.0",
|
||||||
|
"@vladmandic/build": "^0.10.2",
|
||||||
|
"@vladmandic/pilogger": "^0.5.1",
|
||||||
|
"ajv": "^8.17.1",
|
||||||
|
"esbuild": "^0.24.2",
|
||||||
|
"eslint": "8.57.0",
|
||||||
|
"eslint-config-airbnb-base": "^15.0.0",
|
||||||
|
"eslint-plugin-import": "^2.30.0",
|
||||||
|
"eslint-plugin-json": "^4.0.1",
|
||||||
"eslint-plugin-node": "^11.1.0",
|
"eslint-plugin-node": "^11.1.0",
|
||||||
"eslint-plugin-promise": "^5.1.0",
|
"eslint-plugin-promise": "^7.1.0",
|
||||||
"node-fetch": "^2.6.1",
|
"node-fetch": "^3.3.2",
|
||||||
"rimraf": "^3.0.2",
|
"rimraf": "^6.0.1",
|
||||||
"seedrandom": "^3.0.5",
|
"seedrandom": "^3.0.5",
|
||||||
"simple-git": "^2.41.2",
|
"tslib": "^2.8.1",
|
||||||
"tslib": "^2.3.0",
|
"typedoc": "^0.27.6",
|
||||||
"typedoc": "^0.21.4",
|
"typescript": "5.7.3"
|
||||||
"typescript": "4.3.5"
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
260
server/build.js
260
server/build.js
|
@ -1,260 +0,0 @@
|
||||||
/* eslint-disable import/no-extraneous-dependencies */
|
|
||||||
/* eslint-disable node/no-unpublished-require */
|
|
||||||
|
|
||||||
const esbuild = require('esbuild');
|
|
||||||
const ts = require('typescript');
|
|
||||||
const log = require('@vladmandic/pilogger');
|
|
||||||
const TypeDoc = require('typedoc');
|
|
||||||
const { ESLint } = require('eslint');
|
|
||||||
const tfjs = require('@tensorflow/tfjs/package.json');
|
|
||||||
const changelog = require('./changelog');
|
|
||||||
|
|
||||||
const banner = { js: `
|
|
||||||
/*
|
|
||||||
Face-API
|
|
||||||
homepage: <https://github.com/vladmandic/face-api>
|
|
||||||
author: <https://github.com/vladmandic>'
|
|
||||||
*/
|
|
||||||
` };
|
|
||||||
|
|
||||||
let td = null;
|
|
||||||
let eslint = null;
|
|
||||||
|
|
||||||
// tsc configuration
|
|
||||||
const tsconfig = {
|
|
||||||
noEmitOnError: false,
|
|
||||||
target: ts.ScriptTarget.ES2018,
|
|
||||||
module: ts.ModuleKind.ES2020,
|
|
||||||
// outFile: "dist/face-api.d.ts",
|
|
||||||
outDir: 'types/',
|
|
||||||
declaration: true,
|
|
||||||
emitDeclarationOnly: true,
|
|
||||||
emitDecoratorMetadata: true,
|
|
||||||
experimentalDecorators: true,
|
|
||||||
skipLibCheck: true,
|
|
||||||
strictNullChecks: true,
|
|
||||||
baseUrl: './',
|
|
||||||
paths: {
|
|
||||||
tslib: ['node_modules/tslib/tslib.d.ts'],
|
|
||||||
},
|
|
||||||
};
|
|
||||||
|
|
||||||
// common configuration
|
|
||||||
const lintLocations = ['server/', 'demo/', 'src/', 'test/'];
|
|
||||||
|
|
||||||
// common configuration
|
|
||||||
const common = {
|
|
||||||
banner,
|
|
||||||
minifyWhitespace: false,
|
|
||||||
minifyIdentifiers: false,
|
|
||||||
minifySyntax: false,
|
|
||||||
bundle: true,
|
|
||||||
sourcemap: true,
|
|
||||||
metafile: true,
|
|
||||||
logLevel: 'error',
|
|
||||||
target: 'es2018',
|
|
||||||
// tsconfig: './tsconfig.json',
|
|
||||||
};
|
|
||||||
|
|
||||||
const targets = {
|
|
||||||
node: {
|
|
||||||
tfjs: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/tfjs/tf-node.ts'],
|
|
||||||
outfile: 'dist/tfjs.esm.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
node: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.node.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
nodeGPU: {
|
|
||||||
tfjs: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/tfjs/tf-node-gpu.ts'],
|
|
||||||
outfile: 'dist/tfjs.esm.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
node: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.node-gpu.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
nodeCPU: {
|
|
||||||
tfjs: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/tfjs/tf-node-cpu.ts'],
|
|
||||||
outfile: 'dist/tfjs.esm.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
node: {
|
|
||||||
platform: 'node',
|
|
||||||
format: 'cjs',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.node-cpu.js',
|
|
||||||
external: ['@tensorflow'],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
browserNoBundle: {
|
|
||||||
tfjs: {
|
|
||||||
platform: 'browser',
|
|
||||||
format: 'esm',
|
|
||||||
entryPoints: ['src/tfjs/tf-browser.ts'],
|
|
||||||
outfile: 'dist/tfjs.esm.js',
|
|
||||||
external: ['fs', 'buffer', 'util', 'os', '@tensorflow'],
|
|
||||||
},
|
|
||||||
esm: {
|
|
||||||
platform: 'browser',
|
|
||||||
format: 'esm',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.esm-nobundle.js',
|
|
||||||
external: ['fs', 'buffer', 'util', 'os', '@tensorflow', 'tfjs.esm.js'],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
browserBundle: {
|
|
||||||
tfjs: {
|
|
||||||
platform: 'browser',
|
|
||||||
format: 'esm',
|
|
||||||
entryPoints: ['src/tfjs/tf-browser.ts'],
|
|
||||||
outfile: 'dist/tfjs.esm.js',
|
|
||||||
external: ['fs', 'buffer', 'util', 'os'],
|
|
||||||
},
|
|
||||||
iife: {
|
|
||||||
platform: 'browser',
|
|
||||||
format: 'iife',
|
|
||||||
globalName: 'faceapi',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.js',
|
|
||||||
external: ['fs', 'buffer', 'util', 'os'],
|
|
||||||
},
|
|
||||||
esm: {
|
|
||||||
platform: 'browser',
|
|
||||||
format: 'esm',
|
|
||||||
entryPoints: ['src/index.ts'],
|
|
||||||
outfile: 'dist/face-api.esm.js',
|
|
||||||
external: ['fs', 'buffer', 'util', 'os'],
|
|
||||||
},
|
|
||||||
},
|
|
||||||
};
|
|
||||||
|
|
||||||
async function getStats(json) {
|
|
||||||
const stats = {};
|
|
||||||
if (json && json.metafile.inputs && json.metafile.outputs) {
|
|
||||||
for (const [key, val] of Object.entries(json.metafile.inputs)) {
|
|
||||||
if (key.startsWith('node_modules')) {
|
|
||||||
stats.modules = (stats.modules || 0) + 1;
|
|
||||||
stats.moduleBytes = (stats.moduleBytes || 0) + val.bytes;
|
|
||||||
} else {
|
|
||||||
stats.imports = (stats.imports || 0) + 1;
|
|
||||||
stats.importBytes = (stats.importBytes || 0) + val.bytes;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
const files = [];
|
|
||||||
for (const [key, val] of Object.entries(json.metafile.outputs)) {
|
|
||||||
if (!key.endsWith('.map')) {
|
|
||||||
files.push(key);
|
|
||||||
stats.outputBytes = (stats.outputBytes || 0) + val.bytes;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
stats.outputFiles = files.join(', ');
|
|
||||||
}
|
|
||||||
return stats;
|
|
||||||
}
|
|
||||||
|
|
||||||
function typings(fileNames, options) {
|
|
||||||
log.info('Compile typings:', fileNames);
|
|
||||||
const program = ts.createProgram(fileNames, options);
|
|
||||||
const emit = program.emit();
|
|
||||||
const diag = ts
|
|
||||||
.getPreEmitDiagnostics(program)
|
|
||||||
.concat(emit.diagnostics);
|
|
||||||
for (const info of diag) {
|
|
||||||
// @ts-ignore
|
|
||||||
const msg = info.messageText.messageText || info.messageText;
|
|
||||||
if (msg.includes('package.json')) continue;
|
|
||||||
if (msg.includes('Expected 0 arguments, but got 1')) continue;
|
|
||||||
if (info.file) {
|
|
||||||
const pos = info.file.getLineAndCharacterOfPosition(info.start || 0);
|
|
||||||
log.error(`TSC: ${info.file.fileName} [${pos.line + 1},${pos.character + 1}]:`, msg);
|
|
||||||
} else {
|
|
||||||
log.error('TSC:', msg);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
async function lint() {
|
|
||||||
log.info('Running Linter:', lintLocations);
|
|
||||||
if (!eslint) {
|
|
||||||
eslint = new ESLint();
|
|
||||||
}
|
|
||||||
const results = await eslint.lintFiles(lintLocations);
|
|
||||||
const errors = results.reduce((prev, curr) => prev += curr.errorCount, 0);
|
|
||||||
const warnings = results.reduce((prev, curr) => prev += curr.warningCount, 0);
|
|
||||||
log.info('Linter complete: files:', results.length, 'errors:', errors, 'warnings:', warnings);
|
|
||||||
if (errors > 0 || warnings > 0) {
|
|
||||||
const formatter = await eslint.loadFormatter('stylish');
|
|
||||||
const text = formatter.format(results);
|
|
||||||
log.warn(text);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
async function typedoc(entryPoint) {
|
|
||||||
log.info('Generate TypeDocs:', entryPoint);
|
|
||||||
if (!td) {
|
|
||||||
td = new TypeDoc.Application();
|
|
||||||
td.options.addReader(new TypeDoc.TSConfigReader());
|
|
||||||
td.bootstrap({ entryPoints: entryPoint });
|
|
||||||
}
|
|
||||||
const project = td.convert();
|
|
||||||
const result = project ? await td.generateDocs(project, 'typedoc') : null;
|
|
||||||
if (result) log.warn('TypeDoc:', result);
|
|
||||||
}
|
|
||||||
|
|
||||||
// rebuild on file change
|
|
||||||
async function build(f, msg, dev = false) {
|
|
||||||
log.info('Build: file', msg, f, 'target:', common.target);
|
|
||||||
try {
|
|
||||||
// rebuild all target groups and types
|
|
||||||
for (const [targetGroupName, targetGroup] of Object.entries(targets)) {
|
|
||||||
for (const [targetName, targetOptions] of Object.entries(targetGroup)) {
|
|
||||||
// if triggered from watch mode, rebuild only browser bundle
|
|
||||||
// if ((require.main !== module) && (targetGroupName !== 'browserBundle')) continue;
|
|
||||||
// @ts-ignore
|
|
||||||
const meta = await esbuild.build({ ...common, ...targetOptions });
|
|
||||||
const stats = await getStats(meta);
|
|
||||||
log.state(`Build for: ${targetGroupName} type: ${targetName}:`, stats);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} catch (err) {
|
|
||||||
// catch errors and print where it occured
|
|
||||||
log.error('Build error', JSON.stringify(err.errors || err, null, 2));
|
|
||||||
if (require.main === module) process.exit(1);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!dev) { // only for prod builds, skipped for dev build
|
|
||||||
await lint(); // run linter
|
|
||||||
await typings(targets.browserBundle.esm.entryPoints, tsconfig); // generate typings
|
|
||||||
await changelog.update('../CHANGELOG.md'); // generate changelog
|
|
||||||
await typedoc(targets.browserBundle.esm.entryPoints); // generate typedoc
|
|
||||||
}
|
|
||||||
|
|
||||||
if (require.main === module) process.exit(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (require.main === module) {
|
|
||||||
log.header();
|
|
||||||
log.info(`Toolchain: tfjs: ${tfjs.version} esbuild ${esbuild.version}; typescript ${ts.version}; typedoc: ${TypeDoc.Application.VERSION} eslint: ${ESLint.version}`);
|
|
||||||
build('all', 'startup');
|
|
||||||
} else {
|
|
||||||
exports.build = build;
|
|
||||||
}
|
|
|
@ -1,58 +0,0 @@
|
||||||
const fs = require('fs');
|
|
||||||
const path = require('path');
|
|
||||||
// eslint-disable-next-line node/no-unpublished-require, import/no-extraneous-dependencies
|
|
||||||
const dayjs = require('dayjs');
|
|
||||||
// eslint-disable-next-line node/no-unpublished-require, import/no-extraneous-dependencies
|
|
||||||
const simpleGit = require('simple-git/promise');
|
|
||||||
// eslint-disable-next-line node/no-unpublished-require, import/no-extraneous-dependencies
|
|
||||||
const logger = require('@vladmandic/pilogger');
|
|
||||||
const app = require('../package.json');
|
|
||||||
|
|
||||||
const git = simpleGit();
|
|
||||||
|
|
||||||
let text = `# ${app.name}
|
|
||||||
|
|
||||||
Version: **${app.version}**
|
|
||||||
Description: **${app.description}**
|
|
||||||
|
|
||||||
Author: **${app.author}**
|
|
||||||
License: **${app.license}** </LICENSE>
|
|
||||||
Repository: **<${app.repository.url}>**
|
|
||||||
|
|
||||||
## Changelog
|
|
||||||
`;
|
|
||||||
|
|
||||||
async function update(f) {
|
|
||||||
const gitLog = await git.log();
|
|
||||||
// @ts-ignore
|
|
||||||
const log = gitLog.all.sort((a, b) => (new Date(b.date).getTime() - new Date(a.date).getTime()));
|
|
||||||
|
|
||||||
let previous = '';
|
|
||||||
const headings = [];
|
|
||||||
for (const l of log) {
|
|
||||||
const msg = l.message.toLowerCase();
|
|
||||||
if ((l.refs !== '') || msg.match(/^[0-99].[0-99].[0-99]/)) {
|
|
||||||
const dt = dayjs(l.date).format('YYYY/MM/DD');
|
|
||||||
let ver = msg.match(/[0-99].[0-99].[0-99]/) ? msg : l.refs;
|
|
||||||
ver = ver.replace('tag: v', '').replace('tag: ', 'release: ').split(',')[0];
|
|
||||||
const heading = `\n### **${ver}** ${dt} ${l.author_email}\n\n`;
|
|
||||||
if (!headings.includes(heading) && !ver.startsWith('tag')) {
|
|
||||||
headings.push(heading);
|
|
||||||
text += heading;
|
|
||||||
}
|
|
||||||
} else if ((msg.length > 2) && !msg.startsWith('update') && (previous !== msg)) {
|
|
||||||
previous = msg;
|
|
||||||
text += `- ${msg}\n`;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const name = path.join(__dirname, f);
|
|
||||||
fs.writeFileSync(name, text);
|
|
||||||
logger.info('Update Change log:', [name]);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (require.main === module) {
|
|
||||||
update('../CHANGELOG.md');
|
|
||||||
} else {
|
|
||||||
exports.update = update;
|
|
||||||
}
|
|
|
@ -1,31 +0,0 @@
|
||||||
-----BEGIN CERTIFICATE-----
|
|
||||||
MIIFazCCA1OgAwIBAgIUKQKodDBJnuweJs5IcTyL4NIp3vgwDQYJKoZIhvcNAQEL
|
|
||||||
BQAwRTELMAkGA1UEBhMCVVMxEDAOBgNVBAgMB0Zsb3JpZGExDjAMBgNVBAcMBU1p
|
|
||||||
YW1pMRQwEgYDVQQKDAtAdmxhZG1hbmRpYzAeFw0yMDExMDcxNTE3NDNaFw0yMTEx
|
|
||||||
MDcxNTE3NDNaMEUxCzAJBgNVBAYTAlVTMRAwDgYDVQQIDAdGbG9yaWRhMQ4wDAYD
|
|
||||||
VQQHDAVNaWFtaTEUMBIGA1UECgwLQHZsYWRtYW5kaWMwggIiMA0GCSqGSIb3DQEB
|
|
||||||
AQUAA4ICDwAwggIKAoICAQDSC88PF8NyLkagK5mAZ/d739SOU16l2Cx3zE35zZQh
|
|
||||||
O29+1L4L+oMksLYipo+FMgtGO+MSzFsvGgKCs2sDSdfyoNSTZ3QaN4BAZ0sbq+wL
|
|
||||||
cke7yRBTM/XIGOQfhqq8yC2q8/zXwUbZg0UsCAxDGNwUr0Qlm829laIU/UN1KcYS
|
|
||||||
57Nebl1z05wMEvYmyl4JBAl9ozne7KS9DyW7jbrAXE8TaEy3+pY66kx5GG6v2+up
|
|
||||||
ScITGm4YPmPPlpOF1UjQloosgxdVa+fVp8aNCa/rf0JNO0Uhb3OKOZ+4kYmpfPn/
|
|
||||||
trwoKWAa6CV1uAJ+3zDkLMq1JNlrV4OMp1QvX0wzA47a/n466JMN9SFb0Ng5wf19
|
|
||||||
VOtT5Zu7chDStBudVjxlMDfUixvhvn4sjbaLNYR1fyWPoNXwr0KX2lpTP1QOzp9/
|
|
||||||
Sd0iiJ8RPfXn8Xo26MStu4I52CZjS7yEMgJGCLH/mgPuSbrHHYYrrrCPJgmQOZG2
|
|
||||||
TNMI+EqOwQvHh2ghdv7t7EEk4IslBk0QzufMXQ2WFXQ20nvj74mrmmiMuBcmonpR
|
|
||||||
0egA5/M18ZPLQxYu0Q86NUr4XHtAG1fq+n8pseQ7Avy6Gk6HRiezCbB7TJ9rnNeu
|
|
||||||
jie1TDajC6W7rx0VF7hcxkIrDgNgnYcjXUV2hMx1lo4fIoWkL3nJJVEthMVIcJOX
|
|
||||||
EwIDAQABo1MwUTAdBgNVHQ4EFgQUHawIRAo1bW8Xy7l4oKfM+ESjhs0wHwYDVR0j
|
|
||||||
BBgwFoAUHawIRAo1bW8Xy7l4oKfM+ESjhs0wDwYDVR0TAQH/BAUwAwEB/zANBgkq
|
|
||||||
hkiG9w0BAQsFAAOCAgEAozQJk5Ahx7rDn/aMXLdZFxR81VfkmHDm7NhlJsdVKUx5
|
|
||||||
o/iegXnvwc1PoeKsz2S504QiuL8l7jqZoU2WPIm7Vlr+oxBgiKqjo1EqBsUgNCZ7
|
|
||||||
qxMD84TVp/KBGjKUh1TXhjJwGGfNNr+R/fJGw+36UeuY3fSckjaYTuNuVElp+DoZ
|
|
||||||
/pGyu1qpcybLfiR8mpQkCeU/iBq5gIjWddbVjlYoTKfqULZrpsAF2AeqELEgyshl
|
|
||||||
p3PNhW/54TJSn4mWK+39BibYHPkvx8orEuWKyjjRk82hEXi7J3hsGKX29qC3oO40
|
|
||||||
67DKDWmZdMCz+E1ERf10V0bSp6iJnnlwknHJloZUETV1NY/DdoSC6e8CN0+0cQqL
|
|
||||||
aJefJ483O3sXyN3v3+DaEFBLPFgRFGZB7eaBwR2xAv/KfjT5dSyi+wA4LZAxsQMC
|
|
||||||
Q7UYGNAfHLNHJo/bsj12+JDhJaFZ/KoBKzyMUuEXmvjxXNDMCfm+gVQFoLyXkGq3
|
|
||||||
491W/O7LjR6pkD+ce0qeTFMu3nfUubyfbONVDEfuH4GC1e+FAggCRaBnFsVzCzXj
|
|
||||||
jxOOLoQ9nwLk8v17mx0BSwX4iuqvXFntfJbzfcnzQfx/qqPFheIbGnmKw1lrRML8
|
|
||||||
87ZbN6t01+v2YyYe6Mc7p80s1R3jc8aVX8ca2KcYwsJAkg/xz0q5RJwsE1is5UY=
|
|
||||||
-----END CERTIFICATE-----
|
|
|
@ -1,52 +0,0 @@
|
||||||
-----BEGIN PRIVATE KEY-----
|
|
||||||
MIIJQwIBADANBgkqhkiG9w0BAQEFAASCCS0wggkpAgEAAoICAQDSC88PF8NyLkag
|
|
||||||
K5mAZ/d739SOU16l2Cx3zE35zZQhO29+1L4L+oMksLYipo+FMgtGO+MSzFsvGgKC
|
|
||||||
s2sDSdfyoNSTZ3QaN4BAZ0sbq+wLcke7yRBTM/XIGOQfhqq8yC2q8/zXwUbZg0Us
|
|
||||||
CAxDGNwUr0Qlm829laIU/UN1KcYS57Nebl1z05wMEvYmyl4JBAl9ozne7KS9DyW7
|
|
||||||
jbrAXE8TaEy3+pY66kx5GG6v2+upScITGm4YPmPPlpOF1UjQloosgxdVa+fVp8aN
|
|
||||||
Ca/rf0JNO0Uhb3OKOZ+4kYmpfPn/trwoKWAa6CV1uAJ+3zDkLMq1JNlrV4OMp1Qv
|
|
||||||
X0wzA47a/n466JMN9SFb0Ng5wf19VOtT5Zu7chDStBudVjxlMDfUixvhvn4sjbaL
|
|
||||||
NYR1fyWPoNXwr0KX2lpTP1QOzp9/Sd0iiJ8RPfXn8Xo26MStu4I52CZjS7yEMgJG
|
|
||||||
CLH/mgPuSbrHHYYrrrCPJgmQOZG2TNMI+EqOwQvHh2ghdv7t7EEk4IslBk0QzufM
|
|
||||||
XQ2WFXQ20nvj74mrmmiMuBcmonpR0egA5/M18ZPLQxYu0Q86NUr4XHtAG1fq+n8p
|
|
||||||
seQ7Avy6Gk6HRiezCbB7TJ9rnNeujie1TDajC6W7rx0VF7hcxkIrDgNgnYcjXUV2
|
|
||||||
hMx1lo4fIoWkL3nJJVEthMVIcJOXEwIDAQABAoICAF45S+ZSW6uh1K7PQCnY+a0J
|
|
||||||
CJncDk5JPhFzhds0fGm39tknaCWJeEECQIIkw6cVfvc/sCpjn9fuTAgDolK0UnoV
|
|
||||||
6aZCN1P3Z8H8VDYSlm3AEyvLE1avrWbYu6TkzTyoc8wHbXn/yt+SQnpxFccXpMpm
|
|
||||||
oSRZ0x5jvHS79AHf/mnGpLEMw0FNQOgtrVxTVYGn3PYOPcyhzXi+Dcgn2QmnnxVu
|
|
||||||
qVOyxqehKTL9YdHjzsB/RN868P5RJocd3gmgVuyzS0KSf+oi4Ln4bFoiaVc0HDL3
|
|
||||||
DpjkHSl5lgu+xclRNfifKaK+hM0tLHi1VfFB//WrnjdKU3oSpQF4oowprM4Jn5AP
|
|
||||||
jhRI54JWZlWnvbiAOx7D49xFga3EnqjVH6So2gxi+q3Dv25luXGAnueaBPDpVC6c
|
|
||||||
nkJm2aCl7T3xlVpW8O5Fs+rsP8Xr9RTyEQJauM01uOi3N2zEeO8ERxTYEW5Sy2U7
|
|
||||||
OFKRXtLj7Jnejib/SxWGcIX4Wid5QFAygbXz4APfFN22QU0fqmhm4/c2OB/xM8qr
|
|
||||||
VVFx4xlG2wnuq5CZdZjmK3MTbmSM+pWW8mly/+++p694cf5oXGenYus/JWFNwxj/
|
|
||||||
fPyA7zQmaTOidu6clDHzkPCOE7TBv9TkQ7lL6ClgE7B39JR65ZQtjCYqRsADKsGI
|
|
||||||
dFMg+HDmGbVEfWg2V0GBAoIBAQDupImrJ0JXHA/0SEC2Tbz7pE60fRwmBFdhvk4Z
|
|
||||||
rzZiaOl+M2HXQU6b5DYhKcgdiFah5IuAnsRPo6X5Ug+Q1DV3OFTuEGAkXgqZliNa
|
|
||||||
aXsJcc0++DYlXX3BrTb66gylVLQRs5tZzsXps5iXWclziDC2go8RKnCwxsxwbzVq
|
|
||||||
FP4hoBP4dp83WoLF4NznnGFGw3/KLlMivtRxDE5OegpxTuWGlA/bVtT187Ksuuz3
|
|
||||||
dFUayLfpg0ABS/E7wwAJjSUpPPEi3J/G255H3lZXgS1gWcAf3rGDQYlJKF8UHdja
|
|
||||||
yWQcAOF+b/bYEpa4lHw+UtKNNkPTiCV4Y7CNQd8a2Gcl7VFTAoIBAQDhUs9r1dhm
|
|
||||||
rUlNAunVZZZVZ91XhXeqVTa/9xUDEvDh91nB5c7CcuNXxwcX4oTsMF4Bc7CHlvOv
|
|
||||||
pybp+QLjK310VjxxkFYJT0TKWuYqLjtNkQ93sp8wF3gVCf8m8bMOX/gPfQzNZWKp
|
|
||||||
un+ZWnzXNU5d2A+63xbZmFzT0Zo6H/h9YEO5Xxw32HCKFzEhl5JD34muZTEXSpdD
|
|
||||||
p7LUUr5LvnoUqEzonhXx2qRnTLP87d1o0GlkVex9HeeeBgrvm57QYoJnABxw9UFM
|
|
||||||
/ocLeYsjkmqJQRBDWgiwQlos1pdZyX2Yj20b7Wm5Pxd4aM9gh5EZZMXeQHhbHlWz
|
|
||||||
UY1IPxfAkytBAoIBAHmYavFDisD58oMlAZwiViXeXaAHk30nfyK1pfPeXBaeoEKG
|
|
||||||
idb1VsmF6bLSKD4sBwBshExgGWT+3IYCMx43kpqRoGzA+UvugvYpExBxaJiyXMM2
|
|
||||||
E9jMH1S9HqOQ+CqR00KlwoVrH1rqANk1jbkJbtDAC4fSmSLp2Kd9crj/w1F80FAs
|
|
||||||
mQnKW5HZ9pUpEEPPP2DUY9XzaCnF/GxuML31VmxRKxc20kIUDzmF8VJQ+0Avf85C
|
|
||||||
6yz99gfeXzl+qq2teKyrv9nCc47pEhN6JZXPhV53yPk5PmuBX5jPcHxiW1kNddhH
|
|
||||||
0n3cUuHv/rJ+3vvG555z46vJF9+R7c0u8LfZiTMCggEBAMQd4a/IN0xXM1+2U3SL
|
|
||||||
sSew+XR+FMPK25aGJmHAkKz9L8CWlzmj6cCy2LevT2aMSqYU3eeGOZ//at1nAV5c
|
|
||||||
shsaHA30RQ5hUkyWhZLdHnzK752NeQTQyJH3W3+4C9NNMIm6m/QCdLeqPflqSxK9
|
|
||||||
sPH5ZueN2UOXW+R5oTVKMmxd51RnNhZdasamnPrSBFrTK/EA3pOZNsOKKRqo0jz3
|
|
||||||
Eyb7vcUSI6OYXFQU7OwO1RGvpKvSJb5Y0wo11DrtRnO16i5gaGDg9u9e8ofISJSz
|
|
||||||
kcrZOKCGst1HQ1mXhbB+sbSh0aPnJog4I+OHxkgMdvyVO6vQjXExnAIxzzi8wZ25
|
|
||||||
+oECggEBAIT6q/sn8xFt5Jwc/0Z7YUjd415Nknam09tnbB+UPRR6lt6JFoILx8by
|
|
||||||
5Y1sN30HWDv27v9G32oZhUDii3Rt3PkbYLqlHy7XBMEXA9WIUo+3Be7mtdL8Wfrj
|
|
||||||
0zn0b7Hks9a9KsElG1dXUopwjMRL3M22UamaN7e/gl5jz2I7pyc5oaqz9GRDV5yG
|
|
||||||
slb6gGZ5naMycJD3p8vutXbmgKRr9beRp55UICAbEMdr5p3ks8bfR33Z6t+a97u1
|
|
||||||
IxI5x5Lb0fdfvL8JK3nRWn7Uzbmm5Ni/OaODNKP+fIm9m2yDAs8LM8RGpPtk6i0d
|
|
||||||
qIRta3H9KNw2Mhpkm77TtUSV/W5aOmY=
|
|
||||||
-----END PRIVATE KEY-----
|
|
162
server/serve.js
162
server/serve.js
|
@ -1,162 +0,0 @@
|
||||||
/*
|
|
||||||
micro http2 server with file monitoring and automatic app rebuild
|
|
||||||
- can process concurrent http requests
|
|
||||||
- monitors specified filed and folders for changes
|
|
||||||
- triggers library and application rebuild
|
|
||||||
- any build errors are immediately displayed and can be corrected without need for restart
|
|
||||||
- passthrough data compression
|
|
||||||
*/
|
|
||||||
|
|
||||||
const fs = require('fs');
|
|
||||||
const zlib = require('zlib');
|
|
||||||
const http = require('http');
|
|
||||||
const http2 = require('http2');
|
|
||||||
const path = require('path');
|
|
||||||
// eslint-disable-next-line node/no-unpublished-require, import/no-extraneous-dependencies
|
|
||||||
const chokidar = require('chokidar');
|
|
||||||
// eslint-disable-next-line node/no-unpublished-require, import/no-extraneous-dependencies
|
|
||||||
const log = require('@vladmandic/pilogger');
|
|
||||||
const build = require('./build.js');
|
|
||||||
|
|
||||||
// app configuration
|
|
||||||
// you can provide your server key and certificate or use provided self-signed ones
|
|
||||||
// self-signed certificate generated using:
|
|
||||||
// openssl req -x509 -newkey rsa:4096 -nodes -keyout https.key -out https.crt -days 365 -subj "/C=US/ST=Florida/L=Miami/O=@vladmandic"
|
|
||||||
// client app does not work without secure server since browsers enforce https for webcam access
|
|
||||||
const options = {
|
|
||||||
key: fs.readFileSync('server/https.key'),
|
|
||||||
cert: fs.readFileSync('server/https.crt'),
|
|
||||||
root: '..',
|
|
||||||
default: 'demo/index.html',
|
|
||||||
httpPort: 8000,
|
|
||||||
httpsPort: 8001,
|
|
||||||
insecureHTTPParser: false,
|
|
||||||
minElapsed: 2,
|
|
||||||
monitor: ['package.json', 'demo', 'src'],
|
|
||||||
};
|
|
||||||
|
|
||||||
// just some predefined mime types
|
|
||||||
const mime = {
|
|
||||||
'.html': 'text/html; charset=utf-8',
|
|
||||||
'.js': 'text/javascript; charset=utf-8',
|
|
||||||
'.css': 'text/css; charset=utf-8',
|
|
||||||
'.json': 'application/json; charset=utf-8',
|
|
||||||
'.png': 'image/png',
|
|
||||||
'.jpg': 'image/jpeg',
|
|
||||||
'.gif': 'image/gif',
|
|
||||||
'.ico': 'image/x-icon',
|
|
||||||
'.svg': 'image/svg+xml',
|
|
||||||
'.wav': 'audio/wav',
|
|
||||||
'.mp4': 'video/mp4',
|
|
||||||
'.woff': 'font/woff',
|
|
||||||
'.woff2': 'font/woff2',
|
|
||||||
'.ttf': 'font/ttf',
|
|
||||||
'.wasm': 'application/wasm',
|
|
||||||
};
|
|
||||||
|
|
||||||
// checks for multiple events triggering within minElapsed and merge get into single event
|
|
||||||
let last = Date.now();
|
|
||||||
async function buildAll(evt, msg) {
|
|
||||||
const now = Date.now();
|
|
||||||
if ((now - last) > options.minElapsed) build.build(evt, msg, true);
|
|
||||||
else log.state('Build: merge event file', msg, evt);
|
|
||||||
last = now;
|
|
||||||
}
|
|
||||||
|
|
||||||
// watch filesystem for any changes and notify build when needed
|
|
||||||
async function watch() {
|
|
||||||
const watcher = chokidar.watch(options.monitor, {
|
|
||||||
persistent: true,
|
|
||||||
ignorePermissionErrors: false,
|
|
||||||
alwaysStat: false,
|
|
||||||
ignoreInitial: true,
|
|
||||||
followSymlinks: true,
|
|
||||||
usePolling: false,
|
|
||||||
useFsEvents: false,
|
|
||||||
atomic: true,
|
|
||||||
});
|
|
||||||
// single event handler for file add/change/delete
|
|
||||||
watcher
|
|
||||||
.on('add', (evt) => buildAll(evt, 'add'))
|
|
||||||
.on('change', (evt) => buildAll(evt, 'modify'))
|
|
||||||
.on('unlink', (evt) => buildAll(evt, 'remove'))
|
|
||||||
.on('error', (err) => log.error(`Client watcher error: ${err}`))
|
|
||||||
.on('ready', () => log.state('Monitoring:', options.monitor));
|
|
||||||
}
|
|
||||||
|
|
||||||
// get file content for a valid url request
|
|
||||||
function handle(url) {
|
|
||||||
return new Promise((resolve) => {
|
|
||||||
let obj = { ok: false };
|
|
||||||
obj.file = url;
|
|
||||||
if (!fs.existsSync(obj.file)) resolve(null);
|
|
||||||
obj.stat = fs.statSync(obj.file);
|
|
||||||
if (obj.stat.isFile()) obj.ok = true;
|
|
||||||
if (!obj.ok && obj.stat.isDirectory()) {
|
|
||||||
obj.file = path.join(obj.file, options.default);
|
|
||||||
// @ts-ignore
|
|
||||||
obj = handle(obj.file);
|
|
||||||
}
|
|
||||||
resolve(obj);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
// process http requests
|
|
||||||
async function httpRequest(req, res) {
|
|
||||||
handle(path.join(__dirname, options.root, decodeURI(req.url)))
|
|
||||||
.then((result) => {
|
|
||||||
// get original ip of requestor, regardless if it's behind proxy or not
|
|
||||||
// eslint-disable-next-line dot-notation
|
|
||||||
const forwarded = (req.headers['forwarded'] || '').match(/for="\[(.*)\]:/);
|
|
||||||
const ip = (Array.isArray(forwarded) ? forwarded[1] : null) || req.headers['x-forwarded-for'] || req.ip || req.socket.remoteAddress;
|
|
||||||
if (!result || !result.ok) {
|
|
||||||
res.writeHead(404, { 'Content-Type': 'text/html' });
|
|
||||||
res.end('Error 404: Not Found\n', 'utf-8');
|
|
||||||
log.warn(`${req.method}/${req.httpVersion}`, res.statusCode, req.url, ip);
|
|
||||||
} else {
|
|
||||||
const ext = String(path.extname(result.file)).toLowerCase();
|
|
||||||
const contentType = mime[ext] || 'application/octet-stream';
|
|
||||||
const accept = req.headers['accept-encoding'] ? req.headers['accept-encoding'].includes('br') : false; // does target accept brotli compressed data
|
|
||||||
res.writeHead(200, {
|
|
||||||
// 'Content-Length': result.stat.size, // not using as it's misleading for compressed streams
|
|
||||||
'Content-Language': 'en', 'Content-Type': contentType, 'Content-Encoding': accept ? 'br' : '', 'Last-Modified': result.stat.mtime, 'Cache-Control': 'no-cache', 'X-Content-Type-Options': 'nosniff',
|
|
||||||
});
|
|
||||||
const compress = zlib.createBrotliCompress({ params: { [zlib.constants.BROTLI_PARAM_QUALITY]: 5 } }); // instance of brotli compression with level 5
|
|
||||||
const stream = fs.createReadStream(result.file);
|
|
||||||
if (!accept) stream.pipe(res); // don't compress data
|
|
||||||
else stream.pipe(compress).pipe(res); // compress data
|
|
||||||
|
|
||||||
// alternative methods of sending data
|
|
||||||
/// 2. read stream and send by chunk
|
|
||||||
// const stream = fs.createReadStream(result.file);
|
|
||||||
// stream.on('data', (chunk) => res.write(chunk));
|
|
||||||
// stream.on('end', () => res.end());
|
|
||||||
|
|
||||||
// 3. read entire file and send it as blob
|
|
||||||
// const data = fs.readFileSync(result.file);
|
|
||||||
// res.write(data);
|
|
||||||
log.data(`${req.method}/${req.httpVersion}`, res.statusCode, contentType, result.stat.size, req.url, ip);
|
|
||||||
}
|
|
||||||
return null;
|
|
||||||
})
|
|
||||||
.catch((err) => log.error('handle error:', err));
|
|
||||||
}
|
|
||||||
|
|
||||||
// app main entry point
|
|
||||||
async function main() {
|
|
||||||
log.header();
|
|
||||||
await watch();
|
|
||||||
if (options.httpPort && options.httpPort > 0) {
|
|
||||||
const server1 = http.createServer(options, httpRequest);
|
|
||||||
server1.on('listening', () => log.state('HTTP server listening:', options.httpPort));
|
|
||||||
server1.listen(options.httpPort);
|
|
||||||
}
|
|
||||||
if (options.httpsPort && options.httpsPort > 0) {
|
|
||||||
const server2 = http2.createSecureServer(options, httpRequest);
|
|
||||||
server2.on('listening', () => log.state('HTTP2 server listening:', options.httpsPort));
|
|
||||||
server2.listen(options.httpsPort);
|
|
||||||
}
|
|
||||||
await build.build('all', 'startup', true);
|
|
||||||
}
|
|
||||||
|
|
||||||
main();
|
|
|
@ -10,9 +10,9 @@ export abstract class NeuralNetwork<TNetParams> {
|
||||||
this._name = name;
|
this._name = name;
|
||||||
}
|
}
|
||||||
|
|
||||||
protected _params: TNetParams | undefined = undefined
|
protected _params: TNetParams | undefined = undefined;
|
||||||
|
|
||||||
protected _paramMappings: ParamMapping[] = []
|
protected _paramMappings: ParamMapping[] = [];
|
||||||
|
|
||||||
public _name: any;
|
public _name: any;
|
||||||
|
|
||||||
|
@ -102,8 +102,9 @@ export abstract class NeuralNetwork<TNetParams> {
|
||||||
}
|
}
|
||||||
const { readFile } = env.getEnv();
|
const { readFile } = env.getEnv();
|
||||||
const { manifestUri, modelBaseUri } = getModelUris(filePath, this.getDefaultModelName());
|
const { manifestUri, modelBaseUri } = getModelUris(filePath, this.getDefaultModelName());
|
||||||
const fetchWeightsFromDisk = (filePaths: string[]) => Promise.all(filePaths.map((fp) => readFile(fp).then((buf) => buf.buffer)));
|
const fetchWeightsFromDisk = (filePaths: string[]) => Promise.all(filePaths.map((fp) => readFile(fp).then((buf) => (typeof buf === 'string' ? Buffer.from(buf) : buf.buffer))));
|
||||||
const loadWeights = tf.io.weightsLoaderFactory(fetchWeightsFromDisk);
|
// @ts-ignore async-vs-sync mismatch
|
||||||
|
const loadWeights = tf['io'].weightsLoaderFactory(fetchWeightsFromDisk);
|
||||||
const manifest = JSON.parse((await readFile(manifestUri)).toString());
|
const manifest = JSON.parse((await readFile(manifestUri)).toString());
|
||||||
const weightMap = await loadWeights(manifest, modelBaseUri);
|
const weightMap = await loadWeights(manifest, modelBaseUri);
|
||||||
this.loadFromWeightMap(weightMap);
|
this.loadFromWeightMap(weightMap);
|
||||||
|
|
|
@ -1,6 +1,10 @@
|
||||||
export class PlatformBrowser {
|
export class PlatformBrowser {
|
||||||
private textEncoder: TextEncoder;
|
private textEncoder: TextEncoder;
|
||||||
|
|
||||||
|
constructor() {
|
||||||
|
this.textEncoder = new TextEncoder();
|
||||||
|
}
|
||||||
|
|
||||||
fetch(path: string, init?: any): Promise<Response> {
|
fetch(path: string, init?: any): Promise<Response> {
|
||||||
return fetch(path, init);
|
return fetch(path, init);
|
||||||
}
|
}
|
||||||
|
@ -13,9 +17,6 @@ export class PlatformBrowser {
|
||||||
if (encoding !== 'utf-8' && encoding !== 'utf8') {
|
if (encoding !== 'utf-8' && encoding !== 'utf8') {
|
||||||
throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);
|
throw new Error(`Browser's encoder only supports utf-8, but got ${encoding}`);
|
||||||
}
|
}
|
||||||
if (this.textEncoder == null) {
|
|
||||||
this.textEncoder = new TextEncoder();
|
|
||||||
}
|
|
||||||
return this.textEncoder.encode(text);
|
return this.textEncoder.encode(text);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
import * as tf from '../../dist/tfjs.esm';
|
import * as tf from '../../dist/tfjs.esm.js';
|
||||||
|
|
||||||
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
|
import { fullyConnectedLayer } from '../common/fullyConnectedLayer';
|
||||||
import { seperateWeightMaps } from '../faceProcessor/util';
|
import { seperateWeightMaps } from '../faceProcessor/util';
|
||||||
import { TinyXception } from '../xception/TinyXception';
|
import { TinyXception } from '../xception/TinyXception';
|
||||||
|
@ -10,7 +9,7 @@ import { NeuralNetwork } from '../NeuralNetwork';
|
||||||
import { NetInput, TNetInput, toNetInput } from '../dom/index';
|
import { NetInput, TNetInput, toNetInput } from '../dom/index';
|
||||||
|
|
||||||
export class AgeGenderNet extends NeuralNetwork<NetParams> {
|
export class AgeGenderNet extends NeuralNetwork<NetParams> {
|
||||||
private _faceFeatureExtractor: TinyXception
|
private _faceFeatureExtractor: TinyXception;
|
||||||
|
|
||||||
constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {
|
constructor(faceFeatureExtractor: TinyXception = new TinyXception(2)) {
|
||||||
super('AgeGenderNet');
|
super('AgeGenderNet');
|
||||||
|
@ -85,7 +84,7 @@ export class AgeGenderNet extends NeuralNetwork<NetParams> {
|
||||||
return 'age_gender_model';
|
return 'age_gender_model';
|
||||||
}
|
}
|
||||||
|
|
||||||
public dispose(throwOnRedispose = true) {
|
public override dispose(throwOnRedispose = true) {
|
||||||
this.faceFeatureExtractor.dispose(throwOnRedispose);
|
this.faceFeatureExtractor.dispose(throwOnRedispose);
|
||||||
super.dispose(throwOnRedispose);
|
super.dispose(throwOnRedispose);
|
||||||
}
|
}
|
||||||
|
|
|
@ -7,10 +7,8 @@ export interface IBoundingBox {
|
||||||
bottom: number
|
bottom: number
|
||||||
}
|
}
|
||||||
|
|
||||||
export class BoundingBox extends Box<BoundingBox> implements IBoundingBox {
|
export class BoundingBox extends Box implements IBoundingBox {
|
||||||
constructor(left: number, top: number, right: number, bottom: number, allowNegativeDimensions = false) {
|
constructor(left: number, top: number, right: number, bottom: number, allowNegativeDimensions = false) {
|
||||||
super({
|
super({ left, top, right, bottom }, allowNegativeDimensions);
|
||||||
left, top, right, bottom,
|
|
||||||
}, allowNegativeDimensions);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -19,13 +19,13 @@ export class Box<BoxType = any> implements IBoundingBox, IRect {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private _x: number
|
private _x: number;
|
||||||
|
|
||||||
private _y: number
|
private _y: number;
|
||||||
|
|
||||||
private _width: number
|
private _width: number;
|
||||||
|
|
||||||
private _height: number
|
private _height: number;
|
||||||
|
|
||||||
constructor(_box: IBoundingBox | IRect, allowNegativeDimensions = true) {
|
constructor(_box: IBoundingBox | IRect, allowNegativeDimensions = true) {
|
||||||
const box = (_box || {}) as any;
|
const box = (_box || {}) as any;
|
||||||
|
@ -128,9 +128,7 @@ export class Box<BoxType = any> implements IBoundingBox, IRect {
|
||||||
this.width + padX,
|
this.width + padX,
|
||||||
this.height + padY,
|
this.height + padY,
|
||||||
];
|
];
|
||||||
return new Box({
|
return new Box({ x, y, width, height });
|
||||||
x, y, width, height,
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public clipAtImageBorders(imgWidth: number, imgHeight: number): Box<BoxType> {
|
public clipAtImageBorders(imgWidth: number, imgHeight: number): Box<BoxType> {
|
||||||
|
@ -143,9 +141,7 @@ export class Box<BoxType = any> implements IBoundingBox, IRect {
|
||||||
const clippedWidth = Math.min(newWidth, imgWidth - clippedX);
|
const clippedWidth = Math.min(newWidth, imgWidth - clippedX);
|
||||||
const clippedHeight = Math.min(newHeight, imgHeight - clippedY);
|
const clippedHeight = Math.min(newHeight, imgHeight - clippedY);
|
||||||
|
|
||||||
return (new Box({
|
return (new Box({ x: clippedX, y: clippedY, width: clippedWidth, height: clippedHeight })).floor();
|
||||||
x: clippedX, y: clippedY, width: clippedWidth, height: clippedHeight,
|
|
||||||
})).floor();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public shift(sx: number, sy: number): Box<BoxType> {
|
public shift(sx: number, sy: number): Box<BoxType> {
|
||||||
|
@ -153,9 +149,7 @@ export class Box<BoxType = any> implements IBoundingBox, IRect {
|
||||||
const x = this.x + sx;
|
const x = this.x + sx;
|
||||||
const y = this.y + sy;
|
const y = this.y + sy;
|
||||||
|
|
||||||
return new Box({
|
return new Box({ x, y, width, height });
|
||||||
x, y, width, height,
|
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public padAtBorders(imageHeight: number, imageWidth: number) {
|
public padAtBorders(imageHeight: number, imageWidth: number) {
|
||||||
|
@ -189,9 +183,7 @@ export class Box<BoxType = any> implements IBoundingBox, IRect {
|
||||||
y = 1;
|
y = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
return {
|
return { dy, edy, dx, edx, y, ey, x, ex, w, h };
|
||||||
dy, edy, dx, edx, y, ey, x, ex, w, h,
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public calibrate(region: Box) {
|
public calibrate(region: Box) {
|
||||||
|
|
|
@ -6,9 +6,9 @@ export interface IDimensions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class Dimensions implements IDimensions {
|
export class Dimensions implements IDimensions {
|
||||||
private _width: number
|
private _width: number;
|
||||||
|
|
||||||
private _height: number
|
private _height: number;
|
||||||
|
|
||||||
constructor(width: number, height: number) {
|
constructor(width: number, height: number) {
|
||||||
if (!isValidNumber(width) || !isValidNumber(height)) {
|
if (!isValidNumber(width) || !isValidNumber(height)) {
|
||||||
|
|
|
@ -17,7 +17,7 @@ export class FaceDetection extends ObjectDetection implements IFaceDetecion {
|
||||||
super(score, score, '', relativeBox, imageDims);
|
super(score, score, '', relativeBox, imageDims);
|
||||||
}
|
}
|
||||||
|
|
||||||
public forSize(width: number, height: number): FaceDetection {
|
public override forSize(width: number, height: number): FaceDetection {
|
||||||
const { score, relativeBox, imageDims } = super.forSize(width, height);
|
const { score, relativeBox, imageDims } = super.forSize(width, height);
|
||||||
return new FaceDetection(score, relativeBox, imageDims);
|
return new FaceDetection(score, relativeBox, imageDims);
|
||||||
}
|
}
|
||||||
|
|
|
@ -18,11 +18,11 @@ export interface IFaceLandmarks {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class FaceLandmarks implements IFaceLandmarks {
|
export class FaceLandmarks implements IFaceLandmarks {
|
||||||
protected _shift: Point
|
protected _shift: Point;
|
||||||
|
|
||||||
protected _positions: Point[]
|
protected _positions: Point[];
|
||||||
|
|
||||||
protected _imgDims: Dimensions
|
protected _imgDims: Dimensions;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
relativeFaceLandmarkPositions: Point[],
|
relativeFaceLandmarkPositions: Point[],
|
||||||
|
|
|
@ -3,7 +3,7 @@ import { FaceLandmarks } from './FaceLandmarks';
|
||||||
import { Point } from './Point';
|
import { Point } from './Point';
|
||||||
|
|
||||||
export class FaceLandmarks5 extends FaceLandmarks {
|
export class FaceLandmarks5 extends FaceLandmarks {
|
||||||
protected getRefPointsForAlignment(): Point[] {
|
protected override getRefPointsForAlignment(): Point[] {
|
||||||
const pts = this.positions;
|
const pts = this.positions;
|
||||||
return [
|
return [
|
||||||
pts[0],
|
pts[0],
|
||||||
|
|
|
@ -31,7 +31,7 @@ export class FaceLandmarks68 extends FaceLandmarks {
|
||||||
return this.positions.slice(48, 68);
|
return this.positions.slice(48, 68);
|
||||||
}
|
}
|
||||||
|
|
||||||
protected getRefPointsForAlignment(): Point[] {
|
protected override getRefPointsForAlignment(): Point[] {
|
||||||
return [
|
return [
|
||||||
this.getLeftEye(),
|
this.getLeftEye(),
|
||||||
this.getRightEye(),
|
this.getRightEye(),
|
||||||
|
|
|
@ -6,9 +6,8 @@ export interface IFaceMatch {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class FaceMatch implements IFaceMatch {
|
export class FaceMatch implements IFaceMatch {
|
||||||
private _label: string
|
private _label: string;
|
||||||
|
private _distance: number;
|
||||||
private _distance: number
|
|
||||||
|
|
||||||
constructor(label: string, distance: number) {
|
constructor(label: string, distance: number) {
|
||||||
this._label = label;
|
this._label = label;
|
||||||
|
|
|
@ -3,16 +3,15 @@ import { IBoundingBox } from './BoundingBox';
|
||||||
import { Box } from './Box';
|
import { Box } from './Box';
|
||||||
import { IRect } from './Rect';
|
import { IRect } from './Rect';
|
||||||
|
|
||||||
export class LabeledBox extends Box<LabeledBox> {
|
export class LabeledBox extends Box {
|
||||||
public static assertIsValidLabeledBox(box: any, callee: string) {
|
public static assertIsValidLabeledBox(box: any, callee: string) {
|
||||||
Box.assertIsValidBox(box, callee);
|
Box.assertIsValidBox(box, callee);
|
||||||
|
|
||||||
if (!isValidNumber(box.label)) {
|
if (!isValidNumber(box.label)) {
|
||||||
throw new Error(`${callee} - expected property label (${box.label}) to be a number`);
|
throw new Error(`${callee} - expected property label (${box.label}) to be a number`);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private _label: number
|
private _label: number;
|
||||||
|
|
||||||
constructor(box: IBoundingBox | IRect | any, label: number) {
|
constructor(box: IBoundingBox | IRect | any, label: number) {
|
||||||
super(box);
|
super(box);
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
export class LabeledFaceDescriptors {
|
export class LabeledFaceDescriptors {
|
||||||
private _label: string
|
private _label: string;
|
||||||
|
|
||||||
private _descriptors: Float32Array[]
|
private _descriptors: Float32Array[];
|
||||||
|
|
||||||
constructor(label: string, descriptors: Float32Array[]) {
|
constructor(label: string, descriptors: Float32Array[]) {
|
||||||
if (!(typeof label === 'string')) {
|
if (!(typeof label === 'string')) {
|
||||||
|
|
|
@ -3,15 +3,15 @@ import { Dimensions, IDimensions } from './Dimensions';
|
||||||
import { IRect, Rect } from './Rect';
|
import { IRect, Rect } from './Rect';
|
||||||
|
|
||||||
export class ObjectDetection {
|
export class ObjectDetection {
|
||||||
private _score: number
|
private _score: number;
|
||||||
|
|
||||||
private _classScore: number
|
private _classScore: number;
|
||||||
|
|
||||||
private _className: string
|
private _className: string;
|
||||||
|
|
||||||
private _box: Rect
|
private _box: Rect;
|
||||||
|
|
||||||
private _imageDims: Dimensions
|
private _imageDims: Dimensions;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
score: number,
|
score: number,
|
||||||
|
|
|
@ -4,9 +4,9 @@ export interface IPoint {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class Point implements IPoint {
|
export class Point implements IPoint {
|
||||||
private _x: number
|
private _x: number;
|
||||||
|
|
||||||
private _y: number
|
private _y: number;
|
||||||
|
|
||||||
constructor(x: number, y: number) {
|
constructor(x: number, y: number) {
|
||||||
this._x = x;
|
this._x = x;
|
||||||
|
|
|
@ -15,9 +15,9 @@ export class PredictedBox extends LabeledBox {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
private _score: number
|
private _score: number;
|
||||||
|
|
||||||
private _classScore: number
|
private _classScore: number;
|
||||||
|
|
||||||
constructor(box: IBoundingBox | IRect | any, label: number, score: number, classScore: number) {
|
constructor(box: IBoundingBox | IRect | any, label: number, score: number, classScore: number) {
|
||||||
super(box, label);
|
super(box, label);
|
||||||
|
|
|
@ -7,10 +7,8 @@ export interface IRect {
|
||||||
height: number
|
height: number
|
||||||
}
|
}
|
||||||
|
|
||||||
export class Rect extends Box<Rect> implements IRect {
|
export class Rect extends Box implements IRect {
|
||||||
constructor(x: number, y: number, width: number, height: number, allowNegativeDimensions = false) {
|
constructor(x: number, y: number, width: number, height: number, allowNegativeDimensions = false) {
|
||||||
super({
|
super({ x, y, width, height }, allowNegativeDimensions);
|
||||||
x, y, width, height,
|
|
||||||
}, allowNegativeDimensions);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -9,17 +9,17 @@ import { imageToSquare } from './imageToSquare';
|
||||||
import { TResolvedNetInput } from './types';
|
import { TResolvedNetInput } from './types';
|
||||||
|
|
||||||
export class NetInput {
|
export class NetInput {
|
||||||
private _imageTensors: Array<tf.Tensor3D | tf.Tensor4D> = []
|
private _imageTensors: Array<tf.Tensor3D | tf.Tensor4D> = [];
|
||||||
|
|
||||||
private _canvases: HTMLCanvasElement[] = []
|
private _canvases: HTMLCanvasElement[] = [];
|
||||||
|
|
||||||
private _batchSize: number
|
private _batchSize: number;
|
||||||
|
|
||||||
private _treatAsBatchInput = false
|
private _treatAsBatchInput = false;
|
||||||
|
|
||||||
private _inputDimensions: number[][] = []
|
private _inputDimensions: number[][] = [];
|
||||||
|
|
||||||
private _inputSize: number
|
private _inputSize = 0;
|
||||||
|
|
||||||
constructor(inputs: Array<TResolvedNetInput>, treatAsBatchInput = false) {
|
constructor(inputs: Array<TResolvedNetInput>, treatAsBatchInput = false) {
|
||||||
if (!Array.isArray(inputs)) {
|
if (!Array.isArray(inputs)) {
|
||||||
|
@ -47,8 +47,9 @@ export class NetInput {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// @ts-ignore
|
||||||
const canvas = (input as any) instanceof env.getEnv().Canvas ? input : createCanvasFromMedia(input);
|
const canvas = (input as any) instanceof env.getEnv().Canvas ? input : createCanvasFromMedia(input);
|
||||||
this._canvases[idx] = canvas;
|
this._canvases[idx] = canvas as HTMLCanvasElement;
|
||||||
this._inputDimensions[idx] = [canvas.height, canvas.width, 3];
|
this._inputDimensions[idx] = [canvas.height, canvas.width, 3];
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
@ -127,23 +128,24 @@ export class NetInput {
|
||||||
|
|
||||||
if (input instanceof tf.Tensor) {
|
if (input instanceof tf.Tensor) {
|
||||||
let imgTensor = isTensor4D(input) ? input : tf.expandDims(input);
|
let imgTensor = isTensor4D(input) ? input : tf.expandDims(input);
|
||||||
imgTensor = padToSquare(imgTensor, isCenterInputs);
|
imgTensor = padToSquare(imgTensor as tf.Tensor4D, isCenterInputs);
|
||||||
|
|
||||||
if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) {
|
if (imgTensor.shape[1] !== inputSize || imgTensor.shape[2] !== inputSize) {
|
||||||
imgTensor = tf.image.resizeBilinear(imgTensor, [inputSize, inputSize], false, false);
|
imgTensor = tf['image'].resizeBilinear(imgTensor as tf.Tensor4D, [inputSize, inputSize], false, false);
|
||||||
}
|
}
|
||||||
|
|
||||||
return imgTensor.as3D(inputSize, inputSize, 3);
|
return imgTensor.as3D(inputSize, inputSize, 3);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (input instanceof env.getEnv().Canvas) {
|
if (input instanceof env.getEnv().Canvas) {
|
||||||
return tf.browser.fromPixels(imageToSquare(input, inputSize, isCenterInputs));
|
return tf['browser'].fromPixels(imageToSquare(input, inputSize, isCenterInputs));
|
||||||
}
|
}
|
||||||
|
|
||||||
throw new Error(`toBatchTensor - at batchIdx ${batchIdx}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${input}`);
|
throw new Error(`toBatchTensor - at batchIdx ${batchIdx}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${input}`);
|
||||||
});
|
});
|
||||||
|
|
||||||
const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))).as4D(this.batchSize, inputSize, inputSize, 3);
|
const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))).as4D(this.batchSize, inputSize, inputSize, 3);
|
||||||
|
// const batchTensor = tf.stack(inputTensors.map((t) => tf.cast(t, 'float32'))) as tf.Tensor4D;
|
||||||
|
|
||||||
return batchTensor;
|
return batchTensor;
|
||||||
});
|
});
|
||||||
|
|
|
@ -4,7 +4,10 @@ import { isMediaLoaded } from './isMediaLoaded';
|
||||||
export function awaitMediaLoaded(media: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement) {
|
export function awaitMediaLoaded(media: HTMLImageElement | HTMLVideoElement | HTMLCanvasElement) {
|
||||||
// eslint-disable-next-line consistent-return
|
// eslint-disable-next-line consistent-return
|
||||||
return new Promise((resolve, reject) => {
|
return new Promise((resolve, reject) => {
|
||||||
if (media instanceof env.getEnv().Canvas || isMediaLoaded(media)) return resolve(null);
|
if (media instanceof env.getEnv().Canvas || isMediaLoaded(media)) {
|
||||||
|
resolve(null);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
function onError(e: Event) {
|
function onError(e: Event) {
|
||||||
if (!e.currentTarget) return;
|
if (!e.currentTarget) return;
|
||||||
|
|
|
@ -25,17 +25,11 @@ export async function extractFaceTensors(imageTensor: tf.Tensor3D | tf.Tensor4D,
|
||||||
|
|
||||||
return tf.tidy(() => {
|
return tf.tidy(() => {
|
||||||
const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0);
|
const [imgHeight, imgWidth, numChannels] = imageTensor.shape.slice(isTensor4D(imageTensor) ? 1 : 0);
|
||||||
|
const boxes = detections.map((det) => (det instanceof FaceDetection ? det.forSize(imgWidth, imgHeight).box : det))
|
||||||
const boxes = detections
|
|
||||||
.map((det) => (det instanceof FaceDetection
|
|
||||||
? det.forSize(imgWidth, imgHeight).box
|
|
||||||
: det))
|
|
||||||
.map((box) => box.clipAtImageBorders(imgWidth, imgHeight));
|
.map((box) => box.clipAtImageBorders(imgWidth, imgHeight));
|
||||||
|
const faceTensors = boxes
|
||||||
const faceTensors = boxes.map(({
|
.filter((box) => box.width > 0 && box.height > 0)
|
||||||
x, y, width, height,
|
.map(({ x, y, width, height }) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]));
|
||||||
}) => tf.slice3d(imageTensor.as3D(imgHeight, imgWidth, numChannels), [y, x, 0], [height, width, numChannels]));
|
|
||||||
|
|
||||||
return faceTensors;
|
return faceTensors;
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
|
@ -3,21 +3,10 @@ import { resolveInput } from './resolveInput';
|
||||||
|
|
||||||
export function getContext2dOrThrow(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D): CanvasRenderingContext2D {
|
export function getContext2dOrThrow(canvasArg: string | HTMLCanvasElement | CanvasRenderingContext2D): CanvasRenderingContext2D {
|
||||||
const { Canvas, CanvasRenderingContext2D } = env.getEnv();
|
const { Canvas, CanvasRenderingContext2D } = env.getEnv();
|
||||||
|
if (canvasArg instanceof CanvasRenderingContext2D) return canvasArg;
|
||||||
if (canvasArg instanceof CanvasRenderingContext2D) {
|
|
||||||
return canvasArg;
|
|
||||||
}
|
|
||||||
|
|
||||||
const canvas = resolveInput(canvasArg);
|
const canvas = resolveInput(canvasArg);
|
||||||
|
if (!(canvas instanceof Canvas)) throw new Error('resolveContext2d - expected canvas to be of instance of Canvas');
|
||||||
if (!(canvas instanceof Canvas)) {
|
const ctx = canvas.getContext('2d', { willReadFrequently: true });
|
||||||
throw new Error('resolveContext2d - expected canvas to be of instance of Canvas');
|
if (!ctx) throw new Error('resolveContext2d - canvas 2d context is null');
|
||||||
}
|
|
||||||
|
|
||||||
const ctx = canvas.getContext('2d');
|
|
||||||
if (!ctx) {
|
|
||||||
throw new Error('resolveContext2d - canvas 2d context is null');
|
|
||||||
}
|
|
||||||
|
|
||||||
return ctx;
|
return ctx;
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,7 +11,7 @@ export async function imageTensorToCanvas(
|
||||||
|
|
||||||
const [height, width, numChannels] = imgTensor.shape.slice(isTensor4D(imgTensor) ? 1 : 0);
|
const [height, width, numChannels] = imgTensor.shape.slice(isTensor4D(imgTensor) ? 1 : 0);
|
||||||
const imgTensor3D = tf.tidy(() => imgTensor.as3D(height, width, numChannels).toInt());
|
const imgTensor3D = tf.tidy(() => imgTensor.as3D(height, width, numChannels).toInt());
|
||||||
await tf.browser.toPixels(imgTensor3D, targetCanvas);
|
await tf['browser'].toPixels(imgTensor3D, targetCanvas);
|
||||||
|
|
||||||
imgTensor3D.dispose();
|
imgTensor3D.dispose();
|
||||||
|
|
||||||
|
|
|
@ -8,7 +8,8 @@ export async function loadWeightMap(
|
||||||
defaultModelName: string,
|
defaultModelName: string,
|
||||||
): Promise<tf.NamedTensorMap> {
|
): Promise<tf.NamedTensorMap> {
|
||||||
const { manifestUri, modelBaseUri } = getModelUris(uri, defaultModelName);
|
const { manifestUri, modelBaseUri } = getModelUris(uri, defaultModelName);
|
||||||
|
// @ts-ignore
|
||||||
const manifest = await fetchJson<tf.io.WeightsManifestConfig>(manifestUri);
|
const manifest = await fetchJson<tf.io.WeightsManifestConfig>(manifestUri);
|
||||||
// if (manifest['weightsManifest']) manifest = manifest['weightsManifest'];
|
// if (manifest['weightsManifest']) manifest = manifest['weightsManifest'];
|
||||||
return tf.io.loadWeights(manifest, modelBaseUri);
|
return tf['io'].loadWeights(manifest, modelBaseUri);
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,11 +1,9 @@
|
||||||
import * as tf from '../../dist/tfjs.esm';
|
import type { Tensor3D, Tensor4D } from '../../dist/tfjs.esm';
|
||||||
|
|
||||||
import { NetInput } from './NetInput';
|
import { NetInput } from './NetInput';
|
||||||
|
|
||||||
export type TMediaElement = HTMLImageElement | HTMLVideoElement | HTMLCanvasElement
|
export type TMediaElement = HTMLImageElement | HTMLVideoElement | HTMLCanvasElement
|
||||||
|
|
||||||
export type TResolvedNetInput = TMediaElement | tf.Tensor3D | tf.Tensor4D
|
export type TResolvedNetInput = TMediaElement | Tensor3D | Tensor4D
|
||||||
|
|
||||||
export type TNetInputArg = string | TResolvedNetInput
|
export type TNetInput = string | TResolvedNetInput | Array<string | TResolvedNetInput> | NetInput
|
||||||
|
|
||||||
export type TNetInput = TNetInputArg | Array<TNetInputArg> | NetInput | tf.Tensor4D
|
|
||||||
|
|
|
@ -11,13 +11,13 @@ export interface IDrawBoxOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawBoxOptions {
|
export class DrawBoxOptions {
|
||||||
public boxColor: string
|
public boxColor: string;
|
||||||
|
|
||||||
public lineWidth: number
|
public lineWidth: number;
|
||||||
|
|
||||||
public drawLabelOptions: DrawTextFieldOptions
|
public drawLabelOptions: DrawTextFieldOptions;
|
||||||
|
|
||||||
public label?: string
|
public label?: string;
|
||||||
|
|
||||||
constructor(options: IDrawBoxOptions = {}) {
|
constructor(options: IDrawBoxOptions = {}) {
|
||||||
const {
|
const {
|
||||||
|
@ -36,9 +36,9 @@ export class DrawBoxOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawBox {
|
export class DrawBox {
|
||||||
public box: Box
|
public box: Box;
|
||||||
|
|
||||||
public options: DrawBoxOptions
|
public options: DrawBoxOptions;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
box: IBoundingBox | IRect,
|
box: IBoundingBox | IRect,
|
||||||
|
|
|
@ -17,17 +17,17 @@ export interface IDrawFaceLandmarksOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawFaceLandmarksOptions {
|
export class DrawFaceLandmarksOptions {
|
||||||
public drawLines: boolean
|
public drawLines: boolean;
|
||||||
|
|
||||||
public drawPoints: boolean
|
public drawPoints: boolean;
|
||||||
|
|
||||||
public lineWidth: number
|
public lineWidth: number;
|
||||||
|
|
||||||
public pointSize: number
|
public pointSize: number;
|
||||||
|
|
||||||
public lineColor: string
|
public lineColor: string;
|
||||||
|
|
||||||
public pointColor: string
|
public pointColor: string;
|
||||||
|
|
||||||
constructor(options: IDrawFaceLandmarksOptions = {}) {
|
constructor(options: IDrawFaceLandmarksOptions = {}) {
|
||||||
const {
|
const {
|
||||||
|
@ -43,9 +43,9 @@ export class DrawFaceLandmarksOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawFaceLandmarks {
|
export class DrawFaceLandmarks {
|
||||||
public faceLandmarks: FaceLandmarks
|
public faceLandmarks: FaceLandmarks;
|
||||||
|
|
||||||
public options: DrawFaceLandmarksOptions
|
public options: DrawFaceLandmarksOptions;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
faceLandmarks: FaceLandmarks,
|
faceLandmarks: FaceLandmarks,
|
||||||
|
|
|
@ -25,17 +25,17 @@ export interface IDrawTextFieldOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawTextFieldOptions implements IDrawTextFieldOptions {
|
export class DrawTextFieldOptions implements IDrawTextFieldOptions {
|
||||||
public anchorPosition: AnchorPosition
|
public anchorPosition: AnchorPosition;
|
||||||
|
|
||||||
public backgroundColor: string
|
public backgroundColor: string;
|
||||||
|
|
||||||
public fontColor: string
|
public fontColor: string;
|
||||||
|
|
||||||
public fontSize: number
|
public fontSize: number;
|
||||||
|
|
||||||
public fontStyle: string
|
public fontStyle: string;
|
||||||
|
|
||||||
public padding: number
|
public padding: number;
|
||||||
|
|
||||||
constructor(options: IDrawTextFieldOptions = {}) {
|
constructor(options: IDrawTextFieldOptions = {}) {
|
||||||
const {
|
const {
|
||||||
|
@ -51,11 +51,11 @@ export class DrawTextFieldOptions implements IDrawTextFieldOptions {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DrawTextField {
|
export class DrawTextField {
|
||||||
public text: string[]
|
public text: string[];
|
||||||
|
|
||||||
public anchor : IPoint
|
public anchor : IPoint;
|
||||||
|
|
||||||
public options: DrawTextFieldOptions
|
public options: DrawTextFieldOptions;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
text: string | string[] | DrawTextField,
|
text: string | string[] | DrawTextField,
|
||||||
|
|
|
@ -7,12 +7,7 @@ import { DrawTextField } from './DrawTextField';
|
||||||
|
|
||||||
export type DrawFaceExpressionsInput = FaceExpressions | WithFaceExpressions<{}>
|
export type DrawFaceExpressionsInput = FaceExpressions | WithFaceExpressions<{}>
|
||||||
|
|
||||||
export function drawFaceExpressions(
|
export function drawFaceExpressions(canvasArg: string | HTMLCanvasElement, faceExpressions: DrawFaceExpressionsInput | Array<DrawFaceExpressionsInput>, minConfidence = 0.1, textFieldAnchor?: IPoint) {
|
||||||
canvasArg: string | HTMLCanvasElement,
|
|
||||||
faceExpressions: DrawFaceExpressionsInput | Array<DrawFaceExpressionsInput>,
|
|
||||||
minConfidence = 0.1,
|
|
||||||
textFieldAnchor?: IPoint,
|
|
||||||
) {
|
|
||||||
const faceExpressionsArray = Array.isArray(faceExpressions) ? faceExpressions : [faceExpressions];
|
const faceExpressionsArray = Array.isArray(faceExpressions) ? faceExpressions : [faceExpressions];
|
||||||
|
|
||||||
faceExpressionsArray.forEach((e) => {
|
faceExpressionsArray.forEach((e) => {
|
||||||
|
|
|
@ -1,26 +1,20 @@
|
||||||
import { FileSystem } from './types';
|
import { FileSystem } from './types';
|
||||||
|
import { isNodejs } from './isNodejs';
|
||||||
|
|
||||||
export function createFileSystem(fs?: any): FileSystem {
|
export function createFileSystem(fs?: any): FileSystem {
|
||||||
let requireFsError = '';
|
let requireFsError = '';
|
||||||
|
if (!fs && isNodejs()) {
|
||||||
if (!fs) {
|
|
||||||
try {
|
try {
|
||||||
// eslint-disable-next-line global-require
|
// eslint-disable-next-line global-require, @typescript-eslint/no-require-imports
|
||||||
fs = require('fs');
|
fs = require('fs');
|
||||||
} catch (err) {
|
} catch (err) {
|
||||||
requireFsError = err.toString();
|
requireFsError = (err as any).toString();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
const readFile = fs
|
const readFile = fs
|
||||||
? (filePath: string) => new Promise<Buffer>((resolve, reject) => {
|
// eslint-disable-next-line no-undef
|
||||||
fs.readFile(filePath, (err: any, buffer: Buffer) => (err ? reject(err) : resolve(buffer)));
|
? (filePath: string) => new Promise<string | Buffer>((resolve, reject) => { fs.readFile(filePath, (err: NodeJS.ErrnoException | null, buffer: string | Buffer) => (err ? reject(err) : resolve(buffer))); })
|
||||||
})
|
: () => { throw new Error(`readFile - failed to require fs in nodejs environment with error: ${requireFsError}`); };
|
||||||
: () => {
|
return { readFile };
|
||||||
throw new Error(`readFile - failed to require fs in nodejs environment with error: ${requireFsError}`);
|
|
||||||
};
|
|
||||||
|
|
||||||
return {
|
|
||||||
readFile,
|
|
||||||
};
|
|
||||||
}
|
}
|
||||||
|
|
|
@ -3,11 +3,9 @@ import { createFileSystem } from './createFileSystem';
|
||||||
import { Environment } from './types';
|
import { Environment } from './types';
|
||||||
|
|
||||||
export function createNodejsEnv(): Environment {
|
export function createNodejsEnv(): Environment {
|
||||||
// eslint-disable-next-line dot-notation
|
const Canvas: (new () => HTMLCanvasElement) = (global as any)['Canvas'] || global.HTMLCanvasElement;
|
||||||
const Canvas = global['Canvas'] || global.HTMLCanvasElement;
|
|
||||||
const Image = global.Image || global.HTMLImageElement;
|
const Image = global.Image || global.HTMLImageElement;
|
||||||
// eslint-disable-next-line dot-notation
|
const Video: (new () => HTMLVideoElement) = (global as any)['Video'] || global.HTMLVideoElement;
|
||||||
const Video = global['Video'] || global.HTMLVideoElement;
|
|
||||||
|
|
||||||
const createCanvasElement = () => {
|
const createCanvasElement = () => {
|
||||||
if (Canvas) return new Canvas();
|
if (Canvas) return new Canvas();
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
export function isNodejs(): boolean {
|
export function isNodejs(): boolean {
|
||||||
return typeof global === 'object'
|
return typeof global === 'object'
|
||||||
&& typeof require === 'function'
|
&& typeof process !== 'undefined'
|
||||||
&& typeof module !== 'undefined'
|
&& process.versions != null
|
||||||
&& typeof process !== 'undefined' && !!process.version;
|
&& process.versions.node != null;
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,17 +1,17 @@
|
||||||
export type FileSystem = {
|
export type FileSystem = {
|
||||||
// eslint-disable-next-line no-unused-vars
|
// eslint-disable-next-line no-unused-vars
|
||||||
readFile: (filePath: string) => Promise<Buffer>
|
readFile: (filePath: string) => Promise<string | Buffer>;
|
||||||
}
|
};
|
||||||
|
|
||||||
export type Environment = FileSystem & {
|
export type Environment = FileSystem & {
|
||||||
Canvas: typeof HTMLCanvasElement
|
Canvas: typeof HTMLCanvasElement;
|
||||||
CanvasRenderingContext2D: typeof CanvasRenderingContext2D
|
CanvasRenderingContext2D: typeof CanvasRenderingContext2D;
|
||||||
Image: typeof HTMLImageElement
|
Image: typeof HTMLImageElement;
|
||||||
ImageData: typeof ImageData
|
ImageData: typeof ImageData;
|
||||||
Video: typeof HTMLVideoElement
|
Video: typeof HTMLVideoElement;
|
||||||
createCanvasElement: () => HTMLCanvasElement
|
createCanvasElement: () => HTMLCanvasElement;
|
||||||
createImageElement: () => HTMLImageElement
|
createImageElement: () => HTMLImageElement;
|
||||||
createVideoElement: () => HTMLVideoElement
|
createVideoElement: () => HTMLVideoElement;
|
||||||
// eslint-disable-next-line no-undef, no-unused-vars
|
// eslint-disable-next-line no-undef, no-unused-vars
|
||||||
fetch: (url: string, init?: RequestInit) => Promise<Response>
|
fetch: (url: string, init?: RequestInit) => Promise<Response>;
|
||||||
}
|
};
|
||||||
|
|
|
@ -1,12 +1,10 @@
|
||||||
export function euclideanDistance(arr1: number[] | Float32Array, arr2: number[] | Float32Array) {
|
export function euclideanDistance(arr1: number[] | Float32Array, arr2: number[] | Float32Array) {
|
||||||
if (arr1.length !== arr2.length) throw new Error('euclideanDistance: arr1.length !== arr2.length');
|
if (arr1.length !== arr2.length) throw new Error('euclideanDistance: arr1.length !== arr2.length');
|
||||||
|
|
||||||
const desc1 = Array.from(arr1);
|
const desc1 = Array.from(arr1);
|
||||||
const desc2 = Array.from(arr2);
|
const desc2 = Array.from(arr2);
|
||||||
|
|
||||||
return Math.sqrt(
|
return Math.sqrt(
|
||||||
desc1
|
desc1
|
||||||
.map((val, i) => val - desc2[i])
|
.map((val, i) => val - desc2[i])
|
||||||
.reduce((res, diff) => res + (diff ** 2), 0),
|
.reduce((res, diff) => res + (diff * diff), 0),
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,19 +1,13 @@
|
||||||
export const FACE_EXPRESSION_LABELS = ['neutral', 'happy', 'sad', 'angry', 'fearful', 'disgusted', 'surprised'];
|
export const FACE_EXPRESSION_LABELS = ['neutral', 'happy', 'sad', 'angry', 'fearful', 'disgusted', 'surprised'] as const;
|
||||||
|
|
||||||
export class FaceExpressions {
|
export class FaceExpressions {
|
||||||
public neutral: number
|
public neutral = 0;
|
||||||
|
public happy = 0;
|
||||||
public happy: number
|
public sad = 0;
|
||||||
|
public angry = 0;
|
||||||
public sad: number
|
public fearful = 0;
|
||||||
|
public disgusted = 0;
|
||||||
public angry: number
|
public surprised = 0;
|
||||||
|
|
||||||
public fearful: number
|
|
||||||
|
|
||||||
public disgusted: number
|
|
||||||
|
|
||||||
public surprised: number
|
|
||||||
|
|
||||||
constructor(probabilities: number[] | Float32Array) {
|
constructor(probabilities: number[] | Float32Array) {
|
||||||
if (probabilities.length !== 7) {
|
if (probabilities.length !== 7) {
|
||||||
|
|
|
@ -13,7 +13,7 @@ export abstract class FaceProcessor<
|
||||||
TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams
|
TExtractorParams extends FaceFeatureExtractorParams | TinyFaceFeatureExtractorParams
|
||||||
>
|
>
|
||||||
extends NeuralNetwork<NetParams> {
|
extends NeuralNetwork<NetParams> {
|
||||||
protected _faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>
|
protected _faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>;
|
||||||
|
|
||||||
constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>) {
|
constructor(_name: string, faceFeatureExtractor: IFaceFeatureExtractor<TExtractorParams>) {
|
||||||
super(_name);
|
super(_name);
|
||||||
|
@ -24,7 +24,7 @@ export abstract class FaceProcessor<
|
||||||
return this._faceFeatureExtractor;
|
return this._faceFeatureExtractor;
|
||||||
}
|
}
|
||||||
|
|
||||||
protected abstract getDefaultModelName(): string
|
protected abstract override getDefaultModelName(): string
|
||||||
|
|
||||||
protected abstract getClassifierChannelsIn(): number
|
protected abstract getClassifierChannelsIn(): number
|
||||||
|
|
||||||
|
@ -45,7 +45,7 @@ export abstract class FaceProcessor<
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
public dispose(throwOnRedispose = true) {
|
public override dispose(throwOnRedispose = true) {
|
||||||
this.faceFeatureExtractor.dispose(throwOnRedispose);
|
this.faceFeatureExtractor.dispose(throwOnRedispose);
|
||||||
super.dispose(throwOnRedispose);
|
super.dispose(throwOnRedispose);
|
||||||
}
|
}
|
||||||
|
|
|
@ -51,7 +51,7 @@ export class FaceRecognitionNet extends NeuralNetwork<NetParams> {
|
||||||
const globalAvg = out.mean([1, 2]) as tf.Tensor2D;
|
const globalAvg = out.mean([1, 2]) as tf.Tensor2D;
|
||||||
const fullyConnected = tf.matMul(globalAvg, params.fc);
|
const fullyConnected = tf.matMul(globalAvg, params.fc);
|
||||||
|
|
||||||
return fullyConnected;
|
return fullyConnected as tf.Tensor2D;
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -60,6 +60,7 @@ export class FaceRecognitionNet extends NeuralNetwork<NetParams> {
|
||||||
}
|
}
|
||||||
|
|
||||||
public async computeFaceDescriptor(input: TNetInput): Promise<Float32Array|Float32Array[]> {
|
public async computeFaceDescriptor(input: TNetInput): Promise<Float32Array|Float32Array[]> {
|
||||||
|
// @ts-ignore
|
||||||
if (input?.shape?.some((dim) => dim <= 0)) return new Float32Array(128);
|
if (input?.shape?.some((dim) => dim <= 0)) return new Float32Array(128);
|
||||||
const netInput = await toNetInput(input);
|
const netInput = await toNetInput(input);
|
||||||
const faceDescriptorTensors = tf.tidy(() => tf.unstack(this.forwardInput(netInput)));
|
const faceDescriptorTensors = tf.tidy(() => tf.unstack(this.forwardInput(netInput)));
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
import { Point } from '../classes';
|
||||||
import { FaceDetection } from '../classes/FaceDetection';
|
import { FaceDetection } from '../classes/FaceDetection';
|
||||||
import { FaceLandmarks } from '../classes/FaceLandmarks';
|
import { FaceLandmarks } from '../classes/FaceLandmarks';
|
||||||
import { FaceLandmarks68 } from '../classes/FaceLandmarks68';
|
import { FaceLandmarks68 } from '../classes/FaceLandmarks68';
|
||||||
|
@ -5,75 +6,106 @@ import { isWithFaceDetection, WithFaceDetection } from './WithFaceDetection';
|
||||||
|
|
||||||
export type WithFaceLandmarks<
|
export type WithFaceLandmarks<
|
||||||
TSource extends WithFaceDetection<{}>,
|
TSource extends WithFaceDetection<{}>,
|
||||||
TFaceLandmarks extends FaceLandmarks = FaceLandmarks68 > = TSource & {
|
TFaceLandmarks extends FaceLandmarks = FaceLandmarks68
|
||||||
landmarks: TFaceLandmarks,
|
> = TSource & {
|
||||||
unshiftedLandmarks: TFaceLandmarks,
|
landmarks: TFaceLandmarks;
|
||||||
alignedRect: FaceDetection,
|
unshiftedLandmarks: TFaceLandmarks;
|
||||||
angle: { roll: number | undefined, pitch: number | undefined, yaw: number | undefined },
|
alignedRect: FaceDetection;
|
||||||
}
|
angle: {
|
||||||
|
roll: number | undefined;
|
||||||
|
pitch: number | undefined;
|
||||||
|
yaw: number | undefined;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
export function isWithFaceLandmarks(obj: any): obj is WithFaceLandmarks<WithFaceDetection<{}>, FaceLandmarks> {
|
export function isWithFaceLandmarks(
|
||||||
return isWithFaceDetection(obj)
|
obj: any,
|
||||||
// eslint-disable-next-line dot-notation
|
): obj is WithFaceLandmarks<WithFaceDetection<{}>, FaceLandmarks> {
|
||||||
&& obj['landmarks'] instanceof FaceLandmarks
|
return (
|
||||||
// eslint-disable-next-line dot-notation
|
isWithFaceDetection(obj)
|
||||||
&& obj['unshiftedLandmarks'] instanceof FaceLandmarks
|
&& (obj as any)['landmarks'] instanceof FaceLandmarks
|
||||||
// eslint-disable-next-line dot-notation
|
&& (obj as any)['unshiftedLandmarks'] instanceof FaceLandmarks
|
||||||
&& obj['alignedRect'] instanceof FaceDetection;
|
&& (obj as any)['alignedRect'] instanceof FaceDetection
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
function calculateFaceAngle(mesh) {
|
function calculateFaceAngle(mesh: FaceLandmarks) {
|
||||||
// returns the angle in the plane (in radians) between the positive x-axis and the ray from (0,0) to the point (x,y)
|
// Helper to convert radians to degrees
|
||||||
const radians = (a1, a2, b1, b2) => (Math.atan2(b2 - a2, b1 - a1) % Math.PI);
|
|
||||||
// convert radians to degrees
|
|
||||||
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
||||||
const degrees = (theta) => (theta * 180) / Math.PI;
|
const degrees = (radians: number) => (radians * 180) / Math.PI;
|
||||||
|
const calcLengthBetweenTwoPoints = (a: Point, b: Point) => Math.sqrt((a.x - b.x) ** 2 + (a.y - b.y) ** 2);
|
||||||
|
|
||||||
const angle = { roll: <number | undefined>undefined, pitch: <number | undefined>undefined, yaw: <number | undefined>undefined };
|
const angle = {
|
||||||
|
roll: <number | undefined>undefined,
|
||||||
|
pitch: <number | undefined>undefined,
|
||||||
|
yaw: <number | undefined>undefined,
|
||||||
|
};
|
||||||
|
|
||||||
if (!mesh || !mesh._positions || mesh._positions.length !== 68) return angle;
|
const calcYaw = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {
|
||||||
const pt = mesh._positions;
|
// Calc x-distance from left side of the face ("ear") to facial midpoint ("nose")
|
||||||
|
const leftToMidpoint = Math.floor(leftPoint.x - midPoint.x);
|
||||||
|
// Calc x-distance from facial midpoint ("nose") to the right side of the face ("ear")
|
||||||
|
const rightToMidpoint = Math.floor(midPoint.x - rightPoint.x);
|
||||||
|
// Difference in distances coincidentally approximates to angles
|
||||||
|
return leftToMidpoint - rightToMidpoint;
|
||||||
|
};
|
||||||
|
|
||||||
// values are in radians in range of -pi/2 to pi/2 which is -90 to +90 degrees
|
const calcRoll = (lever: Point, pivot: Point) => {
|
||||||
// value of 0 means center
|
// When rolling, the head seems to pivot from the nose/lips/chin area.
|
||||||
|
// So, we'll choose any two points from the facial midline, where the first point should be the pivot, and the other "lever"
|
||||||
|
// Plan/Execution: get the hypotenuse & opposite sides of a 90deg triangle ==> Calculate angle in radians
|
||||||
|
const hypotenuse = Math.hypot(pivot.x - lever.x, pivot.y - lever.y);
|
||||||
|
const opposite = pivot.y - lever.y;
|
||||||
|
const angleInRadians = Math.asin(opposite / hypotenuse);
|
||||||
|
const angleInDegrees = degrees(angleInRadians);
|
||||||
|
const normalizeAngle = Math.floor(90 - angleInDegrees);
|
||||||
|
// If lever more to the left of the pivot, then we're tilting left
|
||||||
|
// "-" is negative direction. "+", or absence of a sign is positive direction
|
||||||
|
const tiltDirection = pivot.x - lever.x < 0 ? -1 : 1;
|
||||||
|
const result = normalizeAngle * tiltDirection;
|
||||||
|
return result;
|
||||||
|
};
|
||||||
|
|
||||||
// roll is face lean from left to right
|
const calcPitch = (leftPoint: Point, midPoint: Point, rightPoint: Point) => {
|
||||||
// comparing x,y of outside corners of leftEye and rightEye
|
// Theory: While pitching, the nose is the most salient point --> That's what we'll use to make a trianle.
|
||||||
angle.roll = -radians(pt[36]._x, pt[36]._y, pt[45]._x, pt[45]._y);
|
// The "base" is between point that don't move when we pitch our head (i.e. an imaginary line running ear to ear through the nose).
|
||||||
|
// Executuin: Get the opposite & adjacent lengths of the triangle from the ear's perspective. Use it to get angle.
|
||||||
|
|
||||||
// pitch is face turn from left right
|
const base = calcLengthBetweenTwoPoints(leftPoint, rightPoint);
|
||||||
// comparing x distance of top of nose to left and right edge of face
|
// adjecent is base/2 technically.
|
||||||
// precision is lacking since coordinates are not precise enough
|
const baseCoords = new Point((leftPoint.x + rightPoint.x) / 2, (leftPoint.y + rightPoint.y) / 2);
|
||||||
angle.pitch = radians(0, Math.abs(pt[0]._x - pt[30]._x) / pt[30]._x, Math.PI, Math.abs(pt[16]._x - pt[30]._x) / pt[30]._x);
|
const midToBaseLength = calcLengthBetweenTwoPoints(midPoint, baseCoords);
|
||||||
|
const angleInRadians = Math.atan(midToBaseLength / base);
|
||||||
// yaw is face move from up to down
|
const angleInDegrees = Math.floor(degrees(angleInRadians));
|
||||||
// comparing size of the box around the face with top and bottom of detected landmarks
|
// Account for directionality.
|
||||||
// silly hack, but this gives us face compression on y-axis
|
// pitch forwards (_i.e. tilting your head forwards) is positive (or no sign); backward is negative.
|
||||||
// e.g., tilting head up hides the forehead that doesn't have any landmarks so ratio drops
|
const direction = baseCoords.y - midPoint.y < 0 ? -1 : 1;
|
||||||
const bottom = pt.reduce((prev, cur) => (prev < cur._y ? prev : cur._y), +Infinity);
|
const result = angleInDegrees * direction;
|
||||||
const top = pt.reduce((prev, cur) => (prev > cur._y ? prev : cur._y), -Infinity);
|
return result;
|
||||||
angle.yaw = Math.PI * (mesh._imgDims._height / (top - bottom) / 1.40 - 1);
|
};
|
||||||
|
|
||||||
|
if (!mesh || !mesh.positions || mesh.positions.length !== 68) return angle;
|
||||||
|
const pt = mesh.positions;
|
||||||
|
angle.roll = calcRoll(pt[27], pt[66]);
|
||||||
|
angle.pitch = calcPitch(pt[14], pt[30], pt[2]);
|
||||||
|
angle.yaw = calcYaw(pt[14], pt[33], pt[2]);
|
||||||
return angle;
|
return angle;
|
||||||
}
|
}
|
||||||
|
|
||||||
export function extendWithFaceLandmarks<
|
export function extendWithFaceLandmarks<TSource extends WithFaceDetection<{}>, TFaceLandmarks extends FaceLandmarks = FaceLandmarks68>(
|
||||||
TSource extends WithFaceDetection<{}>,
|
sourceObj: TSource,
|
||||||
TFaceLandmarks extends FaceLandmarks = FaceLandmarks68 >(sourceObj: TSource, unshiftedLandmarks: TFaceLandmarks): WithFaceLandmarks<TSource, TFaceLandmarks> {
|
unshiftedLandmarks: TFaceLandmarks,
|
||||||
|
): WithFaceLandmarks<TSource, TFaceLandmarks> {
|
||||||
const { box: shift } = sourceObj.detection;
|
const { box: shift } = sourceObj.detection;
|
||||||
const landmarks = unshiftedLandmarks.shiftBy<TFaceLandmarks>(shift.x, shift.y);
|
const landmarks = unshiftedLandmarks.shiftBy<TFaceLandmarks>(shift.x, shift.y);
|
||||||
|
|
||||||
const rect = landmarks.align();
|
const rect = landmarks.align();
|
||||||
const { imageDims } = sourceObj.detection;
|
const { imageDims } = sourceObj.detection;
|
||||||
const alignedRect = new FaceDetection(sourceObj.detection.score, rect.rescale(imageDims.reverse()), imageDims);
|
const alignedRect = new FaceDetection(
|
||||||
|
sourceObj.detection.score,
|
||||||
|
rect.rescale(imageDims.reverse()),
|
||||||
|
imageDims,
|
||||||
|
);
|
||||||
const angle = calculateFaceAngle(unshiftedLandmarks);
|
const angle = calculateFaceAngle(unshiftedLandmarks);
|
||||||
|
const extension = { landmarks, unshiftedLandmarks, alignedRect, angle };
|
||||||
const extension = {
|
|
||||||
landmarks,
|
|
||||||
unshiftedLandmarks,
|
|
||||||
alignedRect,
|
|
||||||
angle,
|
|
||||||
};
|
|
||||||
|
|
||||||
return { ...sourceObj, ...extension };
|
return { ...sourceObj, ...extension };
|
||||||
}
|
}
|
||||||
|
|
|
@ -21,7 +21,7 @@ export class ComputeFaceDescriptorsTaskBase<TReturn, TParentReturn> extends Comp
|
||||||
}
|
}
|
||||||
|
|
||||||
export class ComputeAllFaceDescriptorsTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends ComputeFaceDescriptorsTaskBase<WithFaceDescriptor<TSource>[], TSource[]> {
|
export class ComputeAllFaceDescriptorsTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends ComputeFaceDescriptorsTaskBase<WithFaceDescriptor<TSource>[], TSource[]> {
|
||||||
public async run(): Promise<WithFaceDescriptor<TSource>[]> {
|
public override async run(): Promise<WithFaceDescriptor<TSource>[]> {
|
||||||
const parentResults = await this.parentTask;
|
const parentResults = await this.parentTask;
|
||||||
const descriptors = await extractAllFacesAndComputeResults<TSource, Float32Array[]>(
|
const descriptors = await extractAllFacesAndComputeResults<TSource, Float32Array[]>(
|
||||||
parentResults,
|
parentResults,
|
||||||
|
@ -43,20 +43,17 @@ export class ComputeAllFaceDescriptorsTask<TSource extends WithFaceLandmarks<Wit
|
||||||
}
|
}
|
||||||
|
|
||||||
export class ComputeSingleFaceDescriptorTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends ComputeFaceDescriptorsTaskBase<WithFaceDescriptor<TSource> | undefined, TSource | undefined> {
|
export class ComputeSingleFaceDescriptorTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends ComputeFaceDescriptorsTaskBase<WithFaceDescriptor<TSource> | undefined, TSource | undefined> {
|
||||||
public async run(): Promise<WithFaceDescriptor<TSource> | undefined> {
|
public override async run(): Promise<WithFaceDescriptor<TSource> | undefined> {
|
||||||
const parentResult = await this.parentTask;
|
const parentResult = await this.parentTask;
|
||||||
if (!parentResult) {
|
if (!parentResult) return undefined;
|
||||||
return undefined;
|
|
||||||
}
|
|
||||||
const descriptor = await extractSingleFaceAndComputeResult<TSource, Float32Array>(
|
const descriptor = await extractSingleFaceAndComputeResult<TSource, Float32Array>(
|
||||||
parentResult,
|
parentResult,
|
||||||
this.input,
|
this.input,
|
||||||
(face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise<Float32Array>,
|
(face) => nets.faceRecognitionNet.computeFaceDescriptor(face) as Promise<Float32Array>,
|
||||||
null,
|
null,
|
||||||
// eslint-disable-next-line no-shadow
|
// eslint-disable-next-line no-shadow, @typescript-eslint/no-shadow
|
||||||
(parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),
|
(parentResult) => parentResult.landmarks.align(null, { useDlibAlignment: true }),
|
||||||
);
|
);
|
||||||
|
|
||||||
return extendWithFaceDescriptor(parentResult, descriptor);
|
return extendWithFaceDescriptor(parentResult, descriptor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -33,17 +33,18 @@ export class DetectFaceLandmarksTaskBase<TReturn, TParentReturn> extends Composa
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DetectAllFaceLandmarksTask<TSource extends WithFaceDetection<{}>> extends DetectFaceLandmarksTaskBase<WithFaceLandmarks<TSource>[], TSource[]> {
|
export class DetectAllFaceLandmarksTask<TSource extends WithFaceDetection<{}>> extends DetectFaceLandmarksTaskBase<WithFaceLandmarks<TSource>[], TSource[]> {
|
||||||
public async run(): Promise<WithFaceLandmarks<TSource>[]> {
|
public override async run(): Promise<WithFaceLandmarks<TSource>[]> {
|
||||||
const parentResults = await this.parentTask;
|
const parentResults = await this.parentTask;
|
||||||
const detections = parentResults.map((res) => res.detection);
|
const detections = parentResults.map((res) => res.detection);
|
||||||
const faces: Array<HTMLCanvasElement | tf.Tensor3D> = this.input instanceof tf.Tensor
|
const faces: Array<HTMLCanvasElement | tf.Tensor3D> = this.input instanceof tf.Tensor
|
||||||
? await extractFaceTensors(this.input, detections)
|
? await extractFaceTensors(this.input, detections)
|
||||||
: await extractFaces(this.input, detections);
|
: await extractFaces(this.input, detections);
|
||||||
const faceLandmarksByFace = await Promise.all(
|
const faceLandmarksByFace = await Promise.all(faces.map((face) => this.landmarkNet.detectLandmarks(face))) as FaceLandmarks68[];
|
||||||
faces.map((face) => this.landmarkNet.detectLandmarks(face)),
|
|
||||||
) as FaceLandmarks68[];
|
|
||||||
faces.forEach((f) => f instanceof tf.Tensor && f.dispose());
|
faces.forEach((f) => f instanceof tf.Tensor && f.dispose());
|
||||||
return parentResults.map((parentResult, i) => extendWithFaceLandmarks<TSource>(parentResult, faceLandmarksByFace[i]));
|
const result = parentResults
|
||||||
|
.filter((_parentResult, i) => faceLandmarksByFace[i])
|
||||||
|
.map((parentResult, i) => extendWithFaceLandmarks<TSource>(parentResult, faceLandmarksByFace[i]));
|
||||||
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
withFaceExpressions() {
|
withFaceExpressions() {
|
||||||
|
@ -60,7 +61,7 @@ export class DetectAllFaceLandmarksTask<TSource extends WithFaceDetection<{}>> e
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DetectSingleFaceLandmarksTask<TSource extends WithFaceDetection<{}>> extends DetectFaceLandmarksTaskBase<WithFaceLandmarks<TSource> | undefined, TSource | undefined> {
|
export class DetectSingleFaceLandmarksTask<TSource extends WithFaceDetection<{}>> extends DetectFaceLandmarksTaskBase<WithFaceLandmarks<TSource> | undefined, TSource | undefined> {
|
||||||
public async run(): Promise<WithFaceLandmarks<TSource> | undefined> {
|
public override async run(): Promise<WithFaceLandmarks<TSource> | undefined> {
|
||||||
const parentResult = await this.parentTask;
|
const parentResult = await this.parentTask;
|
||||||
if (!parentResult) {
|
if (!parentResult) {
|
||||||
return undefined;
|
return undefined;
|
||||||
|
|
|
@ -20,7 +20,7 @@ export class DetectFacesTaskBase<TReturn> extends ComposableTask<TReturn> {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DetectAllFacesTask extends DetectFacesTaskBase<FaceDetection[]> {
|
export class DetectAllFacesTask extends DetectFacesTaskBase<FaceDetection[]> {
|
||||||
public async run(): Promise<FaceDetection[]> {
|
public override async run(): Promise<FaceDetection[]> {
|
||||||
const { input, options } = this;
|
const { input, options } = this;
|
||||||
let result;
|
let result;
|
||||||
if (options instanceof TinyFaceDetectorOptions) result = nets.tinyFaceDetector.locateFaces(input, options);
|
if (options instanceof TinyFaceDetectorOptions) result = nets.tinyFaceDetector.locateFaces(input, options);
|
||||||
|
@ -62,7 +62,7 @@ export class DetectAllFacesTask extends DetectFacesTaskBase<FaceDetection[]> {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class DetectSingleFaceTask extends DetectFacesTaskBase<FaceDetection | undefined> {
|
export class DetectSingleFaceTask extends DetectFacesTaskBase<FaceDetection | undefined> {
|
||||||
public async run(): Promise<FaceDetection | undefined> {
|
public override async run(): Promise<FaceDetection | undefined> {
|
||||||
const faceDetections = await new DetectAllFacesTask(this.input, this.options);
|
const faceDetections = await new DetectAllFacesTask(this.input, this.options);
|
||||||
let faceDetectionWithHighestScore = faceDetections[0];
|
let faceDetectionWithHighestScore = faceDetections[0];
|
||||||
faceDetections.forEach((faceDetection) => {
|
faceDetections.forEach((faceDetection) => {
|
||||||
|
|
|
@ -4,38 +4,19 @@ import { euclideanDistance } from '../euclideanDistance';
|
||||||
import { WithFaceDescriptor } from '../factories/index';
|
import { WithFaceDescriptor } from '../factories/index';
|
||||||
|
|
||||||
export class FaceMatcher {
|
export class FaceMatcher {
|
||||||
private _labeledDescriptors: LabeledFaceDescriptors[]
|
private _labeledDescriptors: LabeledFaceDescriptors[];
|
||||||
|
private _distanceThreshold: number;
|
||||||
|
|
||||||
private _distanceThreshold: number
|
constructor(inputs: LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>, distanceThreshold = 0.6) {
|
||||||
|
|
||||||
constructor(
|
|
||||||
inputs: LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>,
|
|
||||||
distanceThreshold = 0.6,
|
|
||||||
) {
|
|
||||||
this._distanceThreshold = distanceThreshold;
|
this._distanceThreshold = distanceThreshold;
|
||||||
|
|
||||||
const inputArray = Array.isArray(inputs) ? inputs : [inputs];
|
const inputArray = Array.isArray(inputs) ? inputs : [inputs];
|
||||||
|
if (!inputArray.length) throw new Error('FaceRecognizer.constructor - expected atleast one input');
|
||||||
if (!inputArray.length) {
|
|
||||||
throw new Error('FaceRecognizer.constructor - expected atleast one input');
|
|
||||||
}
|
|
||||||
|
|
||||||
let count = 1;
|
let count = 1;
|
||||||
const createUniqueLabel = () => `person ${count++}`;
|
const createUniqueLabel = () => `person ${count++}`;
|
||||||
|
|
||||||
this._labeledDescriptors = inputArray.map((desc) => {
|
this._labeledDescriptors = inputArray.map((desc) => {
|
||||||
if (desc instanceof LabeledFaceDescriptors) {
|
if (desc instanceof LabeledFaceDescriptors) return desc;
|
||||||
return desc;
|
if (desc instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc]);
|
||||||
}
|
if (desc.descriptor && desc.descriptor instanceof Float32Array) return new LabeledFaceDescriptors(createUniqueLabel(), [desc.descriptor]);
|
||||||
|
|
||||||
if (desc instanceof Float32Array) {
|
|
||||||
return new LabeledFaceDescriptors(createUniqueLabel(), [desc]);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (desc.descriptor && desc.descriptor instanceof Float32Array) {
|
|
||||||
return new LabeledFaceDescriptors(createUniqueLabel(), [desc.descriptor]);
|
|
||||||
}
|
|
||||||
|
|
||||||
throw new Error('FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>');
|
throw new Error('FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array | Array<LabeledFaceDescriptors | WithFaceDescriptor<any> | Float32Array>');
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
@ -47,36 +28,29 @@ export class FaceMatcher {
|
||||||
public computeMeanDistance(queryDescriptor: Float32Array, descriptors: Float32Array[]): number {
|
public computeMeanDistance(queryDescriptor: Float32Array, descriptors: Float32Array[]): number {
|
||||||
return descriptors
|
return descriptors
|
||||||
.map((d) => euclideanDistance(d, queryDescriptor))
|
.map((d) => euclideanDistance(d, queryDescriptor))
|
||||||
.reduce((d1, d2) => d1 + d2, 0)
|
.reduce((d1, d2) => d1 + d2, 0) / (descriptors.length || 1);
|
||||||
/ (descriptors.length || 1);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public matchDescriptor(queryDescriptor: Float32Array): FaceMatch {
|
public matchDescriptor(queryDescriptor: Float32Array): FaceMatch {
|
||||||
return this.labeledDescriptors
|
return this.labeledDescriptors
|
||||||
.map(({ descriptors, label }) => new FaceMatch(
|
.map(({ descriptors, label }) => new FaceMatch(label, this.computeMeanDistance(queryDescriptor, descriptors)))
|
||||||
label,
|
|
||||||
this.computeMeanDistance(queryDescriptor, descriptors),
|
|
||||||
))
|
|
||||||
.reduce((best, curr) => (best.distance < curr.distance ? best : curr));
|
.reduce((best, curr) => (best.distance < curr.distance ? best : curr));
|
||||||
}
|
}
|
||||||
|
|
||||||
public findBestMatch(queryDescriptor: Float32Array): FaceMatch {
|
public findBestMatch(queryDescriptor: Float32Array): FaceMatch {
|
||||||
const bestMatch = this.matchDescriptor(queryDescriptor);
|
const bestMatch = this.matchDescriptor(queryDescriptor);
|
||||||
return bestMatch.distance < this.distanceThreshold
|
return (bestMatch.distance < this._distanceThreshold) ? bestMatch : new FaceMatch('unknown', bestMatch.distance);
|
||||||
? bestMatch
|
|
||||||
: new FaceMatch('unknown', bestMatch.distance);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
public toJSON(): any {
|
public toJSON(): any {
|
||||||
return {
|
return {
|
||||||
distanceThreshold: this.distanceThreshold,
|
distanceThreshold: this._distanceThreshold,
|
||||||
labeledDescriptors: this.labeledDescriptors.map((ld) => ld.toJSON()),
|
labeledDescriptors: this._labeledDescriptors.map((ld) => ld.toJSON()),
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
public static fromJSON(json: any): FaceMatcher {
|
public static fromJSON(json: any): FaceMatcher {
|
||||||
const labeledDescriptors = json.labeledDescriptors
|
const labeledDescriptors = json.labeledDescriptors.map((ld: any) => LabeledFaceDescriptors.fromJSON(ld));
|
||||||
.map((ld: any) => LabeledFaceDescriptors.fromJSON(ld));
|
|
||||||
return new FaceMatcher(labeledDescriptors, json.distanceThreshold);
|
return new FaceMatcher(labeledDescriptors, json.distanceThreshold);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -27,7 +27,7 @@ export class PredictAgeAndGenderTaskBase<TReturn, TParentReturn> extends Composa
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictAllAgeAndGenderTask<TSource extends WithFaceDetection<{}>> extends PredictAgeAndGenderTaskBase<WithAge<WithGender<TSource>>[], TSource[]> {
|
export class PredictAllAgeAndGenderTask<TSource extends WithFaceDetection<{}>> extends PredictAgeAndGenderTaskBase<WithAge<WithGender<TSource>>[], TSource[]> {
|
||||||
public async run(): Promise<WithAge<WithGender<TSource>>[]> {
|
public override async run(): Promise<WithAge<WithGender<TSource>>[]> {
|
||||||
const parentResults = await this.parentTask;
|
const parentResults = await this.parentTask;
|
||||||
const ageAndGenderByFace = await extractAllFacesAndComputeResults<TSource, AgeAndGenderPrediction[]>(
|
const ageAndGenderByFace = await extractAllFacesAndComputeResults<TSource, AgeAndGenderPrediction[]>(
|
||||||
parentResults,
|
parentResults,
|
||||||
|
@ -47,7 +47,7 @@ export class PredictAllAgeAndGenderTask<TSource extends WithFaceDetection<{}>> e
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictSingleAgeAndGenderTask<TSource extends WithFaceDetection<{}>> extends PredictAgeAndGenderTaskBase<WithAge<WithGender<TSource>> | undefined, TSource | undefined> {
|
export class PredictSingleAgeAndGenderTask<TSource extends WithFaceDetection<{}>> extends PredictAgeAndGenderTaskBase<WithAge<WithGender<TSource>> | undefined, TSource | undefined> {
|
||||||
public async run(): Promise<WithAge<WithGender<TSource>> | undefined> {
|
public override async run(): Promise<WithAge<WithGender<TSource>> | undefined> {
|
||||||
const parentResult = await this.parentTask;
|
const parentResult = await this.parentTask;
|
||||||
if (!parentResult) return undefined;
|
if (!parentResult) return undefined;
|
||||||
const { age, gender, genderProbability } = await extractSingleFaceAndComputeResult<TSource, AgeAndGenderPrediction>(
|
const { age, gender, genderProbability } = await extractSingleFaceAndComputeResult<TSource, AgeAndGenderPrediction>(
|
||||||
|
@ -65,7 +65,7 @@ export class PredictSingleAgeAndGenderTask<TSource extends WithFaceDetection<{}>
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictAllAgeAndGenderWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictAllAgeAndGenderTask<TSource> {
|
export class PredictAllAgeAndGenderWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictAllAgeAndGenderTask<TSource> {
|
||||||
withFaceExpressions() {
|
override withFaceExpressions() {
|
||||||
return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);
|
return new PredictAllFaceExpressionsWithFaceAlignmentTask(this, this.input);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -75,7 +75,7 @@ export class PredictAllAgeAndGenderWithFaceAlignmentTask<TSource extends WithFac
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictSingleAgeAndGenderWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictSingleAgeAndGenderTask<TSource> {
|
export class PredictSingleAgeAndGenderWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictSingleAgeAndGenderTask<TSource> {
|
||||||
withFaceExpressions() {
|
override withFaceExpressions() {
|
||||||
return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);
|
return new PredictSingleFaceExpressionsWithFaceAlignmentTask(this, this.input);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -26,7 +26,7 @@ export class PredictFaceExpressionsTaskBase<TReturn, TParentReturn> extends Comp
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictAllFaceExpressionsTask<TSource extends WithFaceDetection<{}>> extends PredictFaceExpressionsTaskBase<WithFaceExpressions<TSource>[], TSource[]> {
|
export class PredictAllFaceExpressionsTask<TSource extends WithFaceDetection<{}>> extends PredictFaceExpressionsTaskBase<WithFaceExpressions<TSource>[], TSource[]> {
|
||||||
public async run(): Promise<WithFaceExpressions<TSource>[]> {
|
public override async run(): Promise<WithFaceExpressions<TSource>[]> {
|
||||||
const parentResults = await this.parentTask;
|
const parentResults = await this.parentTask;
|
||||||
|
|
||||||
const faceExpressionsByFace = await extractAllFacesAndComputeResults<TSource, FaceExpressions[]>(
|
const faceExpressionsByFace = await extractAllFacesAndComputeResults<TSource, FaceExpressions[]>(
|
||||||
|
@ -49,7 +49,7 @@ export class PredictAllFaceExpressionsTask<TSource extends WithFaceDetection<{}>
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictSingleFaceExpressionsTask<TSource extends WithFaceDetection<{}>> extends PredictFaceExpressionsTaskBase<WithFaceExpressions<TSource> | undefined, TSource | undefined> {
|
export class PredictSingleFaceExpressionsTask<TSource extends WithFaceDetection<{}>> extends PredictFaceExpressionsTaskBase<WithFaceExpressions<TSource> | undefined, TSource | undefined> {
|
||||||
public async run(): Promise<WithFaceExpressions<TSource> | undefined> {
|
public override async run(): Promise<WithFaceExpressions<TSource> | undefined> {
|
||||||
const parentResult = await this.parentTask;
|
const parentResult = await this.parentTask;
|
||||||
if (!parentResult) {
|
if (!parentResult) {
|
||||||
return undefined;
|
return undefined;
|
||||||
|
@ -71,7 +71,7 @@ export class PredictSingleFaceExpressionsTask<TSource extends WithFaceDetection<
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictAllFaceExpressionsWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictAllFaceExpressionsTask<TSource> {
|
export class PredictAllFaceExpressionsWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictAllFaceExpressionsTask<TSource> {
|
||||||
withAgeAndGender() {
|
override withAgeAndGender() {
|
||||||
return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);
|
return new PredictAllAgeAndGenderWithFaceAlignmentTask(this, this.input);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -81,7 +81,7 @@ export class PredictAllFaceExpressionsWithFaceAlignmentTask<TSource extends With
|
||||||
}
|
}
|
||||||
|
|
||||||
export class PredictSingleFaceExpressionsWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictSingleFaceExpressionsTask<TSource> {
|
export class PredictSingleFaceExpressionsWithFaceAlignmentTask<TSource extends WithFaceLandmarks<WithFaceDetection<{}>>> extends PredictSingleFaceExpressionsTask<TSource> {
|
||||||
withAgeAndGender() {
|
override withAgeAndGender() {
|
||||||
return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);
|
return new PredictSingleAgeAndGenderWithFaceAlignmentTask(this, this.input);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -22,6 +22,7 @@ export * from './euclideanDistance';
|
||||||
export * from './NeuralNetwork';
|
export * from './NeuralNetwork';
|
||||||
export * from './resizeResults';
|
export * from './resizeResults';
|
||||||
|
|
||||||
const node = (typeof process !== 'undefined');
|
export const version = pkg.version as string;
|
||||||
const browser = (typeof navigator !== 'undefined') && (typeof navigator.userAgent !== 'undefined');
|
|
||||||
export const version = { faceapi: pkg.version as string, node, browser };
|
// set webgl defaults
|
||||||
|
// if (browser) tf.ENV.set('WEBGL_USE_SHAPES_UNIFORMS', true);
|
||||||
|
|
|
@ -8,40 +8,24 @@ import * as tf from '../../dist/tfjs.esm';
|
||||||
* both sides of the minor dimension oof the image.
|
* both sides of the minor dimension oof the image.
|
||||||
* @returns The padded tensor with width === height.
|
* @returns The padded tensor with width === height.
|
||||||
*/
|
*/
|
||||||
export function padToSquare(
|
export function padToSquare(imgTensor: tf.Tensor4D, isCenterImage = false): tf.Tensor4D {
|
||||||
imgTensor: tf.Tensor4D,
|
|
||||||
isCenterImage = false,
|
|
||||||
): tf.Tensor4D {
|
|
||||||
return tf.tidy(() => {
|
return tf.tidy(() => {
|
||||||
const [height, width] = imgTensor.shape.slice(1);
|
const [height, width] = imgTensor.shape.slice(1);
|
||||||
if (height === width) {
|
if (height === width) return imgTensor;
|
||||||
return imgTensor;
|
|
||||||
}
|
|
||||||
|
|
||||||
const dimDiff = Math.abs(height - width);
|
const dimDiff = Math.abs(height - width);
|
||||||
const paddingAmount = Math.round(dimDiff * (isCenterImage ? 0.5 : 1));
|
const paddingAmount = Math.round(dimDiff * (isCenterImage ? 0.5 : 1));
|
||||||
const paddingAxis = height > width ? 2 : 1;
|
const paddingAxis = height > width ? 2 : 1;
|
||||||
|
|
||||||
const createPaddingTensor = (paddingAmountLocal: number): tf.Tensor => {
|
const createPaddingTensor = (paddingAmountLocal: number): tf.Tensor => {
|
||||||
const paddingTensorShape = imgTensor.shape.slice();
|
const paddingTensorShape = imgTensor.shape.slice();
|
||||||
paddingTensorShape[paddingAxis] = paddingAmountLocal;
|
paddingTensorShape[paddingAxis] = paddingAmountLocal;
|
||||||
return tf.fill(paddingTensorShape, 0, 'float32');
|
return tf.fill(paddingTensorShape, 0, 'float32');
|
||||||
};
|
};
|
||||||
|
|
||||||
const paddingTensorAppend = createPaddingTensor(paddingAmount);
|
const paddingTensorAppend = createPaddingTensor(paddingAmount);
|
||||||
const remainingPaddingAmount = dimDiff - (paddingTensorAppend.shape[paddingAxis] as number);
|
const remainingPaddingAmount = dimDiff - (paddingTensorAppend.shape[paddingAxis] as number);
|
||||||
|
const paddingTensorPrepend = isCenterImage && remainingPaddingAmount ? createPaddingTensor(remainingPaddingAmount) : null;
|
||||||
const paddingTensorPrepend = isCenterImage && remainingPaddingAmount
|
const tensorsToStack = [paddingTensorPrepend, imgTensor, paddingTensorAppend]
|
||||||
? createPaddingTensor(remainingPaddingAmount)
|
|
||||||
: null;
|
|
||||||
|
|
||||||
const tensorsToStack = [
|
|
||||||
paddingTensorPrepend,
|
|
||||||
imgTensor,
|
|
||||||
paddingTensorAppend,
|
|
||||||
]
|
|
||||||
.filter((t) => !!t)
|
.filter((t) => !!t)
|
||||||
.map((t: tf.Tensor) => tf.cast(t, 'float32')) as tf.Tensor4D[];
|
.map((t) => tf.cast(t as tf.Tensor4D, 'float32')) as tf.Tensor4D[];
|
||||||
return tf.concat(tensorsToStack, paddingAxis);
|
return tf.concat(tensorsToStack, paddingAxis);
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
|
@ -4,11 +4,11 @@ export interface ISsdMobilenetv1Options {
|
||||||
}
|
}
|
||||||
|
|
||||||
export class SsdMobilenetv1Options {
|
export class SsdMobilenetv1Options {
|
||||||
protected _name = 'SsdMobilenetv1Options'
|
protected _name = 'SsdMobilenetv1Options';
|
||||||
|
|
||||||
private _minConfidence: number
|
private _minConfidence: number;
|
||||||
|
|
||||||
private _maxResults: number
|
private _maxResults: number;
|
||||||
|
|
||||||
constructor({ minConfidence, maxResults }: ISsdMobilenetv1Options = {}) {
|
constructor({ minConfidence, maxResults }: ISsdMobilenetv1Options = {}) {
|
||||||
this._minConfidence = minConfidence || 0.5;
|
this._minConfidence = minConfidence || 0.5;
|
||||||
|
|
|
@ -1,7 +1,15 @@
|
||||||
/* eslint-disable import/no-extraneous-dependencies */
|
/**
|
||||||
/* eslint-disable node/no-unpublished-import */
|
* Creates tfjs bundle used by Human browser build target
|
||||||
|
* @external
|
||||||
// wrapper to load tfjs in a single place so version can be changed quickly
|
*/
|
||||||
|
|
||||||
|
// export all from build bundle
|
||||||
export * from '@tensorflow/tfjs/dist/index.js';
|
export * from '@tensorflow/tfjs/dist/index.js';
|
||||||
export * from '@tensorflow/tfjs-backend-wasm';
|
export * from '@tensorflow/tfjs-backend-webgl/dist/index.js';
|
||||||
|
export * from '@tensorflow/tfjs-backend-wasm/dist/index.js';
|
||||||
|
|
||||||
|
// add webgpu to bundle, experimental
|
||||||
|
// export * from '@tensorflow/tfjs-backend-webgpu/dist/index.js';
|
||||||
|
|
||||||
|
// export versions, overrides version object from @tensorflow/tfjs
|
||||||
|
export { version } from '../../dist/tfjs.version.js';
|
||||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue