diff --git a/CHANGELOG.md b/CHANGELOG.md index e141724..41b1b5d 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -9,7 +9,7 @@ ## Changelog -### **HEAD -> master** 2022/07/26 mandic00@live.com +### **HEAD -> master** 2022/08/16 mandic00@live.com ### **release: 1.7.1** 2022/07/25 mandic00@live.com diff --git a/demo/webcam.js b/demo/webcam.js index ae00d54..9c8aa27 100644 --- a/demo/webcam.js +++ b/demo/webcam.js @@ -180,7 +180,7 @@ async function main() { log('FaceAPI WebCam Test'); // if you want to use wasm backend location for wasm binaries must be specified - // await faceapi.tf.setWasmPaths('../node_modules/@tensorflow/tfjs-backend-wasm/dist/'); + // await faceapi.tf.setWasmPaths(`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${faceapi.tf.version_core}/dist/`); // await faceapi.tf.setBackend('wasm'); // default is webgl backend diff --git a/dist/face-api.js b/dist/face-api.js index 382dd1b..b568252 100644 --- a/dist/face-api.js +++ b/dist/face-api.js @@ -1,10 +1,10 @@ -"use strict";/* +/* Face-API homepage: author: ' */ -var faceapi=(()=>{var Nb=Object.defineProperty;var wF=Object.getOwnPropertyDescriptor;var kF=Object.getOwnPropertyNames;var IF=Object.prototype.hasOwnProperty;var SF=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Ih=(e,t)=>{for(var n in t)Nb(e,n,{get:t[n],enumerable:!0})},NF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of kF(t))!IF.call(e,r)&&r!==n&&Nb(e,r,{get:()=>t[r],enumerable:!(a=wF(t,r))||a.enumerable});return e};var TF=e=>NF(Nb({},"__esModule",{value:!0}),e);var wce={};Ih(wce,{AgeGenderNet:()=>$d,BoundingBox:()=>Fo,Box:()=>lt,ComposableTask:()=>wa,ComputeAllFaceDescriptorsTask:()=>Gr,ComputeFaceDescriptorsTaskBase:()=>Md,ComputeSingleFaceDescriptorTask:()=>Hr,DetectAllFaceLandmarksTask:()=>Od,DetectAllFacesTask:()=>Cp,DetectFaceLandmarksTaskBase:()=>Pd,DetectFacesTaskBase:()=>zd,DetectSingleFaceLandmarksTask:()=>Ld,DetectSingleFaceTask:()=>Bd,Dimensions:()=>yn,FACE_EXPRESSION_LABELS:()=>V1,FaceDetection:()=>xt,FaceDetectionNet:()=>X1,FaceExpressionNet:()=>Ad,FaceExpressions:()=>Wr,FaceLandmark68Net:()=>Wo,FaceLandmark68TinyNet:()=>Fd,FaceLandmarkNet:()=>j1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>_1,FaceLandmarks68:()=>Ro,FaceMatch:()=>hp,FaceMatcher:()=>Wd,FaceRecognitionNet:()=>Vo,Gender:()=>Rg,LabeledBox:()=>mp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>on,ObjectDetection:()=>Lr,Point:()=>Pe,PredictedBox:()=>E1,Rect:()=>Do,SsdMobilenetv1:()=>Fs,SsdMobilenetv1Options:()=>va,TinyFaceDetector:()=>qo,TinyFaceDetectorOptions:()=>Rd,TinyYolov2:()=>Ho,TinyYolov2Options:()=>ar,allFaces:()=>bce,allFacesSsdMobilenetv1:()=>T$,allFacesTinyYolov2:()=>yce,awaitMediaLoaded:()=>P1,bufferToImage:()=>O1,computeFaceDescriptor:()=>ace,createCanvas:()=>Lo,createCanvasFromMedia:()=>Td,createFaceDetectionNet:()=>Ype,createFaceRecognitionNet:()=>zpe,createSsdMobilenetv1:()=>c$,createTinyFaceDetector:()=>xce,createTinyYolov2:()=>Qpe,detectAllFaces:()=>Ug,detectFaceLandmarks:()=>S$,detectFaceLandmarksTiny:()=>nce,detectLandmarks:()=>fce,detectSingleFace:()=>gce,draw:()=>G1,env:()=>et,euclideanDistance:()=>Z1,extendWithAge:()=>Lg,extendWithFaceDescriptor:()=>Og,extendWithFaceDetection:()=>Mo,extendWithFaceExpressions:()=>Ag,extendWithFaceLandmarks:()=>Ip,extendWithGender:()=>zg,extractFaceTensors:()=>yp,extractFaces:()=>gp,fetchImage:()=>Npe,fetchJson:()=>B1,fetchNetWeights:()=>Tpe,fetchOrThrow:()=>Br,fetchVideo:()=>Cpe,getContext2dOrThrow:()=>Kn,getMediaDimensions:()=>Oo,imageTensorToCanvas:()=>L1,imageToSquare:()=>z1,inverseSigmoid:()=>bpe,iou:()=>S1,isMediaElement:()=>kg,isMediaLoaded:()=>Nd,isWithAge:()=>Bpe,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>U1,isWithFaceLandmarks:()=>Bo,isWithGender:()=>Wpe,loadAgeGenderModel:()=>dce,loadFaceDetectionModel:()=>hce,loadFaceExpressionModel:()=>cce,loadFaceLandmarkModel:()=>lce,loadFaceLandmarkTinyModel:()=>uce,loadFaceRecognitionModel:()=>pce,loadSsdMobilenetv1Model:()=>N$,loadTinyFaceDetectorModel:()=>ice,loadTinyYolov2Model:()=>oce,loadWeightMap:()=>W1,locateFaces:()=>mce,matchDimensions:()=>_pe,minBbox:()=>N1,nets:()=>tt,nonMaxSuppression:()=>T1,normalize:()=>tr,padToSquare:()=>C1,predictAgeAndGender:()=>sce,recognizeFaceExpressions:()=>rce,resizeResults:()=>C$,resolveInput:()=>Po,shuffleArray:()=>ype,sigmoid:()=>kd,ssdMobilenetv1:()=>I$,tf:()=>Le,tinyFaceDetector:()=>ece,tinyYolov2:()=>tce,toNetInput:()=>vt,utils:()=>I1,validateConfig:()=>Y1,version:()=>vce});var Le={};Ih(Le,{Abs:()=>Wl,Acos:()=>Vl,Acosh:()=>Ul,AdadeltaOptimizer:()=>Of,AdagradOptimizer:()=>Lf,AdamOptimizer:()=>zf,AdamaxOptimizer:()=>Bf,Add:()=>ys,AddN:()=>wi,All:()=>Gl,Any:()=>Hl,ArgMax:()=>ki,ArgMin:()=>kc,Asin:()=>jl,Asinh:()=>ql,Atan:()=>Kl,Atan2:()=>Yl,Atanh:()=>Xl,AvgPool:()=>Ii,AvgPool3D:()=>Ic,AvgPool3DGrad:()=>Em,AvgPoolGrad:()=>_m,BackendWasm:()=>BA,BatchMatMul:()=>Si,BatchToSpaceND:()=>Jl,Bincount:()=>Am,BroadcastArgs:()=>$m,BroadcastTo:()=>iS,Callback:()=>vT,CallbackList:()=>S2,Cast:()=>Ni,Ceil:()=>Ti,ClipByValue:()=>bs,Complex:()=>Fm,ComplexAbs:()=>Sc,Concat:()=>Zl,Conv2D:()=>Ci,Conv2DBackpropFilter:()=>Dm,Conv2DBackpropInput:()=>_i,Conv3D:()=>Nc,Conv3DBackpropFilterV2:()=>Rm,Conv3DBackpropInputV2:()=>Mm,Cos:()=>Ei,Cosh:()=>Ai,CropAndResize:()=>eu,Cumprod:()=>Ql,Cumsum:()=>$i,CustomCallback:()=>T2,DataStorage:()=>Nm,DenseBincount:()=>Pm,DepthToSpace:()=>tu,DepthwiseConv2dNative:()=>Fi,DepthwiseConv2dNativeBackpropFilter:()=>Om,DepthwiseConv2dNativeBackpropInput:()=>Lm,Diag:()=>zm,Dilation2D:()=>Tc,Dilation2DBackpropFilter:()=>Yh,Dilation2DBackpropInput:()=>Xh,ENV:()=>Gx,EarlyStopping:()=>wT,Einsum:()=>Bm,Elu:()=>Ri,EluGrad:()=>Wm,Environment:()=>rS,Equal:()=>au,Erf:()=>nu,Exp:()=>Mi,ExpandDims:()=>ru,Expm1:()=>su,FFT:()=>Vm,Fill:()=>Cc,FlipLeftRight:()=>iu,Floor:()=>Pi,FloorDiv:()=>Oi,FromPixels:()=>Jh,FusedBatchNorm:()=>Li,FusedConv2D:()=>ii,FusedDepthwiseConv2D:()=>oi,GPGPUContext:()=>Gh,GatherNd:()=>lu,GatherV2:()=>ou,GraphModel:()=>B0,Greater:()=>uu,GreaterEqual:()=>zi,History:()=>N2,IFFT:()=>Um,Identity:()=>Bi,Imag:()=>Gm,InputSpec:()=>zt,IsFinite:()=>pu,IsInf:()=>cu,IsNan:()=>du,KernelBackend:()=>wc,LRN:()=>_c,LRNGrad:()=>jm,LayerVariable:()=>y2,LayersModel:()=>Ar,LeakyRelu:()=>Wi,Less:()=>hu,LessEqual:()=>mu,LinSpace:()=>Hm,Log:()=>Vi,Log1p:()=>fu,LogSoftmax:()=>lS,LogicalAnd:()=>gu,LogicalNot:()=>yu,LogicalOr:()=>bu,LogicalXor:()=>oS,LowerBound:()=>gD,MathBackendWebGL:()=>cg,Max:()=>Ui,MaxPool:()=>Hi,MaxPool3D:()=>Ec,MaxPool3DGrad:()=>Km,MaxPoolGrad:()=>qm,MaxPoolWithArgmax:()=>Xm,Maximum:()=>Gi,Mean:()=>ji,Min:()=>qi,Minimum:()=>Ki,MirrorPad:()=>Xi,Mod:()=>xu,MomentumOptimizer:()=>Wf,Multinomial:()=>Ym,Multiply:()=>Yi,Neg:()=>vu,NonMaxSuppressionV3:()=>ku,NonMaxSuppressionV4:()=>Iu,NonMaxSuppressionV5:()=>Su,NotEqual:()=>wu,OP_SCOPE_SUFFIX:()=>Kx,OneHot:()=>Ji,OnesLike:()=>Nu,Optimizer:()=>Rr,OptimizerConstructors:()=>Jr,Pack:()=>Tu,PadV2:()=>Zi,Pool:()=>yD,Pow:()=>Qi,Prelu:()=>eo,Prod:()=>to,RMSPropOptimizer:()=>Vf,RNN:()=>yr,Range:()=>Ac,Rank:()=>Ub,Real:()=>Jm,RealDiv:()=>Di,Reciprocal:()=>Cu,Reduction:()=>In,Relu:()=>no,Relu6:()=>so,Reshape:()=>_u,ResizeBilinear:()=>ro,ResizeBilinearGrad:()=>Qm,ResizeNearestNeighbor:()=>ao,ResizeNearestNeighborGrad:()=>Zm,Reverse:()=>io,RotateWithOffset:()=>Gu,Round:()=>oo,Rsqrt:()=>lo,SGDOptimizer:()=>rd,ScatterNd:()=>Eu,SearchSorted:()=>ef,Select:()=>Au,Selu:()=>$u,Sequential:()=>Dl,Sigmoid:()=>po,Sign:()=>Ru,Sin:()=>uo,Sinh:()=>Du,Slice:()=>Fu,Softmax:()=>mo,Softplus:()=>Mu,SpaceToBatchND:()=>Pu,SparseFillEmptyRows:()=>$c,SparseReshape:()=>Lu,SparseSegmentMean:()=>Fc,SparseSegmentSum:()=>Dc,SparseToDense:()=>tf,SplitV:()=>Ou,Sqrt:()=>co,Square:()=>Rc,SquaredDifference:()=>fo,Step:()=>vs,StridedSlice:()=>zu,StringNGrams:()=>Mc,StringSplit:()=>Pc,StringToHashBucketFast:()=>Oc,Sub:()=>go,Sum:()=>ho,SymbolicTensor:()=>Ha,Tan:()=>yo,Tanh:()=>bo,Tensor:()=>Ae,TensorBuffer:()=>jt,Tile:()=>xs,TopK:()=>Bu,Transform:()=>Wu,Transpose:()=>Er,Unique:()=>nf,Unpack:()=>Vu,UnsortedSegmentSum:()=>Lc,UpperBound:()=>bD,Variable:()=>os,ZerosLike:()=>Uu,_FusedMatMul:()=>si,abs:()=>Lt,acos:()=>lv,acosh:()=>uv,add:()=>Z,addN:()=>JS,all:()=>lf,any:()=>pc,argMax:()=>pi,argMin:()=>pv,asin:()=>cv,asinh:()=>dv,atan:()=>hv,atan2:()=>mv,atanh:()=>fv,avgPool:()=>ga,avgPool3d:()=>yv,backend:()=>DS,backend_util:()=>C,basicLSTMCell:()=>tN,batchNorm:()=>Is,batchNorm2d:()=>bv,batchNorm3d:()=>xv,batchNorm4d:()=>vv,batchToSpaceND:()=>qc,bincount:()=>wv,booleanMaskAsync:()=>MN,broadcastArgs:()=>nN,broadcastTo:()=>vl,broadcast_util:()=>Hu,browser:()=>xo,buffer:()=>ze,callbacks:()=>_H,cast:()=>le,ceil:()=>kv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>Iv,concat2d:()=>Sv,concat3d:()=>Nv,concat4d:()=>Tv,constraints:()=>v2,conv1d:()=>uf,conv2d:()=>Dt,conv2dTranspose:()=>pf,conv3d:()=>_v,conv3dTranspose:()=>Ev,copyRegisteredKernels:()=>kD,cos:()=>Kc,cosh:()=>cf,cosineWindow:()=>Ff,cumprod:()=>cc,cumsum:()=>df,customGrad:()=>dr,data:()=>HT,denseBincount:()=>rN,deprecationWarn:()=>tv,depthToSpace:()=>Av,depthwiseConv2d:()=>Ss,deregisterOp:()=>$H,device_util:()=>Vc,diag:()=>sN,dilation2d:()=>$v,disableDeprecationWarnings:()=>YR,dispose:()=>Me,disposeVariables:()=>JR,div:()=>fe,divNoNan:()=>Fv,dot:()=>Dv,dropout:()=>iw,einsum:()=>iN,elu:()=>ju,enableDebugMode:()=>XR,enableProdMode:()=>KR,enclosingPowerOfTwo:()=>ow,engine:()=>sr,env:()=>X,equal:()=>ea,erf:()=>Rv,euclideanNorm:()=>Ov,exp:()=>gn,expandDims:()=>mn,expm1:()=>Lv,eye:()=>hf,fft:()=>nd,fill:()=>An,findBackend:()=>rM,findBackendFactory:()=>sM,floor:()=>Ku,floorDiv:()=>of,forceHalfFloat:()=>iE,fused:()=>Al,gather:()=>Xu,gatherND:()=>zN,gather_util:()=>nv,getBackend:()=>nM,getGradient:()=>Wb,getKernel:()=>Zh,getKernelsForBackend:()=>Qh,getThreadsCount:()=>rpe,gpgpu_util:()=>L_,grad:()=>CO,grads:()=>_O,greater:()=>Hn,greaterEqual:()=>Ns,ifft:()=>El,imag:()=>Gc,image:()=>Cr,inTopKAsync:()=>BN,initializers:()=>w2,input:()=>B2,io:()=>Tn,irfft:()=>_f,isFinite:()=>zv,isInf:()=>Bv,isNaN:()=>Wv,keep:()=>Qt,kernel_impls:()=>gr,layers:()=>k2,leakyRelu:()=>Xc,less:()=>mf,lessEqual:()=>Ts,linalg:()=>pw,linspace:()=>cN,loadGraphModel:()=>R6,loadGraphModelSync:()=>M6,loadLayersModel:()=>LU,localResponseNormalization:()=>Vv,log:()=>ta,log1p:()=>Yc,logSigmoid:()=>Uv,logSoftmax:()=>gf,logSumExp:()=>yf,logicalAnd:()=>Ea,logicalNot:()=>Jc,logicalOr:()=>bf,logicalXor:()=>Gv,losses:()=>ZN,lowerBound:()=>hN,matMul:()=>Re,math:()=>FS,max:()=>Ta,maxPool:()=>Mt,maxPool3d:()=>Hv,maxPoolWithArgmax:()=>mN,maximum:()=>fr,mean:()=>_t,memory:()=>nm,meshgrid:()=>fN,metrics:()=>yT,min:()=>dc,minimum:()=>Yu,mirrorPad:()=>jv,mod:()=>qv,model:()=>PU,models:()=>bT,moments:()=>Zc,movingAverage:()=>PN,mul:()=>B,multiRNNCell:()=>gN,multinomial:()=>yN,neg:()=>kt,nextFrame:()=>cw,norm:()=>qu,notEqual:()=>hi,oneHot:()=>Nl,ones:()=>Qn,onesLike:()=>na,op:()=>z,outerProduct:()=>bN,pad:()=>ya,pad1d:()=>xN,pad2d:()=>vN,pad3d:()=>wN,pad4d:()=>kN,pool:()=>Kv,pow:()=>Fr,prelu:()=>ed,print:()=>Zx,prod:()=>Xv,profile:()=>ZR,rand:()=>IN,randomGamma:()=>SN,randomNormal:()=>vf,randomStandardNormal:()=>NN,randomUniform:()=>Ju,range:()=>Cl,ready:()=>tM,real:()=>Tl,reciprocal:()=>Zv,registerBackend:()=>sf,registerCallbackConstructor:()=>zU,registerGradient:()=>uS,registerKernel:()=>zc,registerOp:()=>AH,regularizers:()=>xT,relu:()=>Xe,relu6:()=>wf,removeBackend:()=>aM,reshape:()=>W,reverse:()=>fa,reverse1d:()=>TN,reverse2d:()=>CN,reverse3d:()=>_N,reverse4d:()=>EN,rfft:()=>ad,round:()=>kf,rsqrt:()=>If,scalar:()=>ke,scatterND:()=>ON,scatter_util:()=>av,searchSorted:()=>xf,selu:()=>Sf,separableConv2d:()=>Cs,sequential:()=>OU,serialization:()=>se,setBackend:()=>eM,setPlatform:()=>iM,setThreadsCount:()=>ape,setWasmPath:()=>tpe,setWasmPaths:()=>npe,setWebGLContext:()=>l_,setdiff1dAsync:()=>AN,sigmoid:()=>ha,sign:()=>Qv,signal:()=>JN,sin:()=>Nf,sinh:()=>Tf,slice:()=>He,slice1d:()=>td,slice2d:()=>Cf,slice3d:()=>wo,slice4d:()=>_l,slice_util:()=>qt,softmax:()=>Za,softplus:()=>vo,spaceToBatchND:()=>Qc,sparse:()=>QN,sparseToDense:()=>LN,spectral:()=>YN,split:()=>Wn,sqrt:()=>un,square:()=>ut,squaredDifference:()=>Ef,squeeze:()=>_s,stack:()=>Rt,step:()=>ko,stridedSlice:()=>ew,string:()=>e2,sub:()=>ce,sum:()=>be,sumOutType:()=>rf,tan:()=>tw,tanh:()=>ci,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Hc,tensor4d:()=>$a,tensor5d:()=>$N,tensor6d:()=>FN,tensor_util:()=>ja,test_util:()=>KS,tidy:()=>O,tile:()=>zn,time:()=>QR,topk:()=>nw,train:()=>qs,transpose:()=>$e,truncatedNormal:()=>Af,unique:()=>aw,unregisterGradient:()=>wD,unregisterKernel:()=>vD,unsortedSegmentSum:()=>$f,unstack:()=>mt,upcastType:()=>ma,upperBound:()=>DN,util:()=>w,valueAndGrad:()=>EO,valueAndGrads:()=>AO,variable:()=>rw,variableGrads:()=>dN,version:()=>fpe,version_converter:()=>O6,version_core:()=>PM,version_layers:()=>Dw,version_wasm:()=>spe,version_webgl:()=>ZJ,webgl:()=>QJ,webgl_util:()=>o_,where:()=>fn,whereAsync:()=>sw,zeros:()=>It,zerosLike:()=>qe});var CF=Object.create,zx=Object.defineProperty,_F=Object.getOwnPropertyDescriptor,EF=Object.getOwnPropertyNames,AF=Object.getPrototypeOf,$F=Object.prototype.hasOwnProperty,Wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)zx(e,n,{get:t[n],enumerable:!0})},FF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EF(t))!$F.call(e,r)&&r!==n&&zx(e,r,{get:()=>t[r],enumerable:!(a=_F(t,r))||a.enumerable});return e},fs=(e,t,n)=>(n=e!=null?CF(AF(e)):{},FF(t||!e||!e.__esModule?zx(n,"default",{value:e,enumerable:!0}):n,e)),DF=Wt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,U){this.low=S|0,this.high=M|0,this.unsigned=!!U}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var U,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(U=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=U),U)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(U=u(S,S<0?-1:0,!1),q&&(s[S]=U),U))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return F}else{if(S<=-y)return P;if(S+1>=y)return A}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,U){return new a(S,M,U)}a.fromBits=u;var p=Math.pow;function d(S,M,U){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(U=M,M=!1):M=!!M,U=U||10,U<2||360)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,U).neg();for(var q=l(p(U,8)),K=x,Y=0;Y>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36>>0,Q=re.toString(S);if(K=te,K.isZero())return Q+Y;for(;Q.length<6;)Q="0"+Q;Y=""+Q+Y}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),U=S.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Y=S.high&65535,te=S.low>>>16,re=S.low&65535,Q=0,ie=0,ae=0,oe=0;return oe+=q+re,ae+=oe>>>16,oe&=65535,ae+=j+te,ie+=ae>>>16,ae&=65535,ie+=U+Y,Q+=ie>>>16,ie&=65535,Q+=M+K,Q&=65535,u(ae<<16|oe,Q<<16|ie,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Y=S.high>>>16,te=S.high&65535,re=S.low>>>16,Q=S.low&65535,ie=0,ae=0,oe=0,ue=0;return ue+=K*Q,oe+=ue>>>16,ue&=65535,oe+=q*Q,ae+=oe>>>16,oe&=65535,oe+=K*re,ae+=oe>>>16,oe&=65535,ae+=j*Q,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*te,ie+=ae>>>16,ae&=65535,ie+=U*Q+j*re+q*te+K*Y,ie&=65535,u(oe<<16|ue,ie<<16|ae,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var U,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(I)||S.eq(_))return P;if(S.eq(P))return I;var K=this.shr(1);return U=K.div(S).shl(1),U.eq(x)?S.isNegative()?I:_:(j=this.sub(S.mul(U)),q=U.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){U=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Y=Math.ceil(Math.log(U)/Math.LN2),te=Y<=48?1:p(2,Y-48),re=l(U),Q=re.mul(S);Q.isNegative()||Q.gt(j);)U-=te,re=l(U,this.unsigned),Q=re.mul(S);re.isZero()&&(re=I),q=q.add(re),j=j.sub(Q)}return q},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<>>32-S,this.unsigned):u(0,this.low<>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var U=this.low;return u(U>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,U){return U?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),RF=Wt(()=>{}),MF=Wt(()=>{}),PF=Wt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VF=Wt(()=>{}),UF=Wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,_){var A=[];T=T==!0?{entropy:!0}:T||{};var F=b(y(T.entropy?[I,v(a)]:I==null?x():I,3),A),P=new f(A),$=function(){for(var S=P.g(i),M=u,U=0;S=d;)S/=2,M/=2,U>>>=1;return(S+U)/M};return $.int32=function(){return P.g(4)|0},$.quick=function(){return P.g(4)/4294967296},$.double=$,b(v(P.S),a),(T.pass||_||function(S,M,U,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),U?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,_=I.length,A=this,F=0,P=A.i=A.j=0,$=A.S=[];for(_||(I=[_++]);F{var n=PF(),a=OF(),r=LF(),s=zF(),i=BF(),o=WF(),l=UF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),qI=Wt(()=>{}),Bx=Wt(()=>{}),jh=Wt(()=>{}),GF=Wt(()=>{}),HF=Wt(()=>{}),jF=Wt(()=>{}),qF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=xn&&Pa(Te.buffer),Ud}function i(){return Te.buffer!=xn&&Pa(Te.buffer),Gd}function o(){return Te.buffer!=xn&&Pa(Te.buffer),Ep}function l(){return Te.buffer!=xn&&Pa(Te.buffer),Hd}function u(){return Te.buffer!=xn&&Pa(Te.buffer),jd}function p(){return Te.buffer!=xn&&Pa(Te.buffer),qd}function d(){return Te.buffer!=xn&&Pa(Te.buffer),Kd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=c.ENVIRONMENT_IS_PTHREAD||!1,A="";function F(N){return c.locateFile?c.locateFile(N,A):A+N}var P,$,S,M;function U(N){N instanceof zp||Q("exiting due to exception: "+N)}var j,q,K;if(T){I?A=jh().dirname(A)+"/":A=__dirname+"/",K=()=>{q||(j=Bx(),q=jh())},P=function(D,V){return K(),D=q.normalize(D),j.readFileSync(D,V?void 0:"utf8")},S=D=>{var V=P(D,!0);return V.buffer||(V=new Uint8Array(V)),V},$=(D,V,J)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,me){pe?J(pe):V(me.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof zp))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,V)=>{if(zs())throw process.exitCode=D,V;U(V),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=GF()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||I)&&(I?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),typeof a!="undefined"&&a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.replace(/[?#].*/,"").lastIndexOf("/")+1):A="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},I&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),$=(N,D,V)=>{var J=new XMLHttpRequest;J.open("GET",N,!0),J.responseType="arraybuffer",J.onload=()=>{if(J.status==200||J.status==0&&J.response){D(J.response);return}V()},J.onerror=V,J.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=HF().performance);var Y=console.log.bind(console),te=console.warn.bind(console);T&&(K(),Y=N=>j.writeSync(1,N+` +"use strict";var faceapi=(()=>{var Nb=Object.defineProperty;var wF=Object.getOwnPropertyDescriptor;var kF=Object.getOwnPropertyNames;var IF=Object.prototype.hasOwnProperty;var SF=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var Ih=(e,t)=>{for(var n in t)Nb(e,n,{get:t[n],enumerable:!0})},NF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of kF(t))!IF.call(e,r)&&r!==n&&Nb(e,r,{get:()=>t[r],enumerable:!(a=wF(t,r))||a.enumerable});return e};var TF=e=>NF(Nb({},"__esModule",{value:!0}),e);var wce={};Ih(wce,{AgeGenderNet:()=>$d,BoundingBox:()=>Fo,Box:()=>lt,ComposableTask:()=>wa,ComputeAllFaceDescriptorsTask:()=>Gr,ComputeFaceDescriptorsTaskBase:()=>Md,ComputeSingleFaceDescriptorTask:()=>Hr,DetectAllFaceLandmarksTask:()=>Od,DetectAllFacesTask:()=>Cp,DetectFaceLandmarksTaskBase:()=>Pd,DetectFacesTaskBase:()=>zd,DetectSingleFaceLandmarksTask:()=>Ld,DetectSingleFaceTask:()=>Bd,Dimensions:()=>yn,FACE_EXPRESSION_LABELS:()=>V1,FaceDetection:()=>xt,FaceDetectionNet:()=>X1,FaceExpressionNet:()=>Ad,FaceExpressions:()=>Wr,FaceLandmark68Net:()=>Wo,FaceLandmark68TinyNet:()=>Fd,FaceLandmarkNet:()=>j1,FaceLandmarks:()=>ra,FaceLandmarks5:()=>_1,FaceLandmarks68:()=>Ro,FaceMatch:()=>hp,FaceMatcher:()=>Wd,FaceRecognitionNet:()=>Vo,Gender:()=>Rg,LabeledBox:()=>mp,LabeledFaceDescriptors:()=>xr,NetInput:()=>wr,NeuralNetwork:()=>on,ObjectDetection:()=>Lr,Point:()=>Pe,PredictedBox:()=>E1,Rect:()=>Do,SsdMobilenetv1:()=>Fs,SsdMobilenetv1Options:()=>va,TinyFaceDetector:()=>qo,TinyFaceDetectorOptions:()=>Rd,TinyYolov2:()=>Ho,TinyYolov2Options:()=>ar,allFaces:()=>bce,allFacesSsdMobilenetv1:()=>T$,allFacesTinyYolov2:()=>yce,awaitMediaLoaded:()=>P1,bufferToImage:()=>O1,computeFaceDescriptor:()=>ace,createCanvas:()=>Lo,createCanvasFromMedia:()=>Td,createFaceDetectionNet:()=>Ype,createFaceRecognitionNet:()=>zpe,createSsdMobilenetv1:()=>c$,createTinyFaceDetector:()=>xce,createTinyYolov2:()=>Qpe,detectAllFaces:()=>Ug,detectFaceLandmarks:()=>S$,detectFaceLandmarksTiny:()=>nce,detectLandmarks:()=>fce,detectSingleFace:()=>gce,draw:()=>G1,env:()=>et,euclideanDistance:()=>Z1,extendWithAge:()=>Lg,extendWithFaceDescriptor:()=>Og,extendWithFaceDetection:()=>Mo,extendWithFaceExpressions:()=>Ag,extendWithFaceLandmarks:()=>Ip,extendWithGender:()=>zg,extractFaceTensors:()=>yp,extractFaces:()=>gp,fetchImage:()=>Npe,fetchJson:()=>B1,fetchNetWeights:()=>Tpe,fetchOrThrow:()=>Br,fetchVideo:()=>Cpe,getContext2dOrThrow:()=>Kn,getMediaDimensions:()=>Oo,imageTensorToCanvas:()=>L1,imageToSquare:()=>z1,inverseSigmoid:()=>bpe,iou:()=>S1,isMediaElement:()=>kg,isMediaLoaded:()=>Nd,isWithAge:()=>Bpe,isWithFaceDetection:()=>vr,isWithFaceExpressions:()=>U1,isWithFaceLandmarks:()=>Bo,isWithGender:()=>Wpe,loadAgeGenderModel:()=>dce,loadFaceDetectionModel:()=>hce,loadFaceExpressionModel:()=>cce,loadFaceLandmarkModel:()=>lce,loadFaceLandmarkTinyModel:()=>uce,loadFaceRecognitionModel:()=>pce,loadSsdMobilenetv1Model:()=>N$,loadTinyFaceDetectorModel:()=>ice,loadTinyYolov2Model:()=>oce,loadWeightMap:()=>W1,locateFaces:()=>mce,matchDimensions:()=>_pe,minBbox:()=>N1,nets:()=>tt,nonMaxSuppression:()=>T1,normalize:()=>tr,padToSquare:()=>C1,predictAgeAndGender:()=>sce,recognizeFaceExpressions:()=>rce,resizeResults:()=>C$,resolveInput:()=>Po,shuffleArray:()=>ype,sigmoid:()=>kd,ssdMobilenetv1:()=>I$,tf:()=>Le,tinyFaceDetector:()=>ece,tinyYolov2:()=>tce,toNetInput:()=>vt,utils:()=>I1,validateConfig:()=>Y1,version:()=>vce});var Le={};Ih(Le,{Abs:()=>Wl,Acos:()=>Vl,Acosh:()=>Ul,AdadeltaOptimizer:()=>Of,AdagradOptimizer:()=>Lf,AdamOptimizer:()=>zf,AdamaxOptimizer:()=>Bf,Add:()=>ys,AddN:()=>wi,All:()=>Gl,Any:()=>Hl,ArgMax:()=>ki,ArgMin:()=>kc,Asin:()=>jl,Asinh:()=>ql,Atan:()=>Kl,Atan2:()=>Yl,Atanh:()=>Xl,AvgPool:()=>Ii,AvgPool3D:()=>Ic,AvgPool3DGrad:()=>Em,AvgPoolGrad:()=>_m,BackendWasm:()=>BA,BatchMatMul:()=>Si,BatchToSpaceND:()=>Jl,Bincount:()=>Am,BroadcastArgs:()=>$m,BroadcastTo:()=>iS,Callback:()=>vT,CallbackList:()=>S2,Cast:()=>Ni,Ceil:()=>Ti,ClipByValue:()=>bs,Complex:()=>Fm,ComplexAbs:()=>Sc,Concat:()=>Zl,Conv2D:()=>Ci,Conv2DBackpropFilter:()=>Dm,Conv2DBackpropInput:()=>_i,Conv3D:()=>Nc,Conv3DBackpropFilterV2:()=>Rm,Conv3DBackpropInputV2:()=>Mm,Cos:()=>Ei,Cosh:()=>Ai,CropAndResize:()=>eu,Cumprod:()=>Ql,Cumsum:()=>$i,CustomCallback:()=>T2,DataStorage:()=>Nm,DenseBincount:()=>Pm,DepthToSpace:()=>tu,DepthwiseConv2dNative:()=>Fi,DepthwiseConv2dNativeBackpropFilter:()=>Om,DepthwiseConv2dNativeBackpropInput:()=>Lm,Diag:()=>zm,Dilation2D:()=>Tc,Dilation2DBackpropFilter:()=>Yh,Dilation2DBackpropInput:()=>Xh,ENV:()=>Gx,EarlyStopping:()=>wT,Einsum:()=>Bm,Elu:()=>Ri,EluGrad:()=>Wm,Environment:()=>rS,Equal:()=>au,Erf:()=>nu,Exp:()=>Mi,ExpandDims:()=>ru,Expm1:()=>su,FFT:()=>Vm,Fill:()=>Cc,FlipLeftRight:()=>iu,Floor:()=>Pi,FloorDiv:()=>Oi,FromPixels:()=>Jh,FusedBatchNorm:()=>Li,FusedConv2D:()=>ii,FusedDepthwiseConv2D:()=>oi,GPGPUContext:()=>Gh,GatherNd:()=>lu,GatherV2:()=>ou,GraphModel:()=>B0,Greater:()=>uu,GreaterEqual:()=>zi,History:()=>N2,IFFT:()=>Um,Identity:()=>Bi,Imag:()=>Gm,InputSpec:()=>zt,IsFinite:()=>pu,IsInf:()=>cu,IsNan:()=>du,KernelBackend:()=>wc,LRN:()=>_c,LRNGrad:()=>jm,LayerVariable:()=>y2,LayersModel:()=>Ar,LeakyRelu:()=>Wi,Less:()=>hu,LessEqual:()=>mu,LinSpace:()=>Hm,Log:()=>Vi,Log1p:()=>fu,LogSoftmax:()=>lS,LogicalAnd:()=>gu,LogicalNot:()=>yu,LogicalOr:()=>bu,LogicalXor:()=>oS,LowerBound:()=>gD,MathBackendWebGL:()=>cg,Max:()=>Ui,MaxPool:()=>Hi,MaxPool3D:()=>Ec,MaxPool3DGrad:()=>Km,MaxPoolGrad:()=>qm,MaxPoolWithArgmax:()=>Xm,Maximum:()=>Gi,Mean:()=>ji,Min:()=>qi,Minimum:()=>Ki,MirrorPad:()=>Xi,Mod:()=>xu,MomentumOptimizer:()=>Wf,Multinomial:()=>Ym,Multiply:()=>Yi,Neg:()=>vu,NonMaxSuppressionV3:()=>ku,NonMaxSuppressionV4:()=>Iu,NonMaxSuppressionV5:()=>Su,NotEqual:()=>wu,OP_SCOPE_SUFFIX:()=>Kx,OneHot:()=>Ji,OnesLike:()=>Nu,Optimizer:()=>Rr,OptimizerConstructors:()=>Jr,Pack:()=>Tu,PadV2:()=>Zi,Pool:()=>yD,Pow:()=>Qi,Prelu:()=>eo,Prod:()=>to,RMSPropOptimizer:()=>Vf,RNN:()=>yr,Range:()=>Ac,Rank:()=>Ub,Real:()=>Jm,RealDiv:()=>Di,Reciprocal:()=>Cu,Reduction:()=>In,Relu:()=>no,Relu6:()=>so,Reshape:()=>_u,ResizeBilinear:()=>ro,ResizeBilinearGrad:()=>Qm,ResizeNearestNeighbor:()=>ao,ResizeNearestNeighborGrad:()=>Zm,Reverse:()=>io,RotateWithOffset:()=>Gu,Round:()=>oo,Rsqrt:()=>lo,SGDOptimizer:()=>rd,ScatterNd:()=>Eu,SearchSorted:()=>ef,Select:()=>Au,Selu:()=>$u,Sequential:()=>Dl,Sigmoid:()=>po,Sign:()=>Ru,Sin:()=>uo,Sinh:()=>Du,Slice:()=>Fu,Softmax:()=>mo,Softplus:()=>Mu,SpaceToBatchND:()=>Pu,SparseFillEmptyRows:()=>$c,SparseReshape:()=>Lu,SparseSegmentMean:()=>Fc,SparseSegmentSum:()=>Dc,SparseToDense:()=>tf,SplitV:()=>Ou,Sqrt:()=>co,Square:()=>Rc,SquaredDifference:()=>fo,Step:()=>vs,StridedSlice:()=>zu,StringNGrams:()=>Mc,StringSplit:()=>Pc,StringToHashBucketFast:()=>Oc,Sub:()=>go,Sum:()=>ho,SymbolicTensor:()=>Ha,Tan:()=>yo,Tanh:()=>bo,Tensor:()=>Ae,TensorBuffer:()=>jt,Tile:()=>xs,TopK:()=>Bu,Transform:()=>Wu,Transpose:()=>Er,Unique:()=>nf,Unpack:()=>Vu,UnsortedSegmentSum:()=>Lc,UpperBound:()=>bD,Variable:()=>os,ZerosLike:()=>Uu,_FusedMatMul:()=>si,abs:()=>Lt,acos:()=>lv,acosh:()=>uv,add:()=>Z,addN:()=>JS,all:()=>lf,any:()=>pc,argMax:()=>pi,argMin:()=>pv,asin:()=>cv,asinh:()=>dv,atan:()=>hv,atan2:()=>mv,atanh:()=>fv,avgPool:()=>ga,avgPool3d:()=>yv,backend:()=>DS,backend_util:()=>C,basicLSTMCell:()=>tN,batchNorm:()=>Is,batchNorm2d:()=>bv,batchNorm3d:()=>xv,batchNorm4d:()=>vv,batchToSpaceND:()=>qc,bincount:()=>wv,booleanMaskAsync:()=>MN,broadcastArgs:()=>nN,broadcastTo:()=>vl,broadcast_util:()=>Hu,browser:()=>xo,buffer:()=>ze,callbacks:()=>_H,cast:()=>le,ceil:()=>kv,clipByValue:()=>tn,clone:()=>ur,complex:()=>$r,concat:()=>Qe,concat1d:()=>Iv,concat2d:()=>Sv,concat3d:()=>Nv,concat4d:()=>Tv,constraints:()=>v2,conv1d:()=>uf,conv2d:()=>Dt,conv2dTranspose:()=>pf,conv3d:()=>_v,conv3dTranspose:()=>Ev,copyRegisteredKernels:()=>kD,cos:()=>Kc,cosh:()=>cf,cosineWindow:()=>Ff,cumprod:()=>cc,cumsum:()=>df,customGrad:()=>dr,data:()=>HT,denseBincount:()=>rN,deprecationWarn:()=>tv,depthToSpace:()=>Av,depthwiseConv2d:()=>Ss,deregisterOp:()=>$H,device_util:()=>Vc,diag:()=>sN,dilation2d:()=>$v,disableDeprecationWarnings:()=>YR,dispose:()=>Me,disposeVariables:()=>JR,div:()=>fe,divNoNan:()=>Fv,dot:()=>Dv,dropout:()=>iw,einsum:()=>iN,elu:()=>ju,enableDebugMode:()=>XR,enableProdMode:()=>KR,enclosingPowerOfTwo:()=>ow,engine:()=>sr,env:()=>X,equal:()=>ea,erf:()=>Rv,euclideanNorm:()=>Ov,exp:()=>gn,expandDims:()=>mn,expm1:()=>Lv,eye:()=>hf,fft:()=>nd,fill:()=>An,findBackend:()=>rM,findBackendFactory:()=>sM,floor:()=>Ku,floorDiv:()=>of,forceHalfFloat:()=>iE,fused:()=>Al,gather:()=>Xu,gatherND:()=>zN,gather_util:()=>nv,getBackend:()=>nM,getGradient:()=>Wb,getKernel:()=>Zh,getKernelsForBackend:()=>Qh,getThreadsCount:()=>rpe,gpgpu_util:()=>L_,grad:()=>CO,grads:()=>_O,greater:()=>Hn,greaterEqual:()=>Ns,ifft:()=>El,imag:()=>Gc,image:()=>Cr,inTopKAsync:()=>BN,initializers:()=>w2,input:()=>B2,io:()=>Tn,irfft:()=>_f,isFinite:()=>zv,isInf:()=>Bv,isNaN:()=>Wv,keep:()=>Qt,kernel_impls:()=>gr,layers:()=>k2,leakyRelu:()=>Xc,less:()=>mf,lessEqual:()=>Ts,linalg:()=>pw,linspace:()=>cN,loadGraphModel:()=>R6,loadGraphModelSync:()=>M6,loadLayersModel:()=>LU,localResponseNormalization:()=>Vv,log:()=>ta,log1p:()=>Yc,logSigmoid:()=>Uv,logSoftmax:()=>gf,logSumExp:()=>yf,logicalAnd:()=>Ea,logicalNot:()=>Jc,logicalOr:()=>bf,logicalXor:()=>Gv,losses:()=>ZN,lowerBound:()=>hN,matMul:()=>Re,math:()=>FS,max:()=>Ta,maxPool:()=>Mt,maxPool3d:()=>Hv,maxPoolWithArgmax:()=>mN,maximum:()=>fr,mean:()=>_t,memory:()=>nm,meshgrid:()=>fN,metrics:()=>yT,min:()=>dc,minimum:()=>Yu,mirrorPad:()=>jv,mod:()=>qv,model:()=>PU,models:()=>bT,moments:()=>Zc,movingAverage:()=>PN,mul:()=>B,multiRNNCell:()=>gN,multinomial:()=>yN,neg:()=>kt,nextFrame:()=>cw,norm:()=>qu,notEqual:()=>hi,oneHot:()=>Nl,ones:()=>Qn,onesLike:()=>na,op:()=>z,outerProduct:()=>bN,pad:()=>ya,pad1d:()=>xN,pad2d:()=>vN,pad3d:()=>wN,pad4d:()=>kN,pool:()=>Kv,pow:()=>Fr,prelu:()=>ed,print:()=>Zx,prod:()=>Xv,profile:()=>ZR,rand:()=>IN,randomGamma:()=>SN,randomNormal:()=>vf,randomStandardNormal:()=>NN,randomUniform:()=>Ju,range:()=>Cl,ready:()=>tM,real:()=>Tl,reciprocal:()=>Zv,registerBackend:()=>sf,registerCallbackConstructor:()=>zU,registerGradient:()=>uS,registerKernel:()=>zc,registerOp:()=>AH,regularizers:()=>xT,relu:()=>Xe,relu6:()=>wf,removeBackend:()=>aM,reshape:()=>W,reverse:()=>fa,reverse1d:()=>TN,reverse2d:()=>CN,reverse3d:()=>_N,reverse4d:()=>EN,rfft:()=>ad,round:()=>kf,rsqrt:()=>If,scalar:()=>ke,scatterND:()=>ON,scatter_util:()=>av,searchSorted:()=>xf,selu:()=>Sf,separableConv2d:()=>Cs,sequential:()=>OU,serialization:()=>se,setBackend:()=>eM,setPlatform:()=>iM,setThreadsCount:()=>ape,setWasmPath:()=>tpe,setWasmPaths:()=>npe,setWebGLContext:()=>l_,setdiff1dAsync:()=>AN,sigmoid:()=>ha,sign:()=>Qv,signal:()=>JN,sin:()=>Nf,sinh:()=>Tf,slice:()=>He,slice1d:()=>td,slice2d:()=>Cf,slice3d:()=>wo,slice4d:()=>_l,slice_util:()=>qt,softmax:()=>Za,softplus:()=>vo,spaceToBatchND:()=>Qc,sparse:()=>QN,sparseToDense:()=>LN,spectral:()=>YN,split:()=>Wn,sqrt:()=>un,square:()=>ut,squaredDifference:()=>Ef,squeeze:()=>_s,stack:()=>Rt,step:()=>ko,stridedSlice:()=>ew,string:()=>e2,sub:()=>ce,sum:()=>be,sumOutType:()=>rf,tan:()=>tw,tanh:()=>ci,tensor:()=>Bn,tensor1d:()=>Ke,tensor2d:()=>Ca,tensor3d:()=>Hc,tensor4d:()=>$a,tensor5d:()=>$N,tensor6d:()=>FN,tensor_util:()=>ja,test_util:()=>KS,tidy:()=>O,tile:()=>zn,time:()=>QR,topk:()=>nw,train:()=>qs,transpose:()=>$e,truncatedNormal:()=>Af,unique:()=>aw,unregisterGradient:()=>wD,unregisterKernel:()=>vD,unsortedSegmentSum:()=>$f,unstack:()=>mt,upcastType:()=>ma,upperBound:()=>DN,util:()=>w,valueAndGrad:()=>EO,valueAndGrads:()=>AO,variable:()=>rw,variableGrads:()=>dN,version:()=>fpe,version_converter:()=>O6,version_core:()=>PM,version_layers:()=>Dw,version_wasm:()=>spe,version_webgl:()=>ZJ,webgl:()=>QJ,webgl_util:()=>o_,where:()=>fn,whereAsync:()=>sw,zeros:()=>It,zerosLike:()=>qe});var CF=Object.create,zx=Object.defineProperty,_F=Object.getOwnPropertyDescriptor,EF=Object.getOwnPropertyNames,AF=Object.getPrototypeOf,$F=Object.prototype.hasOwnProperty,Wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)zx(e,n,{get:t[n],enumerable:!0})},FF=(e,t,n,a)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of EF(t))!$F.call(e,r)&&r!==n&&zx(e,r,{get:()=>t[r],enumerable:!(a=_F(t,r))||a.enumerable});return e},fs=(e,t,n)=>(n=e!=null?CF(AF(e)):{},FF(t||!e||!e.__esModule?zx(n,"default",{value:e,enumerable:!0}):n,e)),DF=Wt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,M,U){this.low=S|0,this.high=M|0,this.unsigned=!!U}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,M){var U,j,q;return M?(S>>>=0,(q=0<=S&&S<256)&&(j=i[S],j)?j:(U=u(S,(S|0)<0?-1:0,!0),q&&(i[S]=U),U)):(S|=0,(q=-128<=S&&S<128)&&(j=s[S],j)?j:(U=u(S,S<0?-1:0,!1),q&&(s[S]=U),U))}a.fromInt=o;function l(S,M){if(isNaN(S))return M?v:x;if(M){if(S<0)return v;if(S>=g)return F}else{if(S<=-y)return P;if(S+1>=y)return A}return S<0?l(-S,M).neg():u(S%f|0,S/f|0,M)}a.fromNumber=l;function u(S,M,U){return new a(S,M,U)}a.fromBits=u;var p=Math.pow;function d(S,M,U){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof M=="number"?(U=M,M=!1):M=!!M,U=U||10,U<2||360)throw Error("interior hyphen");if(j===0)return d(S.substring(1),M,U).neg();for(var q=l(p(U,8)),K=x,Y=0;Y>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36>>0,Q=re.toString(S);if(K=te,K.isZero())return Q+Y;for(;Q.length<6;)Q="0"+Q;Y=""+Q+Y}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<=0},$.isOdd=function(){return(this.low&1)===1},$.isEven=function(){return(this.low&1)===0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var M=this.isNegative(),U=S.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(I)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var M=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,K=S.high>>>16,Y=S.high&65535,te=S.low>>>16,re=S.low&65535,Q=0,ie=0,ae=0,oe=0;return oe+=q+re,ae+=oe>>>16,oe&=65535,ae+=j+te,ie+=ae>>>16,ae&=65535,ie+=U+Y,Q+=ie>>>16,ie&=65535,Q+=M+K,Q&=65535,u(ae<<16|oe,Q<<16|ie,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(P))return S.isOdd()?P:x;if(S.eq(P))return this.isOdd()?P:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(b)&&S.lt(b))return l(this.toNumber()*S.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,K=this.low&65535,Y=S.high>>>16,te=S.high&65535,re=S.low>>>16,Q=S.low&65535,ie=0,ae=0,oe=0,ue=0;return ue+=K*Q,oe+=ue>>>16,ue&=65535,oe+=q*Q,ae+=oe>>>16,oe&=65535,oe+=K*re,ae+=oe>>>16,oe&=65535,ae+=j*Q,ie+=ae>>>16,ae&=65535,ae+=q*re,ie+=ae>>>16,ae&=65535,ae+=K*te,ie+=ae>>>16,ae&=65535,ie+=U*Q+j*re+q*te+K*Y,ie&=65535,u(oe<<16|ue,ie<<16|ae,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var U,j,q;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return T;q=v}else{if(this.eq(P)){if(S.eq(I)||S.eq(_))return P;if(S.eq(P))return I;var K=this.shr(1);return U=K.div(S).shl(1),U.eq(x)?S.isNegative()?I:_:(j=this.sub(S.mul(U)),q=U.add(j.div(S)),q)}else if(S.eq(P))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();q=x}for(j=this;j.gte(S);){U=Math.max(1,Math.floor(j.toNumber()/S.toNumber()));for(var Y=Math.ceil(Math.log(U)/Math.LN2),te=Y<=48?1:p(2,Y-48),re=l(U),Q=re.mul(S);Q.isNegative()||Q.gt(j);)U-=te,re=l(U,this.unsigned),Q=re.mul(S);re.isZero()&&(re=I),q=q.add(re),j=j.sub(Q)}return q},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<>>32-S,this.unsigned):u(0,this.low<>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var U=this.low;return u(U>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},a.fromBytes=function(S,M,U){return U?a.fromBytesLE(S,M):a.fromBytesBE(S,M)},a.fromBytesLE=function(S,M){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},a.fromBytesBE=function(S,M){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}),RF=Wt(()=>{}),MF=Wt(()=>{}),PF=Wt((e,t)=>{(function(n,a,r){function s(u){var p=this,d=l();p.next=function(){var c=2091639*p.s0+p.c*23283064365386963e-26;return p.s0=p.s1,p.s1=p.s2,p.s2=c-(p.c=c|0)},p.c=1,p.s0=d(" "),p.s1=d(" "),p.s2=d(" "),p.s0-=d(u),p.s0<0&&(p.s0+=1),p.s1-=d(u),p.s1<0&&(p.s1+=1),p.s2-=d(u),p.s2<0&&(p.s2+=1),d=null}function i(u,p){return p.c=u.c,p.s0=u.s0,p.s1=u.s1,p.s2=u.s2,p}function o(u,p){var d=new s(u),c=p&&p.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,d),h.state=function(){return i(d,{})}),h}function l(){var u=4022871197,p=function(d){d=String(d);for(var c=0;c>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return p}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),OF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:p+=l;for(var d=0;d>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),zF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.x,c=u.i,h,m,f;return h=d[c],h^=h>>>7,m=h^h<<24,h=d[c+1&7],m^=h^h>>>10,h=d[c+3&7],m^=h^h>>>3,h=d[c+4&7],m^=h^h<<7,h=d[c+7&7],h=h^h<<13,m^=h^h<<9,d[c]=m,u.i=c+1&7,m};function p(d,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h0;--h)d.next()}p(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.x&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var d=u.w,c=u.X,h=u.i,m,f;return u.w=d=d+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(d^d>>>16)|0};function p(d,c){var h,m,f,g,y,b=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=b[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(b[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=b[f+34&127],h=b[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,b[f]=m^h;d.w=y,d.X=b,d.i=f}p(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var p=new s(l),d=u&&u.state,c=function(){return(p.next()>>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(d.X&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WF=Wt((e,t)=>{(function(n,a,r){function s(l){var u=this,p="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):p+=l;for(var d=0;d>>0)/4294967296};return c.double=function(){do var h=p.next()>>>11,m=(p.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=p.next,c.quick=c,d&&(typeof d=="object"&&i(d,p),c.state=function(){return i(p,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VF=Wt(()=>{}),UF=Wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),p=r.pow(2,o),d=p*2,c=s-1,h;function m(I,T,_){var A=[];T=T==!0?{entropy:!0}:T||{};var F=b(y(T.entropy?[I,v(a)]:I==null?x():I,3),A),P=new f(A),$=function(){for(var S=P.g(i),M=u,U=0;S=d;)S/=2,M/=2,U>>>=1;return(S+U)/M};return $.int32=function(){return P.g(4)|0},$.quick=function(){return P.g(4)/4294967296},$.double=$,b(v(P.S),a),(T.pass||_||function(S,M,U,j){return j&&(j.S&&g(j,P),S.state=function(){return g(P,{})}),U?(r[l]=S,M):S})($,F,"global"in T?T.global:this==r,T.state)}function f(I){var T,_=I.length,A=this,F=0,P=A.i=A.j=0,$=A.S=[];for(_||(I=[_++]);F{var n=PF(),a=OF(),r=LF(),s=zF(),i=BF(),o=WF(),l=UF();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),qI=Wt(()=>{}),Bx=Wt(()=>{}),jh=Wt(()=>{}),GF=Wt(()=>{}),HF=Wt(()=>{}),jF=Wt(()=>{}),qF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Te.buffer!=xn&&Pa(Te.buffer),Ud}function i(){return Te.buffer!=xn&&Pa(Te.buffer),Gd}function o(){return Te.buffer!=xn&&Pa(Te.buffer),Ep}function l(){return Te.buffer!=xn&&Pa(Te.buffer),Hd}function u(){return Te.buffer!=xn&&Pa(Te.buffer),jd}function p(){return Te.buffer!=xn&&Pa(Te.buffer),qd}function d(){return Te.buffer!=xn&&Pa(Te.buffer),Kd}var c=typeof r!="undefined"?r:{},h,m;c.ready=new Promise(function(N,D){h=N,m=D});var f;typeof process!="undefined"&&process.listeners&&(f={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},c),y=[],b="./this.program",x=(N,D)=>{throw D},v=typeof window=="object",I=typeof importScripts=="function",T=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=c.ENVIRONMENT_IS_PTHREAD||!1,A="";function F(N){return c.locateFile?c.locateFile(N,A):A+N}var P,$,S,M;function U(N){N instanceof zp||Q("exiting due to exception: "+N)}var j,q,K;if(T){I?A=jh().dirname(A)+"/":A=__dirname+"/",K=()=>{q||(j=Bx(),q=jh())},P=function(D,V){return K(),D=q.normalize(D),j.readFileSync(D,V?void 0:"utf8")},S=D=>{var V=P(D,!0);return V.buffer||(V=new Uint8Array(V)),V},$=(D,V,J)=>{K(),D=q.normalize(D),j.readFile(D,function(pe,me){pe?J(pe):V(me.buffer)})},process.argv.length>1&&(b=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof zp))throw D}),process.on("unhandledRejection",function(D){throw D}),x=(D,V)=>{if(zs())throw process.exitCode=D,V;U(V),process.exit(D)},c.inspect=function(){return"[Emscripten Module object]"};let N;try{N=GF()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(v||I)&&(I?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),typeof a!="undefined"&&a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.replace(/[?#].*/,"").lastIndexOf("/")+1):A="",T||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},I&&(S=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),$=(N,D,V)=>{var J=new XMLHttpRequest;J.open("GET",N,!0),J.responseType="arraybuffer",J.onload=()=>{if(J.status==200||J.status==0&&J.response){D(J.response);return}V()},J.onerror=V,J.send(null)}),M=N=>document.title=N);T&&typeof performance=="undefined"&&(global.performance=HF().performance);var Y=console.log.bind(console),te=console.warn.bind(console);T&&(K(),Y=N=>j.writeSync(1,N+` `),te=N=>j.writeSync(2,N+` `));var re=c.print||Y,Q=c.printErr||te;Object.assign(c,g),g=null,c.arguments&&(y=c.arguments),c.thisProgram&&(b=c.thisProgram),c.quit&&(x=c.quit);var ie=4;function ae(N){ae.shown||(ae.shown={}),ae.shown[N]||(ae.shown[N]=1,Q(N))}function oe(N,D){if(typeof WebAssembly.Function=="function"){for(var V={i:"i32",j:"i64",f:"f32",d:"f64"},J={parameters:[],results:D[0]=="v"?[]:[V[D[0]]]},pe=1;pe{Ee=N},We=Atomics.load,je=Atomics.store,st=Atomics.compareExchange,nt;c.wasmBinary&&(nt=c.wasmBinary);var at=c.noExitRuntime||!0;typeof WebAssembly!="object"&&el("no native wasm support detected");var Te,ft,dt=!1,bn;function Yt(N,D){N||el(D)}function Rn(N){var D=c["_"+N];return D}function Ut(N,D,V,J,pe){var me={string:function(ua){var pl=0;if(ua!=null&&ua!==0){var xk=(ua.length<<2)+1;pl=ul(xk),Os(ua,pl,xk)}return pl},array:function(ua){var pl=ul(ua.length);return kr(ua,pl),pl}};function ve(ua){return D==="string"?oa(ua):D==="boolean"?Boolean(ua):ua}var Ce=Rn(N),Ct=[],Ba=0;if(J)for(var Wa=0;Wa(V.buffer instanceof SharedArrayBuffer&&(V=new Uint8Array(V)),D.decode.call(D,V))}var Gt=typeof TextDecoder!="undefined"?new Mn("utf8"):void 0;function ia(N,D,V){for(var J=D+V,pe=D;N[pe]&&!(pe>=J);)++pe;if(pe-D>16&&N.subarray&&Gt)return Gt.decode(N.subarray(D,pe));for(var me="";D>10,56320|Ba&1023)}}return me}function oa(N,D){return N?ia(i(),N,D):""}function jr(N,D,V,J){if(!(J>0))return 0;for(var pe=V,me=V+J-1,ve=0;ve=55296&&Ce<=57343){var Ct=N.charCodeAt(++ve);Ce=65536+((Ce&1023)<<10)|Ct&1023}if(Ce<=127){if(V>=me)break;D[V++]=Ce}else if(Ce<=2047){if(V+1>=me)break;D[V++]=192|Ce>>6,D[V++]=128|Ce&63}else if(Ce<=65535){if(V+2>=me)break;D[V++]=224|Ce>>12,D[V++]=128|Ce>>6&63,D[V++]=128|Ce&63}else{if(V+3>=me)break;D[V++]=240|Ce>>18,D[V++]=128|Ce>>12&63,D[V++]=128|Ce>>6&63,D[V++]=128|Ce&63}}return D[V]=0,V-pe}function Os(N,D,V){return jr(N,i(),D,V)}function Vd(N){for(var D=0,V=0;V=55296&&J<=57343&&(J=65536+((J&1023)<<10)|N.charCodeAt(++V)&1023),J<=127?++D:J<=2047?D+=2:J<=65535?D+=3:D+=4}return D}var qr=typeof TextDecoder!="undefined"?new Mn("utf-16le"):void 0;function kr(N,D){s().set(N,D)}function _p(N,D,V){for(var J=0;J>0]=N.charCodeAt(J);V||(s()[D>>0]=0)}function Zo(N,D){return N%D>0&&(N+=D-N%D),N}var xn,Ud,Gd,Ep,Hd,jd,Q1,qd,Kd;_&&(xn=c.buffer);function Pa(N){xn=N,c.HEAP8=Ud=new Int8Array(N),c.HEAP16=Ep=new Int16Array(N),c.HEAP32=jd=new Int32Array(N),c.HEAPU8=Gd=new Uint8Array(N),c.HEAPU16=Hd=new Uint16Array(N),c.HEAPU32=Q1=new Uint32Array(N),c.HEAPF32=qd=new Float32Array(N),c.HEAPF64=Kd=new Float64Array(N)}var Xd=c.INITIAL_MEMORY||16777216;if(_)Te=c.wasmMemory,xn=c.buffer;else if(c.wasmMemory)Te=c.wasmMemory;else if(Te=new WebAssembly.Memory({initial:Xd/65536,maximum:32768,shared:!0}),!(Te.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),T&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Te&&(xn=Te.buffer),Xd=xn.byteLength,Pa(xn);var la,Qo=[],Kr=[],Gg=[],Yd=[],Ls=!1,Hg=!1,Jd=0;function zs(){return at||Jd>0}function vn(){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)ek(c.preRun.shift());th(Qo)}function Ap(){Ls=!0,!_&&th(Kr)}function jg(){_||(_e.terminateAllThreads(),Hg=!0)}function qg(){if(!_){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)$p(c.postRun.shift());th(Yd)}}function ek(N){Qo.unshift(N)}function tk(N){Kr.unshift(N)}function $p(N){Yd.unshift(N)}var Xr=0,Zd=null,Oa=null;function Fp(N){Xr++,c.monitorRunDependencies&&c.monitorRunDependencies(Xr)}function nk(N){if(Xr--,c.monitorRunDependencies&&c.monitorRunDependencies(Xr),Xr==0&&(Zd!==null&&(clearInterval(Zd),Zd=null),Oa)){var D=Oa;Oa=null,D()}}c.preloadedImages={},c.preloadedAudios={};function el(N){_?postMessage({cmd:"onAbort",arg:N}):c.onAbort&&c.onAbort(N),N="Aborted("+N+")",Q(N),dt=!0,bn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw m(D),D}var Kg="data:application/octet-stream;base64,";function Dp(N){return N.startsWith(Kg)}function Qd(N){return N.startsWith("file://")}var wn;wn="tfjs-backend-wasm-threaded-simd.wasm",Dp(wn)||(wn=F(wn));function eh(N){try{if(N==wn&&nt)return new Uint8Array(nt);if(S)return S(N);throw"both async and sync fetching of the wasm failed"}catch(D){el(D)}}function tl(){if(!nt&&(v||I)){if(typeof fetch=="function"&&!Qd(wn))return fetch(wn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+wn+"'";return N.arrayBuffer()}).catch(function(){return eh(wn)});if($)return new Promise(function(N,D){$(wn,function(V){N(new Uint8Array(V))},D)})}return Promise.resolve().then(function(){return eh(wn)})}function Xg(){var N={env:hh,wasi_snapshot_preview1:hh};function D(ve,Ce){var Ct=ve.exports;if(c.asm=Ct,ny(c.asm.emscripten_tls_init),la=c.asm.__indirect_function_table,tk(c.asm.__wasm_call_ctors),ft=Ce,!_){var Ba=_e.unusedWorkers.length;_e.unusedWorkers.forEach(function(Wa){_e.loadWasmModuleToWorker(Wa,function(){--Ba||nk("wasm-instantiate")})})}}_||Fp("wasm-instantiate");function V(ve){D(ve.instance,ve.module)}function J(ve){return tl().then(function(Ce){return WebAssembly.instantiate(Ce,N)}).then(function(Ce){return Ce}).then(ve,function(Ce){Q("failed to asynchronously prepare wasm: "+Ce),el(Ce)})}function pe(){return!nt&&typeof WebAssembly.instantiateStreaming=="function"&&!Dp(wn)&&!Qd(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ve){var Ce=WebAssembly.instantiateStreaming(ve,N);return Ce.then(V,function(Ct){return Q("wasm streaming compile failed: "+Ct),Q("falling back to ArrayBuffer instantiation"),J(V)})}):J(V)}if(c.instantiateWasm)try{var me=c.instantiateWasm(N,D);return me}catch(ve){return Q("Module.instantiateWasm callback failed with error: "+ve),!1}return pe().catch(m),{}}var ak,rk,Yg={};function th(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(c);continue}var V=D.func;typeof V=="number"?D.arg===void 0?al(V)():al(V)(D.arg):V(D.arg===void 0?null:D.arg)}}function nl(N){var D=Ib(),V=N();return bh(D),V}function _$(N){return N}function sk(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(V){var J=V;return V===J?V:J+" ["+V+"]"})}function Jg(N){u()[N>>2]=0;var D=_e.pthreads[N];delete _e.pthreads[N],D.worker.terminate(),kb(N),_e.runningWorkers.splice(_e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function Zg(N){var D=_e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function nh(N){var D=_e.pthreads[N];if(D){u()[N>>2]=0;var V=D.worker;_e.returnWorkerToPool(V)}}function ah(N){yF(N)}function Qg(N){if(N instanceof zp||N=="unwind")return bn;x(1,N)}var _e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){_?_e.initWorker():_e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D>2]=0;try{N()}finally{u()[bk>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in _e.tlsInitFunctions)_e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=V=>{var J=V.data,pe=J.cmd;if(N.pthread&&(_e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),J.targetThread&&J.targetThread!=yh()){var me=_e.pthreads[J.targetThread];me?me.worker.postMessage(J,J.transferList):Q('Internal error! Worker sent a message "'+pe+'" to target pthread '+J.targetThread+", but that thread no longer exists!"),_e.currentProxiedOperationCallerThread=void 0;return}pe==="processQueuedMainThreadWork"?hk():pe==="spawnThread"?sh(J):pe==="cleanupThread"?nh(J.thread):pe==="killThread"?Jg(J.thread):pe==="cancelThread"?Zg(J.thread):pe==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):pe==="print"?re("Thread "+J.threadId+": "+J.text):pe==="printErr"?Q("Thread "+J.threadId+": "+J.text):pe==="alert"?alert("Thread "+J.threadId+": "+J.text):J.target==="setimmediate"?N.postMessage(J):pe==="onAbort"?c.onAbort&&c.onAbort(J.arg):Q("worker sent an unknown command "+pe),_e.currentProxiedOperationCallerThread=void 0},N.onerror=V=>{var J="worker sent an error!";throw Q(J+" "+V.filename+":"+V.lineno+": "+V.message),V},T&&(N.on("message",function(V){N.onmessage({data:V})}),N.on("error",function(V){N.onerror(V)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||a,wasmMemory:Te,wasmModule:ft})},allocateUnusedWorker:function(){var N=F("tfjs-backend-wasm-threaded-simd.worker.js");_e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return _e.unusedWorkers.length==0&&(_e.allocateUnusedWorker(),_e.loadWasmModuleToWorker(_e.unusedWorkers[0])),_e.unusedWorkers.pop()}};function ey(){var N=yh(),D=u()[N+44>>2],V=u()[N+48>>2],J=D-V;yk(D,J),bh(D)}c.establishStackSpace=ey;function rh(N){if(_)return Vs(1,0,N);try{ah(N)}catch(D){Qg(D)}}var Bs=[];function al(N){var D=Bs[N];return D||(N>=Bs.length&&(Bs.length=N+1),Bs[N]=D=la.get(N)),D}function ty(N,D){return al(N)(D)}c.invokeEntryPoint=ty;function ik(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function ny(N,D,V){_e.tlsInitFunctions.push(N)}function ok(N,D){la.set(N,D),Bs[N]=D}var Ws;T?Ws=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:_?Ws=()=>performance.now()-c.__performance_now_clock_drift:Ws=()=>performance.now();var ay=!0;function ry(N){return u()[dk()>>2]=N,N}function sy(N,D){var V;if(N===0)V=Date.now();else if((N===1||N===4)&&ay)V=Ws();else return ry(28),-1;return u()[D>>2]=V/1e3|0,u()[D+4>>2]=V%1e3*1e3*1e3|0,0}function iy(N,D){return sy(N,D)}function oy(N){mk(N,!I,1,!v),_e.threadInit()}function ly(N){_?postMessage({cmd:"cleanupThread",thread:N}):nh(N)}function sh(N){var D=_e.getNewWorker();if(!D)return 6;_e.runningWorkers.push(D);var V=_e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=V;var J={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{J.time=performance.now(),D.postMessage(J,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function uy(N,D,V,J){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var pe=[],me=0;if(_&&(pe.length===0||me))return fk(687865856,N,D,V,J);if(me)return me;var ve={startRoutine:V,pthread_ptr:N,arg:J,transferList:pe};return _?(ve.cmd="spawnThread",postMessage(ve,pe),0):sh(ve)}function py(){return 2097152}function cy(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if(_)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var V=_e.pthreads[N],J=V&&V.worker;if(!J)return;J.postMessage({cmd:"processThreadQueue"})}return 1}function dy(){el("")}function hy(){T||I||ae("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function ih(){return 2147483648}function my(N,D,V){i().copyWithin(N,D,D+V)}function fy(){return T?jF().cpus().length:navigator.hardwareConcurrency}function Vs(N,D){var V=arguments.length-2,J=arguments;return nl(function(){for(var pe=V,me=ul(pe*8),ve=me>>3,Ce=0;Ce>3,pe=0;pe>>16),Pa(Te.buffer),1}catch(D){}}function by(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var V=ih();if(N>V)return!1;for(var J=1;J<=4;J*=2){var pe=D*(1+.2/J);pe=Math.min(pe,N+100663296);var me=Math.min(V,Zo(Math.max(N,pe),65536)),ve=yy(me);if(ve)return!0}return!1}var Ue={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ue.eventHandlers.length-1;N>=0;--N)Ue._removeHandler(N);Ue.eventHandlers=[],Ue.deferredCalls=[]},registerRemoveEventListeners:function(){Ue.removeEventListenersRegistered||(Gg.push(Ue.removeAllEventListeners),Ue.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,V){function J(ve,Ce){if(ve.length!=Ce.length)return!1;for(var Ct in ve)if(ve[Ct]!=Ce[Ct])return!1;return!0}for(var pe in Ue.deferredCalls){var me=Ue.deferredCalls[pe];if(me.targetFunction==N&&J(me.argsList,V))return}Ue.deferredCalls.push({targetFunction:N,precedence:D,argsList:V}),Ue.deferredCalls.sort(function(ve,Ce){return ve.precedence>2]=V,u()[me+4>>2]=J,u()[me+8>>2]=pe,wb(N,637534208,D,J,me)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return _e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function xy(N){var D=Vd(N)+1,V=vb(D);return Os(N,V,D),V}function vy(N,D,V,J){nl(function(){var pe=ul(12),me=0;D&&(me=xy(D)),u()[pe>>2]=me,u()[pe+4>>2]=V,u()[pe+8>>2]=J,wb(N,657457152,0,me,pe)})}function wy(N,D,V,J){D=D?oa(D):"",vy(N,D,V,J)}function ky(N){return N>2?oa(N):N}var Iy=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Sy(N){N=ky(N);var D=Iy[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function Mp(N){return Sy(N)}function oh(N,D,V){var J=Mp(N);if(!J)return-4;if(J.canvasSharedPtr&&(u()[J.canvasSharedPtr>>2]=D,u()[J.canvasSharedPtr+4>>2]=V),J.offscreenCanvas||!J.controlTransferredOffscreen){J.offscreenCanvas&&(J=J.offscreenCanvas);var pe=!1;if(J.GLctxObject&&J.GLctxObject.GLctx){var me=J.GLctxObject.GLctx.getParameter(2978);pe=me[0]===0&&me[1]===0&&me[2]===J.width&&me[3]===J.height}J.width=D,J.height=V,pe&&J.GLctxObject.GLctx.viewport(0,0,D,V)}else if(J.canvasSharedPtr){var ve=u()[J.canvasSharedPtr+8>>2];return wy(ve,N,D,V),1}else return-4;return 0}function lh(N,D,V){return _?Vs(2,1,N,D,V):oh(N,D,V)}function Ny(N,D,V){var J=Mp(N);return J?oh(N,D,V):lh(N,D,V)}function Ty(){throw"unwind"}function Cy(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(V,J){D.vertexAttribDivisorANGLE(V,J)},N.drawArraysInstanced=function(V,J,pe,me){D.drawArraysInstancedANGLE(V,J,pe,me)},N.drawElementsInstanced=function(V,J,pe,me,ve){D.drawElementsInstancedANGLE(V,J,pe,me,ve)},1}function _y(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(V){D.deleteVertexArrayOES(V)},N.bindVertexArray=function(V){D.bindVertexArrayOES(V)},N.isVertexArray=function(V){return D.isVertexArrayOES(V)},1}function Ey(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(V,J){D.drawBuffersWEBGL(V,J)},1}function Ay(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var Tt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(N){Tt.lastError||(Tt.lastError=N)},getNewId:function(N){for(var D=Tt.counter++,V=N.length;V>2]:-1;pe+=oa(u()[V+me*4>>2],ve<0?void 0:ve)}return pe},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(pe,me){var ve=N.getContextSafariWebGL2Fixed(pe,me);return pe=="webgl"==ve instanceof WebGLRenderingContext?ve:null});var V=N.getContext("webgl",D);if(!V)return 0;var J=Tt.registerContext(V,D);return J},registerContext:function(N,D){var V=vb(8);u()[V+4>>2]=yh();var J={handle:V,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=J),Tt.contexts[V]=J,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&&Tt.initExtensions(J),V},makeContextCurrent:function(N){return Tt.currentContext=Tt.contexts[N],c.ctx=dh=Tt.currentContext&&Tt.currentContext.GLctx,!(N&&!dh)},getContext:function(N){return Tt.contexts[N]},deleteContext:function(N){Tt.currentContext===Tt.contexts[N]&&(Tt.currentContext=null),typeof Ue=="object"&&Ue.removeAllHandlersOnTarget(Tt.contexts[N].GLctx.canvas),Tt.contexts[N]&&Tt.contexts[N].GLctx.canvas&&(Tt.contexts[N].GLctx.canvas.GLctxObject=void 0),ck(Tt.contexts[N].handle),Tt.contexts[N]=null},initExtensions:function(N){if(N||(N=Tt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;Cy(D),_y(D),Ey(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Ay(D);var V=D.getSupportedExtensions()||[];V.forEach(function(J){!J.includes("lose_context")&&!J.includes("debug")&&D.getExtension(J)})}}},$y=["default","low-power","high-performance"];function Fy(N,D){var V=D>>2,J=u()[V+6],pe={alpha:!!u()[V+0],depth:!!u()[V+1],stencil:!!u()[V+2],antialias:!!u()[V+3],premultipliedAlpha:!!u()[V+4],preserveDrawingBuffer:!!u()[V+5],powerPreference:$y[J],failIfMajorPerformanceCaveat:!!u()[V+7],majorVersion:u()[V+8],minorVersion:u()[V+9],enableExtensionsByDefault:u()[V+10],explicitSwapControl:u()[V+11],proxyContextToMainThread:u()[V+12],renderViaOffscreenBackBuffer:u()[V+13]},me=Mp(N);if(!me||pe.explicitSwapControl)return 0;var ve=Tt.createContext(me,pe);return ve}function Dy(N,D){return Fy(N,D)}var rl={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var V=rl.buffers[N];D===0||D===10?((N===1?re:Q)(ia(V,0)),V.length=0):V.push(D)},varargs:void 0,get:function(){rl.varargs+=4;var N=u()[rl.varargs-4>>2];return N},getStr:function(N){var D=oa(N);return D},get64:function(N,D){return N}};function uh(N){return _?Vs(3,1,N):0}function ph(N,D,V,J,pe){if(_)return Vs(4,1,N,D,V,J,pe)}function ch(N,D,V,J){if(_)return Vs(5,1,N,D,V,J);for(var pe=0,me=0;me>2],Ce=u()[D+4>>2];D+=8;for(var Ct=0;Ct>2]=pe,0}function Ry(N){De(N)}_e.init();var dh,My=[null,rh,lh,uh,ph,ch],lk=!1,hh={__clock_gettime:iy,__emscripten_init_main_thread_js:oy,__emscripten_thread_cleanup:ly,__pthread_create_js:uy,_emscripten_default_pthread_stack_size:py,_emscripten_notify_thread_queue:cy,abort:dy,emscripten_check_blocking_allowed:hy,emscripten_get_heap_max:ih,emscripten_get_now:Ws,emscripten_memcpy_big:my,emscripten_num_logical_cores:fy,emscripten_receive_on_main_thread_js:gy,emscripten_resize_heap:by,emscripten_set_canvas_element_size:Ny,emscripten_unwind_to_js_event_loop:Ty,emscripten_webgl_create_context:Dy,exit:ah,fd_close:uh,fd_seek:ph,fd_write:ch,memory:Te||c.wasmMemory,setTempRet0:Ry},uk=Xg(),Py=c.___wasm_call_ctors=function(){return(Py=c.___wasm_call_ctors=c.asm.__wasm_call_ctors).apply(null,arguments)},Oy=c._init=function(){return(Oy=c._init=c.asm.init).apply(null,arguments)},Ly=c._init_with_threads_count=function(){return(Ly=c._init_with_threads_count=c.asm.init_with_threads_count).apply(null,arguments)},zy=c._get_threads_count=function(){return(zy=c._get_threads_count=c.asm.get_threads_count).apply(null,arguments)},By=c._register_tensor=function(){return(By=c._register_tensor=c.asm.register_tensor).apply(null,arguments)},Wy=c._dispose_data=function(){return(Wy=c._dispose_data=c.asm.dispose_data).apply(null,arguments)},Vy=c._dispose=function(){return(Vy=c._dispose=c.asm.dispose).apply(null,arguments)},Uy=c._Abs=function(){return(Uy=c._Abs=c.asm.Abs).apply(null,arguments)},Gy=c._Add=function(){return(Gy=c._Add=c.asm.Add).apply(null,arguments)},Hy=c._AddN=function(){return(Hy=c._AddN=c.asm.AddN).apply(null,arguments)},jy=c._All=function(){return(jy=c._All=c.asm.All).apply(null,arguments)},qy=c._Any=function(){return(qy=c._Any=c.asm.Any).apply(null,arguments)},Ky=c._ArgMax=function(){return(Ky=c._ArgMax=c.asm.ArgMax).apply(null,arguments)},Xy=c._AvgPool=function(){return(Xy=c._AvgPool=c.asm.AvgPool).apply(null,arguments)},Yy=c._BatchMatMul=function(){return(Yy=c._BatchMatMul=c.asm.BatchMatMul).apply(null,arguments)},Jy=c._Ceil=function(){return(Jy=c._Ceil=c.asm.Ceil).apply(null,arguments)},Zy=c._ClipByValue=function(){return(Zy=c._ClipByValue=c.asm.ClipByValue).apply(null,arguments)},Qy=c._Conv2D=function(){return(Qy=c._Conv2D=c.asm.Conv2D).apply(null,arguments)},eb=c._Conv2DBackpropInput=function(){return(eb=c._Conv2DBackpropInput=c.asm.Conv2DBackpropInput).apply(null,arguments)},tb=c._Cos=function(){return(tb=c._Cos=c.asm.Cos).apply(null,arguments)},nb=c._Cosh=function(){return(nb=c._Cosh=c.asm.Cosh).apply(null,arguments)},ab=c._CropAndResize=function(){return(ab=c._CropAndResize=c.asm.CropAndResize).apply(null,arguments)},rb=c._Cumprod=function(){return(rb=c._Cumprod=c.asm.Cumprod).apply(null,arguments)},sb=c._Cumsum=function(){return(sb=c._Cumsum=c.asm.Cumsum).apply(null,arguments)},ib=c._DepthToSpace=function(){return(ib=c._DepthToSpace=c.asm.DepthToSpace).apply(null,arguments)},ob=c._DepthwiseConv2dNative=function(){return(ob=c._DepthwiseConv2dNative=c.asm.DepthwiseConv2dNative).apply(null,arguments)},lb=c._Elu=function(){return(lb=c._Elu=c.asm.Elu).apply(null,arguments)},ub=c._Equal=function(){return(ub=c._Equal=c.asm.Equal).apply(null,arguments)},pb=c._Exp=function(){return(pb=c._Exp=c.asm.Exp).apply(null,arguments)},cb=c._FlipLeftRight=function(){return(cb=c._FlipLeftRight=c.asm.FlipLeftRight).apply(null,arguments)},db=c._Floor=function(){return(db=c._Floor=c.asm.Floor).apply(null,arguments)},hb=c._FloorDiv=function(){return(hb=c._FloorDiv=c.asm.FloorDiv).apply(null,arguments)},mb=c._FusedBatchNorm=function(){return(mb=c._FusedBatchNorm=c.asm.FusedBatchNorm).apply(null,arguments)},fb=c._FusedConv2D=function(){return(fb=c._FusedConv2D=c.asm.FusedConv2D).apply(null,arguments)},mh=c._FusedDepthwiseConv2D=function(){return(mh=c._FusedDepthwiseConv2D=c.asm.FusedDepthwiseConv2D).apply(null,arguments)},fh=c._Gather=function(){return(fh=c._Gather=c.asm.Gather).apply(null,arguments)},Pp=c._GatherNd=function(){return(Pp=c._GatherNd=c.asm.GatherNd).apply(null,arguments)},gb=c._Greater=function(){return(gb=c._Greater=c.asm.Greater).apply(null,arguments)},yb=c._GreaterEqual=function(){return(yb=c._GreaterEqual=c.asm.GreaterEqual).apply(null,arguments)},sl=c._LeakyRelu=function(){return(sl=c._LeakyRelu=c.asm.LeakyRelu).apply(null,arguments)},Op=c._Less=function(){return(Op=c._Less=c.asm.Less).apply(null,arguments)},Lp=c._LessEqual=function(){return(Lp=c._LessEqual=c.asm.LessEqual).apply(null,arguments)},pk=c._Log=function(){return(pk=c._Log=c.asm.Log).apply(null,arguments)},il=c._LogicalAnd=function(){return(il=c._LogicalAnd=c.asm.LogicalAnd).apply(null,arguments)},ol=c._LogicalNot=function(){return(ol=c._LogicalNot=c.asm.LogicalNot).apply(null,arguments)},bb=c._LogicalOr=function(){return(bb=c._LogicalOr=c.asm.LogicalOr).apply(null,arguments)},G=c._LogicalXor=function(){return(G=c._LogicalXor=c.asm.LogicalXor).apply(null,arguments)},ee=c._Max=function(){return(ee=c._Max=c.asm.Max).apply(null,arguments)},de=c._MaxPool=function(){return(de=c._MaxPool=c.asm.MaxPool).apply(null,arguments)},Se=c._Maximum=function(){return(Se=c._Maximum=c.asm.Maximum).apply(null,arguments)},Ze=c._Mean=function(){return(Ze=c._Mean=c.asm.Mean).apply(null,arguments)},rt=c._Min=function(){return(rt=c._Min=c.asm.Min).apply(null,arguments)},Ge=c._Minimum=function(){return(Ge=c._Minimum=c.asm.Minimum).apply(null,arguments)},Ve=c._MirrorPad=function(){return(Ve=c._MirrorPad=c.asm.MirrorPad).apply(null,arguments)},Ot=c._Multiply=function(){return(Ot=c._Multiply=c.asm.Multiply).apply(null,arguments)},La=c._Neg=function(){return(La=c._Neg=c.asm.Neg).apply(null,arguments)},za=c._NonMaxSuppressionV3=function(){return(za=c._NonMaxSuppressionV3=c.asm.NonMaxSuppressionV3).apply(null,arguments)},ll=c._NonMaxSuppressionV4=function(){return(ll=c._NonMaxSuppressionV4=c.asm.NonMaxSuppressionV4).apply(null,arguments)},Us=c._NonMaxSuppressionV5=function(){return(Us=c._NonMaxSuppressionV5=c.asm.NonMaxSuppressionV5).apply(null,arguments)},xb=c._NotEqual=function(){return(xb=c._NotEqual=c.asm.NotEqual).apply(null,arguments)},Pn=c._OneHot=function(){return(Pn=c._OneHot=c.asm.OneHot).apply(null,arguments)},Yr=c._PadV2=function(){return(Yr=c._PadV2=c.asm.PadV2).apply(null,arguments)},gh=c._Pow=function(){return(gh=c._Pow=c.asm.Pow).apply(null,arguments)},E$=c._Prelu=function(){return(E$=c._Prelu=c.asm.Prelu).apply(null,arguments)},A$=c._Prod=function(){return(A$=c._Prod=c.asm.Prod).apply(null,arguments)},$$=c._RealDiv=function(){return($$=c._RealDiv=c.asm.RealDiv).apply(null,arguments)},F$=c._Relu=function(){return(F$=c._Relu=c.asm.Relu).apply(null,arguments)},D$=c._Relu6=function(){return(D$=c._Relu6=c.asm.Relu6).apply(null,arguments)},R$=c._ResizeBilinear=function(){return(R$=c._ResizeBilinear=c.asm.ResizeBilinear).apply(null,arguments)},M$=c._ResizeNearestNeighbor=function(){return(M$=c._ResizeNearestNeighbor=c.asm.ResizeNearestNeighbor).apply(null,arguments)},P$=c._Reverse=function(){return(P$=c._Reverse=c.asm.Reverse).apply(null,arguments)},O$=c._RotateWithOffset=function(){return(O$=c._RotateWithOffset=c.asm.RotateWithOffset).apply(null,arguments)},L$=c._Round=function(){return(L$=c._Round=c.asm.Round).apply(null,arguments)},z$=c._Rsqrt=function(){return(z$=c._Rsqrt=c.asm.Rsqrt).apply(null,arguments)},B$=c._ScatterNd=function(){return(B$=c._ScatterNd=c.asm.ScatterNd).apply(null,arguments)},W$=c._SelectV2=function(){return(W$=c._SelectV2=c.asm.SelectV2).apply(null,arguments)},V$=c._Sigmoid=function(){return(V$=c._Sigmoid=c.asm.Sigmoid).apply(null,arguments)},U$=c._Sin=function(){return(U$=c._Sin=c.asm.Sin).apply(null,arguments)},G$=c._Softmax=function(){return(G$=c._Softmax=c.asm.Softmax).apply(null,arguments)},H$=c._SparseFillEmptyRows=function(){return(H$=c._SparseFillEmptyRows=c.asm.SparseFillEmptyRows).apply(null,arguments)},j$=c._SparseReshape=function(){return(j$=c._SparseReshape=c.asm.SparseReshape).apply(null,arguments)},q$=c._SparseSegmentReduction=function(){return(q$=c._SparseSegmentReduction=c.asm.SparseSegmentReduction).apply(null,arguments)},K$=c._Sqrt=function(){return(K$=c._Sqrt=c.asm.Sqrt).apply(null,arguments)},X$=c._Square=function(){return(X$=c._Square=c.asm.Square).apply(null,arguments)},Y$=c._SquaredDifference=function(){return(Y$=c._SquaredDifference=c.asm.SquaredDifference).apply(null,arguments)},J$=c._Step=function(){return(J$=c._Step=c.asm.Step).apply(null,arguments)},Z$=c._StridedSlice=function(){return(Z$=c._StridedSlice=c.asm.StridedSlice).apply(null,arguments)},Q$=c._Sub=function(){return(Q$=c._Sub=c.asm.Sub).apply(null,arguments)},eF=c._Sum=function(){return(eF=c._Sum=c.asm.Sum).apply(null,arguments)},tF=c._Tan=function(){return(tF=c._Tan=c.asm.Tan).apply(null,arguments)},nF=c._Tanh=function(){return(nF=c._Tanh=c.asm.Tanh).apply(null,arguments)},aF=c._Tile=function(){return(aF=c._Tile=c.asm.Tile).apply(null,arguments)},rF=c._TopK=function(){return(rF=c._TopK=c.asm.TopK).apply(null,arguments)},sF=c._Transform=function(){return(sF=c._Transform=c.asm.Transform).apply(null,arguments)},iF=c._Transpose=function(){return(iF=c._Transpose=c.asm.Transpose).apply(null,arguments)},oF=c.__FusedMatMul=function(){return(oF=c.__FusedMatMul=c.asm._FusedMatMul).apply(null,arguments)},vb=c._malloc=function(){return(vb=c._malloc=c.asm.malloc).apply(null,arguments)},ck=c._free=function(){return(ck=c._free=c.asm.free).apply(null,arguments)},lF=c._emscripten_tls_init=function(){return(lF=c._emscripten_tls_init=c.asm.emscripten_tls_init).apply(null,arguments)},dk=c.___errno_location=function(){return(dk=c.___errno_location=c.asm.__errno_location).apply(null,arguments)},yh=c._pthread_self=function(){return(yh=c._pthread_self=c.asm.pthread_self).apply(null,arguments)},hk=c._emscripten_main_thread_process_queued_calls=function(){return(hk=c._emscripten_main_thread_process_queued_calls=c.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},uF=c.__emscripten_thread_crashed=function(){return(uF=c.__emscripten_thread_crashed=c.asm._emscripten_thread_crashed).apply(null,arguments)},mk=c.__emscripten_thread_init=function(){return(mk=c.__emscripten_thread_init=c.asm._emscripten_thread_init).apply(null,arguments)},pF=c._emscripten_current_thread_process_queued_calls=function(){return(pF=c._emscripten_current_thread_process_queued_calls=c.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},cF=c._emscripten_main_browser_thread_id=function(){return(cF=c._emscripten_main_browser_thread_id=c.asm.emscripten_main_browser_thread_id).apply(null,arguments)},dF=c._emscripten_sync_run_in_main_thread_2=function(){return(dF=c._emscripten_sync_run_in_main_thread_2=c.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},fk=c._emscripten_sync_run_in_main_thread_4=function(){return(fk=c._emscripten_sync_run_in_main_thread_4=c.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},gk=c._emscripten_run_in_main_runtime_thread_js=function(){return(gk=c._emscripten_run_in_main_runtime_thread_js=c.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},wb=c._emscripten_dispatch_to_thread_=function(){return(wb=c._emscripten_dispatch_to_thread_=c.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},kb=c.__emscripten_thread_free_data=function(){return(kb=c.__emscripten_thread_free_data=c.asm._emscripten_thread_free_data).apply(null,arguments)},hF=c.__emscripten_thread_exit=function(){return(hF=c.__emscripten_thread_exit=c.asm._emscripten_thread_exit).apply(null,arguments)},mF=c._memalign=function(){return(mF=c._memalign=c.asm.memalign).apply(null,arguments)},yk=c._emscripten_stack_set_limits=function(){return(yk=c._emscripten_stack_set_limits=c.asm.emscripten_stack_set_limits).apply(null,arguments)},Ib=c.stackSave=function(){return(Ib=c.stackSave=c.asm.stackSave).apply(null,arguments)},bh=c.stackRestore=function(){return(bh=c.stackRestore=c.asm.stackRestore).apply(null,arguments)},ul=c.stackAlloc=function(){return(ul=c.stackAlloc=c.asm.stackAlloc).apply(null,arguments)},fF=c.dynCall_iijjiiii=function(){return(fF=c.dynCall_iijjiiii=c.asm.dynCall_iijjiiii).apply(null,arguments)},gF=c.dynCall_jiji=function(){return(gF=c.dynCall_jiji=c.asm.dynCall_jiji).apply(null,arguments)},bk=c.__emscripten_allow_main_runtime_queued_calls=21672;c.cwrap=Jt,c.keepRuntimeAlive=zs,c.PThread=_e,c.PThread=_e,c.wasmMemory=Te,c.ExitStatus=zp;var xh;function zp(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Oa=function N(){xh||Sb(),xh||(Oa=N)};function Sb(N){if(N=N||y,Xr>0)return;if(_){h(c),Ap(),postMessage({cmd:"loaded"});return}if(vn(),Xr>0)return;function D(){xh||(xh=!0,c.calledRun=!0,!dt&&(Ap(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),qg()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),D()},1)):D()}c.run=Sb;function yF(N,D){if(bn=N,!D&&_)throw rh(N),"unwind";zs()||jg(),bF(N)}function bF(N){bn=N,zs()||(_e.terminateAllThreads(),c.onExit&&c.onExit(N),dt=!0),x(N,new zp(N))}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();Sb();var vh;f&&(vh={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!f.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!f.unhandledRejection.indexOf(N)>-1})});var wh;if(typeof WasmBackendModule!="undefined")wh=WasmBackendModule;else if(typeof r!="undefined")wh=r;else throw new Error("Could not find wasm module in post.js");if(vh){var xF=wh._dispose;wh._dispose=function(){xF(),vh.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),vh.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),KF=Wt((e,t)=>{t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+" ");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}),XF=Wt((e,t)=>{var n=(()=>{var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(G,ee){i=G,o=ee});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},s),p=[],d="./this.program",c=(G,ee)=>{throw ee},h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(G){return s.locateFile?s.locateFile(G,g):g+G}var b,x,v,I;function T(G){G instanceof Op||$("exiting due to exception: "+G)}var _,A,F;f?(m?g=jh().dirname(g)+"/":g=__dirname+"/",F=()=>{A||(_=Bx(),A=jh())},b=function(G,ee){return F(),G=A.normalize(G),_.readFileSync(G,ee?void 0:"utf8")},v=G=>{var ee=b(G,!0);return ee.buffer||(ee=new Uint8Array(ee)),ee},x=(G,ee,de)=>{F(),G=A.normalize(G),_.readFile(G,function(Se,Ze){Se?de(Se):ee(Ze.buffer)})},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(G){if(!(G instanceof Op))throw G}),process.on("unhandledRejection",function(G){throw G}),c=(G,ee)=>{if(Ep())throw process.exitCode=G,ee;T(ee),process.exit(G)},s.inspect=function(){return"[Emscripten Module object]"}):(h||m)&&(m?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),a&&(g=a),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",b=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.send(null),ee.responseText},m&&(v=G=>{var ee=new XMLHttpRequest;return ee.open("GET",G,!1),ee.responseType="arraybuffer",ee.send(null),new Uint8Array(ee.response)}),x=(G,ee,de)=>{var Se=new XMLHttpRequest;Se.open("GET",G,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){ee(Se.response);return}de()},Se.onerror=de,Se.send(null)},I=G=>document.title=G);var P=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);Object.assign(s,u),u=null,s.arguments&&(p=s.arguments),s.thisProgram&&(d=s.thisProgram),s.quit&&(c=s.quit);var S=4;function M(G){M.shown||(M.shown={}),M.shown[G]||(M.shown[G]=1,$(G))}function U(G,ee){if(typeof WebAssembly.Function=="function"){for(var de={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:ee[0]=="v"?[]:[de[ee[0]]]},Ze=1;Ze{te=G},Q;s.wasmBinary&&(Q=s.wasmBinary);var ie=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ls("no native wasm support detected");var ae,oe=!1,ue;function we(G,ee){G||Ls(ee)}function ye(G){var ee=s["_"+G];return ee}function Ie(G,ee,de,Se,Ze){var rt={string:function(Pn){var Yr=0;if(Pn!=null&&Pn!==0){var gh=(Pn.length<<2)+1;Yr=Pp(gh),at(Pn,Yr,gh)}return Yr},array:function(Pn){var Yr=Pp(Pn.length);return dt(Pn,Yr),Yr}};function Ge(Pn){return ee==="string"?st(Pn):ee==="boolean"?Boolean(Pn):Pn}var Ve=ye(G),Ot=[],La=0;if(Se)for(var za=0;za=Se);)++Ze;if(Ze-ee>16&&G.subarray&&We)return We.decode(G.subarray(ee,Ze));for(var rt="";ee>10,56320|La&1023)}}return rt}function st(G,ee){return G?je(Jt,G,ee):""}function nt(G,ee,de,Se){if(!(Se>0))return 0;for(var Ze=de,rt=de+Se-1,Ge=0;Ge=55296&&Ve<=57343){var Ot=G.charCodeAt(++Ge);Ve=65536+((Ve&1023)<<10)|Ot&1023}if(Ve<=127){if(de>=rt)break;ee[de++]=Ve}else if(Ve<=2047){if(de+1>=rt)break;ee[de++]=192|Ve>>6,ee[de++]=128|Ve&63}else if(Ve<=65535){if(de+2>=rt)break;ee[de++]=224|Ve>>12,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}else{if(de+3>=rt)break;ee[de++]=240|Ve>>18,ee[de++]=128|Ve>>12&63,ee[de++]=128|Ve>>6&63,ee[de++]=128|Ve&63}}return ee[de]=0,de-Ze}function at(G,ee,de){return nt(G,Jt,ee,de)}function Te(G){for(var ee=0,de=0;de=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|G.charCodeAt(++de)&1023),Se<=127?++ee:Se<=2047?ee+=2:Se<=65535?ee+=3:ee+=4}return ee}var ft=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function dt(G,ee){Ut.set(G,ee)}function bn(G,ee,de){for(var Se=0;Se>0]=G.charCodeAt(Se);de||(Ut[ee>>0]=0)}function Yt(G,ee){return G%ee>0&&(G+=ee-G%ee),G}var Rn,Ut,Jt,Ma,Mn,Gt,ia,oa,jr;function Os(G){Rn=G,s.HEAP8=Ut=new Int8Array(G),s.HEAP16=Ma=new Int16Array(G),s.HEAP32=Gt=new Int32Array(G),s.HEAPU8=Jt=new Uint8Array(G),s.HEAPU16=Mn=new Uint16Array(G),s.HEAPU32=ia=new Uint32Array(G),s.HEAPF32=oa=new Float32Array(G),s.HEAPF64=jr=new Float64Array(G)}var Vd=s.INITIAL_MEMORY||16777216,qr,kr=[],_p=[],Zo=[],xn=!1,Ud=!1,Gd=0;function Ep(){return ie||Gd>0}function Hd(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Kd(s.preRun.shift());$p(kr)}function jd(){xn=!0,$p(_p)}function Q1(){Ud=!0}function qd(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Xd(s.postRun.shift());$p(Zo)}function Kd(G){kr.unshift(G)}function Pa(G){_p.unshift(G)}function Xd(G){Zo.unshift(G)}var la=0,Qo=null,Kr=null;function Gg(G){la++,s.monitorRunDependencies&&s.monitorRunDependencies(la)}function Yd(G){if(la--,s.monitorRunDependencies&&s.monitorRunDependencies(la),la==0&&(Qo!==null&&(clearInterval(Qo),Qo=null),Kr)){var ee=Kr;Kr=null,ee()}}s.preloadedImages={},s.preloadedAudios={};function Ls(G){s.onAbort&&s.onAbort(G),G="Aborted("+G+")",$(G),oe=!0,ue=1,G+=". Build with -s ASSERTIONS=1 for more info.";var ee=new WebAssembly.RuntimeError(G);throw o(ee),ee}var Hg="data:application/octet-stream;base64,";function Jd(G){return G.startsWith(Hg)}function zs(G){return G.startsWith("file://")}var vn;vn="tfjs-backend-wasm.wasm",Jd(vn)||(vn=y(vn));function Ap(G){try{if(G==vn&&Q)return new Uint8Array(Q);if(v)return v(G);throw"both async and sync fetching of the wasm failed"}catch(ee){Ls(ee)}}function jg(){if(!Q&&(h||m)){if(typeof fetch=="function"&&!zs(vn))return fetch(vn,{credentials:"same-origin"}).then(function(G){if(!G.ok)throw"failed to load wasm binary file at '"+vn+"'";return G.arrayBuffer()}).catch(function(){return Ap(vn)});if(x)return new Promise(function(G,ee){x(vn,function(de){G(new Uint8Array(de))},ee)})}return Promise.resolve().then(function(){return Ap(vn)})}function qg(){var G={env:nl,wasi_snapshot_preview1:nl};function ee(Ge,Ve){var Ot=Ge.exports;s.asm=Ot,ae=s.asm.memory,Os(ae.buffer),qr=s.asm.__indirect_function_table,Pa(s.asm.__wasm_call_ctors),Yd("wasm-instantiate")}Gg("wasm-instantiate");function de(Ge){ee(Ge.instance)}function Se(Ge){return jg().then(function(Ve){return WebAssembly.instantiate(Ve,G)}).then(function(Ve){return Ve}).then(Ge,function(Ve){$("failed to asynchronously prepare wasm: "+Ve),Ls(Ve)})}function Ze(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Jd(vn)&&!zs(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ge){var Ve=WebAssembly.instantiateStreaming(Ge,G);return Ve.then(de,function(Ot){return $("wasm streaming compile failed: "+Ot),$("falling back to ArrayBuffer instantiation"),Se(de)})}):Se(de)}if(s.instantiateWasm)try{var rt=s.instantiateWasm(G,ee);return rt}catch(Ge){return $("Module.instantiateWasm callback failed with error: "+Ge),!1}return Ze().catch(o),{}}var ek,tk;function $p(G){for(;G.length>0;){var ee=G.shift();if(typeof ee=="function"){ee(s);continue}var de=ee.func;typeof de=="number"?ee.arg===void 0?Fp(de)():Fp(de)(ee.arg):de(ee.arg===void 0?null:ee.arg)}}function Xr(G){return G}function Zd(G){var ee=/\b_Z[\w\d_]+/g;return G.replace(ee,function(de){var Se=de;return de===Se?de:Se+" ["+de+"]"})}var Oa=[];function Fp(G){var ee=Oa[G];return ee||(G>=Oa.length&&(Oa.length=G+1),Oa[G]=ee=qr.get(G)),ee}function nk(){var G=new Error;if(!G.stack){try{throw new Error}catch(ee){G=ee}if(!G.stack)return"(no stack trace available)"}return G.stack.toString()}function el(G,ee){qr.set(G,ee),Oa[G]=ee}function Kg(){Ls("")}function Dp(){return 2147483648}function Qd(G,ee,de){Jt.copyWithin(G,ee,ee+de)}function wn(G){try{return ae.grow(G-Rn.byteLength+65535>>>16),Os(ae.buffer),1}catch(ee){}}function eh(G){var ee=Jt.length;G=G>>>0;var de=Dp();if(G>de)return!1;for(var Se=1;Se<=4;Se*=2){var Ze=ee*(1+.2/Se);Ze=Math.min(Ze,G+100663296);var rt=Math.min(de,Yt(Math.max(G,Ze),65536)),Ge=wn(rt);if(Ge)return!0}return!1}var tl={mappings:{},buffers:[null,[],[]],printChar:function(G,ee){var de=tl.buffers[G];ee===0||ee===10?((G===1?P:$)(je(de,0)),de.length=0):de.push(ee)},varargs:void 0,get:function(){tl.varargs+=4;var G=Gt[tl.varargs-4>>2];return G},getStr:function(G){var ee=st(G);return ee},get64:function(G,ee){return G}};function Xg(G){return 0}function ak(G,ee,de,Se,Ze){}function rk(G,ee,de,Se){for(var Ze=0,rt=0;rt>2],Ve=Gt[ee+4>>2];ee+=8;for(var Ot=0;Ot>2]=Ze,0}function Yg(G){re(G)}var th=!1,nl={abort:Kg,emscripten_get_heap_max:Dp,emscripten_memcpy_big:Qd,emscripten_resize_heap:eh,fd_close:Xg,fd_seek:ak,fd_write:rk,setTempRet0:Yg},_$=qg(),sk=s.___wasm_call_ctors=function(){return(sk=s.___wasm_call_ctors=s.asm.__wasm_call_ctors).apply(null,arguments)},Jg=s._init=function(){return(Jg=s._init=s.asm.init).apply(null,arguments)},Zg=s._init_with_threads_count=function(){return(Zg=s._init_with_threads_count=s.asm.init_with_threads_count).apply(null,arguments)},nh=s._get_threads_count=function(){return(nh=s._get_threads_count=s.asm.get_threads_count).apply(null,arguments)},ah=s._register_tensor=function(){return(ah=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},Qg=s._dispose_data=function(){return(Qg=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},_e=s._dispose=function(){return(_e=s._dispose=s.asm.dispose).apply(null,arguments)},ey=s._Abs=function(){return(ey=s._Abs=s.asm.Abs).apply(null,arguments)},rh=s._Add=function(){return(rh=s._Add=s.asm.Add).apply(null,arguments)},Bs=s._AddN=function(){return(Bs=s._AddN=s.asm.AddN).apply(null,arguments)},al=s._All=function(){return(al=s._All=s.asm.All).apply(null,arguments)},ty=s._Any=function(){return(ty=s._Any=s.asm.Any).apply(null,arguments)},ik=s._ArgMax=function(){return(ik=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},ny=s._AvgPool=function(){return(ny=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},ok=s._BatchMatMul=function(){return(ok=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Ws=s._Ceil=function(){return(Ws=s._Ceil=s.asm.Ceil).apply(null,arguments)},ay=s._ClipByValue=function(){return(ay=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},ry=s._Conv2D=function(){return(ry=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},sy=s._Conv2DBackpropInput=function(){return(sy=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},iy=s._Cos=function(){return(iy=s._Cos=s.asm.Cos).apply(null,arguments)},oy=s._Cosh=function(){return(oy=s._Cosh=s.asm.Cosh).apply(null,arguments)},ly=s._CropAndResize=function(){return(ly=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},sh=s._Cumprod=function(){return(sh=s._Cumprod=s.asm.Cumprod).apply(null,arguments)},uy=s._Cumsum=function(){return(uy=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},py=s._DepthToSpace=function(){return(py=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},cy=s._DepthwiseConv2dNative=function(){return(cy=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},dy=s._Elu=function(){return(dy=s._Elu=s.asm.Elu).apply(null,arguments)},hy=s._Equal=function(){return(hy=s._Equal=s.asm.Equal).apply(null,arguments)},ih=s._Exp=function(){return(ih=s._Exp=s.asm.Exp).apply(null,arguments)},my=s._FlipLeftRight=function(){return(my=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},fy=s._Floor=function(){return(fy=s._Floor=s.asm.Floor).apply(null,arguments)},Vs=s._FloorDiv=function(){return(Vs=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},Rp=s._FusedBatchNorm=function(){return(Rp=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},gy=s._FusedConv2D=function(){return(gy=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},yy=s._FusedDepthwiseConv2D=function(){return(yy=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},by=s._Gather=function(){return(by=s._Gather=s.asm.Gather).apply(null,arguments)},Ue=s._GatherNd=function(){return(Ue=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},xy=s._Greater=function(){return(xy=s._Greater=s.asm.Greater).apply(null,arguments)},vy=s._GreaterEqual=function(){return(vy=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},wy=s._LeakyRelu=function(){return(wy=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},ky=s._Less=function(){return(ky=s._Less=s.asm.Less).apply(null,arguments)},Iy=s._LessEqual=function(){return(Iy=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},Sy=s._Log=function(){return(Sy=s._Log=s.asm.Log).apply(null,arguments)},Mp=s._LogicalAnd=function(){return(Mp=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},oh=s._LogicalNot=function(){return(oh=s._LogicalNot=s.asm.LogicalNot).apply(null,arguments)},lh=s._LogicalOr=function(){return(lh=s._LogicalOr=s.asm.LogicalOr).apply(null,arguments)},Ny=s._LogicalXor=function(){return(Ny=s._LogicalXor=s.asm.LogicalXor).apply(null,arguments)},Ty=s._Max=function(){return(Ty=s._Max=s.asm.Max).apply(null,arguments)},Cy=s._MaxPool=function(){return(Cy=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},_y=s._Maximum=function(){return(_y=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ey=s._Mean=function(){return(Ey=s._Mean=s.asm.Mean).apply(null,arguments)},Ay=s._Min=function(){return(Ay=s._Min=s.asm.Min).apply(null,arguments)},Tt=s._Minimum=function(){return(Tt=s._Minimum=s.asm.Minimum).apply(null,arguments)},$y=s._MirrorPad=function(){return($y=s._MirrorPad=s.asm.MirrorPad).apply(null,arguments)},Fy=s._Multiply=function(){return(Fy=s._Multiply=s.asm.Multiply).apply(null,arguments)},Dy=s._Neg=function(){return(Dy=s._Neg=s.asm.Neg).apply(null,arguments)},rl=s._NonMaxSuppressionV3=function(){return(rl=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},uh=s._NonMaxSuppressionV4=function(){return(uh=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},ph=s._NonMaxSuppressionV5=function(){return(ph=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},ch=s._NotEqual=function(){return(ch=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},Ry=s._OneHot=function(){return(Ry=s._OneHot=s.asm.OneHot).apply(null,arguments)},dh=s._PadV2=function(){return(dh=s._PadV2=s.asm.PadV2).apply(null,arguments)},My=s._Pow=function(){return(My=s._Pow=s.asm.Pow).apply(null,arguments)},lk=s._Prelu=function(){return(lk=s._Prelu=s.asm.Prelu).apply(null,arguments)},hh=s._Prod=function(){return(hh=s._Prod=s.asm.Prod).apply(null,arguments)},uk=s._RealDiv=function(){return(uk=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Py=s._Relu=function(){return(Py=s._Relu=s.asm.Relu).apply(null,arguments)},Oy=s._Relu6=function(){return(Oy=s._Relu6=s.asm.Relu6).apply(null,arguments)},Ly=s._ResizeBilinear=function(){return(Ly=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},zy=s._ResizeNearestNeighbor=function(){return(zy=s._ResizeNearestNeighbor=s.asm.ResizeNearestNeighbor).apply(null,arguments)},By=s._Reverse=function(){return(By=s._Reverse=s.asm.Reverse).apply(null,arguments)},Wy=s._RotateWithOffset=function(){return(Wy=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},Vy=s._Round=function(){return(Vy=s._Round=s.asm.Round).apply(null,arguments)},Uy=s._Rsqrt=function(){return(Uy=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},Gy=s._ScatterNd=function(){return(Gy=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},Hy=s._SelectV2=function(){return(Hy=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},jy=s._Sigmoid=function(){return(jy=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},qy=s._Sin=function(){return(qy=s._Sin=s.asm.Sin).apply(null,arguments)},Ky=s._Softmax=function(){return(Ky=s._Softmax=s.asm.Softmax).apply(null,arguments)},Xy=s._SparseFillEmptyRows=function(){return(Xy=s._SparseFillEmptyRows=s.asm.SparseFillEmptyRows).apply(null,arguments)},Yy=s._SparseReshape=function(){return(Yy=s._SparseReshape=s.asm.SparseReshape).apply(null,arguments)},Jy=s._SparseSegmentReduction=function(){return(Jy=s._SparseSegmentReduction=s.asm.SparseSegmentReduction).apply(null,arguments)},Zy=s._Sqrt=function(){return(Zy=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Qy=s._Square=function(){return(Qy=s._Square=s.asm.Square).apply(null,arguments)},eb=s._SquaredDifference=function(){return(eb=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},tb=s._Step=function(){return(tb=s._Step=s.asm.Step).apply(null,arguments)},nb=s._StridedSlice=function(){return(nb=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},ab=s._Sub=function(){return(ab=s._Sub=s.asm.Sub).apply(null,arguments)},rb=s._Sum=function(){return(rb=s._Sum=s.asm.Sum).apply(null,arguments)},sb=s._Tan=function(){return(sb=s._Tan=s.asm.Tan).apply(null,arguments)},ib=s._Tanh=function(){return(ib=s._Tanh=s.asm.Tanh).apply(null,arguments)},ob=s._Tile=function(){return(ob=s._Tile=s.asm.Tile).apply(null,arguments)},lb=s._TopK=function(){return(lb=s._TopK=s.asm.TopK).apply(null,arguments)},ub=s._Transform=function(){return(ub=s._Transform=s.asm.Transform).apply(null,arguments)},pb=s._Transpose=function(){return(pb=s._Transpose=s.asm.Transpose).apply(null,arguments)},cb=s.__FusedMatMul=function(){return(cb=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},db=s._malloc=function(){return(db=s._malloc=s.asm.malloc).apply(null,arguments)},hb=s._free=function(){return(hb=s._free=s.asm.free).apply(null,arguments)},mb=s.___errno_location=function(){return(mb=s.___errno_location=s.asm.__errno_location).apply(null,arguments)},fb=s._emscripten_main_thread_process_queued_calls=function(){return(fb=s._emscripten_main_thread_process_queued_calls=s.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},mh=s.stackSave=function(){return(mh=s.stackSave=s.asm.stackSave).apply(null,arguments)},fh=s.stackRestore=function(){return(fh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)},Pp=s.stackAlloc=function(){return(Pp=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},gb=s.dynCall_iijjiiii=function(){return(gb=s.dynCall_iijjiiii=s.asm.dynCall_iijjiiii).apply(null,arguments)},yb=s.dynCall_jiji=function(){return(yb=s.dynCall_jiji=s.asm.dynCall_jiji).apply(null,arguments)};s.cwrap=Ee;var sl;function Op(G){this.name="ExitStatus",this.message="Program terminated with exit("+G+")",this.status=G}Kr=function G(){sl||Lp(),sl||(Kr=G)};function Lp(G){if(G=G||p,la>0||(Hd(),la>0))return;function ee(){sl||(sl=!0,s.calledRun=!0,!oe&&(jd(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),qd()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ee()},1)):ee()}s.run=Lp;function pk(G){ue=G,Ep()||(s.onExit&&s.onExit(G),oe=!0),c(G,new Op(G))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();Lp();var il;l&&(il={uncaughtException:process.listeners("uncaughtException").filter(function(G){return!l.uncaughtException.indexOf(G)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(G){return!l.unhandledRejection.indexOf(G)>-1})});var ol;if(typeof r!="undefined")ol=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")ol=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(il){var bb=ol._dispose;ol._dispose=function(){bb(),il.uncaughtException.forEach(function(G){process.removeListener("uncaughtException",G)}),il.unhandledRejection.forEach(function(G){process.removeListener("unhandledRejection",G)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),Nm=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},wc=class{refCount(e){return pa("refCount")}incRef(e){return pa("incRef")}timerAvailable(){return!0}time(e){return pa("time")}read(e){return pa("read")}readSync(e){return pa("readSync")}readToGPU(e,t){return pa("readToGPU")}numDataIds(){return pa("numDataIds")}disposeData(e,t){return pa("disposeData")}write(e,t,n){return pa("write")}move(e,t,n,a,r){return pa("move")}memory(){return pa("memory")}floatPrecision(){return pa("floatPrecision")}epsilon(){return this.floatPrecision()===32?1e-7:1e-4}dispose(){return pa("dispose")}};function pa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function KI(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,qh(e,t,n)}function YF(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a=0;for(;n>0;)a=Math.random()*n|0,n--,qh(e,n,a),qh(t,n,a)}function sc(e,t,n){return Math.max(e,Math.min(t,n))}function JF(e){return e%2===0?e:e+1}function qh(e,t,n){let a=e[t];e[t]=e[n],e[n]=a}function ZF(e){let t=0;for(let n=0;nn+` Shapes ${e} and ${t} must match`)}function vi(e){R(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ri(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||hn(e)&&!n)for(let a=0;a0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function iD(e,t){let n=1,a=-1;for(let s=0;s=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function Aa(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),R(e.every(a=>a>=-n&&a`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),R(e.every(a=>kl(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function XI(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:Aa(t,e).sort(),i=0;for(let o=0;oo)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function YI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function JI(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ZI(e,t){for(let n=0;nt+=n.length),t}function es(e){return typeof e=="string"||e instanceof String}function tS(e){return typeof e=="boolean"}function nS(e){return typeof e=="number"}function Tm(e){return Array.isArray(e)?Tm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":nS(e)?"float32":es(e)?"string":tS(e)?"bool":"float32"}function is(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Kh(e,t){for(let n=t;n=0;--a)n[a]=n[a+1]*e[a+1];return n}function aS(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;il*u)*(a?2:1);for(let l=0;lr*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return aS(0,e,t,n)}function Wx(e,t){let n=Cm(e,t);for(let a=0;aa*r,1);if(t==null||t==="float32")return yl(e,new Float32Array(n));if(t==="int32")return yl(e,new Int32Array(n));if(t==="bool")return yl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Vx(e){e.forEach(t=>{R(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function uD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r{let[n,a]=t.split(":");this.urlFlags[n]=hD(n,a)})}};function cD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(dD(t,a[0],a[1]),a.join("="))),t}function dD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function hD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function X(){return Gx}var Gx=null;function mD(e){Gx=e}var Tb;function sS(){if(Tb==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Tb=e}return Tb}function fD(){let e=sS();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Hx(e,t){let n=fD();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var Wl="Abs",Vl="Acos",Ul="Acosh",ys="Add",wi="AddN",Gl="All",Hl="Any",ki="ArgMax",kc="ArgMin",jl="Asin",ql="Asinh",Kl="Atan",Xl="Atanh",Yl="Atan2",Ii="AvgPool",_m="AvgPoolGrad",Ic="AvgPool3D",Em="AvgPool3DGrad",Si="BatchMatMul",Jl="BatchToSpaceND",Am="Bincount",iS="BroadcastTo",$m="BroadcastArgs",Ni="Cast",Ti="Ceil",bs="ClipByValue",Fm="Complex",Sc="ComplexAbs",Zl="Concat",Ci="Conv2D",Dm="Conv2DBackpropFilter",_i="Conv2DBackpropInput",Nc="Conv3D",Rm="Conv3DBackpropFilterV2",Mm="Conv3DBackpropInputV2",Ei="Cos",Ai="Cosh",Ql="Cumprod",$i="Cumsum",eu="CropAndResize",Pm="DenseBincount",tu="DepthToSpace",Fi="DepthwiseConv2dNative",Om="DepthwiseConv2dNativeBackpropFilter",Lm="DepthwiseConv2dNativeBackpropInput",zm="Diag",Tc="Dilation2D",Xh="Dilation2DBackpropInput",Yh="Dilation2DBackpropFilter",Di="RealDiv",Bm="Einsum",Ri="Elu",Wm="EluGrad",nu="Erf",au="Equal",Mi="Exp",ru="ExpandDims",su="Expm1",Vm="FFT",Cc="Fill",iu="FlipLeftRight",Pi="Floor",Oi="FloorDiv",Li="FusedBatchNorm",ou="GatherV2",lu="GatherNd",uu="Greater",zi="GreaterEqual",Bi="Identity",Um="IFFT",Gm="Imag",pu="IsFinite",cu="IsInf",du="IsNan",Wi="LeakyRelu",hu="Less",mu="LessEqual",Hm="LinSpace",Vi="Log",fu="Log1p",gu="LogicalAnd",yu="LogicalNot",bu="LogicalOr",oS="LogicalXor",lS="LogSoftmax",gD="LowerBound",_c="LRN",jm="LRNGrad",Ui="Max",Gi="Maximum",Hi="MaxPool",qm="MaxPoolGrad",Ec="MaxPool3D",Km="MaxPool3DGrad",Xm="MaxPoolWithArgmax",ji="Mean",qi="Min",Ki="Minimum",Xi="MirrorPad",xu="Mod",Ym="Multinomial",Yi="Multiply",vu="Neg",wu="NotEqual",ku="NonMaxSuppressionV3",Iu="NonMaxSuppressionV4",Su="NonMaxSuppressionV5",Nu="OnesLike",Ji="OneHot",Tu="Pack",Zi="PadV2",yD="Pool",Qi="Pow",eo="Prelu",to="Prod",Ac="Range",Jm="Real",Cu="Reciprocal",no="Relu",_u="Reshape",ao="ResizeNearestNeighbor",Zm="ResizeNearestNeighborGrad",ro="ResizeBilinear",Qm="ResizeBilinearGrad",so="Relu6",io="Reverse",oo="Round",lo="Rsqrt",Eu="ScatterNd",ef="SearchSorted",Au="Select",$u="Selu",Fu="Slice",uo="Sin",Du="Sinh",Ru="Sign",po="Sigmoid",Mu="Softplus",co="Sqrt",ho="Sum",Pu="SpaceToBatchND",Ou="SplitV",mo="Softmax",$c="SparseFillEmptyRows",Lu="SparseReshape",Fc="SparseSegmentMean",Dc="SparseSegmentSum",tf="SparseToDense",fo="SquaredDifference",Rc="Square",zu="StridedSlice",Mc="StringNGrams",Pc="StringSplit",Oc="StringToHashBucketFast",go="Sub",yo="Tan",bo="Tanh",xs="Tile",Bu="TopK",Wu="Transform",Er="Transpose",nf="Unique",Vu="Unpack",Lc="UnsortedSegmentSum",bD="UpperBound",Uu="ZerosLike",vs="Step",Jh="FromPixels",Gu="RotateWithOffset",si="_FusedMatMul",ii="FusedConv2D",oi="FusedDepthwiseConv2D";function Qr(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.warn(...e)}function xD(...e){X().getBool("IS_TEST")||X().getBool("PROD")||console.log(...e)}var Il=Hx("kernelRegistry",()=>new Map),ic=Hx("gradRegistry",()=>new Map);function Zh(e,t){let n=jx(e,t);return Il.get(n)}function Wb(e){return ic.get(e)}function Qh(e){let t=Il.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function zc(e){let{kernelName:t,backendName:n}=e,a=jx(t,n);Il.has(a)&&Qr(`The kernel '${t}' for backend '${n}' is already registered`),Il.set(a,e)}function uS(e){let{kernelName:t}=e;ic.has(t)&&X().getBool("DEBUG")&&Qr(`Overriding the gradient for '${t}'`),ic.set(t,e)}function vD(e,t){let n=jx(e,t);if(!Il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Il.delete(n)}function wD(e){if(!ic.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);ic.delete(e)}function kD(e,t){Qh(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});zc(a)})}function jx(e,t){return`${t}_${e}`}var w={};Fe(w,{arraysEqual:()=>gs,assert:()=>R,assertNonNegativeIntegerDimensions:()=>Vx,assertNonNull:()=>vi,assertShapesMatch:()=>_n,bytesFromStringArray:()=>eS,bytesPerElement:()=>Bb,checkConversionForErrors:()=>ZI,clamp:()=>sc,computeStrides:()=>Bl,createScalarValue:()=>_D,createShuffledIndices:()=>rD,decodeString:()=>em,distSquared:()=>eD,encodeString:()=>Wc,fetch:()=>AD,fingerPrint64:()=>CD,flatten:()=>ri,getArrayFromDType:()=>JI,getTypedArrayFromDType:()=>YI,hasEncodingLoss:()=>oD,hexToLong:()=>Bc,indexToLoc:()=>pD,inferDtype:()=>Tm,inferFromImplicitShape:()=>iD,isBoolean:()=>tS,isFunction:()=>is,isInt:()=>kl,isNumber:()=>nS,isPromise:()=>Ux,isScalarShape:()=>tD,isString:()=>es,isTypedArray:()=>hn,isValidDtype:()=>QI,locToIndex:()=>uD,makeOnesTypedArray:()=>Wx,makeZerosNestedTypedArray:()=>lD,makeZerosTypedArray:()=>Cm,nearestDivisor:()=>Kh,nearestLargerEven:()=>JF,now:()=>oc,parseAxisParam:()=>Aa,randUniform:()=>QF,repeatedTry:()=>sD,rightPad:()=>tc,shuffle:()=>KI,shuffleCombo:()=>YF,sizeFromShape:()=>yt,sizeToSquarishShape:()=>aD,squeezeShape:()=>XI,sum:()=>ZF,swap:()=>qh,tanh:()=>nD,toNestedArray:()=>yl,toTypedArray:()=>af});var wk=fs(DF()),Ks=wk.default||wk;function Bc(e){return Ks.fromString(e,!0,16)}var pS=Bc("c3a5c85c97cb3127"),js=Bc("b492b66fbe98f273"),kn=Bc("9ae16a3b2f90404f");function Vb(e){return e.xor(e.shru(47))}function cS(e,t,n){let a=e.slice(t,t+n);return Ks.fromBytes(Array.from(a),!0,!0)}function gt(e,t){return cS(e,t,8)}function kk(e,t){return cS(e,t,4)}function Zt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function as(e,t,n=Bc("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function ID(e,t,n,a,r,s){r=r.add(e),s=Zt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Zt(r,44)),[r.add(a),s.add(i)]}function Sh(e,t,n,a){return ID(gt(e,t),gt(e,t+8),gt(e,t+16),gt(e,t+24),n,a)}function SD(e,t=e.length){if(t>=8){let n=kn.add(t*2),a=gt(e,0).add(kn),r=gt(e,t-8),s=Zt(r,37).mul(n).add(a),i=Zt(a,25).add(r).mul(n);return as(s,i,n)}if(t>=4){let n=kn.add(t*2),a=kk(e,0);return as(a.shl(3).add(t),kk(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Vb(kn.mul(s).xor(pS.mul(i))).mul(kn)}return kn}function ND(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(js),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn);return as(Zt(a.add(r),43).add(Zt(s,30)).add(i),a.add(Zt(r.add(kn),18)).add(s),n)}function TD(e,t=e.length){let n=kn.add(t*2),a=gt(e,0).mul(kn),r=gt(e,8),s=gt(e,t-8).mul(n),i=gt(e,t-16).mul(kn),o=Zt(a.add(r),43).add(Zt(s,30)).add(i),l=as(o,a.add(Zt(r.add(kn),18)).add(s),n),u=gt(e,16).mul(n),p=gt(e,24),d=o.add(gt(e,t-32)).mul(n),c=l.add(gt(e,t-24)).mul(n);return as(Zt(u.add(p),43).add(Zt(d,30)).add(c),u.add(Zt(p.add(a),18)).add(d),n)}function CD(e,t=e.length){let n=Ks.fromNumber(81,!0);if(t<=32)return t<=16?SD(e,t):ND(e,t);if(t<=64)return TD(e,t);let a=n,r=n.mul(js).add(113),s=Vb(r.mul(kn).add(113)).mul(kn),i=[Ks.UZERO,Ks.UZERO],o=[Ks.UZERO,Ks.UZERO];a=a.mul(kn).add(gt(e,0));let l=0,u=(t-1>>6)*64,p=u+(t-1&63)-63;do a=Zt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(js),r=Zt(r.add(i[1]).add(gt(e,l+48)),42).mul(js),a=a.xor(o[1]),r=r.add(i[0]).add(gt(e,l+40)),s=Zt(s.add(o[0]),33).mul(js),i=Sh(e,l,i[1].mul(js),a.add(o[0])),o=Sh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let d=js.add(s.and(255).shl(1));return l=p,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Zt(a.add(r).add(i[0]).add(gt(e,l+8)),37).mul(d),r=Zt(r.add(i[1]).add(gt(e,l+48)),42).mul(d),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(gt(e,l+40))),s=Zt(s.add(o[0]),33).mul(d),i=Sh(e,l,i[1].mul(d),a.add(o[0])),o=Sh(e,l+32,s.add(o[1]),r.add(gt(e,l+16))),[s,a]=[a,s],as(as(i[0],o[0],d).add(Vb(r).mul(pS)).add(s),as(i[1],o[1],d).add(a),d)}function _D(e,t){return t==="string"?Wc(e):af([e],t)}function ED(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function af(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ri(e)),X().getBool("DEBUG")&&ZI(e,t),ED(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a{a=n()},s,i=oc();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:oc()-i})}if(X().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o{FD(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function FD(e,t,n){if(t!=="float32")return!1;for(let a=0;a0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${p} %c${u} %c${d} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function RD(e,t,n){let a={},r={};for(let l=0;la[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],p=u.inputs;for(let d=0;d=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let p=s.inputs[l];if(!gs(u.shape,p.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${p.shape}'`);if(e[p.id]==null)e[p.id]=u;else{let d=e[p.id];e[p.id]=a(d,u),d.dispose()}}}}var Ik=20,Wp=3,Cb=7;function PD(e,t,n,a){let r=Bl(t),s=OD(e,t,n,r),i=t.length,o=Ph(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(` diff --git a/dist/face-api.node-gpu.js b/dist/face-api.node-gpu.js index e64883b..cf9150c 100644 --- a/dist/face-api.node-gpu.js +++ b/dist/face-api.node-gpu.js @@ -1,7 +1,7 @@ -"use strict";/* +/* Face-API homepage: author: ' */ -var ln=Object.create;var er=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Lr=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},yo=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},yo(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>yo(er({},"__esModule",{value:!0}),o);var x=xn((ka,Wr)=>{"use strict";var _o=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&_o(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},Pn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),wn=o=>Ar(_o({},"__esModule",{value:!0}),o),To={};Wr.exports=wn(To);Pn(To,require("@tensorflow/tfjs-node-gpu"),Wr.exports)});var Na={};Lr(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>no,FaceDetection:()=>M,FaceDetectionNet:()=>uo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>co,FaceLandmarks:()=>z,FaceLandmarks5:()=>Yr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Tr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>Gr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Kr,bufferToImage:()=>Qr,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Sr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>so,env:()=>P,euclideanDistance:()=>go,extendWithAge:()=>Er,extendWithFaceDescriptor:()=>Dr,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>xr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Mr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>ro,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>to,imageToSquare:()=>eo,inverseSigmoid:()=>En,iou:()=>Or,isMediaElement:()=>ir,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>ao,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>oo,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>Hr,nets:()=>w,nonMaxSuppression:()=>zr,normalize:()=>rt,padToSquare:()=>Vr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>fn,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>$r,validateConfig:()=>fo,version:()=>Ia});module.exports=vn(Na);var Ca=v(x());var so={};Lr(so,{AnchorPosition:()=>Zr,DrawBox:()=>Le,DrawBoxOptions:()=>ar,DrawFaceLandmarks:()=>yr,DrawFaceLandmarksOptions:()=>vr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var $r={};Lr($r,{computeReshapedDimensions:()=>Rr,getCenterPoint:()=>zt,isDimensions:()=>or,isEven:()=>rr,isFloat:()=>Br,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>kr,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var Po=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function kr(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Br(o){return o%1!==0}function rr(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function or(o){return o&&o.width&&o.height}function Rr({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Or(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function Hr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Vr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Yr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var Gr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function jr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function nr(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Ur(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=nr();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Xr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function Jr(o){L=o}function qr(){return Xr()?Jr(jr()):Se()?Jr(Ur()):null}function Sn(o){if(L||qr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:Jr,initialize:qr,createBrowserEnv:jr,createFileSystem:nr,createNodejsEnv:Ur,monkeyPatch:Sn,isBrowser:Xr,isNodejs:Se};qr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Zr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Zr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var ar=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new ar(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Kr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Qr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var sr=v(x());async function to(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=sr.tidy(()=>o.as3D(r,n,a).toInt());return await sr.browser.toPixels(s,e),s.dispose(),e}function ir(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function eo(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Rr({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Vr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(eo(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!ir(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>ir(n)&&Kr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await to(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var cr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return cr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>cr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Qr(e)}async function ro(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function mr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function oo(o,t){let{manifestUri:e,modelBaseUri:r}=mr(o,t),n=await ro(e);return Fo.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await oo(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=mr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function pr(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var ur=v(x());function be(o,t){return(e,r,n,a)=>{let s=ur.tensor4d(o(e*r*n*n),[n,n,e,r]),i=ur.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var fr=v(x());function lr(o,t){return(e,r,n)=>{let a=fr.tensor2d(o(e*r),[e,r]),s=fr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function dr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function hr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function br(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=lr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function gr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Mo(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Co(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var no=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);no.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return no.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function ao(o){return o.expressions instanceof yt}function xr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:ao(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var vr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},yr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new vr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new yr(n).draw(o)})}var No="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Ao(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function io(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var _r=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Ao(s,r.entry_flow.conv_in,[2,2]));return i=io(i,r.entry_flow.reduction_block_0,!1),i=io(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=io(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Lo(e,this._numMainBlocks)}extractParams(e){return So(e,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=lr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function ko(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Tr=(e=>(e.FEMALE="female",e.MALE="male",e))(Tr||{});var He=class extends A{constructor(e=new _r(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Wo(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),ko(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>rr(u)),m=i.filter((p,u)=>!rr(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var Pr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=pr(a,e.dense0,!0);return s=pr(s,e.dense1),s=pr(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends Fe{constructor(t=new Pr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var co=class extends Kt{};var nt=v(x());var Ee=v(x());var wr=v(x());function $o(o,t){return wr.add(wr.mul(o,t.weights),t.biases)}function mo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=$o(i,t.scale),r?Ee.relu(i):i}function Oo(o,t){return mo(o,t,[1,1],!0)}function po(o,t){return mo(o,t,[1,1],!1)}function Fr(o,t){return mo(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Br(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!kr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=po(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Fr(o,t.conv1);e=po(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Fr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Dr(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Er(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Mr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function jo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Xo(a.out,a.conv11,e.prediction_layer);return Uo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Vo(t)}};function Jo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return Jo(o)}var uo=class extends St{};var qo=.4,Zo=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Ko=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=v(x());var Cr=o=>typeof o=="number";function fo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Cr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Cr(t.x)&&Cr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Cr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var lo=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=lo.tensor1d(o(s)),m=lo.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var ho=class extends A{constructor(e){super("TinyYolov2");fo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return zr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return on(e,this.config)}extractParams(e){let r=this.config.filterSizes||ho.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return rn(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:xo,label:vo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*xo,label:vo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=ho;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var bo=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof bo.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof bo.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],sn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),mn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),pn=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=pn,Pa=cn,wa=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Ir{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>xr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return xr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Er(Mr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Er(Mr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Dr(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Dr(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Sr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Sr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Sr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=un;function go(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>go(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var ln=Object.create;var er=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Lr=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},yo=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},yo(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>yo(er({},"__esModule",{value:!0}),o);var x=xn((ka,Wr)=>{"use strict";var _o=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&_o(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},Pn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),wn=o=>Ar(_o({},"__esModule",{value:!0}),o),To={};Wr.exports=wn(To);Pn(To,require("@tensorflow/tfjs-node-gpu"),Wr.exports)});var Na={};Lr(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>no,FaceDetection:()=>M,FaceDetectionNet:()=>uo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>co,FaceLandmarks:()=>z,FaceLandmarks5:()=>Yr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Tr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>Gr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Kr,bufferToImage:()=>Qr,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Sr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>so,env:()=>P,euclideanDistance:()=>go,extendWithAge:()=>Er,extendWithFaceDescriptor:()=>Dr,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>xr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Mr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>ro,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>to,imageToSquare:()=>eo,inverseSigmoid:()=>En,iou:()=>Or,isMediaElement:()=>ir,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>ao,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>oo,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>Hr,nets:()=>w,nonMaxSuppression:()=>zr,normalize:()=>rt,padToSquare:()=>Vr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>fn,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>$r,validateConfig:()=>fo,version:()=>Ia});module.exports=vn(Na);var Ca=v(x());var so={};Lr(so,{AnchorPosition:()=>Zr,DrawBox:()=>Le,DrawBoxOptions:()=>ar,DrawFaceLandmarks:()=>yr,DrawFaceLandmarksOptions:()=>vr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var $r={};Lr($r,{computeReshapedDimensions:()=>Rr,getCenterPoint:()=>zt,isDimensions:()=>or,isEven:()=>rr,isFloat:()=>Br,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>kr,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var Po=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function kr(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Br(o){return o%1!==0}function rr(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function or(o){return o&&o.width&&o.height}function Rr({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Or(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function Hr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Vr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Yr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var Gr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function jr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function nr(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Ur(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=nr();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Xr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function Jr(o){L=o}function qr(){return Xr()?Jr(jr()):Se()?Jr(Ur()):null}function Sn(o){if(L||qr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:Jr,initialize:qr,createBrowserEnv:jr,createFileSystem:nr,createNodejsEnv:Ur,monkeyPatch:Sn,isBrowser:Xr,isNodejs:Se};qr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Zr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Zr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var ar=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new ar(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Kr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Qr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var sr=v(x());async function to(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=sr.tidy(()=>o.as3D(r,n,a).toInt());return await sr.browser.toPixels(s,e),s.dispose(),e}function ir(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function eo(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Rr({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Vr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(eo(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!ir(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>ir(n)&&Kr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await to(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var cr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return cr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>cr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Qr(e)}async function ro(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function mr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function oo(o,t){let{manifestUri:e,modelBaseUri:r}=mr(o,t),n=await ro(e);return Fo.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await oo(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=mr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function pr(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var ur=v(x());function be(o,t){return(e,r,n,a)=>{let s=ur.tensor4d(o(e*r*n*n),[n,n,e,r]),i=ur.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var fr=v(x());function lr(o,t){return(e,r,n)=>{let a=fr.tensor2d(o(e*r),[e,r]),s=fr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function dr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function hr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function br(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=lr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function gr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Mo(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Co(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var no=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);no.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return no.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function ao(o){return o.expressions instanceof yt}function xr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:ao(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var vr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},yr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new vr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new yr(n).draw(o)})}var No="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Ao(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function io(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var _r=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Ao(s,r.entry_flow.conv_in,[2,2]));return i=io(i,r.entry_flow.reduction_block_0,!1),i=io(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=io(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Lo(e,this._numMainBlocks)}extractParams(e){return So(e,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=lr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function ko(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Tr=(e=>(e.FEMALE="female",e.MALE="male",e))(Tr||{});var He=class extends A{constructor(e=new _r(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Wo(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),ko(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>rr(u)),m=i.filter((p,u)=>!rr(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var Pr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=pr(a,e.dense0,!0);return s=pr(s,e.dense1),s=pr(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends Fe{constructor(t=new Pr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var co=class extends Kt{};var nt=v(x());var Ee=v(x());var wr=v(x());function $o(o,t){return wr.add(wr.mul(o,t.weights),t.biases)}function mo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=$o(i,t.scale),r?Ee.relu(i):i}function Oo(o,t){return mo(o,t,[1,1],!0)}function po(o,t){return mo(o,t,[1,1],!1)}function Fr(o,t){return mo(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Br(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!kr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=po(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Fr(o,t.conv1);e=po(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Fr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Dr(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Er(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Mr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function jo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Xo(a.out,a.conv11,e.prediction_layer);return Uo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Vo(t)}};function Jo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return Jo(o)}var uo=class extends St{};var qo=.4,Zo=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Ko=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=v(x());var Cr=o=>typeof o=="number";function fo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Cr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Cr(t.x)&&Cr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Cr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var lo=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=lo.tensor1d(o(s)),m=lo.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var ho=class extends A{constructor(e){super("TinyYolov2");fo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return zr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return on(e,this.config)}extractParams(e){let r=this.config.filterSizes||ho.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return rn(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:xo,label:vo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*xo,label:vo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=ho;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var bo=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof bo.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof bo.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],sn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),mn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),pn=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=pn,Pa=cn,wa=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Ir{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>xr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return xr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Er(Mr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Er(Mr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Dr(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Dr(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Sr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Sr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Sr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=un;function go(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>go(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/dist/face-api.node-wasm.js b/dist/face-api.node-wasm.js index 20a4ab0..de274cd 100644 --- a/dist/face-api.node-wasm.js +++ b/dist/face-api.node-wasm.js @@ -1,7 +1,7 @@ -"use strict";/* +/* Face-API homepage: author: ' */ -var dn=Object.create;var er=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,xn=Object.prototype.hasOwnProperty;var vn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Ar=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of bn(t))!xn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=hn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?dn(gn(o)):{},_o(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),yn=o=>_o(er({},"__esModule",{value:!0}),o);var x=vn((ka,rr)=>{"use strict";var To=Object.defineProperty,_n=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,Pn=Object.prototype.hasOwnProperty,Wr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Tn(t))!Pn.call(o,n)&&n!==e&&To(o,n,{get:()=>t[n],enumerable:!(r=_n(t,n))||r.enumerable});return o},Po=(o,t,e)=>(Wr(o,t,"default"),e&&Wr(e,t,"default")),wn=o=>Wr(To({},"__esModule",{value:!0}),o),kr={};rr.exports=wn(kr);Po(kr,require("@tensorflow/tfjs"),rr.exports);Po(kr,require("@tensorflow/tfjs-backend-wasm"),rr.exports)});var Na={};Ar(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>ao,FaceDetection:()=>M,FaceDetectionNet:()=>fo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>mo,FaceLandmarks:()=>z,FaceLandmarks5:()=>Gr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Pr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>jr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>fn,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Qr,bufferToImage:()=>to,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>qo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>pn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>io,env:()=>P,euclideanDistance:()=>xo,extendWithAge:()=>Mr,extendWithFaceDescriptor:()=>Er,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>vr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Cr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>oo,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>eo,imageToSquare:()=>ro,inverseSigmoid:()=>En,iou:()=>Hr,isMediaElement:()=>cr,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>so,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>un,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>no,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>zr,nets:()=>w,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Yr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>ln,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>mn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>Or,validateConfig:()=>lo,version:()=>Ia});module.exports=yn(Na);var Ca=v(x());var io={};Ar(io,{AnchorPosition:()=>Kr,DrawBox:()=>Le,DrawBoxOptions:()=>sr,DrawFaceLandmarks:()=>_r,DrawFaceLandmarksOptions:()=>yr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Or={};Ar(Or,{computeReshapedDimensions:()=>$r,getCenterPoint:()=>zt,isDimensions:()=>nr,isEven:()=>or,isFloat:()=>Rr,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>Br,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var wo=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof wo.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function Br(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Rr(o){return o%1!==0}function or(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function nr(o){return o&&o.width&&o.height}function $r({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Hr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function zr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Yr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=zr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Gr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var jr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function Ur(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ar(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Xr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=ar();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Jr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function qr(o){L=o}function Zr(){return Jr()?qr(Ur()):Se()?qr(Xr()):null}function Sn(o){if(L||Zr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:qr,initialize:Zr,createBrowserEnv:Ur,createFileSystem:ar,createNodejsEnv:Xr,monkeyPatch:Sn,isBrowser:Jr,isNodejs:Se};Zr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Kr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Kr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var sr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new sr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Qr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function to(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var ir=v(x());async function eo(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=ir.tidy(()=>o.as3D(r,n,a).toInt());return await ir.browser.toPixels(s,e),s.dispose(),e}function cr(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function ro(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return $r({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Yr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(ro(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!cr(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>cr(n)&&Qr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await eo(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var mr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return mr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>mr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return to(e)}async function oo(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function Fo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fo(e)}var Do=v(x());function pr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function no(o,t){let{manifestUri:e,modelBaseUri:r}=pr(o,t),n=await oo(e);return Do.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await no(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=pr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function ur(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var fr=v(x());function be(o,t){return(e,r,n,a)=>{let s=fr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=fr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var lr=v(x());function dr(o,t){return(e,r,n)=>{let a=lr.tensor2d(o(e*r),[e,r]),s=lr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function hr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=hr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function br(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function gr(o,t){let e=Y(o,t),r=br(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Mo(o){let t=[],{extractDenseBlock4Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mo(t)}extractParams(t){return Eo(t)}};var No=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Co(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=dr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Io(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function xr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return No.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Co(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=xr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Io(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var ao=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);ao.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return ao.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function so(o){return o.expressions instanceof yt}function vr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:so(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var yr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},_r=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new yr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new _r(n).draw(o)})}var So="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=br(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Ao(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Wo(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function co(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Wo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var Tr=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Wo(s,r.entry_flow.conv_in,[2,2]));return i=co(i,r.entry_flow.reduction_block_0,!1),i=co(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=co(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Ao(e,this._numMainBlocks)}extractParams(e){return Lo(e,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=dr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function Bo(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Pr=(e=>(e.FEMALE="female",e.MALE="male",e))(Pr||{});var He=class extends A{constructor(e=new Tr(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return ko(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=xr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Bo(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>or(u)),m=i.filter((p,u)=>!or(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Ro(o){let t=[],{extractDenseBlock3Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function $o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=hr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var wr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ur(a,e.dense0,!0);return s=ur(s,e.dense1),s=ur(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ro(t)}extractParams(t){return $o(t)}};var ze=class extends Fe{constructor(t=new wr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var mo=class extends Kt{};var nt=v(x());var Ee=v(x());var Fr=v(x());function Oo(o,t){return Fr.add(Fr.mul(o,t.weights),t.biases)}function po(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=Oo(i,t.scale),r?Ee.relu(i):i}function Ho(o,t){return po(o,t,[1,1],!0)}function uo(o,t){return po(o,t,[1,1],!1)}function Dr(o,t){return po(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Rr(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function zo(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function Vo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Br(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Ho(o,t.conv1);return e=uo(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Dr(o,t.conv1);e=uo(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Dr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return zo(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Er(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Mr(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Cr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Go(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function jo(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function Uo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Xo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Jo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=jo(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Jo(a.out,a.conv11,e.prediction_layer);return Xo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Go(t)}extractParams(t){return Yo(t)}};function qo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return qo(o)}var fo=class extends St{};var Zo=.4,Ko=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Qo=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],tn=[117.001,114.697,97.404],en="tiny_yolov2_model",rn="tiny_yolov2_separable_conv_model";var N=v(x());var Ir=o=>typeof o=="number";function lo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Ir(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Ir(t.x)&&Ir(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Ir)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var ho=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=ho.tensor1d(o(s)),m=ho.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function on(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function nn(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var bo=class extends A{constructor(e){super("TinyYolov2");lo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return Vr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return nn(e,this.config)}extractParams(e){let r=this.config.filterSizes||bo.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return on(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:vo,label:yo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*vo,label:yo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=bo;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Zo,classes:["face"],...t?{anchors:Qo,meanRgb:tn}:{anchors:Ko,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?rn:en}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof go.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var an=.4,sn=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],cn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:an,classes:["face"],anchors:sn,meanRgb:cn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},mn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),pn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),un=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=un,Pa=mn,wa=pn;var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>vr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return vr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Sr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Sr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Mr(Cr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Sr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Mr(Cr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Er(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Er(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function fn(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=fn;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function ln(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>ln(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=So;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var dn=Object.create;var er=Object.defineProperty;var hn=Object.getOwnPropertyDescriptor;var bn=Object.getOwnPropertyNames;var gn=Object.getPrototypeOf,xn=Object.prototype.hasOwnProperty;var vn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Ar=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},_o=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of bn(t))!xn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=hn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?dn(gn(o)):{},_o(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),yn=o=>_o(er({},"__esModule",{value:!0}),o);var x=vn((ka,rr)=>{"use strict";var To=Object.defineProperty,_n=Object.getOwnPropertyDescriptor,Tn=Object.getOwnPropertyNames,Pn=Object.prototype.hasOwnProperty,Wr=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of Tn(t))!Pn.call(o,n)&&n!==e&&To(o,n,{get:()=>t[n],enumerable:!(r=_n(t,n))||r.enumerable});return o},Po=(o,t,e)=>(Wr(o,t,"default"),e&&Wr(e,t,"default")),wn=o=>Wr(To({},"__esModule",{value:!0}),o),kr={};rr.exports=wn(kr);Po(kr,require("@tensorflow/tfjs"),rr.exports);Po(kr,require("@tensorflow/tfjs-backend-wasm"),rr.exports)});var Na={};Ar(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>ao,FaceDetection:()=>M,FaceDetectionNet:()=>fo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>mo,FaceLandmarks:()=>z,FaceLandmarks5:()=>Gr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Pr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>jr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>fn,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Qr,bufferToImage:()=>to,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>qo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Lr,detectFaceLandmarks:()=>pn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>io,env:()=>P,euclideanDistance:()=>xo,extendWithAge:()=>Mr,extendWithFaceDescriptor:()=>Er,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>vr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Cr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>oo,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>eo,imageToSquare:()=>ro,inverseSigmoid:()=>En,iou:()=>Hr,isMediaElement:()=>cr,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>so,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>un,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>no,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>zr,nets:()=>w,nonMaxSuppression:()=>Vr,normalize:()=>rt,padToSquare:()=>Yr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>ln,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>mn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>Or,validateConfig:()=>lo,version:()=>Ia});module.exports=yn(Na);var Ca=v(x());var io={};Ar(io,{AnchorPosition:()=>Kr,DrawBox:()=>Le,DrawBoxOptions:()=>sr,DrawFaceLandmarks:()=>_r,DrawFaceLandmarksOptions:()=>yr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Or={};Ar(Or,{computeReshapedDimensions:()=>$r,getCenterPoint:()=>zt,isDimensions:()=>nr,isEven:()=>or,isFloat:()=>Rr,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>Br,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var wo=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof wo.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function Br(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Rr(o){return o%1!==0}function or(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function nr(o){return o&&o.width&&o.height}function $r({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Hr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function zr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Yr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=zr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Gr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var jr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function Ur(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function ar(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Xr(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=ar();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Jr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function qr(o){L=o}function Zr(){return Jr()?qr(Ur()):Se()?qr(Xr()):null}function Sn(o){if(L||Zr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:qr,initialize:Zr,createBrowserEnv:Ur,createFileSystem:ar,createNodejsEnv:Xr,monkeyPatch:Sn,isBrowser:Jr,isNodejs:Se};Zr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Kr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Kr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var sr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new sr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Qr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function to(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var ir=v(x());async function eo(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=ir.tidy(()=>o.as3D(r,n,a).toInt());return await ir.browser.toPixels(s,e),s.dispose(),e}function cr(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function ro(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return $r({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Yr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(ro(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!cr(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>cr(n)&&Qr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await eo(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var mr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return mr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>mr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return to(e)}async function oo(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function Fo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return Fo(e)}var Do=v(x());function pr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function no(o,t){let{manifestUri:e,modelBaseUri:r}=pr(o,t),n=await oo(e);return Do.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await no(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=pr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function ur(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var fr=v(x());function be(o,t){return(e,r,n,a)=>{let s=fr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=fr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var lr=v(x());function dr(o,t){return(e,r,n)=>{let a=lr.tensor2d(o(e*r),[e,r]),s=lr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function hr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Eo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=hr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function br(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function gr(o,t){let e=Y(o,t),r=br(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Mo(o){let t=[],{extractDenseBlock4Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Mo(t)}extractParams(t){return Eo(t)}};var No=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Co(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=dr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Io(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function xr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return No.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Co(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=xr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Io(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var ao=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);ao.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return ao.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function so(o){return o.expressions instanceof yt}function vr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:so(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var yr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},_r=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new yr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new _r(n).draw(o)})}var So="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function Lo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=br(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Ao(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Wo(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function co(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Wo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var Tr=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Wo(s,r.entry_flow.conv_in,[2,2]));return i=co(i,r.entry_flow.reduction_block_0,!1),i=co(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=co(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Ao(e,this._numMainBlocks)}extractParams(e){return Lo(e,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=dr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function Bo(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Pr=(e=>(e.FEMALE="female",e.MALE="male",e))(Pr||{});var He=class extends A{constructor(e=new Tr(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return ko(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=xr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Bo(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>or(u)),m=i.filter((p,u)=>!or(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Ro(o){let t=[],{extractDenseBlock3Params:e}=gr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function $o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=hr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var wr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ur(a,e.dense0,!0);return s=ur(s,e.dense1),s=ur(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ro(t)}extractParams(t){return $o(t)}};var ze=class extends Fe{constructor(t=new wr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var mo=class extends Kt{};var nt=v(x());var Ee=v(x());var Fr=v(x());function Oo(o,t){return Fr.add(Fr.mul(o,t.weights),t.biases)}function po(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=Oo(i,t.scale),r?Ee.relu(i):i}function Ho(o,t){return po(o,t,[1,1],!0)}function uo(o,t){return po(o,t,[1,1],!1)}function Dr(o,t){return po(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Rr(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function zo(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function Vo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Br(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Ho(o,t.conv1);return e=uo(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Dr(o,t.conv1);e=uo(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Dr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return Vo(t)}extractParams(t){return zo(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Er(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Mr(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Cr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Yo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Go(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function jo(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function Uo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Xo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Jo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=jo(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Jo(a.out,a.conv11,e.prediction_layer);return Xo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Go(t)}extractParams(t){return Yo(t)}};function qo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return qo(o)}var fo=class extends St{};var Zo=.4,Ko=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Qo=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],tn=[117.001,114.697,97.404],en="tiny_yolov2_model",rn="tiny_yolov2_separable_conv_model";var N=v(x());var Ir=o=>typeof o=="number";function lo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Ir(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Ir(t.x)&&Ir(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Ir)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var ho=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=ho.tensor1d(o(s)),m=ho.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function on(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function nn(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var bo=class extends A{constructor(e){super("TinyYolov2");lo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return Vr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return nn(e,this.config)}extractParams(e){let r=this.config.filterSizes||bo.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return on(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:vo,label:yo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*vo,label:yo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=bo;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Zo,classes:["face"],...t?{anchors:Qo,meanRgb:tn}:{anchors:Ko,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?rn:en}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var go=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof go.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof go.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var an=.4,sn=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],cn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:an,classes:["face"],anchors:sn,meanRgb:cn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},mn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),pn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),un=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=un,Pa=mn,wa=pn;var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>vr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return vr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Sr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Sr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Mr(Cr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Sr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Mr(Cr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Er(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Er(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Lr(o,t=new X){return new Ie(o,t)}async function fn(o,t){return Lr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Lr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=fn;function xo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>xo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function ln(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>ln(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=So;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/dist/face-api.node.js b/dist/face-api.node.js index d6c5cd8..aa28585 100644 --- a/dist/face-api.node.js +++ b/dist/face-api.node.js @@ -1,7 +1,7 @@ -"use strict";/* +/* Face-API homepage: author: ' */ -var ln=Object.create;var er=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Lr=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},yo=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},yo(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>yo(er({},"__esModule",{value:!0}),o);var x=xn((ka,Wr)=>{"use strict";var _o=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&_o(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},Pn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),wn=o=>Ar(_o({},"__esModule",{value:!0}),o),To={};Wr.exports=wn(To);Pn(To,require("@tensorflow/tfjs-node"),Wr.exports)});var Na={};Lr(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>no,FaceDetection:()=>M,FaceDetectionNet:()=>uo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>co,FaceLandmarks:()=>z,FaceLandmarks5:()=>Yr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Tr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>Gr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Kr,bufferToImage:()=>Qr,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Sr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>so,env:()=>P,euclideanDistance:()=>go,extendWithAge:()=>Er,extendWithFaceDescriptor:()=>Dr,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>xr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Mr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>ro,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>to,imageToSquare:()=>eo,inverseSigmoid:()=>En,iou:()=>Or,isMediaElement:()=>ir,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>ao,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>oo,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>Hr,nets:()=>w,nonMaxSuppression:()=>zr,normalize:()=>rt,padToSquare:()=>Vr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>fn,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>$r,validateConfig:()=>fo,version:()=>Ia});module.exports=vn(Na);var Ca=v(x());var so={};Lr(so,{AnchorPosition:()=>Zr,DrawBox:()=>Le,DrawBoxOptions:()=>ar,DrawFaceLandmarks:()=>yr,DrawFaceLandmarksOptions:()=>vr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var $r={};Lr($r,{computeReshapedDimensions:()=>Rr,getCenterPoint:()=>zt,isDimensions:()=>or,isEven:()=>rr,isFloat:()=>Br,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>kr,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var Po=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function kr(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Br(o){return o%1!==0}function rr(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function or(o){return o&&o.width&&o.height}function Rr({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Or(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function Hr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Vr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Yr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var Gr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function jr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function nr(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Ur(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=nr();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Xr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function Jr(o){L=o}function qr(){return Xr()?Jr(jr()):Se()?Jr(Ur()):null}function Sn(o){if(L||qr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:Jr,initialize:qr,createBrowserEnv:jr,createFileSystem:nr,createNodejsEnv:Ur,monkeyPatch:Sn,isBrowser:Xr,isNodejs:Se};qr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Zr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Zr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var ar=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new ar(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Kr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Qr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var sr=v(x());async function to(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=sr.tidy(()=>o.as3D(r,n,a).toInt());return await sr.browser.toPixels(s,e),s.dispose(),e}function ir(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function eo(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Rr({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Vr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(eo(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!ir(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>ir(n)&&Kr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await to(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var cr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return cr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>cr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Qr(e)}async function ro(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function mr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function oo(o,t){let{manifestUri:e,modelBaseUri:r}=mr(o,t),n=await ro(e);return Fo.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await oo(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=mr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function pr(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var ur=v(x());function be(o,t){return(e,r,n,a)=>{let s=ur.tensor4d(o(e*r*n*n),[n,n,e,r]),i=ur.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var fr=v(x());function lr(o,t){return(e,r,n)=>{let a=fr.tensor2d(o(e*r),[e,r]),s=fr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function dr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function hr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function br(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=lr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function gr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Mo(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Co(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var no=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);no.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return no.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function ao(o){return o.expressions instanceof yt}function xr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:ao(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var vr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},yr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new vr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new yr(n).draw(o)})}var No="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Ao(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function io(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var _r=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Ao(s,r.entry_flow.conv_in,[2,2]));return i=io(i,r.entry_flow.reduction_block_0,!1),i=io(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=io(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Lo(e,this._numMainBlocks)}extractParams(e){return So(e,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=lr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function ko(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Tr=(e=>(e.FEMALE="female",e.MALE="male",e))(Tr||{});var He=class extends A{constructor(e=new _r(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Wo(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),ko(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>rr(u)),m=i.filter((p,u)=>!rr(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var Pr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=pr(a,e.dense0,!0);return s=pr(s,e.dense1),s=pr(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends Fe{constructor(t=new Pr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var co=class extends Kt{};var nt=v(x());var Ee=v(x());var wr=v(x());function $o(o,t){return wr.add(wr.mul(o,t.weights),t.biases)}function mo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=$o(i,t.scale),r?Ee.relu(i):i}function Oo(o,t){return mo(o,t,[1,1],!0)}function po(o,t){return mo(o,t,[1,1],!1)}function Fr(o,t){return mo(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Br(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!kr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=po(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Fr(o,t.conv1);e=po(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Fr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Dr(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Er(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Mr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function jo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Xo(a.out,a.conv11,e.prediction_layer);return Uo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Vo(t)}};function Jo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return Jo(o)}var uo=class extends St{};var qo=.4,Zo=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Ko=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=v(x());var Cr=o=>typeof o=="number";function fo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Cr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Cr(t.x)&&Cr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Cr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var lo=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=lo.tensor1d(o(s)),m=lo.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var ho=class extends A{constructor(e){super("TinyYolov2");fo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return zr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return on(e,this.config)}extractParams(e){let r=this.config.filterSizes||ho.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return rn(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:xo,label:vo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*xo,label:vo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=ho;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var bo=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof bo.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof bo.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],sn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),mn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),pn=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=pn,Pa=cn,wa=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Ir{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>xr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return xr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Er(Mr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Er(Mr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Dr(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Dr(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Sr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Sr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Sr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=un;function go(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>go(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); +"use strict";var ln=Object.create;var er=Object.defineProperty;var dn=Object.getOwnPropertyDescriptor;var hn=Object.getOwnPropertyNames;var bn=Object.getPrototypeOf,gn=Object.prototype.hasOwnProperty;var xn=(o,t)=>()=>(t||o((t={exports:{}}).exports,t),t.exports),Lr=(o,t)=>{for(var e in t)er(o,e,{get:t[e],enumerable:!0})},yo=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of hn(t))!gn.call(o,n)&&n!==e&&er(o,n,{get:()=>t[n],enumerable:!(r=dn(t,n))||r.enumerable});return o};var v=(o,t,e)=>(e=o!=null?ln(bn(o)):{},yo(t||!o||!o.__esModule?er(e,"default",{value:o,enumerable:!0}):e,o)),vn=o=>yo(er({},"__esModule",{value:!0}),o);var x=xn((ka,Wr)=>{"use strict";var _o=Object.defineProperty,yn=Object.getOwnPropertyDescriptor,_n=Object.getOwnPropertyNames,Tn=Object.prototype.hasOwnProperty,Ar=(o,t,e,r)=>{if(t&&typeof t=="object"||typeof t=="function")for(let n of _n(t))!Tn.call(o,n)&&n!==e&&_o(o,n,{get:()=>t[n],enumerable:!(r=yn(t,n))||r.enumerable});return o},Pn=(o,t,e)=>(Ar(o,t,"default"),e&&Ar(e,t,"default")),wn=o=>Ar(_o({},"__esModule",{value:!0}),o),To={};Wr.exports=wn(To);Pn(To,require("@tensorflow/tfjs-node"),Wr.exports)});var Na={};Lr(Na,{AgeGenderNet:()=>He,BoundingBox:()=>Vt,Box:()=>F,ComposableTask:()=>J,ComputeAllFaceDescriptorsTask:()=>wt,ComputeFaceDescriptorsTaskBase:()=>Ue,ComputeSingleFaceDescriptorTask:()=>Ft,DetectAllFaceLandmarksTask:()=>qe,DetectAllFacesTask:()=>Ie,DetectFaceLandmarksTaskBase:()=>Je,DetectFacesTaskBase:()=>Ke,DetectSingleFaceLandmarksTask:()=>Ze,DetectSingleFaceTask:()=>Qe,Dimensions:()=>k,FACE_EXPRESSION_LABELS:()=>no,FaceDetection:()=>M,FaceDetectionNet:()=>uo,FaceExpressionNet:()=>Oe,FaceExpressions:()=>yt,FaceLandmark68Net:()=>Kt,FaceLandmark68TinyNet:()=>ze,FaceLandmarkNet:()=>co,FaceLandmarks:()=>z,FaceLandmarks5:()=>Yr,FaceLandmarks68:()=>Gt,FaceMatch:()=>pe,FaceMatcher:()=>tr,FaceRecognitionNet:()=>Qt,Gender:()=>Tr,LabeledBox:()=>ue,LabeledFaceDescriptors:()=>mt,NetInput:()=>ut,NeuralNetwork:()=>A,ObjectDetection:()=>bt,Point:()=>b,PredictedBox:()=>Gr,Rect:()=>Yt,SsdMobilenetv1:()=>St,SsdMobilenetv1Options:()=>X,TinyFaceDetector:()=>ne,TinyFaceDetectorOptions:()=>je,TinyYolov2:()=>re,TinyYolov2Options:()=>st,allFaces:()=>Ea,allFacesSsdMobilenetv1:()=>un,allFacesTinyYolov2:()=>Da,awaitMediaLoaded:()=>Kr,bufferToImage:()=>Qr,computeFaceDescriptor:()=>fa,createCanvas:()=>Jt,createCanvasFromMedia:()=>We,createFaceDetectionNet:()=>aa,createFaceRecognitionNet:()=>Xn,createSsdMobilenetv1:()=>Jo,createTinyFaceDetector:()=>Ma,createTinyYolov2:()=>ca,detectAllFaces:()=>Sr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>ua,detectLandmarks:()=>wa,detectSingleFace:()=>Fa,draw:()=>so,env:()=>P,euclideanDistance:()=>go,extendWithAge:()=>Er,extendWithFaceDescriptor:()=>Dr,extendWithFaceDetection:()=>jt,extendWithFaceExpressions:()=>xr,extendWithFaceLandmarks:()=>we,extendWithGender:()=>Mr,extractFaceTensors:()=>de,extractFaces:()=>le,fetchImage:()=>An,fetchJson:()=>ro,fetchNetWeights:()=>Wn,fetchOrThrow:()=>xt,fetchVideo:()=>kn,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Xt,imageTensorToCanvas:()=>to,imageToSquare:()=>eo,inverseSigmoid:()=>En,iou:()=>Or,isMediaElement:()=>ir,isMediaLoaded:()=>Ae,isWithAge:()=>Jn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>ao,isWithFaceLandmarks:()=>Zt,isWithGender:()=>qn,loadAgeGenderModel:()=>_a,loadFaceDetectionModel:()=>Ta,loadFaceExpressionModel:()=>ya,loadFaceLandmarkModel:()=>ga,loadFaceLandmarkTinyModel:()=>xa,loadFaceRecognitionModel:()=>va,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>ha,loadTinyYolov2Model:()=>ba,loadWeightMap:()=>oo,locateFaces:()=>Pa,matchDimensions:()=>Bn,minBbox:()=>Hr,nets:()=>w,nonMaxSuppression:()=>zr,normalize:()=>rt,padToSquare:()=>Vr,predictAgeAndGender:()=>da,recognizeFaceExpressions:()=>la,resizeResults:()=>fn,resolveInput:()=>Ut,shuffleArray:()=>Dn,sigmoid:()=>Ne,ssdMobilenetv1:()=>cn,tf:()=>Ca,tinyFaceDetector:()=>ma,tinyYolov2:()=>pa,toNetInput:()=>C,utils:()=>$r,validateConfig:()=>fo,version:()=>Ia});module.exports=vn(Na);var Ca=v(x());var so={};Lr(so,{AnchorPosition:()=>Zr,DrawBox:()=>Le,DrawBoxOptions:()=>ar,DrawFaceLandmarks:()=>yr,DrawFaceLandmarksOptions:()=>vr,DrawTextField:()=>gt,DrawTextFieldOptions:()=>fe,drawContour:()=>dt,drawDetections:()=>Ln,drawFaceExpressions:()=>Rn,drawFaceLandmarks:()=>On});function dt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var $r={};Lr($r,{computeReshapedDimensions:()=>Rr,getCenterPoint:()=>zt,isDimensions:()=>or,isEven:()=>rr,isFloat:()=>Br,isTensor:()=>Ot,isTensor1D:()=>Fn,isTensor2D:()=>kr,isTensor3D:()=>ht,isTensor4D:()=>U,isValidNumber:()=>et,isValidProbablitiy:()=>me,range:()=>it,round:()=>Ht});var Po=v(x());var k=class{constructor(t,e){if(!et(t)||!et(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new k(1/this.width,1/this.height)}};function Ot(o,t){return o instanceof Po.Tensor&&o.shape.length===t}function Fn(o){return Ot(o,1)}function kr(o){return Ot(o,2)}function ht(o){return Ot(o,3)}function U(o){return Ot(o,4)}function Br(o){return o%1!==0}function rr(o){return o%2===0}function Ht(o,t=2){let e=10**t;return Math.floor(o*e)/e}function or(o){return o&&o.width&&o.height}function Rr({width:o,height:t},e){let r=e/Math.max(t,o);return new k(Math.round(o*r),Math.round(t*r))}function zt(o){return o.reduce((t,e)=>t.add(e),new b(0,0)).div(new b(o.length,o.length))}function it(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function et(o){return!!o&&o!==1/0&&o!==-1/0&&!Number.isNaN(o)||o===0}function me(o){return et(o)&&o>=0&&o<=1}var b=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new b(this.x+t.x,this.y+t.y)}sub(t){return new b(this.x-t.x,this.y-t.y)}mul(t){return new b(this.x*t.x,this.y*t.y)}div(t){return new b(this.x/t.x,this.y/t.y)}abs(){return new b(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new b(Math.floor(this.x),Math.floor(this.y))}};var F=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(et)}static assertIsValidBox(t,e,r=!1){if(!F.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(et),a=[r.x,r.y,r.width,r.height].every(et);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];F.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new b(this.left,this.top)}get topRight(){return new b(this.right,this.top)}get bottomLeft(){return new b(this.left,this.bottom)}get bottomRight(){return new b(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new F({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new F({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-u+e+r,u=e),f>t&&(c=-f+t+n,f=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:f,x:m,ex:u,w:r,h:n}}calibrate(t){return new F({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var Vt=class extends F{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var bt=class{constructor(t,e,r,n,a){this._imageDims=new k(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new F(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new F(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new bt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends bt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Or(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function Hr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var ct=v(x());function rt(o,t){return ct.tidy(()=>{let[e,r,n]=t,a=ct.fill([...o.shape.slice(0,3),1],e,"float32"),s=ct.fill([...o.shape.slice(0,3),1],r,"float32"),i=ct.fill([...o.shape.slice(0,3),1],n,"float32"),c=ct.concat([a,s,i],3);return ct.sub(o,c)})}var Ct=v(x());function Vr(o,t=!1){return Ct.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=f=>{let l=o.shape.slice();return l[s]=f,Ct.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],u=[t&&m?i(m):null,o,c].filter(f=>!!f).map(f=>Ct.cast(f,"float32"));return Ct.concat(u,s)})}function Dn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ne(o){return 1/(1+Math.exp(-o))}function En(o){return Math.log(o/(1-o))}var Yt=class extends F{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Mn=.5,Cn=.43,In=.45,z=class{constructor(t,e,r=new b(0,0)){let{width:n,height:a}=e;this._imgDims=new k(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new b(n,a)).add(r))}get shift(){return new b(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new b(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new b(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new F(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=u=>n.sub(u).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=zt(t),m=Math.floor(Math.max(0,c.x-Mn*i)),p=Math.floor(Math.max(0,c.y-Cn*i));return new Yt(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=Hr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var Yr=class extends z{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],zt([t[3],t[4]])]}};var Gt=class extends z{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(zt)}};var pe=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ht(this.distance)})`:""}`}};var ue=class extends F{constructor(e,r){super(e);this._label=r}static assertIsValidLabeledBox(e,r){if(F.assertIsValidBox(e,r),!et(e.label))throw new Error(`${r} - expected property label (${e.label}) to be a number`)}get label(){return this._label}};var mt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new mt(t.label,e)}};var Gr=class extends ue{constructor(e,r,n,a){super(e,r);this._score=n,this._classScore=a}static assertIsValidPredictedBox(e,r){if(ue.assertIsValidLabeledBox(e,r),!me(e.score)||!me(e.classScore))throw new Error(`${r} - expected properties score (${e.score}) and (${e.classScore}) to be a number between [0, 1]`)}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function jr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),createVideoElement:()=>document.createElement("video"),fetch:o,readFile:()=>{throw new Error("readFile - filesystem not available for browser environment")}}}function Se(){return typeof global=="object"&&typeof process!="undefined"&&process.versions!=null&&process.versions.node!=null}function nr(o){let t="";if(!o&&Se())try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Ur(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=global.Video||global.HTMLVideoElement,r=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},n=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},a=()=>{if(e)return new e;throw new Error("createVideoElement - missing Video implementation for nodejs environment")},s=global.fetch,i=nr();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:r,createImageElement:n,createVideoElement:a,fetch:s,...i}}function Xr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var L;function Nn(){if(!L)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return L}function Jr(o){L=o}function qr(){return Xr()?Jr(jr()):Se()?Jr(Ur()):null}function Sn(o){if(L||qr(),!L)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=L.Canvas,Image:e=L.Image}=o;L.Canvas=t,L.Image=e,L.createCanvasElement=o.createCanvasElement||(()=>new t),L.createImageElement=o.createImageElement||(()=>new e),L.ImageData=o.ImageData||L.ImageData,L.Video=o.Video||L.Video,L.fetch=o.fetch||L.fetch,L.readFile=o.readFile||L.readFile}var P={getEnv:Nn,setEnv:Jr,initialize:qr,createBrowserEnv:jr,createFileSystem:nr,createNodejsEnv:Ur,monkeyPatch:Sn,isBrowser:Xr,isNodejs:Se};qr();function Ut(o){return!P.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=P.getEnv();if(o instanceof e)return o;let r=Ut(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var Zr=(n=>(n.TOP_LEFT="TOP_LEFT",n.TOP_RIGHT="TOP_RIGHT",n.BOTTOM_LEFT="BOTTOM_LEFT",n.BOTTOM_RIGHT="BOTTOM_RIGHT",n))(Zr||{}),fe=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||"TOP_LEFT",this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},gt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof gt?t.text:t,this.anchor=e,this.options=new fe(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let g=c+u.x,T=c+u.y+(l+1)*s;r.fillText(f,g,T)})}};var ar=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:"BOTTOM_LEFT",backgroundColor:this.boxColor};this.drawLabelOptions=new fe({...s,...a})}},Le=class{constructor(t,e={}){this.box=new F(t),this.options=new ar(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new gt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new F(r),s=n?`${Ht(n)}`:void 0;new Le(a,{label:s}).draw(o)})}var Pe=v(x());function Ae(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Kr(o){return new Promise((t,e)=>{(o instanceof P.getEnv().Canvas||Ae(o))&&t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Qr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=P.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Xt(o){let{Image:t,Video:e}=P.getEnv();return o instanceof t?new k(o.naturalWidth,o.naturalHeight):o instanceof e?new k(o.videoWidth,o.videoHeight):new k(o.width,o.height)}function Jt({width:o,height:t}){let{createCanvasElement:e}=P.getEnv(),r=e();return r.width=o,r.height=t,r}function We(o,t){let{ImageData:e}=P.getEnv();if(!(o instanceof e)&&!Ae(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Xt(o),a=Jt({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var sr=v(x());async function to(o,t){let e=t||P.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(U(o)?1:0),s=sr.tidy(()=>o.as3D(r,n,a).toInt());return await sr.browser.toPixels(s,e),s.dispose(),e}function ir(o){let{Image:t,Canvas:e,Video:r}=P.getEnv();return o instanceof t||o instanceof e||o instanceof r}var V=v(x());function eo(o,t,e=!1){let{Image:r,Canvas:n}=P.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");if(t<=0)return Jt({width:1,height:1});let a=Xt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=Jt({width:t,height:t}),p=o instanceof n?o:We(o),u=Math.abs(i-c)/2,f=e&&i0&&p.height>0&&O(m).drawImage(p,f,l,i,c),m}var ut=class{constructor(t,e=!1){this._imageTensors=[];this._canvases=[];this._treatAsBatchInput=!1;this._inputDimensions=[];this._inputSize=0;if(!Array.isArray(t))throw new Error(`NetInput.constructor - expected inputs to be an Array of TResolvedNetInput or to be instanceof tf.Tensor4D, instead have ${t}`);this._treatAsBatchInput=e,this._batchSize=t.length,t.forEach((r,n)=>{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(U(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof P.getEnv().Canvas?r:We(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return it(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Rr({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,V.tidy(()=>{let r=it(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof V.Tensor){let i=U(s)?s:V.expandDims(s);return i=Vr(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=V.image.resizeBilinear(i,[t,t],!1,!1)),i.as3D(t,t,3)}if(s instanceof P.getEnv().Canvas)return V.browser.fromPixels(eo(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return V.stack(r.map(a=>V.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function C(o){if(o instanceof ut)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ut);return r.forEach((n,a)=>{if(!ir(n)&&!ht(n)&&!U(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(U(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>ir(n)&&Kr(n))),new ut(r,Array.isArray(o))}async function le(o,t){let{Canvas:e}=P.getEnv(),r=o;if(!(o instanceof e)){let s=await C(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await to(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=Jt({width:c,height:m});return c>0&&m>0&&O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var cr=v(x());async function de(o,t){if(!ht(o)&&!U(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(U(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return cr.tidy(()=>{let[e,r,n]=o.shape.slice(U(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).filter(i=>i.width>0&&i.height>0).map(({x:i,y:c,width:m,height:p})=>cr.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function xt(o,t){let{fetch:e}=P.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function An(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Qr(e)}async function ro(o){return(await xt(o)).json()}async function Wn(o){return new Float32Array(await(await xt(o)).arrayBuffer())}function wo(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToVideo - expected buf to be of type: Blob"));let r=P.getEnv().createVideoElement();r.oncanplay=()=>t(r),r.onerror=e,r.playsInline=!0,r.muted=!0,r.src=URL.createObjectURL(o),r.play()})}async function kn(o){let t=await xt(o),e=await t.blob();if(!e.type.startsWith("video/"))throw new Error(`fetchVideo - expected blob type to be of type video/*, instead have: ${e.type}, for url: ${t.url}`);return wo(e)}var Fo=v(x());function mr(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function oo(o,t){let{manifestUri:e,modelBaseUri:r}=mr(o,t),n=await ro(e);return Fo.io.loadWeights(n,r)}function Bn(o,t,e=!1){let{width:r,height:n}=e?Xt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var ye=v(x());var vt=v(x());var A=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof vt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof vt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=vt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await oo(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=P.getEnv(),{manifestUri:r,modelBaseUri:n}=mr(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(u=>u.buffer))),s=vt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof vt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var I=v(x());var he=v(x());function H(o,t,e){return he.tidy(()=>{let r=he.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=he.add(r,t.bias),r})}function pr(o,t,e=!1){return I.tidy(()=>{let r=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):H(o,t.conv0,[2,2])),n=H(r,t.conv1,[1,1]),a=I.relu(I.add(r,n)),s=H(a,t.conv2,[1,1]);return I.relu(I.add(r,I.add(n,s)))})}function ke(o,t,e=!1,r=!0){return I.tidy(()=>{let n=I.relu(e?I.add(I.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):H(o,t.conv0,r?[2,2]:[1,1])),a=H(n,t.conv1,[1,1]),s=I.relu(I.add(n,a)),i=H(s,t.conv2,[1,1]),c=I.relu(I.add(n,I.add(a,i))),m=H(c,t.conv3,[1,1]);return I.relu(I.add(n,I.add(a,I.add(i,m))))})}var It=v(x());function qt(o,t,e="same",r=!1){return It.tidy(()=>{let n=It.add(It.conv2d(o,t.filters,[1,1],e),t.bias);return r?It.relu(n):n})}function B(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var ur=v(x());function be(o,t){return(e,r,n,a)=>{let s=ur.tensor4d(o(e*r*n*n),[n,n,e,r]),i=ur.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var fr=v(x());function lr(o,t){return(e,r,n)=>{let a=fr.tensor2d(o(e*r),[e,r]),s=fr.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Re=v(x());var Be=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function ge(o,t){return(e,r,n)=>{let a=Re.tensor4d(o(9*e),[3,3,e,1]),s=Re.tensor4d(o(e*r),[1,1,e,r]),i=Re.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new Be(a,s,i)}}function xe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new Be(e,r,n)}}function Y(o,t){return(e,r,n)=>{let a=o[e];if(!Ot(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function R(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function dr(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),u=r(i,i,`${c}/conv1`),f=r(i,i,`${c}/conv2`);return{conv0:p,conv1:u,conv2:f}}function a(s,i,c,m=!1){let{conv0:p,conv1:u,conv2:f}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:u,conv2:f,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function Do(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock4Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function hr(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function br(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:u}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),u=n(`${i}/conv2`),f=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:u,conv3:f}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Eo(o){let t=[],{extractDenseBlock4Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return B(o,t),{params:r,paramMappings:t}}var ve=class extends A{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return ye.tidy(()=>{let r=ye.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=ye.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Eo(t)}extractParams(t){return Do(t)}};var Io=v(x());var _e=v(x());function $e(o,t){return _e.tidy(()=>_e.add(_e.matMul(o,t.weights),t.bias))}function Mo(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=R(o),i=lr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Co(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return B(o,t),{params:n,paramMappings:t}}function gr(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Te=class extends A{constructor(e,r){super(e);this._faceFeatureExtractor=r}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return Io.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e;return $e(n.as2D(n.shape[0],-1),r.fc)})}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Mo(e,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),Co(n)}extractParams(e){let r=this.getClassifierChannelsIn(),n=this.getClassifierChannelsOut(),a=n*r+n,s=e.slice(0,e.length-a),i=e.slice(e.length-a);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var no=["neutral","happy","sad","angry","fearful","disgusted","surprised"],yt=class{constructor(t){this.neutral=0;this.happy=0;this.sad=0;this.angry=0;this.fearful=0;this.disgusted=0;this.surprised=0;if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);no.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return no.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var Oe=class extends Te{constructor(t=new ve){super("FaceExpressionNet",t)}forwardInput(t){return Pe.tidy(()=>Pe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await C(t))}async predictExpressions(t){let e=await C(t),r=await this.forwardInput(e),n=await Promise.all(Pe.unstack(r).map(async s=>{let i=s.dataSync();return s.dispose(),i}));r.dispose();let a=n.map(s=>new yt(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function ao(o){return o.expressions instanceof yt}function xr(o,t){return{...o,...{expressions:t}}}function Rn(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof yt?a:ao(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(u=>u.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new b(0,0);new gt(c.map(u=>`${u.expression} (${Ht(u.probability)})`),m).draw(o)})}function Zt(o){return pt(o)&&o.landmarks instanceof z&&o.unshiftedLandmarks instanceof z&&o.alignedRect instanceof M}function $n(o){let t=(i,c,m,p)=>Math.atan2(p-c,m-i)%Math.PI,e=i=>i*180/Math.PI,r={roll:void 0,pitch:void 0,yaw:void 0};if(!o||!o._positions||o._positions.length!==68)return r;let n=o._positions;r.roll=-t(n[36]._x,n[36]._y,n[45]._x,n[45]._y),r.pitch=t(0,Math.abs(n[0]._x-n[30]._x)/n[30]._x,Math.PI,Math.abs(n[16]._x-n[30]._x)/n[30]._x);let a=n.reduce((i,c)=>ii>c._y?i:c._y,-1/0);return r.yaw=Math.PI*(o._imgDims._height/(s-a)/1.4-1),r}function we(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a),i=$n(t);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s,angle:i}}}var vr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},yr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new vr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof Gt&&(e.strokeStyle=s,e.lineWidth=a,dt(e,this.faceLandmarks.getJawOutline()),dt(e,this.faceLandmarks.getLeftEyeBrow()),dt(e,this.faceLandmarks.getRightEyeBrow()),dt(e,this.faceLandmarks.getNose()),dt(e,this.faceLandmarks.getLeftEye(),!0),dt(e,this.faceLandmarks.getRightEye(),!0),dt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function On(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof z?r:Zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new yr(n).draw(o)})}var No="1.7.1";var ft=v(x());var S=v(x());function Vn(o,t){let e=be(o,t),r=ge(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),u=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:u}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function So(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=R(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Vn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),u=i(64,128,"entry_flow/reduction_block_1"),f={conv_in:m,reduction_block_0:p,reduction_block_1:u},l={};it(t,0,1).forEach(h=>{l[`main_block_${h}`]=c(128,`middle_flow/main_block_${h}`)});let g=i(128,256,"exit_flow/reduction_block"),T=s(256,512,"exit_flow/separable_conv"),D={reduction_block:g,separable_conv:T};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:f,middle_flow:l,exit_flow:D}}}function Yn(o,t){let e=Y(o,t),r=hr(e),n=xe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Lo(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},u={};it(t,0,1).forEach(T=>{u[`main_block_${T}`]=s(`middle_flow/main_block_${T}`)});let f=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),g={reduction_block:f,separable_conv:l};return B(o,e),{params:{entry_flow:p,middle_flow:u,exit_flow:g},paramMappings:e}}function Ao(o,t,e){return S.add(S.conv2d(o,t.filters,e,"same"),t.bias)}function io(o,t,e=!0){let r=e?S.relu(o):o;return r=H(r,t.separable_conv0,[1,1]),r=H(S.relu(r),t.separable_conv1,[1,1]),r=S.maxPool(r,[3,3],[2,2],"same"),r=S.add(r,Ao(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=H(S.relu(o),t.separable_conv0,[1,1]);return e=H(S.relu(e),t.separable_conv1,[1,1]),e=H(S.relu(e),t.separable_conv2,[1,1]),e=S.add(e,o),e}var _r=class extends A{constructor(e){super("TinyXception");this._numMainBlocks=e}forwardInput(e){let{params:r}=this;if(!r)throw new Error("TinyXception - load model before inference");return S.tidy(()=>{let n=S.cast(e.toBatchTensor(112,!0),"float32"),s=rt(n,[122.782,117.001,104.298]).div(255),i=S.relu(Ao(s,r.entry_flow.conv_in,[2,2]));return i=io(i,r.entry_flow.reduction_block_0,!1),i=io(i,r.entry_flow.reduction_block_1),it(this._numMainBlocks,0,1).forEach(c=>{i=Gn(i,r.middle_flow[`main_block_${c}`])}),i=io(i,r.exit_flow.reduction_block),i=S.relu(H(i,r.exit_flow.separable_conv,[1,1])),i})}async forward(e){return this.forwardInput(await C(e))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(e){return Lo(e,this._numMainBlocks)}extractParams(e){return So(e,this._numMainBlocks)}};function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),n=lr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function ko(o){let t=[],e=Y(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return B(o,t),{params:n,paramMappings:t}}var Tr=(e=>(e.FEMALE="female",e.MALE="male",e))(Tr||{});var He=class extends A{constructor(e=new _r(2)){super("AgeGenderNet");this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(e){let{params:r}=this;if(!r)throw new Error(`${this._name} - load model before inference`);return ft.tidy(()=>{let n=e instanceof ut?this.faceFeatureExtractor.forwardInput(e):e,a=ft.avgPool(n,[7,7],[2,2],"valid").as2D(n.shape[0],-1),s=$e(a,r.fc.age).as1D(),i=$e(a,r.fc.gender);return{age:s,gender:i}})}forwardInput(e){return ft.tidy(()=>{let{age:r,gender:n}=this.runNet(e);return{age:r,gender:ft.softmax(n)}})}async forward(e){return this.forwardInput(await C(e))}async predictAgeAndGender(e){let r=await C(e),n=await this.forwardInput(r),a=ft.unstack(n.age),s=ft.unstack(n.gender),i=a.map((m,p)=>({ageTensor:m,genderTensor:s[p]})),c=await Promise.all(i.map(async({ageTensor:m,genderTensor:p})=>{let u=m.dataSync()[0],f=p.dataSync()[0],l=f>.5,g=l?"male":"female",T=l?f:1-f;return m.dispose(),p.dispose(),{age:u,gender:g,genderProbability:T}}));return n.age.dispose(),n.gender.dispose(),r.isBatchInput?c:c[0]}getDefaultModelName(){return"age_gender_model"}dispose(e=!0){this.faceFeatureExtractor.dispose(e),super.dispose(e)}loadClassifierParams(e){let{params:r,paramMappings:n}=this.extractClassifierParams(e);this._params=r,this._paramMappings=n}extractClassifierParams(e){return Wo(e)}extractParamsFromWeightMap(e){let{featureExtractorMap:r,classifierMap:n}=gr(e);return this.faceFeatureExtractor.loadFromWeightMap(r),ko(n)}extractParams(e){let n=e.slice(0,e.length-1539),a=e.slice(e.length-1539);return this.faceFeatureExtractor.extractWeights(n),this.extractClassifierParams(a)}};var G=v(x());var Fe=class extends Te{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return G.tidy(()=>{let s=(u,f)=>G.stack([G.fill([68],u,"float32"),G.fill([68],f,"float32")],1).as2D(1,136).as1D(),i=(u,f)=>{let{width:l,height:g}=n[u];return f(l,g)?Math.abs(l-g)/2:0},c=u=>i(u,(f,l)=>fi(u,(f,l)=>ls(c(f),m(f))))).div(G.stack(Array.from(Array(a),(u,f)=>s(n[f].width,n[f].height))))})}forwardInput(t){return G.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await C(t))}async detectLandmarks(t){let e=await C(t),r=G.tidy(()=>G.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(a.dataSync()),c=i.filter((p,u)=>rr(u)),m=i.filter((p,u)=>!rr(u));return new Gt(Array(68).fill(0).map((p,u)=>new b(c[u],m[u])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var Kt=class extends Fe{constructor(t=new ve){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var De=v(x());function Bo(o){let t=[],{extractDenseBlock3Params:e}=br(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return B(o,t),{params:r,paramMappings:t}}function Ro(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractDenseBlock3Params:n}=dr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var Pr=class extends A{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return De.tidy(()=>{let r=De.cast(t.toBatchTensor(112,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=pr(a,e.dense0,!0);return s=pr(s,e.dense1),s=pr(s,e.dense2),s=De.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await C(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Bo(t)}extractParams(t){return Ro(t)}};var ze=class extends Fe{constructor(t=new Pr){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var co=class extends Kt{};var nt=v(x());var Ee=v(x());var wr=v(x());function $o(o,t){return wr.add(wr.mul(o,t.weights),t.biases)}function mo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=Ee.conv2d(o,a,e,n);return i=Ee.add(i,s),i=$o(i,t.scale),r?Ee.relu(i):i}function Oo(o,t){return mo(o,t,[1,1],!0)}function po(o,t){return mo(o,t,[1,1],!1)}function Fr(o,t){return mo(o,t,[2,2],!0,"valid")}var j=v(x());function jn(o,t){function e(i,c,m){let p=o(i),u=p.length/(c*m*m);if(Br(u))throw new Error(`depth has to be an integer: ${u}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return j.tidy(()=>j.transpose(j.tensor4d(p,[c,u,m,m]),[2,3,1,0]))}function r(i,c,m,p){let u=e(i,c,m),f=j.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:u,bias:f}}function n(i,c){let m=j.tensor1d(o(i)),p=j.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let u=r(i,c,m,`${p}/conv`),f=n(c,`${p}/scale`);return{conv:u,scale:f}}function s(i,c,m,p,u=!1){let f=a((u?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:f,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ho(o){let{extractWeights:t,getRemainingWeights:e}=R(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=jn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),u=a(36864,64,3,"conv64_1"),f=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),g=a(147456,128,3,"conv128_down",!0),T=a(147456,128,3,"conv128_1"),D=a(147456,128,3,"conv128_2"),h=a(589824,256,3,"conv256_down",!0),_=a(589824,256,3,"conv256_1"),y=a(589824,256,3,"conv256_2"),E=a(589824,256,3,"conv256_down_out"),W=j.tidy(()=>j.transpose(j.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:u,conv64_2:f,conv64_3:l,conv128_down:g,conv128_1:T,conv128_2:D,conv256_down:h,conv256_1:_,conv256_2:y,conv256_down_out:E,fc:W},paramMappings:r}}function Un(o,t){let e=Y(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function zo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Un(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),u=r("conv64_3"),f=r("conv128_down"),l=r("conv128_1"),g=r("conv128_2"),T=r("conv256_down"),D=r("conv256_1"),h=r("conv256_2"),_=r("conv256_down_out"),{fc:y}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!kr(y))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${y}`);let E={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:u,conv128_down:f,conv128_1:l,conv128_2:g,conv256_down:T,conv256_1:D,conv256_2:h,conv256_down_out:_,fc:y};return B(o,t),{params:E,paramMappings:t}}var $=v(x());function ot(o,t){let e=Oo(o,t.conv1);return e=po(e,t.conv2),e=$.add(e,o),e=$.relu(e),e}function Ve(o,t){let e=Fr(o,t.conv1);e=po(e,t.conv2);let r=$.avgPool(o,2,2,"valid"),n=$.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=$.zeros(i);e=$.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=$.zeros(m);e=$.concat([e,p],2)}return r=a?$.concat([r,n],3):r,e=$.add(r,e),e=$.relu(e),e}var Qt=class extends A{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return nt.tidy(()=>{let r=nt.cast(t.toBatchTensor(150,!0),"float32"),a=rt(r,[122.782,117.001,104.298]).div(255),s=Fr(a,e.conv32_down);s=nt.maxPool(s,3,2,"valid"),s=ot(s,e.conv32_1),s=ot(s,e.conv32_2),s=ot(s,e.conv32_3),s=Ve(s,e.conv64_down),s=ot(s,e.conv64_1),s=ot(s,e.conv64_2),s=ot(s,e.conv64_3),s=Ve(s,e.conv128_down),s=ot(s,e.conv128_1),s=ot(s,e.conv128_2),s=Ve(s,e.conv256_down),s=ot(s,e.conv256_1),s=ot(s,e.conv256_2),s=Ve(s,e.conv256_down_out);let i=s.mean([1,2]);return nt.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await C(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)!=null&&a.some(s=>s<=0))return new Float32Array(128);let e=await C(t),r=nt.tidy(()=>nt.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return zo(t)}extractParams(t){return Ho(t)}};function Xn(o){let t=new Qt;return t.extractWeights(o),t}function Dr(o,t){return{...o,...{descriptor:t}}}function Jn(o){return typeof o.age=="number"}function Er(o,t){return{...o,...{age:t}}}function qn(o){return(o.gender==="male"||o.gender==="female")&&me(o.genderProbability)}function Mr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var Lt=v(x());var at=v(x());function Zn(o,t){function e(c,m){let p=at.tensor4d(o(9*c),[3,3,c,1]),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),l=at.tensor1d(o(c)),g=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:u,batch_norm_offset:f,batch_norm_mean:l,batch_norm_variance:g}}function r(c,m,p,u,f){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),g=at.tensor1d(o(m));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/${f?"batch_norm_offset":"bias"}`}),{filters:l,bias:g}}function n(c,m,p,u){let{filters:f,bias:l}=r(c,m,p,u,!0);return{filters:f,batch_norm_offset:l}}function a(c,m,p){let u=e(c,`${p}/depthwise_conv`),f=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:u,pointwise_conv:f}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),u=a(128,128,"mobilenetv1/conv_3"),f=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),g=a(256,512,"mobilenetv1/conv_6"),T=a(512,512,"mobilenetv1/conv_7"),D=a(512,512,"mobilenetv1/conv_8"),h=a(512,512,"mobilenetv1/conv_9"),_=a(512,512,"mobilenetv1/conv_10"),y=a(512,512,"mobilenetv1/conv_11"),E=a(512,1024,"mobilenetv1/conv_12"),W=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,conv_8:D,conv_9:h,conv_10:_,conv_11:y,conv_12:E,conv_13:W}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),u=n(128,256,3,"prediction_layer/conv_3"),f=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),g=n(256,64,1,"prediction_layer/conv_6"),T=n(64,128,3,"prediction_layer/conv_7"),D=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),h=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),_=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),y=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),E=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),W=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),tt=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),lt=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),q=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Dt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),Et=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),Mt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:u,conv_4:f,conv_5:l,conv_6:g,conv_7:T,box_predictor_0:{box_encoding_predictor:D,class_predictor:h},box_predictor_1:{box_encoding_predictor:_,class_predictor:y},box_predictor_2:{box_encoding_predictor:E,class_predictor:W},box_predictor_3:{box_encoding_predictor:tt,class_predictor:lt},box_predictor_4:{box_encoding_predictor:q,class_predictor:Dt},box_predictor_5:{box_encoding_predictor:Et,class_predictor:Mt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Vo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=R(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Kn(o,t){let e=Y(o,t);function r(m,p,u){let f=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${u}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${u}/batch_norm_offset`);return{filters:f,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,u=`MobilenetV1/Conv2d_${m}_depthwise`,f=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,g=e(`${u}/depthwise_weights`,4,`${f}/filters`),T=e(`${u}/BatchNorm/gamma`,1,`${f}/batch_norm_scale`),D=e(`${u}/BatchNorm/beta`,1,`${f}/batch_norm_offset`),h=e(`${u}/BatchNorm/moving_mean`,1,`${f}/batch_norm_mean`),_=e(`${u}/BatchNorm/moving_variance`,1,`${f}/batch_norm_variance`);return{depthwise_conv:{filters:g,batch_norm_scale:T,batch_norm_offset:D,batch_norm_mean:h,batch_norm_variance:_},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let u=e(`${m}/weights`,4,`${p}/filters`),f=e(`${m}/biases`,1,`${p}/bias`);return{filters:u,bias:f}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),u=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:u}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Kn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return B(o,t),{params:a,paramMappings:t}}var _t=v(x());var Nt=v(x());function Z(o,t,e){return Nt.tidy(()=>{let r=Nt.conv2d(o,t.filters,e,"same");return r=Nt.add(r,t.batch_norm_offset),Nt.clipByValue(r,0,6)})}var Qn=.0010000000474974513;function ta(o,t,e){return _t.tidy(()=>{let r=_t.depthwiseConv2d(o,t.filters,e,"same");return r=_t.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Qn),_t.clipByValue(r,0,6)})}function ea(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return _t.tidy(()=>{let e,r=Z(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ea(i);r=ta(r,a.depthwise_conv,c),r=Z(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ra(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),u=Math.max(r[e][1],r[e][3]),f=(s-n)*(i-a),l=(p-c)*(u-m);if(f<=0||l<=0)return 0;let g=Math.max(n,c),T=Math.max(a,m),D=Math.min(s,p),h=Math.min(i,u),_=Math.max(D-g,0)*Math.max(h-T,0);return _/(f+l-_)}function jo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,u)=>({score:p,boxIndex:u})).filter(p=>p.score>n).sort((p,u)=>u.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let u=p.score;for(let f=m.length-1;f>=0;--f){let l=ra(o,p.boxIndex,m[f]);if(l!==0&&(p.score*=c(l),p.score<=n))break}u===p.score&&m.push(p.boxIndex)}),m}var d=v(x());function oa(o){let t=d.unstack(d.transpose(o,[1,0])),e=[d.sub(t[2],t[0]),d.sub(t[3],t[1])],r=[d.add(t[0],d.div(e[0],2)),d.add(t[1],d.div(e[1],2))];return{sizes:e,centers:r}}function na(o,t){let{sizes:e,centers:r}=oa(o),n=d.unstack(d.transpose(t,[1,0])),a=d.div(d.mul(d.exp(d.div(n[2],5)),e[0]),2),s=d.add(d.mul(d.div(n[0],10),e[0]),r[0]),i=d.div(d.mul(d.exp(d.div(n[3],5)),e[1]),2),c=d.add(d.mul(d.div(n[1],10),e[1]),r[1]);return d.transpose(d.stack([d.sub(s,a),d.sub(c,i),d.add(s,a),d.add(c,i)]),[1,0])}function Uo(o,t,e){return d.tidy(()=>{let r=o.shape[0],n=na(d.reshape(d.tile(e.extra_dim,[r,1,1]),[-1,4]),d.reshape(o,[-1,4]));n=d.reshape(n,[r,n.shape[0]/r,4]);let a=d.sigmoid(d.slice(t,[0,0,1],[-1,-1,-1])),s=d.slice(a,[0,0,0],[-1,-1,1]);s=d.reshape(s,[r,s.shape[1]]);let i=d.unstack(n),c=d.unstack(s);return{boxes:i,scores:c}})}var Ge=v(x());var Ye=v(x());function te(o,t){return Ye.tidy(()=>{let e=o.shape[0],r=Ye.reshape(qt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Ye.reshape(qt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Xo(o,t,e){return Ge.tidy(()=>{let r=Z(o,e.conv_0,[1,1]),n=Z(r,e.conv_1,[2,2]),a=Z(n,e.conv_2,[1,1]),s=Z(a,e.conv_3,[2,2]),i=Z(s,e.conv_4,[1,1]),c=Z(i,e.conv_5,[2,2]),m=Z(c,e.conv_6,[1,1]),p=Z(m,e.conv_7,[2,2]),u=te(t,e.box_predictor_0),f=te(o,e.box_predictor_1),l=te(n,e.box_predictor_2),g=te(s,e.box_predictor_3),T=te(c,e.box_predictor_4),D=te(p,e.box_predictor_5),h=Ge.concat([u.boxPredictionEncoding,f.boxPredictionEncoding,l.boxPredictionEncoding,g.boxPredictionEncoding,T.boxPredictionEncoding,D.boxPredictionEncoding],1),_=Ge.concat([u.classPrediction,f.classPrediction,l.classPrediction,g.classPrediction,T.classPrediction,D.classPrediction],1);return{boxPredictions:h,classPredictions:_}})}var X=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var St=class extends A{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(512,!1),"float32"),n=Lt.sub(Lt.div(r,127.5),1),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Xo(a.out,a.conv11,e.prediction_layer);return Uo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await C(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new X(e),a=await C(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let y=1;y{let[E,W]=[Math.max(0,h[y][0]),Math.min(1,h[y][2])].map(q=>q*D),[tt,lt]=[Math.max(0,h[y][1]),Math.min(1,h[y][3])].map(q=>q*T);return new M(p[y],new Yt(tt,E,lt-tt,W-E),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),_}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Vo(t)}};function Jo(o){let t=new St;return t.extractWeights(o),t}function aa(o){return Jo(o)}var uo=class extends St{};var qo=.4,Zo=[new b(.738768,.874946),new b(2.42204,2.65704),new b(4.30971,7.04493),new b(10.246,4.59428),new b(12.6868,11.8741)],Ko=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=v(x());var Cr=o=>typeof o=="number";function fo(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!Cr(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>Cr(t.x)&&Cr(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(Cr)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=v(x());var K=v(x());function Me(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Tt(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),Me(e)})}var At=v(x());function Pt(o,t){return At.tidy(()=>{let e=At.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=At.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=At.add(e,t.bias),Me(e)})}var lo=v(x());function sa(o,t){let e=be(o,t);function r(s,i){let c=lo.tensor1d(o(s)),m=lo.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=ge(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=R(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=sa(n,s),p;if(t.withSeparableConvs){let[u,f,l,g,T,D,h,_,y]=r,E=t.isFirstLayerConv2d?i(u,f,3,"conv0"):m(u,f,"conv0"),W=m(f,l,"conv1"),tt=m(l,g,"conv2"),lt=m(g,T,"conv3"),q=m(T,D,"conv4"),Dt=m(D,h,"conv5"),Et=_?m(h,_,"conv6"):void 0,Mt=y?m(_,y,"conv7"):void 0,$t=i(y||_||h,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}else{let[u,f,l,g,T,D,h,_,y]=r,E=c(u,f,"conv0"),W=c(f,l,"conv1"),tt=c(l,g,"conv2"),lt=c(g,T,"conv3"),q=c(T,D,"conv4"),Dt=c(D,h,"conv5"),Et=c(h,_,"conv6"),Mt=c(_,y,"conv7"),$t=i(y,5*e,1,"conv8");p={conv0:E,conv1:W,conv2:tt,conv3:lt,conv4:q,conv5:Dt,conv6:Et,conv7:Mt,conv8:$t}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function ia(o,t){let e=Y(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=xe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=ia(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return B(o,e),{params:s,paramMappings:e}}var st=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!==0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var ho=class extends A{constructor(e){super("TinyYolov2");fo(e),this._config=e}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(e,r){let n=Tt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Tt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=Tt(n,r.conv6),n=Tt(n,r.conv7),qt(n,r.conv8,"valid",!1)}runMobilenet(e,r){let n=this.config.isFirstLayerConv2d?Me(qt(e,r.conv0,"valid",!1)):Pt(e,r.conv0);return n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv1),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv2),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv3),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv4),n=N.maxPool(n,[2,2],[2,2],"same"),n=Pt(n,r.conv5),n=N.maxPool(n,[2,2],[1,1],"same"),n=r.conv6?Pt(n,r.conv6):n,n=r.conv7?Pt(n,r.conv7):n,qt(n,r.conv8,"valid",!1)}forwardInput(e,r){let{params:n}=this;if(!n)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let a=N.cast(e.toBatchTensor(r,!1),"float32");return a=this.config.meanRgb?rt(a,this.config.meanRgb):a,a=a.div(255),this.config.withSeparableConvs?this.runMobilenet(a,n):this.runTinyYolov2(a,n)})}async forward(e,r){return this.forwardInput(await C(e),r)}async detect(e,r={}){let{inputSize:n,scoreThreshold:a}=new st(r),s=await C(e),i=await this.forwardInput(s,n),c=N.tidy(()=>N.unstack(i)[0].expandDims()),m={width:s.getInputWidth(0),height:s.getInputHeight(0)},p=await this.extractBoxes(c,s.getReshapedInputDimensions(0),a);i.dispose(),c.dispose();let u=p.map(h=>h.box),f=p.map(h=>h.score),l=p.map(h=>h.classScore),g=p.map(h=>this.config.classes[h.label]);return zr(u.map(h=>h.rescale(n)),f,this.config.iouThreshold,!0).map(h=>new bt(f[h],l[h],g[h],u[h],m))}getDefaultModelName(){return""}extractParamsFromWeightMap(e){return on(e,this.config)}extractParams(e){let r=this.config.filterSizes||ho.DEFAULT_FILTER_SIZES,n=r?r.length:void 0;if(n!==7&&n!==8&&n!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${n} filterSizes in config`);return rn(e,this.config,this.boxEncodingSize,r)}async extractBoxes(e,r,n){let{width:a,height:s}=r,i=Math.max(a,s),c=i/a,m=i/s,p=e.shape[1],u=this.config.anchors.length,[f,l,g]=N.tidy(()=>{let _=e.reshape([p,p,u,this.boxEncodingSize]),y=_.slice([0,0,0,0],[p,p,u,4]),E=_.slice([0,0,0,4],[p,p,u,1]),W=this.withClassScores?N.softmax(_.slice([0,0,0,5],[p,p,u,this.config.classes.length]),3):N.scalar(0);return[y,E,W]}),T=[],D=await l.array(),h=await f.array();for(let _=0;_n){let tt=(y+Ne(h[_][y][E][0]))/p*c,lt=(_+Ne(h[_][y][E][1]))/p*m,q=Math.exp(h[_][y][E][2])*this.config.anchors[E].x/p*c,Dt=Math.exp(h[_][y][E][3])*this.config.anchors[E].y/p*m,Et=tt-q/2,Mt=lt-Dt/2,$t={row:_,col:y,anchor:E},{classScore:xo,label:vo}=this.withClassScores?await this.extractPredictedClass(g,$t):{classScore:1,label:0};T.push({box:new Vt(Et,Mt,Et+q,Mt+Dt),score:W,classScore:W*xo,label:vo,...$t})}}return f.dispose(),l.dispose(),g.dispose(),T}async extractPredictedClass(e,r){let{row:n,col:a,anchor:s}=r,i=await e.array();return Array(this.config.classes.length).fill(0).map((c,m)=>i[n][a][s][m]).map((c,m)=>({classScore:c,label:m})).reduce((c,m)=>c.classScore>m.classScore?c:m)}},ee=ho;ee.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var re=class extends ee{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ca(o,t=!0){let e=new re(t);return e.extractWeights(o),e}var je=class extends st{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var J=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var Xe=v(x());var bo=v(x());async function oe(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Zt(c)?n(c):c.detection),s=r||(t instanceof bo.Tensor?await de(t,a):await le(t,a)),i=await e(s);return s.forEach(c=>c instanceof bo.Tensor&&c.dispose()),i}async function Ce(o,t,e,r,n){return oe([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new b(1.603231,2.094468),new b(6.041143,7.080126),new b(2.882459,3.518061),new b(4.266906,5.178857),new b(9.041765,10.66308)],sn=[117.001,114.697,97.404];var ne=class extends ee{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var w={ssdMobilenetv1:new St,tinyFaceDetector:new ne,tinyYolov2:new re,faceLandmark68Net:new Kt,faceLandmark68TinyNet:new ze,faceRecognitionNet:new Qt,faceExpressionNet:new Oe,ageGenderNet:new He},cn=(o,t)=>w.ssdMobilenetv1.locateFaces(o,t),ma=(o,t)=>w.tinyFaceDetector.locateFaces(o,t),pa=(o,t)=>w.tinyYolov2.locateFaces(o,t),mn=o=>w.faceLandmark68Net.detectLandmarks(o),ua=o=>w.faceLandmark68TinyNet.detectLandmarks(o),fa=o=>w.faceRecognitionNet.computeFaceDescriptor(o),la=o=>w.faceExpressionNet.predictExpressions(o),da=o=>w.ageGenderNet.predictAgeAndGender(o),pn=o=>w.ssdMobilenetv1.load(o),ha=o=>w.tinyFaceDetector.load(o),ba=o=>w.tinyYolov2.load(o),ga=o=>w.faceLandmark68Net.load(o),xa=o=>w.faceLandmark68TinyNet.load(o),va=o=>w.faceRecognitionNet.load(o),ya=o=>w.faceExpressionNet.load(o),_a=o=>w.ageGenderNet.load(o),Ta=pn,Pa=cn,wa=mn;var Ir=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ae=class extends Ir{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>xr(r,e[n]))}withAgeAndGender(){return new ie(this,this.input)}},se=class extends Ir{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceExpressionNet.predictExpressions(r),this.extractedFaces);return xr(t,e)}withAgeAndGender(){return new ce(this,this.input)}},Wt=class extends ae{withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},kt=class extends se{withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Nr=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.extractedFaces=n}},ie=class extends Nr{async run(){let t=await this.parentTask,e=await oe(t,this.input,async r=>Promise.all(r.map(n=>w.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return Er(Mr(r,s,i),a)})}withFaceExpressions(){return new ae(this,this.input)}},ce=class extends Nr{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Ce(t,this.input,a=>w.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return Er(Mr(t,r,n),e)}withFaceExpressions(){return new se(this,this.input)}},Bt=class extends ie{withFaceExpressions(){return new Wt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Rt=class extends ce{withFaceExpressions(){return new kt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ue=class extends J{constructor(e,r){super();this.parentTask=e;this.input=r}},wt=class extends Ue{async run(){let t=await this.parentTask;return(await oe(t,this.input,r=>Promise.all(r.map(n=>w.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>Dr(t[n],r))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}},Ft=class extends Ue{async run(){let t=await this.parentTask;if(!t)return;let e=await Ce(t,this.input,r=>w.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return Dr(t,e)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}};var Je=class extends J{constructor(e,r,n){super();this.parentTask=e;this.input=r;this.useTinyLandmarkNet=n}get landmarkNet(){return this.useTinyLandmarkNet?w.faceLandmark68TinyNet:w.faceLandmark68Net}},qe=class extends Je{async run(){let t=await this.parentTask,e=t.map(s=>s.detection),r=this.input instanceof Xe.Tensor?await de(this.input,e):await le(this.input,e),n=await Promise.all(r.map(s=>this.landmarkNet.detectLandmarks(s)));return r.forEach(s=>s instanceof Xe.Tensor&&s.dispose()),t.filter((s,i)=>n[i]).map((s,i)=>we(s,n[i]))}withFaceExpressions(){return new Wt(this,this.input)}withAgeAndGender(){return new Bt(this,this.input)}withFaceDescriptors(){return new wt(this,this.input)}},Ze=class extends Je{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof Xe.Tensor?await de(this.input,[e]):await le(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof Xe.Tensor&&a.dispose()),we(t,n)}withFaceExpressions(){return new kt(this,this.input)}withAgeAndGender(){return new Rt(this,this.input)}withFaceDescriptor(){return new Ft(this,this.input)}};var Ke=class extends J{constructor(e,r=new X){super();this.input=e;this.options=r}},Ie=class extends Ke{async run(){let{input:t,options:e}=this,r;if(e instanceof je)r=w.tinyFaceDetector.locateFaces(t,e);else if(e instanceof X)r=w.ssdMobilenetv1.locateFaces(t,e);else if(e instanceof st)r=w.tinyYolov2.locateFaces(t,e);else throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | TinyYolov2Options");return r}runAndExtendWithFaceDetections(){return new Promise((t,e)=>{this.run().then(r=>t(r.map(n=>jt({},n)))).catch(r=>e(r))})}withFaceLandmarks(t=!1){return new qe(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new ae(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new ie(this.runAndExtendWithFaceDetections(),this.input)}},Qe=class extends Ke{async run(){let t=await new Ie(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Ze(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new se(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new ce(this.runAndExtendWithFaceDetection(),this.input)}};function Fa(o,t=new X){return new Qe(o,t)}function Sr(o,t=new X){return new Ie(o,t)}async function un(o,t){return Sr(o,new X(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function Da(o,t={}){return Sr(o,new st(t)).withFaceLandmarks().withFaceDescriptors()}var Ea=un;function go(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var tr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof mt)return s;if(s instanceof Float32Array)return new mt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new mt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>go(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new pe(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>mt.fromJSON(r));return new tr(e,t.distanceThreshold)}};function Ma(o){let t=new ne;return t.extractWeights(o),t}function fn(o,t){let{width:e,height:r}=new k(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>fn(n,{width:e,height:r}));if(Zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return we(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof z||o instanceof M?o.forSize(e,r):o}var Ia=No;0&&(module.exports={AgeGenderNet,BoundingBox,Box,ComposableTask,ComputeAllFaceDescriptorsTask,ComputeFaceDescriptorsTaskBase,ComputeSingleFaceDescriptorTask,DetectAllFaceLandmarksTask,DetectAllFacesTask,DetectFaceLandmarksTaskBase,DetectFacesTaskBase,DetectSingleFaceLandmarksTask,DetectSingleFaceTask,Dimensions,FACE_EXPRESSION_LABELS,FaceDetection,FaceDetectionNet,FaceExpressionNet,FaceExpressions,FaceLandmark68Net,FaceLandmark68TinyNet,FaceLandmarkNet,FaceLandmarks,FaceLandmarks5,FaceLandmarks68,FaceMatch,FaceMatcher,FaceRecognitionNet,Gender,LabeledBox,LabeledFaceDescriptors,NetInput,NeuralNetwork,ObjectDetection,Point,PredictedBox,Rect,SsdMobilenetv1,SsdMobilenetv1Options,TinyFaceDetector,TinyFaceDetectorOptions,TinyYolov2,TinyYolov2Options,allFaces,allFacesSsdMobilenetv1,allFacesTinyYolov2,awaitMediaLoaded,bufferToImage,computeFaceDescriptor,createCanvas,createCanvasFromMedia,createFaceDetectionNet,createFaceRecognitionNet,createSsdMobilenetv1,createTinyFaceDetector,createTinyYolov2,detectAllFaces,detectFaceLandmarks,detectFaceLandmarksTiny,detectLandmarks,detectSingleFace,draw,env,euclideanDistance,extendWithAge,extendWithFaceDescriptor,extendWithFaceDetection,extendWithFaceExpressions,extendWithFaceLandmarks,extendWithGender,extractFaceTensors,extractFaces,fetchImage,fetchJson,fetchNetWeights,fetchOrThrow,fetchVideo,getContext2dOrThrow,getMediaDimensions,imageTensorToCanvas,imageToSquare,inverseSigmoid,iou,isMediaElement,isMediaLoaded,isWithAge,isWithFaceDetection,isWithFaceExpressions,isWithFaceLandmarks,isWithGender,loadAgeGenderModel,loadFaceDetectionModel,loadFaceExpressionModel,loadFaceLandmarkModel,loadFaceLandmarkTinyModel,loadFaceRecognitionModel,loadSsdMobilenetv1Model,loadTinyFaceDetectorModel,loadTinyYolov2Model,loadWeightMap,locateFaces,matchDimensions,minBbox,nets,nonMaxSuppression,normalize,padToSquare,predictAgeAndGender,recognizeFaceExpressions,resizeResults,resolveInput,shuffleArray,sigmoid,ssdMobilenetv1,tf,tinyFaceDetector,tinyYolov2,toNetInput,utils,validateConfig,version}); diff --git a/package.json b/package.json index c266926..0b63a02 100644 --- a/package.json +++ b/package.json @@ -44,10 +44,10 @@ "optionalDependencies": { "@canvas/image": "^1.0.1", "canvas": "^2.9.3", - "node-fetch": "^3.2.9" + "node-fetch": "^3.2.10" }, "devDependencies": { - "@microsoft/api-extractor": "^7.28.6", + "@microsoft/api-extractor": "^7.29.3", "@tensorflow/tfjs": "^3.19.0", "@tensorflow/tfjs-backend-cpu": "^3.19.0", "@tensorflow/tfjs-backend-wasm": "^3.19.0", @@ -59,15 +59,15 @@ "@tensorflow/tfjs-layers": "^3.19.0", "@tensorflow/tfjs-node": "^3.19.0", "@tensorflow/tfjs-node-gpu": "^3.19.0", - "@types/node": "^18.6.2", + "@types/node": "^18.7.9", "@types/offscreencanvas": "^2019.7.0", - "@typescript-eslint/eslint-plugin": "^5.31.0", - "@typescript-eslint/parser": "^5.31.0", - "@vladmandic/build": "^0.7.8", - "@vladmandic/pilogger": "^0.4.5", + "@typescript-eslint/eslint-plugin": "^5.33.1", + "@typescript-eslint/parser": "^5.33.1", + "@vladmandic/build": "^0.7.10", + "@vladmandic/pilogger": "^0.4.6", "@vladmandic/tfjs": "github:vladmandic/tfjs", - "esbuild": "^0.14.51", - "eslint": "^8.20.0", + "esbuild": "^0.15.5", + "eslint": "^8.22.0", "eslint-config-airbnb-base": "^15.0.0", "eslint-plugin-import": "^2.26.0", "eslint-plugin-json": "^3.1.0", @@ -76,7 +76,7 @@ "rimraf": "^3.0.2", "seedrandom": "^3.0.5", "tslib": "^2.4.0", - "typedoc": "^0.23.9", + "typedoc": "^0.23.10", "typescript": "4.7.4" } } diff --git a/typedoc/classes/draw.DrawBoxOptions.html b/typedoc/classes/draw.DrawBoxOptions.html index 7ce7ee8..b8fd93b 100644 --- a/typedoc/classes/draw.DrawBoxOptions.html +++ b/typedoc/classes/draw.DrawBoxOptions.html @@ -33,7 +33,7 @@

Properties

@@ -100,6 +100,6 @@
  • constructor
  • boxColor
  • drawLabelOptions
  • -
  • label
  • +
  • label?
  • lineWidth
  • \ No newline at end of file diff --git a/typedoc/interfaces/ISsdMobilenetv1Options.html b/typedoc/interfaces/ISsdMobilenetv1Options.html index 54cb5fb..bb3543b 100644 --- a/typedoc/interfaces/ISsdMobilenetv1Options.html +++ b/typedoc/interfaces/ISsdMobilenetv1Options.html @@ -26,8 +26,8 @@

    Properties

    @@ -65,6 +65,6 @@ +
  • maxResults?
  • +
  • minConfidence?
  • \ No newline at end of file diff --git a/typedoc/interfaces/ITinyYolov2Options.html b/typedoc/interfaces/ITinyYolov2Options.html index 251ea28..120b9a7 100644 --- a/typedoc/interfaces/ITinyYolov2Options.html +++ b/typedoc/interfaces/ITinyYolov2Options.html @@ -26,8 +26,8 @@

    Properties

    @@ -65,6 +65,6 @@ +
  • inputSize?
  • +
  • scoreThreshold?
  • \ No newline at end of file diff --git a/typedoc/interfaces/draw.IDrawBoxOptions.html b/typedoc/interfaces/draw.IDrawBoxOptions.html index 3e9153d..e784297 100644 --- a/typedoc/interfaces/draw.IDrawBoxOptions.html +++ b/typedoc/interfaces/draw.IDrawBoxOptions.html @@ -27,10 +27,10 @@

    Properties

    @@ -78,8 +78,8 @@ +
  • boxColor?
  • +
  • drawLabelOptions?
  • +
  • label?
  • +
  • lineWidth?
  • \ No newline at end of file diff --git a/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html b/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html index 76c8e95..c525747 100644 --- a/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html +++ b/typedoc/interfaces/draw.IDrawFaceLandmarksOptions.html @@ -27,12 +27,12 @@

    Properties

    @@ -90,10 +90,10 @@ +
  • drawLines?
  • +
  • drawPoints?
  • +
  • lineColor?
  • +
  • lineWidth?
  • +
  • pointColor?
  • +
  • pointSize?
  • \ No newline at end of file diff --git a/typedoc/interfaces/draw.IDrawTextFieldOptions.html b/typedoc/interfaces/draw.IDrawTextFieldOptions.html index ba2cceb..7b091c5 100644 --- a/typedoc/interfaces/draw.IDrawTextFieldOptions.html +++ b/typedoc/interfaces/draw.IDrawTextFieldOptions.html @@ -31,12 +31,12 @@

    Properties

    @@ -94,10 +94,10 @@ +
  • anchorPosition?
  • +
  • backgroundColor?
  • +
  • fontColor?
  • +
  • fontSize?
  • +
  • fontStyle?
  • +
  • padding?
  • \ No newline at end of file