From 69a9faa2a5ed167418b9cbeb1196c648a81d28d1 Mon Sep 17 00:00:00 2001 From: Vladimir Mandic Date: Sat, 6 Feb 2021 10:18:46 -0500 Subject: [PATCH] update --- dist/face-api.esm-nobundle.js | 2 +- dist/face-api.esm.js | 2 +- dist/face-api.js | 2 +- dist/face-api.node-gpu.js | 2 +- dist/face-api.node.js | 2 +- 5 files changed, 5 insertions(+), 5 deletions(-) diff --git a/dist/face-api.esm-nobundle.js b/dist/face-api.esm-nobundle.js index caac1e7..b79144d 100644 --- a/dist/face-api.esm-nobundle.js +++ b/dist/face-api.esm-nobundle.js @@ -5,5 +5,5 @@ author: ' */ -var dn=Object.create,Ge=Object.defineProperty,un=Object.getPrototypeOf,fn=Object.prototype.hasOwnProperty,ln=Object.getOwnPropertyNames,hn=Object.getOwnPropertyDescriptor;var lo=o=>Ge(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Er=(o,t)=>{lo(o);for(var e in t)Ge(o,e,{get:t[e],enumerable:!0})},Bt=(o,t,e)=>{if(lo(o),t&&typeof t=="object"||typeof t=="function")for(let r of ln(t))!fn.call(o,r)&&r!=="default"&&Ge(o,r,{get:()=>t[r],enumerable:!(e=hn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:Bt(Ge(o!=null?dn(un(o)):{},"default",{value:o,enumerable:!0}),o);import*as Ma from"@tensorflow/tfjs/dist/index.js";import*as Ca from"@tensorflow/tfjs-backend-wasm";var g=ho(xn=>{Bt(xn,Ma);Bt(xn,Ca)});var yo=ho((Pn,vo)=>{Er(Pn,{isNodejs:()=>_n});function _n(){return typeof global=="object"&&!0&&typeof vo!="undefined"&&typeof process!="undefined"&&!!process.version}});var va=b(g());var Qr={};Er(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ne,drawContour:()=>lt,drawDetections:()=>En,drawFaceExpressions:()=>In,drawFaceLandmarks:()=>Ln});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Er(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Rt,isTensor1D:()=>bn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>ee,range:()=>ct,round:()=>$t});var xo=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Rt(o,t){return o instanceof xo.Tensor&&o.shape.length===t}function bn(o){return Rt(o,1)}function Cr(o){return Rt(o,2)}function ht(o){return Rt(o,3)}function z(o){return Rt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function $t(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function ee(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var re=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let f=o.shape.slice();return f[s]=u,Et.fill(f,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function gn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ee(o){return 1/(1+Math.exp(-o))}function vn(o){return Math.log(o/(1-o))}var oe=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var yn=.5,Fn=.43,Tn=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/Tn),c=Ot(t),m=Math.floor(Math.max(0,c.x-yn*i)),p=Math.floor(Math.max(0,c.y-Fn*i));return new oe(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var bo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var ne=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${$t(this.distance)})`:""}`}};var Ce=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var go=class extends Ce{static assertIsValidPredictedBox(t,e){if(Ce.assertIsValidLabeledBox(t,e),!ee(t.score)||!ee(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var $r=b(yo()),k;function wn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function Or(o){k=o}function jr(){return Rr()?Or(Wr()):$r.isNodejs()?Or(Br()):null}function Dn(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:wn,setEnv:Or,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:Dn,isBrowser:Rr,isNodejs:$r.isNodejs};jr();function Ht(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Ht(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ne=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ne(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(f+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ne({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function En(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${$t(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var fe=b(g());function Ie(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ie(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Yt(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ae({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Le(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ie(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Yt(o),a=ae({width:r,height:n});return o instanceof e?$(a).putImageData(o,0,0):$(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Yt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ae({width:t,height:t}),p=o instanceof n?o:Le(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Le(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ht);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function se(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=$(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ae({width:c,height:m});return $(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function ie(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Gt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Mn(o){let t=await Gt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Gt(o)).json()}async function Cn(o){return new Float32Array(await(await Gt(o)).arrayBuffer())}var Fo=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Fo.io.loadWeights(n,r)}function Nn(o,t,e=!1){let{width:r,height:n}=e?Yt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ce=b(g());function O(o,t,e){return ce.tidy(()=>{let r=ce.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ce.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=O(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function ke(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),a=O(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=O(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=O(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function zt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function me(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Se=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function pe(o,t){return(e,r,n)=>{let a=Se.tensor4d(o(3*3*e),[3,3,e,1]),s=Se.tensor4d(o(e*r),[1,1,e,r]),i=Se.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function de(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Rt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=me(o,t),r=pe(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),f=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:f}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function To(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=de(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Po(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Ae=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Po(t)}extractParams(t){return To(t)}};var Do=b(g());var ue=b(g());function We(o,t){return ue.tidy(()=>ue.add(ue.matMul(o,t.weights),t.bias))}function _o(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function wo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Be=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Do.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return We(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return _o(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),wo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends Be{constructor(t=new Ae){super("FaceExpressionNet",t)}forwardInput(t){return fe.tidy(()=>fe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(fe.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function In(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${$t(d.probability)})`),m).draw(o)})}function Vt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof ne&&(e.strokeStyle=s,e.lineWidth=a,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:Vt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Eo="0.12.1";var ut=b(g());var I=b(g());function kn(o,t){let e=me(o,t),r=pe(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function Mo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=kn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},f={};ct(t,0,1).forEach(y=>{f[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:f,exit_flow:h}}}function Sn(o,t){let e=j(o,t),r=ar(e),n=de(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Co(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Sn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),f=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:f};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function No(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,No(o,t.expansion_conv,[2,2])),r}function An(o,t){let e=O(I.relu(o),t.separable_conv0,[1,1]);return e=O(I.relu(e),t.separable_conv1,[1,1]),e=O(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(No(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=An(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu(O(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Co(t,this._numMainBlocks)}extractParams(t){return Mo(t,this._numMainBlocks)}};function Io(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function Lo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=We(n,e.fc.age).as1D(),s=We(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,f=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:f,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Io(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Lo(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Re=class extends Be{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:f,height:v}=n[d];return u(f,v)?Math.abs(f-v)/2:0},c=d=>i(d,(u,f)=>ui(d,(u,f)=>fs(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new ne(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var he=class extends Re{constructor(t=new Ae){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function ko(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function So(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return ko(t)}extractParams(t){return So(t)}};var dr=class extends Re{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Ao=class extends he{};var U=b(g());var xe=b(g());var ur=b(g());function Wo(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=xe.conv2d(o,a,e,n);return i=xe.add(i,s),i=Wo(i,t.scale),r?xe.relu(i):i}function Bo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function fr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function Wn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),f=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:f}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ro(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Wn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),f=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:f,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Bn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function $o(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Bn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),f=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:f,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Bo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function $e(o,t){let e=fr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var be=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=fr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=$e(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=$e(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=$e(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=$e(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return $o(t)}extractParams(t){return Ro(t)}};function Rn(o){let t=new be;return t.extractWeights(o),t}function lr(o,t){return{...o,...{descriptor:t}}}function $n(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function On(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&ee(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function jn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:f,batch_norm_variance:v}}function r(c,m,p,d,u){let f=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:f,bias:v}}function n(c,m,p,d){let{filters:u,bias:f}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:f}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),f=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:f,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),f=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:f,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Oo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=jn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Hn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),f=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:f}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,f=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,f)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function jo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Hn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Yn=.0010000000474974513;function Gn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Yn),yt.clipByValue(r,0,6)})}function zn(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Ho(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=zn(i);r=Gn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function Vn(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),f=(p-c)*(d-m);if(u<=0||f<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+f-T)}function Yo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let f=Vn(o,p.boxIndex,m[u]);if(f!==0&&(p.score*=c(f),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var l=b(g());function Un(o){let t=l.unstack(l.transpose(o,[1,0])),e=[l.sub(t[2],t[0]),l.sub(t[3],t[1])],r=[l.add(t[0],l.div(e[0],l.scalar(2))),l.add(t[1],l.div(e[1],l.scalar(2)))];return{sizes:e,centers:r}}function Xn(o,t){let{sizes:e,centers:r}=Un(o),n=l.unstack(l.transpose(t,[1,0])),a=l.div(l.mul(l.exp(l.div(n[2],l.scalar(5))),e[0]),l.scalar(2)),s=l.add(l.mul(l.div(n[0],l.scalar(10)),e[0]),r[0]),i=l.div(l.mul(l.exp(l.div(n[3],l.scalar(5))),e[1]),l.scalar(2)),c=l.add(l.mul(l.div(n[1],l.scalar(10)),e[1]),r[1]);return l.transpose(l.stack([l.sub(s,a),l.sub(c,i),l.add(s,a),l.add(c,i)]),[1,0])}function Go(o,t,e){return l.tidy(()=>{let r=o.shape[0],n=Xn(l.reshape(l.tile(e.extra_dim,[r,1,1]),[-1,4]),l.reshape(o,[-1,4]));n=l.reshape(n,[r,n.shape[0]/r,4]);let a=l.sigmoid(l.slice(t,[0,0,1],[-1,-1,-1])),s=l.slice(a,[0,0,0],[-1,-1,1]);s=l.reshape(s,[r,s.shape[1]]);let i=l.unstack(n),c=l.unstack(s);return{boxes:i,scores:c}})}var je=b(g());var Oe=b(g());function Ut(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(zt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(zt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function zo(o,t,e){return je.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Ut(t,e.box_predictor_0),u=Ut(o,e.box_predictor_1),f=Ut(n,e.box_predictor_2),v=Ut(s,e.box_predictor_3),_=Ut(c,e.box_predictor_4),h=Ut(p,e.box_predictor_5),y=je.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,f.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=je.concat([d.classPrediction,u.classPrediction,f.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Xt=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Ho(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=zo(a.out,a.conv11,e.prediction_layer);return Go(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new oe(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return Oo(t)}};function Vo(o){let t=new Xt;return t.extractWeights(o),t}function Jn(o){return Vo(o)}var Uo=class extends Xt{};var Xo=.4,Jo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],qo=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Zo=[117.001,114.697,97.404],Ko="tiny_yolov2_model",Qo="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function ge(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),ge(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),ge(e)})}var so=b(g());function qn(o,t){let e=me(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=pe(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function tn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=qn(n,s),p;if(t.withSeparableConvs){let[d,u,f,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,f,"conv1"),et=m(f,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,te=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:te}}else{let[d,u,f,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,f,"conv1"),et=c(f,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),te=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:te}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function Zn(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=de(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function en(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=Zn(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var ft=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),zt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?ge(zt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,zt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new ft(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),f=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],f[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return en(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return tn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,f]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+Ee(h[y][T][F][0]))/m*i,et=(y+Ee(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:te,label:fo}=this.withClassScores?await this.extractPredictedClass(f,wt):{classScore:1,label:0};v.push({box:new re(Pt,_t,Pt+it,_t+X),score:L,classScore:L*te,label:fo,...wt})}}return d.dispose(),u.dispose(),f.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ve=io;ve.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ye=class extends ve{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Xo,classes:["face"],...t?{anchors:qo,meanRgb:Zo}:{anchors:Jo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?Qo:Ko}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Kn(o,t=!0){let e=new ye(t);return e.extractWeights(o),e}var gr=class extends ft{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var He=b(g());var co=b(g());async function Jt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Vt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await ie(t,a):await se(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function Fe(o,t,e,r,n){return Jt([o],t,async a=>e(a[0]),r,n)}var rn=.4,on=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],nn=[117.001,114.697,97.404];var Te=class extends ve{constructor(){let t={withSeparableConvs:!0,iouThreshold:rn,classes:["face"],anchors:on,meanRgb:nn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Xt,tinyFaceDetector:new Te,tinyYolov2:new ye,faceLandmark68Net:new he,faceLandmark68TinyNet:new dr,faceRecognitionNet:new be,faceExpressionNet:new cr,ageGenderNet:new pr},an=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),Qn=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ta=(o,t)=>P.tinyYolov2.locateFaces(o,t),sn=o=>P.faceLandmark68Net.detectLandmarks(o),ea=o=>P.faceLandmark68TinyNet.detectLandmarks(o),ra=o=>P.faceRecognitionNet.computeFaceDescriptor(o),oa=o=>P.faceExpressionNet.predictExpressions(o),na=o=>P.ageGenderNet.predictAgeAndGender(o),cn=o=>P.ssdMobilenetv1.load(o),aa=o=>P.tinyFaceDetector.load(o),sa=o=>P.tinyYolov2.load(o),ia=o=>P.faceLandmark68Net.load(o),ca=o=>P.faceLandmark68TinyNet.load(o),ma=o=>P.faceRecognitionNet.load(o),pa=o=>P.faceExpressionNet.load(o),da=o=>P.ageGenderNet.load(o),ua=cn,fa=an,la=sn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},we=class extends mo{async run(){let t=await this.parentTask,e=await Jt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Pe(this,this.input)}},De=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await Fe(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new _e(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Qt=class extends De{withAgeAndGender(){return new Zt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Pe=class extends po{async run(){let t=await this.parentTask,e=await Jt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new we(this,this.input)}},_e=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Fe(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new De(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Zt=class extends _e{withFaceExpressions(){return new Qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Jt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>lr(t[n],r))}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await Fe(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return lr(t,e)}withFaceExpressions(){return new Qt(this,this.input)}withAgeAndGender(){return new Zt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof He.Tensor?await ie(this.input,e):await se(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof He.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof He.Tensor?await ie(this.input,[e]):await se(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof He.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Qt(this,this.input)}withAgeAndGender(){return new Zt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},Ye=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof ft?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>jt({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new Ye(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new De(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new _e(this.runAndExtendWithFaceDetection(),this.input)}};function ha(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new Ye(o,t)}async function mn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function xa(o,t={}){return wr(o,new ft(t)).withFaceLandmarks().withFaceDescriptors()}var ba=mn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function ga(o){let t=new Te;return t.extractWeights(o),t}function pn(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>pn(n,{width:e,height:r}));if(Vt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var ya=typeof process!="undefined",Fa=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ta={faceapi:Eo,node:ya,browser:Fa};export{pr as AgeGenderNet,re as BoundingBox,D as Box,tt as ComposableTask,At as ComputeAllFaceDescriptorsTask,vr as ComputeFaceDescriptorsTaskBase,Wt as ComputeSingleFaceDescriptorTask,Fr as DetectAllFaceLandmarksTask,Ye as DetectAllFacesTask,yr as DetectFaceLandmarksTaskBase,Pr as DetectFacesTaskBase,Tr as DetectSingleFaceLandmarksTask,_r as DetectSingleFaceTask,A as Dimensions,Jr as FACE_EXPRESSION_LABELS,M as FaceDetection,Uo as FaceDetectionNet,cr as FaceExpressionNet,It as FaceExpressions,he as FaceLandmark68Net,dr as FaceLandmark68TinyNet,Ao as FaceLandmarkNet,V as FaceLandmarks,bo as FaceLandmarks5,ne as FaceLandmarks68,Me as FaceMatch,Dr as FaceMatcher,be as FaceRecognitionNet,vt as Gender,Ce as LabeledBox,xt as LabeledFaceDescriptors,bt as NetInput,S as NeuralNetwork,Dt as ObjectDetection,x as Point,go as PredictedBox,oe as Rect,Xt as SsdMobilenetv1,Z as SsdMobilenetv1Options,Te as TinyFaceDetector,gr as TinyFaceDetectorOptions,ye as TinyYolov2,ft as TinyYolov2Options,ba as allFaces,mn as allFacesSsdMobilenetv1,xa as allFacesTinyYolov2,Yr as awaitMediaLoaded,Gr as bufferToImage,ra as computeFaceDescriptor,ae as createCanvas,Le as createCanvasFromMedia,Jn as createFaceDetectionNet,Rn as createFaceRecognitionNet,Vo as createSsdMobilenetv1,ga as createTinyFaceDetector,Kn as createTinyYolov2,wr as detectAllFaces,sn as detectFaceLandmarks,ea as detectFaceLandmarksTiny,la as detectLandmarks,ha as detectSingleFace,Qr as draw,w as env,uo as euclideanDistance,hr as extendWithAge,lr as extendWithFaceDescriptor,jt as extendWithFaceDetection,mr as extendWithFaceExpressions,le as extendWithFaceLandmarks,xr as extendWithGender,ie as extractFaceTensors,se as extractFaces,Mn as fetchImage,Ur as fetchJson,Cn as fetchNetWeights,Gt as fetchOrThrow,$ as getContext2dOrThrow,Yt as getMediaDimensions,zr as imageTensorToCanvas,Vr as imageToSquare,vn as inverseSigmoid,Lr as iou,qe as isMediaElement,Ie as isMediaLoaded,$n as isWithAge,pt as isWithFaceDetection,qr as isWithFaceExpressions,Vt as isWithFaceLandmarks,On as isWithGender,da as loadAgeGenderModel,ua as loadFaceDetectionModel,pa as loadFaceExpressionModel,ia as loadFaceLandmarkModel,ca as loadFaceLandmarkTinyModel,ma as loadFaceRecognitionModel,cn as loadSsdMobilenetv1Model,aa as loadTinyFaceDetectorModel,sa as loadTinyYolov2Model,Xr as loadWeightMap,fa as locateFaces,Nn as matchDimensions,kr as minBbox,P as nets,Sr as nonMaxSuppression,ot as normalize,Ar as padToSquare,na as predictAgeAndGender,oa as recognizeFaceExpressions,pn as resizeResults,Ht as resolveInput,gn as shuffleArray,Ee as sigmoid,an as ssdMobilenetv1,va as tf,Qn as tinyFaceDetector,ta as tinyYolov2,E as toNetInput,Mr as utils,ao as validateConfig,Ta as version}; +var dn=Object.create,Ge=Object.defineProperty,un=Object.getPrototypeOf,fn=Object.prototype.hasOwnProperty,ln=Object.getOwnPropertyNames,hn=Object.getOwnPropertyDescriptor;var lo=o=>Ge(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Er=(o,t)=>{lo(o);for(var e in t)Ge(o,e,{get:t[e],enumerable:!0})},Bt=(o,t,e)=>{if(lo(o),t&&typeof t=="object"||typeof t=="function")for(let r of ln(t))!fn.call(o,r)&&r!=="default"&&Ge(o,r,{get:()=>t[r],enumerable:!(e=hn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:Bt(Ge(o!=null?dn(un(o)):{},"default",{value:o,enumerable:!0}),o);import*as Ma from"@tensorflow/tfjs/dist/index.js";import*as Ca from"@tensorflow/tfjs-backend-wasm";var g=ho(xn=>{Bt(xn,Ma);Bt(xn,Ca)});var yo=ho((Pn,vo)=>{Er(Pn,{isNodejs:()=>_n});function _n(){return typeof global=="object"&&!0&&typeof vo!="undefined"&&typeof process!="undefined"&&!!process.version}});var va=b(g());var Qr={};Er(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ne,drawContour:()=>lt,drawDetections:()=>En,drawFaceExpressions:()=>In,drawFaceLandmarks:()=>Ln});function lt(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Er(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Rt,isTensor1D:()=>bn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>ee,range:()=>ct,round:()=>$t});var xo=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Rt(o,t){return o instanceof xo.Tensor&&o.shape.length===t}function bn(o){return Rt(o,1)}function Cr(o){return Rt(o,2)}function ht(o){return Rt(o,3)}function z(o){return Rt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function $t(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function ee(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var re=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let f=o.shape.slice();return f[s]=u,Et.fill(f,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function gn(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function Ee(o){return 1/(1+Math.exp(-o))}function vn(o){return Math.log(o/(1-o))}var oe=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var yn=.5,Fn=.43,Tn=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/Tn),c=Ot(t),m=Math.floor(Math.max(0,c.x-yn*i)),p=Math.floor(Math.max(0,c.y-Fn*i));return new oe(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var bo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var ne=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Me=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${$t(this.distance)})`:""}`}};var Ce=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var go=class extends Ce{static assertIsValidPredictedBox(t,e){if(Ce.assertIsValidLabeledBox(t,e),!ee(t.score)||!ee(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function jt(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var $r=b(yo()),k;function wn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function Or(o){k=o}function jr(){return Rr()?Or(Wr()):$r.isNodejs()?Or(Br()):null}function Dn(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:wn,setEnv:Or,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:Dn,isBrowser:Rr,isNodejs:$r.isNodejs};jr();function Ht(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function $(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=Ht(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ne=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ne(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(f+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ne({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=$(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function En(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${$t(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var fe=b(g());function Ie(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ie(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Yt(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ae({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Le(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ie(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Yt(o),a=ae({width:r,height:n});return o instanceof e?$(a).putImageData(o,0,0):$(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Yt(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ae({width:t,height:t}),p=o instanceof n?o:Le(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Le(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(Ht);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function se(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=$(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ae({width:c,height:m});return $(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function ie(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Gt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Mn(o){let t=await Gt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Gt(o)).json()}async function Cn(o){return new Float32Array(await(await Gt(o)).arrayBuffer())}var Fo=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Fo.io.loadWeights(n,r)}function Nn(o,t,e=!1){let{width:r,height:n}=e?Yt(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ce=b(g());function O(o,t,e){return ce.tidy(()=>{let r=ce.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ce.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):O(o,t.conv0,[2,2])),n=O(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=O(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function ke(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):O(o,t.conv0,r?[2,2]:[1,1])),a=O(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=O(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=O(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function zt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function me(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var Se=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function pe(o,t){return(e,r,n)=>{let a=Se.tensor4d(o(3*3*e),[3,3,e,1]),s=Se.tensor4d(o(e*r),[1,1,e,r]),i=Se.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function de(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Rt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=me(o,t),r=pe(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),f=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:f}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function To(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=de(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function Po(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Ae=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=ke(a,e.dense0,!0);return s=ke(s,e.dense1),s=ke(s,e.dense2),s=ke(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return Po(t)}extractParams(t){return To(t)}};var Do=b(g());var ue=b(g());function We(o,t){return ue.tidy(()=>ue.add(ue.matMul(o,t.weights),t.bias))}function _o(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function wo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var Be=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Do.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return We(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return _o(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),wo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends Be{constructor(t=new Ae){super("FaceExpressionNet",t)}forwardInput(t){return fe.tidy(()=>fe.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(fe.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function In(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${$t(d.probability)})`),m).draw(o)})}function Vt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=$(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof ne&&(e.strokeStyle=s,e.lineWidth=a,lt(e,this.faceLandmarks.getJawOutline()),lt(e,this.faceLandmarks.getLeftEyeBrow()),lt(e,this.faceLandmarks.getRightEyeBrow()),lt(e,this.faceLandmarks.getNose()),lt(e,this.faceLandmarks.getLeftEye(),!0),lt(e,this.faceLandmarks.getRightEye(),!0),lt(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function Ln(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:Vt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Eo="0.12.3";var ut=b(g());var I=b(g());function kn(o,t){let e=me(o,t),r=pe(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function Mo(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=kn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},f={};ct(t,0,1).forEach(y=>{f[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:f,exit_flow:h}}}function Sn(o,t){let e=j(o,t),r=ar(e),n=de(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Co(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Sn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),f=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:f};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function No(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=O(r,t.separable_conv0,[1,1]),r=O(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,No(o,t.expansion_conv,[2,2])),r}function An(o,t){let e=O(I.relu(o),t.separable_conv0,[1,1]);return e=O(I.relu(e),t.separable_conv1,[1,1]),e=O(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(No(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=An(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu(O(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Co(t,this._numMainBlocks)}extractParams(t){return Mo(t,this._numMainBlocks)}};function Io(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function Lo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=We(n,e.fc.age).as1D(),s=We(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,f=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:f,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Io(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Lo(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Re=class extends Be{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:f,height:v}=n[d];return u(f,v)?Math.abs(f-v)/2:0},c=d=>i(d,(u,f)=>ui(d,(u,f)=>fs(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new ne(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var he=class extends Re{constructor(t=new Ae){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function ko(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function So(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return ko(t)}extractParams(t){return So(t)}};var dr=class extends Re{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Ao=class extends he{};var U=b(g());var xe=b(g());var ur=b(g());function Wo(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=xe.conv2d(o,a,e,n);return i=xe.add(i,s),i=Wo(i,t.scale),r?xe.relu(i):i}function Bo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function fr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function Wn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),f=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:f}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function Ro(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Wn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),f=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:f,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Bn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function $o(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Bn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),f=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:f,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Bo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function $e(o,t){let e=fr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var be=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=fr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=$e(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=$e(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=$e(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=$e(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return $o(t)}extractParams(t){return Ro(t)}};function Rn(o){let t=new be;return t.extractWeights(o),t}function lr(o,t){return{...o,...{descriptor:t}}}function $n(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function On(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&ee(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function jn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),f=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:f,batch_norm_variance:v}}function r(c,m,p,d,u){let f=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:f,bias:v}}function n(c,m,p,d){let{filters:u,bias:f}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:f}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),f=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:f,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),f=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:f,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Oo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=jn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Hn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),f=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:f}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,f=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,f)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function jo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Hn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Yn=.0010000000474974513;function Gn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Yn),yt.clipByValue(r,0,6)})}function zn(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Ho(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=zn(i);r=Gn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function Vn(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),f=(p-c)*(d-m);if(u<=0||f<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+f-T)}function Yo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let f=Vn(o,p.boxIndex,m[u]);if(f!==0&&(p.score*=c(f),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var l=b(g());function Un(o){let t=l.unstack(l.transpose(o,[1,0])),e=[l.sub(t[2],t[0]),l.sub(t[3],t[1])],r=[l.add(t[0],l.div(e[0],l.scalar(2))),l.add(t[1],l.div(e[1],l.scalar(2)))];return{sizes:e,centers:r}}function Xn(o,t){let{sizes:e,centers:r}=Un(o),n=l.unstack(l.transpose(t,[1,0])),a=l.div(l.mul(l.exp(l.div(n[2],l.scalar(5))),e[0]),l.scalar(2)),s=l.add(l.mul(l.div(n[0],l.scalar(10)),e[0]),r[0]),i=l.div(l.mul(l.exp(l.div(n[3],l.scalar(5))),e[1]),l.scalar(2)),c=l.add(l.mul(l.div(n[1],l.scalar(10)),e[1]),r[1]);return l.transpose(l.stack([l.sub(s,a),l.sub(c,i),l.add(s,a),l.add(c,i)]),[1,0])}function Go(o,t,e){return l.tidy(()=>{let r=o.shape[0],n=Xn(l.reshape(l.tile(e.extra_dim,[r,1,1]),[-1,4]),l.reshape(o,[-1,4]));n=l.reshape(n,[r,n.shape[0]/r,4]);let a=l.sigmoid(l.slice(t,[0,0,1],[-1,-1,-1])),s=l.slice(a,[0,0,0],[-1,-1,1]);s=l.reshape(s,[r,s.shape[1]]);let i=l.unstack(n),c=l.unstack(s);return{boxes:i,scores:c}})}var je=b(g());var Oe=b(g());function Ut(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(zt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(zt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function zo(o,t,e){return je.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Ut(t,e.box_predictor_0),u=Ut(o,e.box_predictor_1),f=Ut(n,e.box_predictor_2),v=Ut(s,e.box_predictor_3),_=Ut(c,e.box_predictor_4),h=Ut(p,e.box_predictor_5),y=je.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,f.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=je.concat([d.classPrediction,u.classPrediction,f.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Xt=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Ho(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=zo(a.out,a.conv11,e.prediction_layer);return Go(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new oe(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return Oo(t)}};function Vo(o){let t=new Xt;return t.extractWeights(o),t}function Jn(o){return Vo(o)}var Uo=class extends Xt{};var Xo=.4,Jo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],qo=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Zo=[117.001,114.697,97.404],Ko="tiny_yolov2_model",Qo="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function ge(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),ge(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),ge(e)})}var so=b(g());function qn(o,t){let e=me(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=pe(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function tn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=qn(n,s),p;if(t.withSeparableConvs){let[d,u,f,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,f,"conv1"),et=m(f,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,te=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:te}}else{let[d,u,f,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,f,"conv1"),et=c(f,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),te=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:te}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function Zn(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=de(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function en(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=Zn(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var ft=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),zt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?ge(zt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,zt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new ft(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),f=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],f[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return en(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return tn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,f]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+Ee(h[y][T][F][0]))/m*i,et=(y+Ee(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:te,label:fo}=this.withClassScores?await this.extractPredictedClass(f,wt):{classScore:1,label:0};v.push({box:new re(Pt,_t,Pt+it,_t+X),score:L,classScore:L*te,label:fo,...wt})}}return d.dispose(),u.dispose(),f.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ve=io;ve.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ye=class extends ve{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:Xo,classes:["face"],...t?{anchors:qo,meanRgb:Zo}:{anchors:Jo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?Qo:Ko}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Kn(o,t=!0){let e=new ye(t);return e.extractWeights(o),e}var gr=class extends ft{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var He=b(g());var co=b(g());async function Jt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>Vt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await ie(t,a):await se(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function Fe(o,t,e,r,n){return Jt([o],t,async a=>e(a[0]),r,n)}var rn=.4,on=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],nn=[117.001,114.697,97.404];var Te=class extends ve{constructor(){let t={withSeparableConvs:!0,iouThreshold:rn,classes:["face"],anchors:on,meanRgb:nn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Xt,tinyFaceDetector:new Te,tinyYolov2:new ye,faceLandmark68Net:new he,faceLandmark68TinyNet:new dr,faceRecognitionNet:new be,faceExpressionNet:new cr,ageGenderNet:new pr},an=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),Qn=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ta=(o,t)=>P.tinyYolov2.locateFaces(o,t),sn=o=>P.faceLandmark68Net.detectLandmarks(o),ea=o=>P.faceLandmark68TinyNet.detectLandmarks(o),ra=o=>P.faceRecognitionNet.computeFaceDescriptor(o),oa=o=>P.faceExpressionNet.predictExpressions(o),na=o=>P.ageGenderNet.predictAgeAndGender(o),cn=o=>P.ssdMobilenetv1.load(o),aa=o=>P.tinyFaceDetector.load(o),sa=o=>P.tinyYolov2.load(o),ia=o=>P.faceLandmark68Net.load(o),ca=o=>P.faceLandmark68TinyNet.load(o),ma=o=>P.faceRecognitionNet.load(o),pa=o=>P.faceExpressionNet.load(o),da=o=>P.ageGenderNet.load(o),ua=cn,fa=an,la=sn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},we=class extends mo{async run(){let t=await this.parentTask,e=await Jt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Pe(this,this.input)}},De=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await Fe(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new _e(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Qt=class extends De{withAgeAndGender(){return new Zt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Pe=class extends po{async run(){let t=await this.parentTask,e=await Jt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new we(this,this.input)}},_e=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await Fe(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new De(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Zt=class extends _e{withFaceExpressions(){return new Qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Jt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>lr(t[n],r))}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await Fe(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return lr(t,e)}withFaceExpressions(){return new Qt(this,this.input)}withAgeAndGender(){return new Zt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof He.Tensor?await ie(this.input,e):await se(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof He.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof He.Tensor?await ie(this.input,[e]):await se(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof He.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Qt(this,this.input)}withAgeAndGender(){return new Zt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},Ye=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof ft?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>jt({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new Ye(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?jt({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new De(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new _e(this.runAndExtendWithFaceDetection(),this.input)}};function ha(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new Ye(o,t)}async function mn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function xa(o,t={}){return wr(o,new ft(t)).withFaceLandmarks().withFaceDescriptors()}var ba=mn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Me(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function ga(o){let t=new Te;return t.extractWeights(o),t}function pn(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>pn(n,{width:e,height:r}));if(Vt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le(jt(o,n),a)}return pt(o)?jt(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var ya=typeof process!="undefined",Fa=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ta={faceapi:Eo,node:ya,browser:Fa};export{pr as AgeGenderNet,re as BoundingBox,D as Box,tt as ComposableTask,At as ComputeAllFaceDescriptorsTask,vr as ComputeFaceDescriptorsTaskBase,Wt as ComputeSingleFaceDescriptorTask,Fr as DetectAllFaceLandmarksTask,Ye as DetectAllFacesTask,yr as DetectFaceLandmarksTaskBase,Pr as DetectFacesTaskBase,Tr as DetectSingleFaceLandmarksTask,_r as DetectSingleFaceTask,A as Dimensions,Jr as FACE_EXPRESSION_LABELS,M as FaceDetection,Uo as FaceDetectionNet,cr as FaceExpressionNet,It as FaceExpressions,he as FaceLandmark68Net,dr as FaceLandmark68TinyNet,Ao as FaceLandmarkNet,V as FaceLandmarks,bo as FaceLandmarks5,ne as FaceLandmarks68,Me as FaceMatch,Dr as FaceMatcher,be as FaceRecognitionNet,vt as Gender,Ce as LabeledBox,xt as LabeledFaceDescriptors,bt as NetInput,S as NeuralNetwork,Dt as ObjectDetection,x as Point,go as PredictedBox,oe as Rect,Xt as SsdMobilenetv1,Z as SsdMobilenetv1Options,Te as TinyFaceDetector,gr as TinyFaceDetectorOptions,ye as TinyYolov2,ft as TinyYolov2Options,ba as allFaces,mn as allFacesSsdMobilenetv1,xa as allFacesTinyYolov2,Yr as awaitMediaLoaded,Gr as bufferToImage,ra as computeFaceDescriptor,ae as createCanvas,Le as createCanvasFromMedia,Jn as createFaceDetectionNet,Rn as createFaceRecognitionNet,Vo as createSsdMobilenetv1,ga as createTinyFaceDetector,Kn as createTinyYolov2,wr as detectAllFaces,sn as detectFaceLandmarks,ea as detectFaceLandmarksTiny,la as detectLandmarks,ha as detectSingleFace,Qr as draw,w as env,uo as euclideanDistance,hr as extendWithAge,lr as extendWithFaceDescriptor,jt as extendWithFaceDetection,mr as extendWithFaceExpressions,le as extendWithFaceLandmarks,xr as extendWithGender,ie as extractFaceTensors,se as extractFaces,Mn as fetchImage,Ur as fetchJson,Cn as fetchNetWeights,Gt as fetchOrThrow,$ as getContext2dOrThrow,Yt as getMediaDimensions,zr as imageTensorToCanvas,Vr as imageToSquare,vn as inverseSigmoid,Lr as iou,qe as isMediaElement,Ie as isMediaLoaded,$n as isWithAge,pt as isWithFaceDetection,qr as isWithFaceExpressions,Vt as isWithFaceLandmarks,On as isWithGender,da as loadAgeGenderModel,ua as loadFaceDetectionModel,pa as loadFaceExpressionModel,ia as loadFaceLandmarkModel,ca as loadFaceLandmarkTinyModel,ma as loadFaceRecognitionModel,cn as loadSsdMobilenetv1Model,aa as loadTinyFaceDetectorModel,sa as loadTinyYolov2Model,Xr as loadWeightMap,fa as locateFaces,Nn as matchDimensions,kr as minBbox,P as nets,Sr as nonMaxSuppression,ot as normalize,Ar as padToSquare,na as predictAgeAndGender,oa as recognizeFaceExpressions,pn as resizeResults,Ht as resolveInput,gn as shuffleArray,Ee as sigmoid,an as ssdMobilenetv1,va as tf,Qn as tinyFaceDetector,ta as tinyYolov2,E as toNetInput,Mr as utils,ao as validateConfig,Ta as version}; //# sourceMappingURL=face-api.esm-nobundle.js.map diff --git a/dist/face-api.esm.js b/dist/face-api.esm.js index cabcd67..c1f5129 100644 --- a/dist/face-api.esm.js +++ b/dist/face-api.esm.js @@ -4045,7 +4045,7 @@ return a / b;`,L9=` } setOutput(${l}); } - `}};function ree(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Tn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Qd(r.dtype),g=(x,N,T,C,$)=>{let F=x.shape[0],O=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(O,$),W={windowSize:B,inSize:O,batchSize:F,numSegments:$},G=new aee(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===$)return q;let H=US({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),K=jS({inputs:{x:H},backend:n,attrs:{reps:[O/B]}});return l.push(H),l.push(K),g(q,N,K,C,$)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Tn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var see={kernelName:Nc,backendName:"webgl",kernelFunc:ree},iee=[JZ,t9,BK,VK,HK,KK,YK,QK,tX,aX,oX,uX,dX,fX,kX,bX,TX,EX,CX,DX,MX,OX,WX,KX,YX,nY,rY,lY,pY,wK,fY,TY,CY,xY,FY,DY,EY,PY,zY,VY,GY,jY,XY,t7,a7,ZY,i7,u7,h7,y7,w7,N7,T7,S7,_7,A7,$7,R7,P7,B7,G7,j7,K7,Z7,tZ,sZ,uZ,vK,pZ,mY,mZ,yZ,vZ,IK,NZ,_Z,AZ,OZ,RZ,WZ,GZ,KZ,a9,p9,u9,f9,y9,x9,o9,w9,I9,C9,F9,M9,U9,_K,H9,K9,Z9,eJ,JX,aJ,sJ,oJ,cJ,mJ,TK,gJ,yJ,QX,z9,vJ,_J,NJ,AK,$J,MJ,LJ,WJ,HJ,qJ,YJ,QJ,tQ,rQ,oQ,cQ,hQ,gQ,xQ,jX,W9,kQ,NQ,SQ,_Q,FQ,RQ,PQ,LQ,WQ,B9,OK,GQ,qQ,YQ,JQ,LK,eee,nee,see,rJ];for(let e of iee)Sc(e);var oee="3.0.0",lee={"tfjs-core":Y0,"tfjs-backend-cpu":LU,"tfjs-backend-webgl":xK,"tfjs-data":kN,"tfjs-layers":mm,"tfjs-converter":gN,tfjs:oee},Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var Tp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Tp||(Tp={}));var qS;function uee(e){qS=e.wasm.cwrap(gi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function cee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Tp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return qS(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var pee={kernelName:gi,backendName:"wasm",setupFunc:uee,kernelFunc:cee};function Vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var dee=Vn(So);function fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Wn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every(($,F)=>$===F),C=N.every(($,F)=>$===F);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var hee=!0,mee=fn(Lr,hee),KS;function fee(e){KS=e.wasm.cwrap(Ss,null,["array","number","number","number"])}function gee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return KS(s,r.length,Wn[a.dtype],i),a}var yee={kernelName:Ss,backendName:"wasm",setupFunc:fee,kernelFunc:gee};function Km(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var bee={kernelName:Ko,backendName:"wasm",kernelFunc:Km},XS;function xee(e){XS=e.wasm.cwrap(fi,null,["number","array","number","number","number","array","number"])}function Xm(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=wee(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var kee={kernelName:fi,backendName:"wasm",kernelFunc:Xm,setupFunc:xee};function gu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Eee={kernelName:dl,backendName:"wasm",kernelFunc:Ma},JS;function Aee(e){JS=e.wasm.cwrap(Es,null,["number","array","number","number","array","number","number","number","number"])}function Fee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Ma({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Ma({inputs:{x:s},backend:n,attrs:{shape:N}}),$=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,O,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),K=new Uint8Array(new Int32Array(C.shape).buffer);return JS($,H,T.shape.length,F,K,C.shape.length,i,o,q),G.shape=v,G}var $ee={kernelName:Es,backendName:"wasm",setupFunc:Aee,kernelFunc:Fee};function Ym(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Dee={kernelName:As,backendName:"wasm",kernelFunc:Ym},QS;function Ree(e){QS=e.wasm.cwrap(zr,null,["number","number","number","number"])}function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return QS(o,s,i,c),l}var Pee={kernelName:zr,backendName:"wasm",setupFunc:Ree,kernelFunc:Mee};function e2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Km({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Ma({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=fv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=Xm({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;r2(m,i?1:0,o?1:0,h,f,Wn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=Xm({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Yee={kernelName:Rs,backendName:"wasm",setupFunc:Kee,kernelFunc:Xee},s2;function Zee(e){s2=e.wasm.cwrap(Lo,null,["number","number","number","array","number","array","array","number","number"])}function Jee(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return s2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Qee={kernelName:Lo,backendName:"wasm",setupFunc:Zee,kernelFunc:Jee},i2;function ete(e){i2=e.wasm.cwrap(Ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,$=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return i2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,O,x,N,T,C,$,F,W),B}var nte={kernelName:Ms,backendName:"wasm",setupFunc:ete,kernelFunc:tte},ate=!1,rte=fn(Wo,ate,"bool"),ste=Vn(Os);function jv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ma({inputs:{x:r},backend:a,attrs:{shape:o}})}var ite={kernelName:Vo,backendName:"wasm",kernelFunc:jv};function ote(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var lte={kernelName:mc,backendName:"wasm",kernelFunc:ote},o2;function ute(e){o2=e.wasm.cwrap(Go,null,["number","number","number","number","number","number"])}function cte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return o2(s,o,l,c,u,i),r}var pte={kernelName:Go,backendName:"wasm",kernelFunc:cte,setupFunc:ute},dte=Vn(Ls),hte=!1,mte=fn(zs,hte),l2;function fte(e){l2=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number"])}function gte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return l2(u,p,d,h,m,r,g),f}var yte={kernelName:Bs,backendName:"wasm",setupFunc:fte,kernelFunc:gte},u2;function bte(e){u2=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return u2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var vte={kernelName:yi,backendName:"wasm",setupFunc:bte,kernelFunc:xte},c2;function wte(e){c2=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return c2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var Ite={kernelName:bi,backendName:"wasm",setupFunc:wte,kernelFunc:kte},p2;function Nte(e){p2=e.wasm.cwrap(jo,null,["number","number","number","number","number","number","array","number"])}function Tte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=fy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return p2(d,Wn[a.dtype],h,i,p,o,m,f),c}var Ste={kernelName:jo,backendName:"wasm",setupFunc:Nte,kernelFunc:Tte},d2;function Cte(e){d2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _te(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Ma({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Ma({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return d2(g,Wn[r.dtype],v,f,y,c.batchSize,x,b),m.shape=c.outputShape,m}var Ete={kernelName:Ho,backendName:"wasm",setupFunc:Cte,kernelFunc:_te},Ate=!1,Fte=fn(qo,Ate,"bool"),$te=!1,Dte=fn(Ws,$te,"bool"),h2;function Rte(e){h2=e.wasm.cwrap(Vs,null,["number","number","number"])}function Mte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;h2(r,n,i)}return s}var Pte={kernelName:Vs,backendName:"wasm",setupFunc:Rte,kernelFunc:Mte},Ote=!1,Lte=fn(Jo,Ote,"bool"),zte=!1,Bte=fn(Qo,zte,"bool"),Wte=Vn(Us),Vte=!1,Ute=fn(tl,Vte,"bool"),m2;function Gte(e){m2=e.wasm.cwrap(Gs,null,["number, number, number"])}function Hte(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=gu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;m2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var jte={kernelName:Gs,backendName:"wasm",setupFunc:Gte,kernelFunc:Hte},qte=!1,Kte=fn(Hs,qte),f2;function Xte(e){f2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yte(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),$=a.dataIdMap.get(C.dataId).id;return f2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,$),C}var Zte={kernelName:js,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},g2;function Jte(e){g2=e.wasm.cwrap(qs,null,["number, number, number"])}function Qte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=Ym({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;g2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var ene={kernelName:qs,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte},y2;function tne(e){y2=e.wasm.cwrap(Ks,null,["number, number, number"])}function nne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;y2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var ane={kernelName:Ks,backendName:"wasm",setupFunc:tne,kernelFunc:nne},rne=!1,sne=fn(Xs,rne),ine=!0,one=fn(Ys,ine),lne=Vn(al);function qv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var b2;function une(e){b2=e.wasm.cwrap(sl,"number",["number","number","number","number","number"])}function cne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=b2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=qv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var pne={kernelName:sl,backendName:"wasm",setupFunc:une,kernelFunc:cne},x2;function dne(e){x2=e.wasm.cwrap(il,"number",["number","number","number","number","number","bool"])}function hne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=x2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var mne={kernelName:il,backendName:"wasm",setupFunc:dne,kernelFunc:hne},v2;function fne(e){v2=e.wasm.cwrap(ol,"number",["number","number","number","number","number","number"])}function gne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=v2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var yne={kernelName:ol,backendName:"wasm",setupFunc:fne,kernelFunc:gne},bne=!1,xne=fn(rl,bne,"bool"),w2;function vne(e){w2=e.wasm.cwrap(Zs,null,["number","number","number","number","number"])}function wne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return w2(u,s,i,o,c),l}var kne={kernelName:Zs,backendName:"wasm",setupFunc:vne,kernelFunc:wne};function Ine(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Nne={kernelName:ll,backendName:"wasm",kernelFunc:Ine};function Tne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return jv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>jv({inputs:{input:l},backend:n,attrs:{dim:r}}));return e2({inputs:o,backend:n,attrs:{axis:r}})}var Sne={kernelName:ul,backendName:"wasm",kernelFunc:Tne},k2;function Cne(e){k2=e.wasm.cwrap(Js,null,["number","array","number","number","array","array","number","number"])}function _ne(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return k2(i,c,t.shape.length,Wn[t.dtype],d,h,r,l),o}var Ene={kernelName:Js,backendName:"wasm",kernelFunc:_ne,setupFunc:Cne},Ane=!1,Fne=fn(Qs,Ane),I2;function $ne(e){I2=e.wasm.cwrap(ei,null,["number","number","number"])}function Dne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return I2(s,i,l),o}var Rne={kernelName:ei,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},N2;function Mne(e){N2=e.wasm.cwrap(cl,null,["number","number","number","number"])}function Pne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;N2(l,y,Wn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var One={kernelName:cl,backendName:"wasm",setupFunc:Mne,kernelFunc:Pne},Lne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=bv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},zne={kernelName:vc,backendName:"wasm",kernelFunc:Lne},Bne=!0,Wne=fn(Ps,Bne),Vne=Vn(ti),Une=Vn(ai),T2;function Gne(e){T2=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number"])}function Hne(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Ym({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return T2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var jne={kernelName:ni,backendName:"wasm",setupFunc:Gne,kernelFunc:Hne},S2;function qne(e){S2=e.wasm.cwrap(ri,null,["number","array","number","array","number","number"])}function Kne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Km({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);return S2(l,u,i.length,p,r.shape.length,c),Ma({inputs:{x:o},attrs:{shape:r.shape},backend:n})}var Xne={kernelName:ri,backendName:"wasm",kernelFunc:Kne,setupFunc:qne},C2;function Yne(e){C2=e.wasm.cwrap(Sl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Zne(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return C2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Jne={kernelName:Sl,backendName:"wasm",kernelFunc:Zne,setupFunc:Yne},Qne=Vn(si),eae=Vn(ii),_2;function tae(e){_2=e.wasm.cwrap(hl,null,["number","number","number","number","number","number","array","number","number"])}function nae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=gy.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return _2(h,m,Wn[s.dtype],l,c,u,f,d,g),o}var aae={kernelName:hl,backendName:"wasm",setupFunc:tae,kernelFunc:nae},E2;function rae(e){E2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function sae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return E2(i,o,l,h,u),c}var iae={kernelName:ml,backendName:"wasm",kernelFunc:sae,setupFunc:rae},A2;function oae(e){A2=e.wasm.cwrap(li,null,["number","number"])}function lae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||A2(a,s),r}var uae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:oae,kernelFunc:lae},cae=Vn(oi);function Zm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=cn.parseSliceParams(t,n,a),o=cn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=cn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Am(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)pae(l,u[0],d,s,i);else if(h===3)dae(l,u[0],u[1],d,s,i);else if(h===4)hae(l,u[0],u[1],u[2],d,s,i);else{let m=Am(l,s,i,t.shape,t.dtype);d.set(m)}return c}function pae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c{let d=[...u];d[o]=p;let h=Zm({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var xae={kernelName:vl,backendName:"wasm",kernelFunc:bae},vae=Vn(ui),wae=Vn(Ic),kae=!0,Iae=fn(di,kae),$2;function Nae(e){$2=e.wasm.cwrap(Wr,null,["number","number","number"])}function Tae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return $2(i,r,l),o}var Sae={kernelName:Wr,backendName:"wasm",setupFunc:Nae,kernelFunc:Tae},D2;function Cae(e){D2=e.wasm.cwrap(wl,null,["number","array","number","array","array","array","array","array","number","number"])}function _ae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,g.splice(F,0,1)});let y=Ma({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(F=>{i[F]=s[F]+1,o[F]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((F,O)=>N.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Zm({inputs:{x:r},attrs:{begin:s,size:T},backend:t});return Ma({inputs:{x:F},attrs:{shape:C},backend:t})}let $=t.makeOutput(C,"float32");if(!C.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(C).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get($.dataId).id;D2(F,O,y.shape.length,B,W,G,q,H,C.length,K)}return Ma({inputs:{x:$},attrs:{shape:C},backend:t})}var Eae={kernelName:wl,backendName:"wasm",setupFunc:Cae,kernelFunc:_ae},Aae=!0,Fae=fn(hi,Aae),R2;function $ae(e){R2=e.wasm.cwrap(ci,null,["number, number, number"])}function Dae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;R2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Rae={kernelName:ci,backendName:"wasm",setupFunc:$ae,kernelFunc:Dae},Mae=Vn(mi),M2;function Pae(e){M2=e.wasm.cwrap(Br,null,["number","array","number","array","number","number"])}function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return P2(i,o,a.shape.length,Wn[a.dtype],r,s,u,d),[c,p]},Wae={kernelName:Il,backendName:"wasm",setupFunc:zae,kernelFunc:Bae};function Vae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var Uae={kernelName:Nl,backendName:"wasm",kernelFunc:Vae};function Gae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Hae={kernelName:Tl,backendName:"wasm",kernelFunc:Gae},jae=[dee,mee,yee,Tee,_ee,$ee,Dee,Pee,Oee,Bee,Uee,Gee,qee,Yee,Qee,nte,rte,ste,ite,lte,pte,dte,mte,pee,yte,vte,Ite,Ste,Ete,Fte,Dte,bee,Pte,Lte,Bte,Wte,Ute,jte,Kte,Zte,ene,ane,sne,one,lne,pne,mne,yne,xne,kne,Nne,Sne,Ene,Fne,Rne,One,zne,Wne,Vne,Une,Eee,jne,Xne,Jne,eae,Qne,aae,iae,uae,cae,mae,yae,xae,vae,wae,Iae,Sae,Eae,Fae,Rae,Mae,Lae,Wae,kee,Uae,Hae];for(let e of jae)Sc(e);var Kv=ee();Kv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Kv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Kv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var O2=Io(yE()),qae='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Kae=Io(bE()),L2=class extends sc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new hd(this,Kr())}write(e,t,n){let a={};return this.move(a,e,t,n),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a){let r=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:r,stringBytes:l,shape:n,dtype:a,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(a),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:r,memoryOffset:o,shape:n,dtype:a}),this.wasm.tfjs.registerTensor(r,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Xae(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{a={};let r=this.dataIdNextNumber++;this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Yae(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function z2(e,t,n){if(Jm!=null)return Jm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Sp!=null&&Sp[a]!=null?Sp[a]:n+a}async function Zae(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=qae,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?z2(e,t,Cp!=null?Cp:c):c+l},Xv&&(r.instantiateWasm=Yae(z2(e,t,Cp!=null?Cp:"")));let s;t&&e&&Jm==null?(s=O2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+O2.default.toString()],{type:"text/javascript"})):s=Kae.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,_p=!1,n({wasm:s})},s.onAbort=()=>{o||_p||(_p=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Xae(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Jae=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Jm=null,Cp=null,Sp={},_p=!1,Xv=!1;function Qae(e,t=!1){if(ky("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),_p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Jm=e,Xv=t}function ere(e,t=!1){if(_p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Cp=e;else{Sp=e;let n=Jae.filter(a=>Sp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Xv=t}var tre="3.0.0",nre=2;ih("wasm",async()=>{let{wasm:e}=await Zae();return new L2(e)},nre);var ww={};cd(ww,{AnchorPosition:()=>or,DrawBox:()=>nf,DrawBoxOptions:()=>cw,DrawFaceLandmarks:()=>vw,DrawFaceLandmarksOptions:()=>xw,DrawTextField:()=>hs,DrawTextFieldOptions:()=>$p,drawContour:()=>Tr,drawDetections:()=>hre,drawFaceExpressions:()=>yre,drawFaceLandmarks:()=>bre});function Tr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Yv={};cd(Yv,{computeReshapedDimensions:()=>Qv,getCenterPoint:()=>Xi,isDimensions:()=>ef,isEven:()=>Qm,isFloat:()=>Jv,isTensor:()=>qi,isTensor1D:()=>are,isTensor2D:()=>Zv,isTensor3D:()=>Sr,isTensor4D:()=>ea,isValidNumber:()=>Pa,isValidProbablitiy:()=>yu,range:()=>sr,round:()=>Ki});var gn=class{constructor(t,n){if(!Pa(t)||!Pa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new gn(1/this.width,1/this.height)}};function qi(e,t){return e instanceof Ae&&e.shape.length===t}function are(e){return qi(e,1)}function Zv(e){return qi(e,2)}function Sr(e){return qi(e,3)}function ea(e){return qi(e,4)}function Jv(e){return e%1!=0}function Qm(e){return e%2==0}function Ki(e,t=2){let n=10**t;return Math.floor(e*n)/n}function ef(e){return e&&e.width&&e.height}function Qv({width:e,height:t},n){let a=n/Math.max(t,e);return new gn(Math.round(e*a),Math.round(t*a))}function Xi(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function sr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Pa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function yu(e){return Pa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Pa)}static assertIsValidBox(t,n,a=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Pa),s=[a.x,a.y,a.width,a.height].every(Pa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ut.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ut({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ut({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var bu=class extends ut{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ds=class{constructor(t,n,a,r,s){this._imageDims=new gn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ut(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ds(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var bt=class extends ds{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new bt(a,r,s)}};function ew(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function tw(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;cl[u]<=n)}return s}function Oa(e,t){return D(()=>{let[n,a,r]=t,s=wn([...e.shape.slice(0,3),1],n,"float32"),i=wn([...e.shape.slice(0,3),1],a,"float32"),o=wn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function aw(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,wn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function rre(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Ep(e){return 1/(1+Math.exp(-e))}function sre(e){return Math.log(e/(1-e))}var xu=class extends ut{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var ire=.5,ore=.43,lre=.45,ta=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new gn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof bt?t.box.floor():new ut(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/lre),l=Xi(t),c=Math.floor(Math.max(0,l.x-ire*o)),u=Math.floor(Math.max(0,l.y-ore*o));return new xu(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=tw(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var B2=class extends ta{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Xi([t[3],t[4]])]}};var vu=class extends ta{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Xi)}};var Ap=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ki(this.distance)})`:""}`}};var Fp=class extends ut{static assertIsValidLabeledBox(t,n){if(ut.assertIsValidBox(t,n),!Pa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Cr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Cr(t.label,n)}};var W2=class extends Fp{static assertIsValidPredictedBox(t,n){if(Fp.assertIsValidLabeledBox(t,n),!yu(t.score)||!yu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function ir(e){return e.detection instanceof bt}function Yi(e,t){return{...e,...{detection:t}}}function rw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function tf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function sw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=tf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function iw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ow=J_(U2()),Jt;function pre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function lw(e){Jt=e}function uw(){return iw()?lw(rw()):ow.isNodejs()?lw(sw()):null}function dre(e){if(Jt||uw(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var st={getEnv:pre,setEnv:lw,initialize:uw,createBrowserEnv:rw,createFileSystem:tf,createNodejsEnv:sw,monkeyPatch:dre,isBrowser:iw,isNodejs:ow.isNodejs};uw();function Zi(e){return!st.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Sn(e){let{Canvas:t,CanvasRenderingContext2D:n}=st.getEnv();if(e instanceof n)return e;let a=Zi(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var or;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(or||(or={}));var $p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||or.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},hs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof hs?t.text:t,this.anchor=n,this.options=new $p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var cw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:or.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new $p({...i,...s})}},nf=class{constructor(t,n={}){this.box=new ut(t),this.options=new cw(n)}draw(t){let n=Sn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new hs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function hre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof bt?a.score:ir(a)?a.detection.score:void 0,s=a instanceof bt?a.box:ir(a)?a.detection.box:new ut(a),i=r?`${Ki(r)}`:void 0;new nf(s,{label:i}).draw(e)})}function Dp(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function pw(e){return new Promise((t,n)=>{if(e instanceof st.getEnv().Canvas||Dp(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function dw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=st.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Ji(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t?new gn(e.naturalWidth,e.naturalHeight):e instanceof n?new gn(e.videoWidth,e.videoHeight):new gn(e.width,e.height)}function wu({width:e,height:t}){let{createCanvasElement:n}=st.getEnv(),a=n();return a.width=e,a.height=t,a}function Rp(e,t){let{ImageData:n}=st.getEnv();if(!(e instanceof n)&&!Dp(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Ji(e),s=wu({width:a,height:r});return e instanceof n?Sn(s).putImageData(e,0,0):Sn(s).drawImage(e,0,0,a,r),s}async function hw(e,t){let n=t||st.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ea(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await ki.toPixels(i,n),i.dispose(),n}function af(e){let{Image:t,Canvas:n,Video:a}=st.getEnv();return e instanceof t||e instanceof n||e instanceof a}function mw(e,t,n=!1){let{Image:a,Canvas:r}=st.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=Ji(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=wu({width:t,height:t}),u=e instanceof r?e:Rp(e),p=Math.abs(o-l)/2,d=n&&o{if(Sr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ea(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof st.getEnv().Canvas?a:Rp(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return sr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Qv({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=sr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ea(i)?i:i.expandDims();return o=aw(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ya.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof st.getEnv().Canvas)return ki.fromPixels(mw(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof _r)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Zi);return a.forEach((r,s)=>{if(!af(r)&&!Sr(r)&&!ea(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ea(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>af(r)&&pw(r))),new _r(a,Array.isArray(e))}async function ku(e,t){let{Canvas:n}=st.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await hw(o)}let r=Sn(a);return t.map(i=>i instanceof bt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=wu({width:l,height:c});return Sn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function Iu(e,t){if(!Sr(e)&&!ea(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ea(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ea(e)?1:0);return t.map(o=>o instanceof bt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Vl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function Qi(e,t){let{fetch:n}=st.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function mre(e){let t=await Qi(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return dw(n)}async function fw(e){return(await Qi(e)).json()}async function fre(e){return new Float32Array(await(await Qi(e)).arrayBuffer())}function rf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function gw(e,t){let{manifestUri:n,modelBaseUri:a}=rf(e,t),r=await fw(n);return Ht.loadWeights(r,a)}function gre(e,t,n=!1){let{width:a,height:r}=n?Ji(t):t;return e.width=a,e.height=r,{width:a,height:r}}var an=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Vr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Vr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=qn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await gw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=st.getEnv(),{manifestUri:a,modelBaseUri:r}=rf(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Cn(e,t,n){return D(()=>{let a=Ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function sf(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Cn(e,t.conv0,[2,2])),r=Cn(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=Cn(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function Mp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Cn(e,t.conv0,a?[2,2]:[1,1])),s=Cn(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=Cn(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=Cn(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function eo(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function yn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Nu(e,t){return(n,a,r,s)=>{let i=Sa(e(n*a*r*r),[r,r,n,a]),o=tt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function of(e,t){return(n,a,r)=>{let s=Ta(e(n*a),[n,a]),i=tt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var lf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Tu(e,t){return(n,a,r)=>{let s=Sa(e(3*3*n),[3,3,n,1]),i=Sa(e(n*a),[1,1,n,a]),o=tt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new lf(s,i,o)}}function Su(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new lf(n,a,r)}}function Un(e,t){return(n,a,r)=>{let s=e[n];if(!qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function bn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function uf(e,t){let n=Nu(e,t),a=Tu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function G2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractDenseBlock4Params:r}=uf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function cf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function pf(e,t){let n=Un(e,t),a=cf(n),r=Su(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function H2(e){let t=[],{extractDenseBlock4Params:n}=pf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return yn(e,t),{params:a,paramMappings:t}}var Pp=class extends an{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(255)),i=Mp(s,n.dense0,!0);return i=Mp(i,n.dense1),i=Mp(i,n.dense2),i=Mp(i,n.dense3),i=Xn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return H2(t)}extractParams(t){return G2(t)}};function Op(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function j2(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=bn(e),o=of(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function q2(e){let t=[],n=Un(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return yn(e,t),{params:r,paramMappings:t}}function df(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Lp=class extends an{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t;return Op(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return j2(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=df(t);return this.faceFeatureExtractor.loadFromWeightMap(n),q2(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var yw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],ms=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);yw.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return yw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var hf=class extends Lp{constructor(t=new Pp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Na(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new ms(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function bw(e){return e.expressions instanceof ms}function mf(e,t){return{...e,...{expressions:t}}}function yre(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof ms?s:bw(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=ir(s)?s.detection.box.bottomLeft:a||new De(0,0);new hs(l.map(p=>`${p.expression} (${Ki(p.probability)})`),c).draw(e)})}function to(e){return ir(e)&&e.landmarks instanceof ta&&e.unshiftedLandmarks instanceof ta&&e.alignedRect instanceof bt}function Cu(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new bt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var xw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},vw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new xw(n)}draw(t){let n=Sn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof vu&&(n.strokeStyle=i,n.lineWidth=s,Tr(n,this.faceLandmarks.getJawOutline()),Tr(n,this.faceLandmarks.getLeftEyeBrow()),Tr(n,this.faceLandmarks.getRightEyeBrow()),Tr(n,this.faceLandmarks.getNose()),Tr(n,this.faceLandmarks.getLeftEye(),!0),Tr(n,this.faceLandmarks.getRightEye(),!0),Tr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function bre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ta?a:to(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vw(r).draw(e)})}var K2="0.12.1";function xre(e,t){let n=Nu(e,t),a=Tu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function X2(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=bn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=xre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};sr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function vre(e,t){let n=Un(e,t),a=cf(n),r=Su(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function Y2(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=vre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};sr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return yn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function Z2(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function kw(e,t,n=!0){let a=n?Ye(e):e;return a=Cn(a,t.separable_conv0,[1,1]),a=Cn(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,Z2(e,t.expansion_conv,[2,2])),a}function wre(e,t){let n=Cn(Ye(e),t.separable_conv0,[1,1]);return n=Cn(Ye(n),t.separable_conv1,[1,1]),n=Cn(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Iw=class extends an{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(Z2(s,n.entry_flow.conv_in,[2,2]));return i=kw(i,n.entry_flow.reduction_block_0,!1),i=kw(i,n.entry_flow.reduction_block_1),sr(this._numMainBlocks,0,1).forEach(o=>{i=wre(i,n.middle_flow[`main_block_${o}`])}),i=kw(i,n.exit_flow.reduction_block),i=Ye(Cn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Y2(t,this._numMainBlocks)}extractParams(t){return X2(t,this._numMainBlocks)}};function J2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),r=of(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function Q2(e){let t=[],n=Un(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return yn(e,t),{params:r,paramMappings:t}}var Er;(function(e){e.FEMALE="female",e.MALE="male"})(Er||(Er={}));var ff=class extends an{constructor(t=new Iw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t,r=Xn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Op(r,n.fc.age).as1D(),i=Op(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Na(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?Er.MALE:Er.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return J2(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=df(t);return this.faceFeatureExtractor.loadFromWeightMap(n),Q2(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var zp=class extends Lp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([wn([68],p,"float32"),wn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>do(p,(d,h)=>hi(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>Qm(p)),c=o.filter((u,p)=>!Qm(p));return new vu(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var _u=class extends zp{constructor(t=new Pp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function eC(e){let t=[],{extractDenseBlock3Params:n}=pf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return yn(e,t),{params:a,paramMappings:t}}function tC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractDenseBlock3Params:r}=uf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Nw=class extends an{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(255)),i=sf(s,n.dense0,!0);return i=sf(i,n.dense1),i=sf(i,n.dense2),i=Xn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return eC(t)}extractParams(t){return tC(t)}};var gf=class extends zp{constructor(t=new Nw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var nC=class extends _u{};function aC(e,t){return Z(L(e,t.weights),t.biases)}function Tw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=aC(o,t.scale),a?Ye(o):o}function rC(e,t){return Tw(e,t,[1,1],!0)}function Sw(e,t){return Tw(e,t,[1,1],!1)}function yf(e,t){return Tw(e,t,[2,2],!0,"valid")}function kre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(Jv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(Sa(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=tt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=tt(e(o)),u=tt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function sC(e){let{extractWeights:t,getRemainingWeights:n}=bn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=kre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Ta(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Ire(e,t){let n=Un(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function iC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Ire(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Zv(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return yn(e,t),{params:x,paramMappings:t}}function La(e,t){let n=rC(e,t.conv1);return n=Sw(n,t.conv2),n=Z(n,e),n=Ye(n),n}function Bp(e,t){let n=yf(e,t.conv1);n=Sw(n,t.conv2);let a=Xn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var Eu=class extends an{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(256)),i=yf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=La(i,n.conv32_1),i=La(i,n.conv32_2),i=La(i,n.conv32_3),i=Bp(i,n.conv64_down),i=La(i,n.conv64_1),i=La(i,n.conv64_2),i=La(i,n.conv64_3),i=Bp(i,n.conv128_down),i=La(i,n.conv128_1),i=La(i,n.conv128_2),i=Bp(i,n.conv256_down),i=La(i,n.conv256_1),i=La(i,n.conv256_2),i=Bp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return iC(t)}extractParams(t){return sC(t)}};function Nre(e){let t=new Eu;return t.extractWeights(e),t}function bf(e,t){return{...e,...{descriptor:t}}}function Tre(e){return typeof e.age=="number"}function xf(e,t){return{...e,...{age:t}}}function Sre(e){return(e.gender===Er.MALE||e.gender===Er.FEMALE)&&yu(e.genderProbability)}function vf(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Cre(e,t){function n(l,c){let u=Sa(e(3*3*l),[3,3,l,1]),p=tt(e(l)),d=tt(e(l)),h=tt(e(l)),m=tt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Sa(e(l*c*u*u),[u,u,l,c]),m=tt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:$,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function oC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Cre(n,t),i=r(),o=s(),c={extra_dim:ah(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function _re(e,t){let n=Un(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function lC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=_re(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Sr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return yn(e,t),{params:s,paramMappings:t}}function ba(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var Ere=.0010000000474974513;function Are(e,t,n){return D(()=>{let a=Yr(e,t.filters,n,"same");return a=fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Ere),qt(a,0,6)})}function Fre(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function uC(e,t){return D(()=>{let n,a=ba(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Fre(o);a=Are(a,s.depthwise_conv,l),a=ba(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function $re(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function cC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=$re(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function Dre(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function Rre(e,t){let{sizes:n,centers:a}=Dre(e),r=dt(Ue(t,[1,0])),s=ve(L(pn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(pn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function pC(e,t,n){return D(()=>{let a=e.shape[0],r=Rre(j(ja(n.extra_dim,[a,1,1]),[-1,4]),j(e,[-1,4]));r=j(r,[a,r.shape[0]/a,4]);let s=ua(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=j(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function no(e,t){return D(()=>{let n=e.shape[0],a=j(eo(e,t.box_encoding_predictor),[n,-1,1,4]),r=j(eo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function dC(e,t,n){return D(()=>{let a=ba(e,n.conv_0,[1,1]),r=ba(a,n.conv_1,[2,2]),s=ba(r,n.conv_2,[1,1]),i=ba(s,n.conv_3,[2,2]),o=ba(i,n.conv_4,[1,1]),l=ba(o,n.conv_5,[2,2]),c=ba(l,n.conv_6,[1,1]),u=ba(c,n.conv_7,[2,2]),p=no(t,n.box_predictor_0),d=no(e,n.box_predictor_1),h=no(r,n.box_predictor_2),m=no(i,n.box_predictor_3),f=no(l,n.box_predictor_4),g=no(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var xa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ao=class extends an{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=uC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=dC(s.out,s.conv11,n.prediction_layer);return pC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new xa(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map($=>$*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map($=>$*f);return new bt(u[v],new xu(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return lC(t)}extractParams(t){return oC(t)}};function hC(e){let t=new ao;return t.extractWeights(e),t}function Mre(e){return hC(e)}var mC=class extends ao{};var fC=.4,gC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],yC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],bC=[117.001,114.697,97.404],xC="tiny_yolov2_model",vC="tiny_yolov2_separable_conv_model";var wf=e=>typeof e=="number";function Cw(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!wf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>wf(t.x)&&wf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(wf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Au(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function Ar(e,t){return D(()=>{let n=Zn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Au(n)})}function Fr(e,t){return D(()=>{let n=Zn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Au(n)})}function Pre(e,t){let n=Nu(e,t);function a(i,o){let l=tt(e(i)),c=tt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Tu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function wC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=bn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=Pre(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),$=c(f,g,"conv4"),F=c(g,y,"conv5"),O=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),$=l(f,g,"conv4"),F=l(g,y,"conv5"),O=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function Ore(e,t){let n=Un(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Su(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function kC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Ore(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return yn(e,n),{params:i,paramMappings:n}}var lr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var _w=class extends an{constructor(t){super("TinyYolov2");Cw(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Ar(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=Ar(a,n.conv6),a=Ar(a,n.conv7),eo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Au(eo(t,n.conv0,"valid",!1)):Fr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Fr(a,n.conv6):a,a=n.conv7?Fr(a,n.conv7):a,eo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?Oa(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new lr(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return nw(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ds(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return kC(t,this.config)}extractParams(t){let n=this.config.filterSizes||_w.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return wC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Na(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;ya){let N=(b+Ep(g[y][b][v][0]))/c*o,T=(y+Ep(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,$=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,F=N-C/2,O=T-$/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new bu(F,O,F+C,O+$),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Fu=_w;Fu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var $u=class extends Fu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:fC,classes:["face"],...t?{anchors:yC,meanRgb:bC}:{anchors:gC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?vC:xC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Lre(e,t=!0){let n=new $u(t);return n.extractWeights(e),n}var kf=class extends lr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var va=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ro(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>to(l)?r(l):l.detection),i=a||(t instanceof Ae?await Iu(t,s):await ku(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function Du(e,t,n,a,r){return ro([e],t,async s=>n(s[0]),a,r)}var IC=.4,NC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],TC=[117.001,114.697,97.404];var Ru=class extends Fu{constructor(){let t={withSeparableConvs:!0,iouThreshold:IC,classes:["face"],anchors:NC,meanRgb:TC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new ao,tinyFaceDetector:new Ru,tinyYolov2:new $u,faceLandmark68Net:new _u,faceLandmark68TinyNet:new gf,faceRecognitionNet:new Eu,faceExpressionNet:new hf,ageGenderNet:new ff},SC=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),zre=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),Bre=(e,t)=>nt.tinyYolov2.locateFaces(e,t),CC=e=>nt.faceLandmark68Net.detectLandmarks(e),Wre=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),Vre=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),Ure=e=>nt.faceExpressionNet.predictExpressions(e),Gre=e=>nt.ageGenderNet.predictAgeAndGender(e),_C=e=>nt.ssdMobilenetv1.load(e),Hre=e=>nt.tinyFaceDetector.load(e),jre=e=>nt.tinyYolov2.load(e),qre=e=>nt.faceLandmark68Net.load(e),Kre=e=>nt.faceLandmark68TinyNet.load(e),Xre=e=>nt.faceRecognitionNet.load(e),Yre=e=>nt.faceExpressionNet.load(e),Zre=e=>nt.ageGenderNet.load(e),Jre=_C,Qre=SC,ese=CC;var Ew=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Ou=class extends Ew{async run(){let t=await this.parentTask,n=await ro(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>mf(a,n[r]))}withAgeAndGender(){return new Mu(this,this.input)}},Lu=class extends Ew{async run(){let t=await this.parentTask;if(!t)return;let n=await Du(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return mf(t,n)}withAgeAndGender(){return new Pu(this,this.input)}},oo=class extends Ou{withAgeAndGender(){return new so(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},lo=class extends Lu{withAgeAndGender(){return new io(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var Aw=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Mu=class extends Aw{async run(){let t=await this.parentTask,n=await ro(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return xf(vf(a,i,o),s)})}withFaceExpressions(){return new Ou(this,this.input)}},Pu=class extends Aw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Du(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return xf(vf(t,a,r),n)}withFaceExpressions(){return new Lu(this,this.input)}},so=class extends Mu{withFaceExpressions(){return new oo(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},io=class extends Pu{withFaceExpressions(){return new lo(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var If=class extends va{constructor(t,n){super();this.parentTask=t;this.input=n}},fs=class extends If{async run(){let t=await this.parentTask;return(await ro(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>bf(t[r],a))}withFaceExpressions(){return new oo(this,this.input)}withAgeAndGender(){return new so(this,this.input)}},gs=class extends If{async run(){let t=await this.parentTask;if(!t)return;let n=await Du(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return bf(t,n)}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}};var Nf=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},Tf=class extends Nf{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await Iu(this.input,n):await ku(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>Cu(s,r[i]))}withFaceExpressions(){return new oo(this,this.input)}withAgeAndGender(){return new so(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},Sf=class extends Nf{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await Iu(this.input,[n]):await ku(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),Cu(t,r)}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var Cf=class extends va{constructor(t,n=new xa){super();this.input=t;this.options=n}},Wp=class extends Cf{async run(){let{input:t,options:n}=this,a=n instanceof kf?r=>nt.tinyFaceDetector.locateFaces(r,n):n instanceof xa?r=>nt.ssdMobilenetv1.locateFaces(r,n):n instanceof lr?r=>nt.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>Yi({},a)))})}withFaceLandmarks(t=!1){return new Tf(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ou(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Mu(this.runAndExtendWithFaceDetections(),this.input)}},_f=class extends Cf{async run(){let t=await new Wp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yi({},n):void 0)})}withFaceLandmarks(t=!1){return new Sf(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Lu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pu(this.runAndExtendWithFaceDetection(),this.input)}};function tse(e,t=new xa){return new _f(e,t)}function Ef(e,t=new xa){return new Wp(e,t)}async function EC(e,t){return Ef(e,new xa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function nse(e,t={}){return Ef(e,new lr(t)).withFaceLandmarks().withFaceDescriptors()}var ase=EC;function Fw(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Af=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Cr)return i;if(i instanceof Float32Array)return new Cr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Cr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Fw(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Ap(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Cr.fromJSON(a));return new Af(n,t.distanceThreshold)}};function rse(e){let t=new Ru;return t.extractWeights(e),t}function AC(e,t){let{width:n,height:a}=new gn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>AC(r,{width:n,height:a}));if(to(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Cu(Yi(e,r),s)}return ir(e)?Yi(e,e.detection.forSize(n,a)):e instanceof ta||e instanceof bt?e.forSize(n,a):e}var sse=typeof process!="undefined",ise=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",ose={faceapi:K2,node:sse,browser:ise};export{ff as AgeGenderNet,bu as BoundingBox,ut as Box,va as ComposableTask,fs as ComputeAllFaceDescriptorsTask,If as ComputeFaceDescriptorsTaskBase,gs as ComputeSingleFaceDescriptorTask,Tf as DetectAllFaceLandmarksTask,Wp as DetectAllFacesTask,Nf as DetectFaceLandmarksTaskBase,Cf as DetectFacesTaskBase,Sf as DetectSingleFaceLandmarksTask,_f as DetectSingleFaceTask,gn as Dimensions,yw as FACE_EXPRESSION_LABELS,bt as FaceDetection,mC as FaceDetectionNet,hf as FaceExpressionNet,ms as FaceExpressions,_u as FaceLandmark68Net,gf as FaceLandmark68TinyNet,nC as FaceLandmarkNet,ta as FaceLandmarks,B2 as FaceLandmarks5,vu as FaceLandmarks68,Ap as FaceMatch,Af as FaceMatcher,Eu as FaceRecognitionNet,Er as Gender,Fp as LabeledBox,Cr as LabeledFaceDescriptors,_r as NetInput,an as NeuralNetwork,ds as ObjectDetection,De as Point,W2 as PredictedBox,xu as Rect,ao as SsdMobilenetv1,xa as SsdMobilenetv1Options,Ru as TinyFaceDetector,kf as TinyFaceDetectorOptions,$u as TinyYolov2,lr as TinyYolov2Options,ase as allFaces,EC as allFacesSsdMobilenetv1,nse as allFacesTinyYolov2,pw as awaitMediaLoaded,dw as bufferToImage,Vre as computeFaceDescriptor,wu as createCanvas,Rp as createCanvasFromMedia,Mre as createFaceDetectionNet,Nre as createFaceRecognitionNet,hC as createSsdMobilenetv1,rse as createTinyFaceDetector,Lre as createTinyYolov2,Ef as detectAllFaces,CC as detectFaceLandmarks,Wre as detectFaceLandmarksTiny,ese as detectLandmarks,tse as detectSingleFace,ww as draw,st as env,Fw as euclideanDistance,xf as extendWithAge,bf as extendWithFaceDescriptor,Yi as extendWithFaceDetection,mf as extendWithFaceExpressions,Cu as extendWithFaceLandmarks,vf as extendWithGender,Iu as extractFaceTensors,ku as extractFaces,mre as fetchImage,fw as fetchJson,fre as fetchNetWeights,Qi as fetchOrThrow,Sn as getContext2dOrThrow,Ji as getMediaDimensions,hw as imageTensorToCanvas,mw as imageToSquare,sre as inverseSigmoid,ew as iou,af as isMediaElement,Dp as isMediaLoaded,Tre as isWithAge,ir as isWithFaceDetection,bw as isWithFaceExpressions,to as isWithFaceLandmarks,Sre as isWithGender,Zre as loadAgeGenderModel,Jre as loadFaceDetectionModel,Yre as loadFaceExpressionModel,qre as loadFaceLandmarkModel,Kre as loadFaceLandmarkTinyModel,Xre as loadFaceRecognitionModel,_C as loadSsdMobilenetv1Model,Hre as loadTinyFaceDetectorModel,jre as loadTinyYolov2Model,gw as loadWeightMap,Qre as locateFaces,gre as matchDimensions,tw as minBbox,nt as nets,nw as nonMaxSuppression,Oa as normalize,aw as padToSquare,Gre as predictAgeAndGender,Ure as recognizeFaceExpressions,AC as resizeResults,Zi as resolveInput,rre as shuffleArray,Ep as sigmoid,SC as ssdMobilenetv1,Bg as tf,zre as tinyFaceDetector,Bre as tinyYolov2,gt as toNetInput,Yv as utils,Cw as validateConfig,ose as version}; + `}};function ree(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Tn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=Qd(r.dtype),g=(x,N,T,C,$)=>{let F=x.shape[0],O=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(O,$),W={windowSize:B,inSize:O,batchSize:F,numSegments:$},G=new aee(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===$)return q;let H=US({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),K=jS({inputs:{x:H},backend:n,attrs:{reps:[O/B]}});return l.push(H),l.push(K),g(q,N,K,C,$)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Tn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var see={kernelName:Nc,backendName:"webgl",kernelFunc:ree},iee=[JZ,t9,BK,VK,HK,KK,YK,QK,tX,aX,oX,uX,dX,fX,kX,bX,TX,EX,CX,DX,MX,OX,WX,KX,YX,nY,rY,lY,pY,wK,fY,TY,CY,xY,FY,DY,EY,PY,zY,VY,GY,jY,XY,t7,a7,ZY,i7,u7,h7,y7,w7,N7,T7,S7,_7,A7,$7,R7,P7,B7,G7,j7,K7,Z7,tZ,sZ,uZ,vK,pZ,mY,mZ,yZ,vZ,IK,NZ,_Z,AZ,OZ,RZ,WZ,GZ,KZ,a9,p9,u9,f9,y9,x9,o9,w9,I9,C9,F9,M9,U9,_K,H9,K9,Z9,eJ,JX,aJ,sJ,oJ,cJ,mJ,TK,gJ,yJ,QX,z9,vJ,_J,NJ,AK,$J,MJ,LJ,WJ,HJ,qJ,YJ,QJ,tQ,rQ,oQ,cQ,hQ,gQ,xQ,jX,W9,kQ,NQ,SQ,_Q,FQ,RQ,PQ,LQ,WQ,B9,OK,GQ,qQ,YQ,JQ,LK,eee,nee,see,rJ];for(let e of iee)Sc(e);var oee="3.0.0",lee={"tfjs-core":Y0,"tfjs-backend-cpu":LU,"tfjs-backend-webgl":xK,"tfjs-data":kN,"tfjs-layers":mm,"tfjs-converter":gN,tfjs:oee},Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var Tp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Tp||(Tp={}));var qS;function uee(e){qS=e.wasm.cwrap(gi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function cee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Tp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return qS(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var pee={kernelName:gi,backendName:"wasm",setupFunc:uee,kernelFunc:cee};function Vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var dee=Vn(So);function fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Wn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every(($,F)=>$===F),C=N.every(($,F)=>$===F);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var hee=!0,mee=fn(Lr,hee),KS;function fee(e){KS=e.wasm.cwrap(Ss,null,["array","number","number","number"])}function gee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return KS(s,r.length,Wn[a.dtype],i),a}var yee={kernelName:Ss,backendName:"wasm",setupFunc:fee,kernelFunc:gee};function Km(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var bee={kernelName:Ko,backendName:"wasm",kernelFunc:Km},XS;function xee(e){XS=e.wasm.cwrap(fi,null,["number","array","number","number","number","array","number"])}function Xm(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=wee(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var kee={kernelName:fi,backendName:"wasm",kernelFunc:Xm,setupFunc:xee};function gu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),{dataId:a.dataId,shape:i,dtype:a.dtype}}var Eee={kernelName:dl,backendName:"wasm",kernelFunc:Ma},JS;function Aee(e){JS=e.wasm.cwrap(Es,null,["number","array","number","number","array","number","number","number","number"])}function Fee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Ma({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Ma({inputs:{x:s},backend:n,attrs:{shape:N}}),$=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,O,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),K=new Uint8Array(new Int32Array(C.shape).buffer);return JS($,H,T.shape.length,F,K,C.shape.length,i,o,q),G.shape=v,G}var $ee={kernelName:Es,backendName:"wasm",setupFunc:Aee,kernelFunc:Fee};function Ym(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var Dee={kernelName:As,backendName:"wasm",kernelFunc:Ym},QS;function Ree(e){QS=e.wasm.cwrap(zr,null,["number","number","number","number"])}function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return QS(o,s,i,c),l}var Pee={kernelName:zr,backendName:"wasm",setupFunc:Ree,kernelFunc:Mee};function e2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Km({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Ma({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=fv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=Xm({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;r2(m,i?1:0,o?1:0,h,f,Wn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=Xm({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Yee={kernelName:Rs,backendName:"wasm",setupFunc:Kee,kernelFunc:Xee},s2;function Zee(e){s2=e.wasm.cwrap(Lo,null,["number","number","number","array","number","array","array","number","number"])}function Jee(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return s2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Qee={kernelName:Lo,backendName:"wasm",setupFunc:Zee,kernelFunc:Jee},i2;function ete(e){i2=e.wasm.cwrap(Ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,$=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return i2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,O,x,N,T,C,$,F,W),B}var nte={kernelName:Ms,backendName:"wasm",setupFunc:ete,kernelFunc:tte},ate=!1,rte=fn(Wo,ate,"bool"),ste=Vn(Os);function jv(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ma({inputs:{x:r},backend:a,attrs:{shape:o}})}var ite={kernelName:Vo,backendName:"wasm",kernelFunc:jv};function ote(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var lte={kernelName:mc,backendName:"wasm",kernelFunc:ote},o2;function ute(e){o2=e.wasm.cwrap(Go,null,["number","number","number","number","number","number"])}function cte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return o2(s,o,l,c,u,i),r}var pte={kernelName:Go,backendName:"wasm",kernelFunc:cte,setupFunc:ute},dte=Vn(Ls),hte=!1,mte=fn(zs,hte),l2;function fte(e){l2=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number"])}function gte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return l2(u,p,d,h,m,r,g),f}var yte={kernelName:Bs,backendName:"wasm",setupFunc:fte,kernelFunc:gte},u2;function bte(e){u2=e.wasm.cwrap(yi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return u2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var vte={kernelName:yi,backendName:"wasm",setupFunc:bte,kernelFunc:xte},c2;function wte(e){c2=e.wasm.cwrap(bi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=Tp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return c2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var Ite={kernelName:bi,backendName:"wasm",setupFunc:wte,kernelFunc:kte},p2;function Nte(e){p2=e.wasm.cwrap(jo,null,["number","number","number","number","number","number","array","number"])}function Tte(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=fy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return p2(d,Wn[a.dtype],h,i,p,o,m,f),c}var Ste={kernelName:jo,backendName:"wasm",setupFunc:Nte,kernelFunc:Tte},d2;function Cte(e){d2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function _te(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Ma({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Ma({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return d2(g,Wn[r.dtype],v,f,y,c.batchSize,x,b),m.shape=c.outputShape,m}var Ete={kernelName:Ho,backendName:"wasm",setupFunc:Cte,kernelFunc:_te},Ate=!1,Fte=fn(qo,Ate,"bool"),$te=!1,Dte=fn(Ws,$te,"bool"),h2;function Rte(e){h2=e.wasm.cwrap(Vs,null,["number","number","number"])}function Mte(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;h2(r,n,i)}return s}var Pte={kernelName:Vs,backendName:"wasm",setupFunc:Rte,kernelFunc:Mte},Ote=!1,Lte=fn(Jo,Ote,"bool"),zte=!1,Bte=fn(Qo,zte,"bool"),Wte=Vn(Us),Vte=!1,Ute=fn(tl,Vte,"bool"),m2;function Gte(e){m2=e.wasm.cwrap(Gs,null,["number, number, number"])}function Hte(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=gu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;m2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var jte={kernelName:Gs,backendName:"wasm",setupFunc:Gte,kernelFunc:Hte},qte=!1,Kte=fn(Hs,qte),f2;function Xte(e){f2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yte(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),$=a.dataIdMap.get(C.dataId).id;return f2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,$),C}var Zte={kernelName:js,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},g2;function Jte(e){g2=e.wasm.cwrap(qs,null,["number, number, number"])}function Qte(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=Ym({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;g2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var ene={kernelName:qs,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte},y2;function tne(e){y2=e.wasm.cwrap(Ks,null,["number, number, number"])}function nne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;y2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var ane={kernelName:Ks,backendName:"wasm",setupFunc:tne,kernelFunc:nne},rne=!1,sne=fn(Xs,rne),ine=!0,one=fn(Ys,ine),lne=Vn(al);function qv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var b2;function une(e){b2=e.wasm.cwrap(sl,"number",["number","number","number","number","number"])}function cne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=b2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=qv(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var pne={kernelName:sl,backendName:"wasm",setupFunc:une,kernelFunc:cne},x2;function dne(e){x2=e.wasm.cwrap(il,"number",["number","number","number","number","number","bool"])}function hne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=x2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var mne={kernelName:il,backendName:"wasm",setupFunc:dne,kernelFunc:hne},v2;function fne(e){v2=e.wasm.cwrap(ol,"number",["number","number","number","number","number","number"])}function gne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=v2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=qv(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var yne={kernelName:ol,backendName:"wasm",setupFunc:fne,kernelFunc:gne},bne=!1,xne=fn(rl,bne,"bool"),w2;function vne(e){w2=e.wasm.cwrap(Zs,null,["number","number","number","number","number"])}function wne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return w2(u,s,i,o,c),l}var kne={kernelName:Zs,backendName:"wasm",setupFunc:vne,kernelFunc:wne};function Ine(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var Nne={kernelName:ll,backendName:"wasm",kernelFunc:Ine};function Tne(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return jv({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>jv({inputs:{input:l},backend:n,attrs:{dim:r}}));return e2({inputs:o,backend:n,attrs:{axis:r}})}var Sne={kernelName:ul,backendName:"wasm",kernelFunc:Tne},k2;function Cne(e){k2=e.wasm.cwrap(Js,null,["number","array","number","number","array","array","number","number"])}function _ne(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return k2(i,c,t.shape.length,Wn[t.dtype],d,h,r,l),o}var Ene={kernelName:Js,backendName:"wasm",kernelFunc:_ne,setupFunc:Cne},Ane=!1,Fne=fn(Qs,Ane),I2;function $ne(e){I2=e.wasm.cwrap(ei,null,["number","number","number"])}function Dne(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return I2(s,i,l),o}var Rne={kernelName:ei,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},N2;function Mne(e){N2=e.wasm.cwrap(cl,null,["number","number","number","number"])}function Pne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;N2(l,y,Wn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var One={kernelName:cl,backendName:"wasm",setupFunc:Mne,kernelFunc:Pne},Lne=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=bv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},zne={kernelName:vc,backendName:"wasm",kernelFunc:Lne},Bne=!0,Wne=fn(Ps,Bne),Vne=Vn(ti),Une=Vn(ai),T2;function Gne(e){T2=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number"])}function Hne(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=Ym({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return T2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var jne={kernelName:ni,backendName:"wasm",setupFunc:Gne,kernelFunc:Hne},S2;function qne(e){S2=e.wasm.cwrap(ri,null,["number","array","number","array","number","number"])}function Kne(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Km({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);return S2(l,u,i.length,p,r.shape.length,c),Ma({inputs:{x:o},attrs:{shape:r.shape},backend:n})}var Xne={kernelName:ri,backendName:"wasm",kernelFunc:Kne,setupFunc:qne},C2;function Yne(e){C2=e.wasm.cwrap(Sl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Zne(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return C2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Jne={kernelName:Sl,backendName:"wasm",kernelFunc:Zne,setupFunc:Yne},Qne=Vn(si),eae=Vn(ii),_2;function tae(e){_2=e.wasm.cwrap(hl,null,["number","number","number","number","number","number","array","number","number"])}function nae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=gy.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return _2(h,m,Wn[s.dtype],l,c,u,f,d,g),o}var aae={kernelName:hl,backendName:"wasm",setupFunc:tae,kernelFunc:nae},E2;function rae(e){E2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function sae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return E2(i,o,l,h,u),c}var iae={kernelName:ml,backendName:"wasm",kernelFunc:sae,setupFunc:rae},A2;function oae(e){A2=e.wasm.cwrap(li,null,["number","number"])}function lae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||A2(a,s),r}var uae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:oae,kernelFunc:lae},cae=Vn(oi);function Zm(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=cn.parseSliceParams(t,n,a),o=cn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=cn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Am(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)pae(l,u[0],d,s,i);else if(h===3)dae(l,u[0],u[1],d,s,i);else if(h===4)hae(l,u[0],u[1],u[2],d,s,i);else{let m=Am(l,s,i,t.shape,t.dtype);d.set(m)}return c}function pae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c{let d=[...u];d[o]=p;let h=Zm({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var xae={kernelName:vl,backendName:"wasm",kernelFunc:bae},vae=Vn(ui),wae=Vn(Ic),kae=!0,Iae=fn(di,kae),$2;function Nae(e){$2=e.wasm.cwrap(Wr,null,["number","number","number"])}function Tae(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return $2(i,r,l),o}var Sae={kernelName:Wr,backendName:"wasm",setupFunc:Nae,kernelFunc:Tae},D2;function Cae(e){D2=e.wasm.cwrap(wl,null,["number","array","number","array","array","array","array","array","number","number"])}function _ae(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,g.splice(F,0,1)});let y=Ma({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(F=>{i[F]=s[F]+1,o[F]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((F,O)=>N.indexOf(O)===-1);if(o.every(F=>F===1)){let F=Zm({inputs:{x:r},attrs:{begin:s,size:T},backend:t});return Ma({inputs:{x:F},attrs:{shape:C},backend:t})}let $=t.makeOutput(C,"float32");if(!C.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(C).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get($.dataId).id;D2(F,O,y.shape.length,B,W,G,q,H,C.length,K)}return Ma({inputs:{x:$},attrs:{shape:C},backend:t})}var Eae={kernelName:wl,backendName:"wasm",setupFunc:Cae,kernelFunc:_ae},Aae=!0,Fae=fn(hi,Aae),R2;function $ae(e){R2=e.wasm.cwrap(ci,null,["number, number, number"])}function Dae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=gu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;R2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Rae={kernelName:ci,backendName:"wasm",setupFunc:$ae,kernelFunc:Dae},Mae=Vn(mi),M2;function Pae(e){M2=e.wasm.cwrap(Br,null,["number","array","number","array","number","number"])}function Oae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return P2(i,o,a.shape.length,Wn[a.dtype],r,s,u,d),[c,p]},Wae={kernelName:Il,backendName:"wasm",setupFunc:zae,kernelFunc:Bae};function Vae(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var Uae={kernelName:Nl,backendName:"wasm",kernelFunc:Vae};function Gae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Hae={kernelName:Tl,backendName:"wasm",kernelFunc:Gae},jae=[dee,mee,yee,Tee,_ee,$ee,Dee,Pee,Oee,Bee,Uee,Gee,qee,Yee,Qee,nte,rte,ste,ite,lte,pte,dte,mte,pee,yte,vte,Ite,Ste,Ete,Fte,Dte,bee,Pte,Lte,Bte,Wte,Ute,jte,Kte,Zte,ene,ane,sne,one,lne,pne,mne,yne,xne,kne,Nne,Sne,Ene,Fne,Rne,One,zne,Wne,Vne,Une,Eee,jne,Xne,Jne,eae,Qne,aae,iae,uae,cae,mae,yae,xae,vae,wae,Iae,Sae,Eae,Fae,Rae,Mae,Lae,Wae,kee,Uae,Hae];for(let e of jae)Sc(e);var Kv=ee();Kv.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Kv.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Kv.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var O2=Io(yE()),qae='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Kae=Io(bE()),L2=class extends sc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new hd(this,Kr())}write(e,t,n){let a={};return this.move(a,e,t,n),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a){let r=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:r,stringBytes:l,shape:n,dtype:a,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(a),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:r,memoryOffset:o,shape:n,dtype:a}),this.wasm.tfjs.registerTensor(r,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Xae(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{a={};let r=this.dataIdNextNumber++;this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Yae(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function z2(e,t,n){if(Jm!=null)return Jm;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Sp!=null&&Sp[a]!=null?Sp[a]:n+a}async function Zae(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=qae,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?z2(e,t,Cp!=null?Cp:c):c+l},Xv&&(r.instantiateWasm=Yae(z2(e,t,Cp!=null?Cp:"")));let s;t&&e&&Jm==null?(s=O2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+O2.default.toString()],{type:"text/javascript"})):s=Kae.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,_p=!1,n({wasm:s})},s.onAbort=()=>{o||_p||(_p=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Xae(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Jae=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Jm=null,Cp=null,Sp={},_p=!1,Xv=!1;function Qae(e,t=!1){if(ky("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),_p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Jm=e,Xv=t}function ere(e,t=!1){if(_p)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Cp=e;else{Sp=e;let n=Jae.filter(a=>Sp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Xv=t}var tre="3.0.0",nre=2;ih("wasm",async()=>{let{wasm:e}=await Zae();return new L2(e)},nre);var ww={};cd(ww,{AnchorPosition:()=>or,DrawBox:()=>nf,DrawBoxOptions:()=>cw,DrawFaceLandmarks:()=>vw,DrawFaceLandmarksOptions:()=>xw,DrawTextField:()=>hs,DrawTextFieldOptions:()=>$p,drawContour:()=>Tr,drawDetections:()=>hre,drawFaceExpressions:()=>yre,drawFaceLandmarks:()=>bre});function Tr(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var Yv={};cd(Yv,{computeReshapedDimensions:()=>Qv,getCenterPoint:()=>Xi,isDimensions:()=>ef,isEven:()=>Qm,isFloat:()=>Jv,isTensor:()=>qi,isTensor1D:()=>are,isTensor2D:()=>Zv,isTensor3D:()=>Sr,isTensor4D:()=>ea,isValidNumber:()=>Pa,isValidProbablitiy:()=>yu,range:()=>sr,round:()=>Ki});var gn=class{constructor(t,n){if(!Pa(t)||!Pa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new gn(1/this.width,1/this.height)}};function qi(e,t){return e instanceof Ae&&e.shape.length===t}function are(e){return qi(e,1)}function Zv(e){return qi(e,2)}function Sr(e){return qi(e,3)}function ea(e){return qi(e,4)}function Jv(e){return e%1!=0}function Qm(e){return e%2==0}function Ki(e,t=2){let n=10**t;return Math.floor(e*n)/n}function ef(e){return e&&e.width&&e.height}function Qv({width:e,height:t},n){let a=n/Math.max(t,e);return new gn(Math.round(e*a),Math.round(t*a))}function Xi(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function sr(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Pa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function yu(e){return Pa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ut=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Pa)}static assertIsValidBox(t,n,a=!1){if(!ut.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Pa),s=[a.x,a.y,a.width,a.height].every(Pa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ut.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ut({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ut({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ut({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var bu=class extends ut{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var ds=class{constructor(t,n,a,r,s){this._imageDims=new gn(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ut(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ut(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new ds(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var bt=class extends ds{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new bt(a,r,s)}};function ew(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function tw(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;cl[u]<=n)}return s}function Oa(e,t){return D(()=>{let[n,a,r]=t,s=wn([...e.shape.slice(0,3),1],n,"float32"),i=wn([...e.shape.slice(0,3),1],a,"float32"),o=wn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function aw(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,wn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function rre(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Ep(e){return 1/(1+Math.exp(-e))}function sre(e){return Math.log(e/(1-e))}var xu=class extends ut{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var ire=.5,ore=.43,lre=.45,ta=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new gn(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof bt?t.box.floor():new ut(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/lre),l=Xi(t),c=Math.floor(Math.max(0,l.x-ire*o)),u=Math.floor(Math.max(0,l.y-ore*o));return new xu(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=tw(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var B2=class extends ta{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Xi([t[3],t[4]])]}};var vu=class extends ta{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Xi)}};var Ap=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Ki(this.distance)})`:""}`}};var Fp=class extends ut{static assertIsValidLabeledBox(t,n){if(ut.assertIsValidBox(t,n),!Pa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var Cr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new Cr(t.label,n)}};var W2=class extends Fp{static assertIsValidPredictedBox(t,n){if(Fp.assertIsValidLabeledBox(t,n),!yu(t.score)||!yu(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function ir(e){return e.detection instanceof bt}function Yi(e,t){return{...e,...{detection:t}}}function rw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function tf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function sw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=tf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function iw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var ow=J_(U2()),Jt;function pre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function lw(e){Jt=e}function uw(){return iw()?lw(rw()):ow.isNodejs()?lw(sw()):null}function dre(e){if(Jt||uw(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var st={getEnv:pre,setEnv:lw,initialize:uw,createBrowserEnv:rw,createFileSystem:tf,createNodejsEnv:sw,monkeyPatch:dre,isBrowser:iw,isNodejs:ow.isNodejs};uw();function Zi(e){return!st.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function Sn(e){let{Canvas:t,CanvasRenderingContext2D:n}=st.getEnv();if(e instanceof n)return e;let a=Zi(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var or;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(or||(or={}));var $p=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||or.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},hs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof hs?t.text:t,this.anchor=n,this.options=new $p(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var cw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:or.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new $p({...i,...s})}},nf=class{constructor(t,n={}){this.box=new ut(t),this.options=new cw(n)}draw(t){let n=Sn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new hs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function hre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof bt?a.score:ir(a)?a.detection.score:void 0,s=a instanceof bt?a.box:ir(a)?a.detection.box:new ut(a),i=r?`${Ki(r)}`:void 0;new nf(s,{label:i}).draw(e)})}function Dp(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function pw(e){return new Promise((t,n)=>{if(e instanceof st.getEnv().Canvas||Dp(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function dw(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=st.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function Ji(e){let{Image:t,Video:n}=st.getEnv();return e instanceof t?new gn(e.naturalWidth,e.naturalHeight):e instanceof n?new gn(e.videoWidth,e.videoHeight):new gn(e.width,e.height)}function wu({width:e,height:t}){let{createCanvasElement:n}=st.getEnv(),a=n();return a.width=e,a.height=t,a}function Rp(e,t){let{ImageData:n}=st.getEnv();if(!(e instanceof n)&&!Dp(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||Ji(e),s=wu({width:a,height:r});return e instanceof n?Sn(s).putImageData(e,0,0):Sn(s).drawImage(e,0,0,a,r),s}async function hw(e,t){let n=t||st.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ea(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await ki.toPixels(i,n),i.dispose(),n}function af(e){let{Image:t,Canvas:n,Video:a}=st.getEnv();return e instanceof t||e instanceof n||e instanceof a}function mw(e,t,n=!1){let{Image:a,Canvas:r}=st.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=Ji(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=wu({width:t,height:t}),u=e instanceof r?e:Rp(e),p=Math.abs(o-l)/2,d=n&&o{if(Sr(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ea(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof st.getEnv().Canvas?a:Rp(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return sr(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return Qv({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=sr(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ea(i)?i:i.expandDims();return o=aw(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ya.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof st.getEnv().Canvas)return ki.fromPixels(mw(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof _r)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(Zi);return a.forEach((r,s)=>{if(!af(r)&&!Sr(r)&&!ea(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ea(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>af(r)&&pw(r))),new _r(a,Array.isArray(e))}async function ku(e,t){let{Canvas:n}=st.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await hw(o)}let r=Sn(a);return t.map(i=>i instanceof bt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=wu({width:l,height:c});return Sn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function Iu(e,t){if(!Sr(e)&&!ea(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ea(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ea(e)?1:0);return t.map(o=>o instanceof bt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Vl(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function Qi(e,t){let{fetch:n}=st.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function mre(e){let t=await Qi(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return dw(n)}async function fw(e){return(await Qi(e)).json()}async function fre(e){return new Float32Array(await(await Qi(e)).arrayBuffer())}function rf(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function gw(e,t){let{manifestUri:n,modelBaseUri:a}=rf(e,t),r=await fw(n);return Ht.loadWeights(r,a)}function gre(e,t,n=!1){let{width:a,height:r}=n?Ji(t):t;return e.width=a,e.height=r,{width:a,height:r}}var an=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof Vr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof Vr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=qn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await gw(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=st.getEnv(),{manifestUri:a,modelBaseUri:r}=rf(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Cn(e,t,n){return D(()=>{let a=Ei(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function sf(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Cn(e,t.conv0,[2,2])),r=Cn(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=Cn(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function Mp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Cn(e,t.conv0,a?[2,2]:[1,1])),s=Cn(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=Cn(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=Cn(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function eo(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function yn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Nu(e,t){return(n,a,r,s)=>{let i=Sa(e(n*a*r*r),[r,r,n,a]),o=tt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function of(e,t){return(n,a,r)=>{let s=Ta(e(n*a),[n,a]),i=tt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var lf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Tu(e,t){return(n,a,r)=>{let s=Sa(e(3*3*n),[3,3,n,1]),i=Sa(e(n*a),[1,1,n,a]),o=tt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new lf(s,i,o)}}function Su(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new lf(n,a,r)}}function Un(e,t){return(n,a,r)=>{let s=e[n];if(!qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function bn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function uf(e,t){let n=Nu(e,t),a=Tu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function G2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractDenseBlock4Params:r}=uf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function cf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function pf(e,t){let n=Un(e,t),a=cf(n),r=Su(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function H2(e){let t=[],{extractDenseBlock4Params:n}=pf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return yn(e,t),{params:a,paramMappings:t}}var Pp=class extends an{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(255)),i=Mp(s,n.dense0,!0);return i=Mp(i,n.dense1),i=Mp(i,n.dense2),i=Mp(i,n.dense3),i=Xn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return H2(t)}extractParams(t){return G2(t)}};function Op(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function j2(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=bn(e),o=of(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function q2(e){let t=[],n=Un(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return yn(e,t),{params:r,paramMappings:t}}function df(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Lp=class extends an{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t;return Op(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return j2(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=df(t);return this.faceFeatureExtractor.loadFromWeightMap(n),q2(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var yw=["neutral","happy","sad","angry","fearful","disgusted","surprised"],ms=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);yw.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return yw.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var hf=class extends Lp{constructor(t=new Pp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Na(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new ms(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function bw(e){return e.expressions instanceof ms}function mf(e,t){return{...e,...{expressions:t}}}function yre(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof ms?s:bw(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=ir(s)?s.detection.box.bottomLeft:a||new De(0,0);new hs(l.map(p=>`${p.expression} (${Ki(p.probability)})`),c).draw(e)})}function to(e){return ir(e)&&e.landmarks instanceof ta&&e.unshiftedLandmarks instanceof ta&&e.alignedRect instanceof bt}function Cu(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new bt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var xw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},vw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new xw(n)}draw(t){let n=Sn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof vu&&(n.strokeStyle=i,n.lineWidth=s,Tr(n,this.faceLandmarks.getJawOutline()),Tr(n,this.faceLandmarks.getLeftEyeBrow()),Tr(n,this.faceLandmarks.getRightEyeBrow()),Tr(n,this.faceLandmarks.getNose()),Tr(n,this.faceLandmarks.getLeftEye(),!0),Tr(n,this.faceLandmarks.getRightEye(),!0),Tr(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function bre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof ta?a:to(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new vw(r).draw(e)})}var K2="0.12.3";function xre(e,t){let n=Nu(e,t),a=Tu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function X2(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=bn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=xre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};sr(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function vre(e,t){let n=Un(e,t),a=cf(n),r=Su(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function Y2(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=vre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};sr(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return yn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function Z2(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function kw(e,t,n=!0){let a=n?Ye(e):e;return a=Cn(a,t.separable_conv0,[1,1]),a=Cn(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,Z2(e,t.expansion_conv,[2,2])),a}function wre(e,t){let n=Cn(Ye(e),t.separable_conv0,[1,1]);return n=Cn(Ye(n),t.separable_conv1,[1,1]),n=Cn(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Iw=class extends an{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(Z2(s,n.entry_flow.conv_in,[2,2]));return i=kw(i,n.entry_flow.reduction_block_0,!1),i=kw(i,n.entry_flow.reduction_block_1),sr(this._numMainBlocks,0,1).forEach(o=>{i=wre(i,n.middle_flow[`main_block_${o}`])}),i=kw(i,n.exit_flow.reduction_block),i=Ye(Cn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Y2(t,this._numMainBlocks)}extractParams(t){return X2(t,this._numMainBlocks)}};function J2(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),r=of(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function Q2(e){let t=[],n=Un(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return yn(e,t),{params:r,paramMappings:t}}var Er;(function(e){e.FEMALE="female",e.MALE="male"})(Er||(Er={}));var ff=class extends an{constructor(t=new Iw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof _r?this.faceFeatureExtractor.forwardInput(t):t,r=Xn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Op(r,n.fc.age).as1D(),i=Op(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Na(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?Er.MALE:Er.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return J2(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=df(t);return this.faceFeatureExtractor.loadFromWeightMap(n),Q2(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var zp=class extends Lp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([wn([68],p,"float32"),wn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>do(p,(d,h)=>hi(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>Qm(p)),c=o.filter((u,p)=>!Qm(p));return new vu(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var _u=class extends zp{constructor(t=new Pp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function eC(e){let t=[],{extractDenseBlock3Params:n}=pf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return yn(e,t),{params:a,paramMappings:t}}function tC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractDenseBlock3Params:r}=uf(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var Nw=class extends an{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(255)),i=sf(s,n.dense0,!0);return i=sf(i,n.dense1),i=sf(i,n.dense2),i=Xn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return eC(t)}extractParams(t){return tC(t)}};var gf=class extends zp{constructor(t=new Nw){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var nC=class extends _u{};function aC(e,t){return Z(L(e,t.weights),t.biases)}function Tw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=aC(o,t.scale),a?Ye(o):o}function rC(e,t){return Tw(e,t,[1,1],!0)}function Sw(e,t){return Tw(e,t,[1,1],!1)}function yf(e,t){return Tw(e,t,[2,2],!0,"valid")}function kre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(Jv(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(Sa(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=tt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=tt(e(o)),u=tt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function sC(e){let{extractWeights:t,getRemainingWeights:n}=bn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=kre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Ta(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Ire(e,t){let n=Un(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function iC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Ire(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!Zv(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return yn(e,t),{params:x,paramMappings:t}}function La(e,t){let n=rC(e,t.conv1);return n=Sw(n,t.conv2),n=Z(n,e),n=Ye(n),n}function Bp(e,t){let n=yf(e,t.conv1);n=Sw(n,t.conv2);let a=Xn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var Eu=class extends an{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=Oa(a,[122.782,117.001,104.298]).div(de(256)),i=yf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=La(i,n.conv32_1),i=La(i,n.conv32_2),i=La(i,n.conv32_3),i=Bp(i,n.conv64_down),i=La(i,n.conv64_1),i=La(i,n.conv64_2),i=La(i,n.conv64_3),i=Bp(i,n.conv128_down),i=La(i,n.conv128_1),i=La(i,n.conv128_2),i=Bp(i,n.conv256_down),i=La(i,n.conv256_1),i=La(i,n.conv256_2),i=Bp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return iC(t)}extractParams(t){return sC(t)}};function Nre(e){let t=new Eu;return t.extractWeights(e),t}function bf(e,t){return{...e,...{descriptor:t}}}function Tre(e){return typeof e.age=="number"}function xf(e,t){return{...e,...{age:t}}}function Sre(e){return(e.gender===Er.MALE||e.gender===Er.FEMALE)&&yu(e.genderProbability)}function vf(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Cre(e,t){function n(l,c){let u=Sa(e(3*3*l),[3,3,l,1]),p=tt(e(l)),d=tt(e(l)),h=tt(e(l)),m=tt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Sa(e(l*c*u*u),[u,u,l,c]),m=tt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:$,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function oC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=bn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Cre(n,t),i=r(),o=s(),c={extra_dim:ah(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function _re(e,t){let n=Un(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function lC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=_re(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Sr(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return yn(e,t),{params:s,paramMappings:t}}function ba(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var Ere=.0010000000474974513;function Are(e,t,n){return D(()=>{let a=Yr(e,t.filters,n,"same");return a=fr(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Ere),qt(a,0,6)})}function Fre(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function uC(e,t){return D(()=>{let n,a=ba(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=Fre(o);a=Are(a,s.depthwise_conv,l),a=ba(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function $re(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function cC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=$re(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function Dre(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function Rre(e,t){let{sizes:n,centers:a}=Dre(e),r=dt(Ue(t,[1,0])),s=ve(L(pn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(pn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function pC(e,t,n){return D(()=>{let a=e.shape[0],r=Rre(j(ja(n.extra_dim,[a,1,1]),[-1,4]),j(e,[-1,4]));r=j(r,[a,r.shape[0]/a,4]);let s=ua(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=j(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function no(e,t){return D(()=>{let n=e.shape[0],a=j(eo(e,t.box_encoding_predictor),[n,-1,1,4]),r=j(eo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function dC(e,t,n){return D(()=>{let a=ba(e,n.conv_0,[1,1]),r=ba(a,n.conv_1,[2,2]),s=ba(r,n.conv_2,[1,1]),i=ba(s,n.conv_3,[2,2]),o=ba(i,n.conv_4,[1,1]),l=ba(o,n.conv_5,[2,2]),c=ba(l,n.conv_6,[1,1]),u=ba(c,n.conv_7,[2,2]),p=no(t,n.box_predictor_0),d=no(e,n.box_predictor_1),h=no(r,n.box_predictor_2),m=no(i,n.box_predictor_3),f=no(l,n.box_predictor_4),g=no(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var xa=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ao=class extends an{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=uC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=dC(s.out,s.conv11,n.prediction_layer);return pC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new xa(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map($=>$*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map($=>$*f);return new bt(u[v],new xu(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return lC(t)}extractParams(t){return oC(t)}};function hC(e){let t=new ao;return t.extractWeights(e),t}function Mre(e){return hC(e)}var mC=class extends ao{};var fC=.4,gC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],yC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],bC=[117.001,114.697,97.404],xC="tiny_yolov2_model",vC="tiny_yolov2_separable_conv_model";var wf=e=>typeof e=="number";function Cw(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!wf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>wf(t.x)&&wf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(wf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Au(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function Ar(e,t){return D(()=>{let n=Zn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Au(n)})}function Fr(e,t){return D(()=>{let n=Zn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Ei(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Au(n)})}function Pre(e,t){let n=Nu(e,t);function a(i,o){let l=tt(e(i)),c=tt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Tu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function wC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=bn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=Pre(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),$=c(f,g,"conv4"),F=c(g,y,"conv5"),O=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),$=l(f,g,"conv4"),F=l(g,y,"conv5"),O=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function Ore(e,t){let n=Un(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Su(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function kC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=Ore(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return yn(e,n),{params:i,paramMappings:n}}var lr=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var _w=class extends an{constructor(t){super("TinyYolov2");Cw(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=Ar(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Ar(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=Ar(a,n.conv6),a=Ar(a,n.conv7),eo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Au(eo(t,n.conv0,"valid",!1)):Fr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Fr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Fr(a,n.conv6):a,a=n.conv7?Fr(a,n.conv7):a,eo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?Oa(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new lr(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return nw(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new ds(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return kC(t,this.config)}extractParams(t){let n=this.config.filterSizes||_w.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return wC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Na(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;ya){let N=(b+Ep(g[y][b][v][0]))/c*o,T=(y+Ep(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,$=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,F=N-C/2,O=T-$/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new bu(F,O,F+C,O+$),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Fu=_w;Fu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var $u=class extends Fu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:fC,classes:["face"],...t?{anchors:yC,meanRgb:bC}:{anchors:gC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?vC:xC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function Lre(e,t=!0){let n=new $u(t);return n.extractWeights(e),n}var kf=class extends lr{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var va=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function ro(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>to(l)?r(l):l.detection),i=a||(t instanceof Ae?await Iu(t,s):await ku(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function Du(e,t,n,a,r){return ro([e],t,async s=>n(s[0]),a,r)}var IC=.4,NC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],TC=[117.001,114.697,97.404];var Ru=class extends Fu{constructor(){let t={withSeparableConvs:!0,iouThreshold:IC,classes:["face"],anchors:NC,meanRgb:TC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new bt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var nt={ssdMobilenetv1:new ao,tinyFaceDetector:new Ru,tinyYolov2:new $u,faceLandmark68Net:new _u,faceLandmark68TinyNet:new gf,faceRecognitionNet:new Eu,faceExpressionNet:new hf,ageGenderNet:new ff},SC=(e,t)=>nt.ssdMobilenetv1.locateFaces(e,t),zre=(e,t)=>nt.tinyFaceDetector.locateFaces(e,t),Bre=(e,t)=>nt.tinyYolov2.locateFaces(e,t),CC=e=>nt.faceLandmark68Net.detectLandmarks(e),Wre=e=>nt.faceLandmark68TinyNet.detectLandmarks(e),Vre=e=>nt.faceRecognitionNet.computeFaceDescriptor(e),Ure=e=>nt.faceExpressionNet.predictExpressions(e),Gre=e=>nt.ageGenderNet.predictAgeAndGender(e),_C=e=>nt.ssdMobilenetv1.load(e),Hre=e=>nt.tinyFaceDetector.load(e),jre=e=>nt.tinyYolov2.load(e),qre=e=>nt.faceLandmark68Net.load(e),Kre=e=>nt.faceLandmark68TinyNet.load(e),Xre=e=>nt.faceRecognitionNet.load(e),Yre=e=>nt.faceExpressionNet.load(e),Zre=e=>nt.ageGenderNet.load(e),Jre=_C,Qre=SC,ese=CC;var Ew=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Ou=class extends Ew{async run(){let t=await this.parentTask,n=await ro(t,this.input,async a=>Promise.all(a.map(r=>nt.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>mf(a,n[r]))}withAgeAndGender(){return new Mu(this,this.input)}},Lu=class extends Ew{async run(){let t=await this.parentTask;if(!t)return;let n=await Du(t,this.input,a=>nt.faceExpressionNet.predictExpressions(a),this.extractedFaces);return mf(t,n)}withAgeAndGender(){return new Pu(this,this.input)}},oo=class extends Ou{withAgeAndGender(){return new so(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},lo=class extends Lu{withAgeAndGender(){return new io(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var Aw=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Mu=class extends Aw{async run(){let t=await this.parentTask,n=await ro(t,this.input,async a=>Promise.all(a.map(r=>nt.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return xf(vf(a,i,o),s)})}withFaceExpressions(){return new Ou(this,this.input)}},Pu=class extends Aw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await Du(t,this.input,s=>nt.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return xf(vf(t,a,r),n)}withFaceExpressions(){return new Lu(this,this.input)}},so=class extends Mu{withFaceExpressions(){return new oo(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},io=class extends Pu{withFaceExpressions(){return new lo(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var If=class extends va{constructor(t,n){super();this.parentTask=t;this.input=n}},fs=class extends If{async run(){let t=await this.parentTask;return(await ro(t,this.input,a=>Promise.all(a.map(r=>nt.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>bf(t[r],a))}withFaceExpressions(){return new oo(this,this.input)}withAgeAndGender(){return new so(this,this.input)}},gs=class extends If{async run(){let t=await this.parentTask;if(!t)return;let n=await Du(t,this.input,a=>nt.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return bf(t,n)}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}};var Nf=class extends va{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?nt.faceLandmark68TinyNet:nt.faceLandmark68Net}},Tf=class extends Nf{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await Iu(this.input,n):await ku(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>Cu(s,r[i]))}withFaceExpressions(){return new oo(this,this.input)}withAgeAndGender(){return new so(this,this.input)}withFaceDescriptors(){return new fs(this,this.input)}},Sf=class extends Nf{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await Iu(this.input,[n]):await ku(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),Cu(t,r)}withFaceExpressions(){return new lo(this,this.input)}withAgeAndGender(){return new io(this,this.input)}withFaceDescriptor(){return new gs(this,this.input)}};var Cf=class extends va{constructor(t,n=new xa){super();this.input=t;this.options=n}},Wp=class extends Cf{async run(){let{input:t,options:n}=this,a=n instanceof kf?r=>nt.tinyFaceDetector.locateFaces(r,n):n instanceof xa?r=>nt.ssdMobilenetv1.locateFaces(r,n):n instanceof lr?r=>nt.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>Yi({},a)))})}withFaceLandmarks(t=!1){return new Tf(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Ou(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Mu(this.runAndExtendWithFaceDetections(),this.input)}},_f=class extends Cf{async run(){let t=await new Wp(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?Yi({},n):void 0)})}withFaceLandmarks(t=!1){return new Sf(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Lu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pu(this.runAndExtendWithFaceDetection(),this.input)}};function tse(e,t=new xa){return new _f(e,t)}function Ef(e,t=new xa){return new Wp(e,t)}async function EC(e,t){return Ef(e,new xa(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function nse(e,t={}){return Ef(e,new lr(t)).withFaceLandmarks().withFaceDescriptors()}var ase=EC;function Fw(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var Af=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof Cr)return i;if(i instanceof Float32Array)return new Cr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new Cr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>Fw(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Ap(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>Cr.fromJSON(a));return new Af(n,t.distanceThreshold)}};function rse(e){let t=new Ru;return t.extractWeights(e),t}function AC(e,t){let{width:n,height:a}=new gn(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>AC(r,{width:n,height:a}));if(to(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return Cu(Yi(e,r),s)}return ir(e)?Yi(e,e.detection.forSize(n,a)):e instanceof ta||e instanceof bt?e.forSize(n,a):e}var sse=typeof process!="undefined",ise=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",ose={faceapi:K2,node:sse,browser:ise};export{ff as AgeGenderNet,bu as BoundingBox,ut as Box,va as ComposableTask,fs as ComputeAllFaceDescriptorsTask,If as ComputeFaceDescriptorsTaskBase,gs as ComputeSingleFaceDescriptorTask,Tf as DetectAllFaceLandmarksTask,Wp as DetectAllFacesTask,Nf as DetectFaceLandmarksTaskBase,Cf as DetectFacesTaskBase,Sf as DetectSingleFaceLandmarksTask,_f as DetectSingleFaceTask,gn as Dimensions,yw as FACE_EXPRESSION_LABELS,bt as FaceDetection,mC as FaceDetectionNet,hf as FaceExpressionNet,ms as FaceExpressions,_u as FaceLandmark68Net,gf as FaceLandmark68TinyNet,nC as FaceLandmarkNet,ta as FaceLandmarks,B2 as FaceLandmarks5,vu as FaceLandmarks68,Ap as FaceMatch,Af as FaceMatcher,Eu as FaceRecognitionNet,Er as Gender,Fp as LabeledBox,Cr as LabeledFaceDescriptors,_r as NetInput,an as NeuralNetwork,ds as ObjectDetection,De as Point,W2 as PredictedBox,xu as Rect,ao as SsdMobilenetv1,xa as SsdMobilenetv1Options,Ru as TinyFaceDetector,kf as TinyFaceDetectorOptions,$u as TinyYolov2,lr as TinyYolov2Options,ase as allFaces,EC as allFacesSsdMobilenetv1,nse as allFacesTinyYolov2,pw as awaitMediaLoaded,dw as bufferToImage,Vre as computeFaceDescriptor,wu as createCanvas,Rp as createCanvasFromMedia,Mre as createFaceDetectionNet,Nre as createFaceRecognitionNet,hC as createSsdMobilenetv1,rse as createTinyFaceDetector,Lre as createTinyYolov2,Ef as detectAllFaces,CC as detectFaceLandmarks,Wre as detectFaceLandmarksTiny,ese as detectLandmarks,tse as detectSingleFace,ww as draw,st as env,Fw as euclideanDistance,xf as extendWithAge,bf as extendWithFaceDescriptor,Yi as extendWithFaceDetection,mf as extendWithFaceExpressions,Cu as extendWithFaceLandmarks,vf as extendWithGender,Iu as extractFaceTensors,ku as extractFaces,mre as fetchImage,fw as fetchJson,fre as fetchNetWeights,Qi as fetchOrThrow,Sn as getContext2dOrThrow,Ji as getMediaDimensions,hw as imageTensorToCanvas,mw as imageToSquare,sre as inverseSigmoid,ew as iou,af as isMediaElement,Dp as isMediaLoaded,Tre as isWithAge,ir as isWithFaceDetection,bw as isWithFaceExpressions,to as isWithFaceLandmarks,Sre as isWithGender,Zre as loadAgeGenderModel,Jre as loadFaceDetectionModel,Yre as loadFaceExpressionModel,qre as loadFaceLandmarkModel,Kre as loadFaceLandmarkTinyModel,Xre as loadFaceRecognitionModel,_C as loadSsdMobilenetv1Model,Hre as loadTinyFaceDetectorModel,jre as loadTinyYolov2Model,gw as loadWeightMap,Qre as locateFaces,gre as matchDimensions,tw as minBbox,nt as nets,nw as nonMaxSuppression,Oa as normalize,aw as padToSquare,Gre as predictAgeAndGender,Ure as recognizeFaceExpressions,AC as resizeResults,Zi as resolveInput,rre as shuffleArray,Ep as sigmoid,SC as ssdMobilenetv1,Bg as tf,zre as tinyFaceDetector,Bre as tinyYolov2,gt as toNetInput,Yv as utils,Cw as validateConfig,ose as version}; /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/face-api.js b/dist/face-api.js index 0a45062..d4a871d 100644 --- a/dist/face-api.js +++ b/dist/face-api.js @@ -4045,7 +4045,7 @@ return a / b;`,fJ=` } setOutput(${l}); } - `}};function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=yh(r.dtype),g=(x,N,T,C,$)=>{let F=x.shape[0],O=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(O,$),W={windowSize:B,inSize:O,batchSize:F,numSegments:$},G=new Ree(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===$)return q;let H=QS({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),K=n2({inputs:{x:H},backend:n,attrs:{reps:[O/B]}});return l.push(H),l.push(K),g(q,N,K,C,$)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Sn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Pee={kernelName:Fc,backendName:"webgl",kernelFunc:Mee},Oee=[E9,$9,yX,xX,kX,TX,CX,AX,$X,RX,LX,BX,UX,jX,QX,XX,nY,iY,rY,cY,dY,mY,bY,TY,CY,DY,MY,zY,VY,JK,jY,n7,r7,YY,l7,c7,i7,h7,g7,x7,w7,I7,S7,$7,R7,_7,O7,B7,G7,K7,J7,tZ,nZ,aZ,sZ,oZ,uZ,pZ,hZ,yZ,wZ,IZ,TZ,_Z,$Z,PZ,BZ,ZK,VZ,HY,HZ,KZ,ZZ,eX,t9,s9,o9,m9,p9,b9,w9,T9,R9,V9,B9,j9,K9,Y9,L9,J9,eJ,rJ,lJ,dJ,vJ,sX,kJ,TJ,_J,FJ,EY,RJ,PJ,LJ,WJ,HJ,nX,qJ,KJ,AY,gJ,ZJ,sQ,tQ,oX,uQ,dQ,fQ,bQ,kQ,NQ,CQ,AQ,$Q,MQ,LQ,WQ,GQ,qQ,YQ,IY,bJ,QQ,tee,aee,see,lee,pee,hee,fee,bee,yJ,mX,wee,Nee,Cee,Eee,fX,Fee,Dee,Pee,MJ];for(let e of Oee)Dc(e);var Lee="3.0.0",zee={"tfjs-core":i1,"tfjs-backend-cpu":fG,"tfjs-backend-webgl":YK,"tfjs-data":$N,"tfjs-layers":$m,"tfjs-converter":SN,tfjs:Lee},Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var $p;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})($p||($p={}));var a2;function Bee(e){a2=e.wasm.cwrap(ki,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Wee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=$p[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return a2(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var Vee={kernelName:ki,backendName:"wasm",setupFunc:Bee,kernelFunc:Wee};function Vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Uee=Vn(Oo);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Wn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every(($,F)=>$===F),C=N.every(($,F)=>$===F);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Gee=!0,Hee=gn(Vr,Gee),r2;function jee(e){r2=e.wasm.cwrap($s,null,["array","number","number","number"])}function qee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return r2(s,r.length,Wn[a.dtype],i),a}var Kee={kernelName:$s,backendName:"wasm",setupFunc:jee,kernelFunc:qee};function hf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Xee={kernelName:sl,backendName:"wasm",kernelFunc:hf},s2;function Yee(e){s2=e.wasm.cwrap(wi,null,["number","array","number","number","number","array","number"])}function mf(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Jee(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Qee={kernelName:wi,backendName:"wasm",kernelFunc:mf,setupFunc:Yee};function Cu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),{dataId:a.dataId,shape:i,dtype:a.dtype}}var ite={kernelName:Il,backendName:"wasm",kernelFunc:Pa},l2;function ote(e){l2=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number"])}function lte(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Pa({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Pa({inputs:{x:s},backend:n,attrs:{shape:N}}),$=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,O,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),K=new Uint8Array(new Int32Array(C.shape).buffer);return l2($,H,T.shape.length,F,K,C.shape.length,i,o,q),G.shape=v,G}var ute={kernelName:Ms,backendName:"wasm",setupFunc:ote,kernelFunc:lte};function ff(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var cte={kernelName:Ps,backendName:"wasm",kernelFunc:ff},u2;function pte(e){u2=e.wasm.cwrap(Ur,null,["number","number","number","number"])}function dte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return u2(o,s,i,c),l}var hte={kernelName:Ur,backendName:"wasm",setupFunc:pte,kernelFunc:dte};function c2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return hf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Pa({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=Fv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=mf({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;m2(m,i?1:0,o?1:0,h,f,Wn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=mf({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Cte={kernelName:Bs,backendName:"wasm",setupFunc:Tte,kernelFunc:Ste},f2;function _te(e){f2=e.wasm.cwrap(Xo,null,["number","number","number","array","number","array","array","number","number"])}function Ete(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return f2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Ate={kernelName:Xo,backendName:"wasm",setupFunc:_te,kernelFunc:Ete},g2;function Fte(e){g2=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $te(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,$=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return g2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,O,x,N,T,C,$,F,W),B}var Dte={kernelName:Ws,backendName:"wasm",setupFunc:Fte,kernelFunc:$te},Rte=!1,Mte=gn(Jo,Rte,"bool"),Pte=Vn(Us);function lw(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pa({inputs:{x:r},backend:a,attrs:{shape:o}})}var Ote={kernelName:Qo,backendName:"wasm",kernelFunc:lw};function Lte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var zte={kernelName:wc,backendName:"wasm",kernelFunc:Lte},y2;function Bte(e){y2=e.wasm.cwrap(tl,null,["number","number","number","number","number","number"])}function Wte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return y2(s,o,l,c,u,i),r}var Vte={kernelName:tl,backendName:"wasm",kernelFunc:Wte,setupFunc:Bte},Ute=Vn(Gs),Gte=!1,Hte=gn(Hs,Gte),b2;function jte(e){b2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number"])}function qte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return b2(u,p,d,h,m,r,g),f}var Kte={kernelName:js,backendName:"wasm",setupFunc:jte,kernelFunc:qte},x2;function Xte(e){x2=e.wasm.cwrap(Ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return x2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var Zte={kernelName:Ii,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},v2;function Jte(e){v2=e.wasm.cwrap(Ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return v2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var ene={kernelName:Ni,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte},w2;function tne(e){w2=e.wasm.cwrap(al,null,["number","number","number","number","number","number","array","number"])}function nne(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Fy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return w2(d,Wn[a.dtype],h,i,p,o,m,f),c}var ane={kernelName:al,backendName:"wasm",setupFunc:tne,kernelFunc:nne},k2;function rne(e){k2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function sne(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Pa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Pa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return k2(g,Wn[r.dtype],v,f,y,c.batchSize,x,b),m.shape=c.outputShape,m}var ine={kernelName:nl,backendName:"wasm",setupFunc:rne,kernelFunc:sne},one=!1,lne=gn(rl,one,"bool"),une=!1,cne=gn(qs,une,"bool"),I2;function pne(e){I2=e.wasm.cwrap(Ks,null,["number","number","number"])}function dne(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;I2(r,n,i)}return s}var hne={kernelName:Ks,backendName:"wasm",setupFunc:pne,kernelFunc:dne},mne=!1,fne=gn(ul,mne,"bool"),gne=!1,yne=gn(cl,gne,"bool"),bne=Vn(Xs),xne=!1,vne=gn(dl,xne,"bool"),N2;function wne(e){N2=e.wasm.cwrap(Ys,null,["number, number, number"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=Cu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;N2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var Ine={kernelName:Ys,backendName:"wasm",setupFunc:wne,kernelFunc:kne},Nne=!1,Tne=gn(Zs,Nne),T2;function Sne(e){T2=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),$=a.dataIdMap.get(C.dataId).id;return T2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,$),C}var _ne={kernelName:Js,backendName:"wasm",setupFunc:Sne,kernelFunc:Cne},S2;function Ene(e){S2=e.wasm.cwrap(Qs,null,["number, number, number"])}function Ane(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=ff({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;S2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var Fne={kernelName:Qs,backendName:"wasm",setupFunc:Ene,kernelFunc:Ane},C2;function $ne(e){C2=e.wasm.cwrap(ei,null,["number, number, number"])}function Dne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;C2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Rne={kernelName:ei,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},Mne=!1,Pne=gn(ti,Mne),One=!0,Lne=gn(ni,One),zne=Vn(ml);function uw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var _2;function Bne(e){_2=e.wasm.cwrap(gl,"number",["number","number","number","number","number"])}function Wne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=_2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=uw(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Vne={kernelName:gl,backendName:"wasm",setupFunc:Bne,kernelFunc:Wne},E2;function Une(e){E2=e.wasm.cwrap(yl,"number",["number","number","number","number","number","bool"])}function Gne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=E2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Hne={kernelName:yl,backendName:"wasm",setupFunc:Une,kernelFunc:Gne},A2;function jne(e){A2=e.wasm.cwrap(bl,"number",["number","number","number","number","number","number"])}function qne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=A2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Kne={kernelName:bl,backendName:"wasm",setupFunc:jne,kernelFunc:qne},Xne=!1,Yne=gn(fl,Xne,"bool"),F2;function Zne(e){F2=e.wasm.cwrap(ai,null,["number","number","number","number","number"])}function Jne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return F2(u,s,i,o,c),l}var Qne={kernelName:ai,backendName:"wasm",setupFunc:Zne,kernelFunc:Jne};function eae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var tae={kernelName:xl,backendName:"wasm",kernelFunc:eae};function nae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return lw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>lw({inputs:{input:l},backend:n,attrs:{dim:r}}));return c2({inputs:o,backend:n,attrs:{axis:r}})}var aae={kernelName:vl,backendName:"wasm",kernelFunc:nae},$2;function rae(e){$2=e.wasm.cwrap(ri,null,["number","array","number","number","array","array","number","number"])}function sae(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return $2(i,c,t.shape.length,Wn[t.dtype],d,h,r,l),o}var iae={kernelName:ri,backendName:"wasm",kernelFunc:sae,setupFunc:rae},oae=!1,lae=gn(si,oae),D2;function uae(e){D2=e.wasm.cwrap(ii,null,["number","number","number"])}function cae(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return D2(s,i,l),o}var pae={kernelName:ii,backendName:"wasm",setupFunc:uae,kernelFunc:cae},R2;function dae(e){R2=e.wasm.cwrap(wl,null,["number","number","number","number"])}function hae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;R2(l,y,Wn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var mae={kernelName:wl,backendName:"wasm",setupFunc:dae,kernelFunc:hae},fae=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Rv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},gae={kernelName:Cc,backendName:"wasm",kernelFunc:fae},yae=!0,bae=gn(Vs,yae),xae=Vn(oi),vae=Vn(ui),M2;function wae(e){M2=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number"])}function kae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ff({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return M2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var Iae={kernelName:li,backendName:"wasm",setupFunc:wae,kernelFunc:kae},P2;function Nae(e){P2=e.wasm.cwrap(ci,null,["number","array","number","array","number","number"])}function Tae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return hf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);return P2(l,u,i.length,p,r.shape.length,c),Pa({inputs:{x:o},attrs:{shape:r.shape},backend:n})}var Sae={kernelName:ci,backendName:"wasm",kernelFunc:Tae,setupFunc:Nae},O2;function Cae(e){O2=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return O2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Eae={kernelName:Ol,backendName:"wasm",kernelFunc:_ae,setupFunc:Cae},Aae=Vn(pi),Fae=Vn(di),L2;function $ae(e){L2=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","array","number","number"])}function Dae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=$y.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return L2(h,m,Wn[s.dtype],l,c,u,f,d,g),o}var Rae={kernelName:Nl,backendName:"wasm",setupFunc:$ae,kernelFunc:Dae},z2;function Mae(e){z2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Pae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return z2(i,o,l,h,u),c}var Oae={kernelName:Tl,backendName:"wasm",kernelFunc:Pae,setupFunc:Mae},B2;function Lae(e){B2=e.wasm.cwrap(mi,null,["number","number"])}function zae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||B2(a,s),r}var Bae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Lae,kernelFunc:zae},Wae=Vn(hi);function gf(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=pn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Km(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Vae(l,u[0],d,s,i);else if(h===3)Uae(l,u[0],u[1],d,s,i);else if(h===4)Gae(l,u[0],u[1],u[2],d,s,i);else{let m=Km(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Vae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c{let d=[...u];d[o]=p;let h=gf({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var Yae={kernelName:Fl,backendName:"wasm",kernelFunc:Xae},Zae=Vn(fi),Jae=Vn(Ac),Qae=!0,ere=gn(bi,Qae),V2;function tre(e){V2=e.wasm.cwrap(Hr,null,["number","number","number"])}function nre(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return V2(i,r,l),o}var are={kernelName:Hr,backendName:"wasm",setupFunc:tre,kernelFunc:nre},U2;function rre(e){U2=e.wasm.cwrap($l,null,["number","array","number","array","array","array","array","array","number","number"])}function sre(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,g.splice(F,0,1)});let y=Pa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(F=>{i[F]=s[F]+1,o[F]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((F,O)=>N.indexOf(O)===-1);if(o.every(F=>F===1)){let F=gf({inputs:{x:r},attrs:{begin:s,size:T},backend:t});return Pa({inputs:{x:F},attrs:{shape:C},backend:t})}let $=t.makeOutput(C,"float32");if(!C.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(C).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get($.dataId).id;U2(F,O,y.shape.length,B,W,G,q,H,C.length,K)}return Pa({inputs:{x:$},attrs:{shape:C},backend:t})}var ire={kernelName:$l,backendName:"wasm",setupFunc:rre,kernelFunc:sre},ore=!0,lre=gn(xi,ore),G2;function ure(e){G2=e.wasm.cwrap(gi,null,["number, number, number"])}function cre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;G2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var pre={kernelName:gi,backendName:"wasm",setupFunc:ure,kernelFunc:cre},dre=Vn(vi),H2;function hre(e){H2=e.wasm.cwrap(Gr,null,["number","array","number","array","number","number"])}function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return j2(i,o,a.shape.length,Wn[a.dtype],r,s,u,d),[c,p]},bre={kernelName:Rl,backendName:"wasm",setupFunc:gre,kernelFunc:yre};function xre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var vre={kernelName:Ml,backendName:"wasm",kernelFunc:xre};function wre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var kre={kernelName:Pl,backendName:"wasm",kernelFunc:wre},Ire=[Uee,Hee,Kee,nte,ste,ute,cte,hte,mte,yte,vte,wte,Nte,Cte,Ate,Dte,Mte,Pte,Ote,zte,Vte,Ute,Hte,Vee,Kte,Zte,ene,ane,ine,lne,cne,Xee,hne,fne,yne,bne,vne,Ine,Tne,_ne,Fne,Rne,Pne,Lne,zne,Vne,Hne,Kne,Yne,Qne,tae,aae,iae,lae,pae,mae,gae,bae,xae,vae,ite,Iae,Sae,Eae,Fae,Aae,Rae,Oae,Bae,Wae,Hae,Kae,Yae,Zae,Jae,ere,are,ire,lre,pre,dre,fre,bre,Qee,vre,kre];for(let e of Ire)Dc(e);var cw=ee();cw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));cw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(cw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var q2=Ro(KE()),Nre='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Tre=Ro(XE()),K2=class extends dc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fd(this,Jr())}write(e,t,n){let a={};return this.move(a,e,t,n),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a){let r=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:r,stringBytes:l,shape:n,dtype:a,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(a),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:r,memoryOffset:o,shape:n,dtype:a}),this.wasm.tfjs.registerTensor(r,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Sre(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{a={};let r=this.dataIdNextNumber++;this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Cre(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function X2(e,t,n){if(yf!=null)return yf;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Dp!=null&&Dp[a]!=null?Dp[a]:n+a}async function _re(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=Nre,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?X2(e,t,Rp!=null?Rp:c):c+l},pw&&(r.instantiateWasm=Cre(X2(e,t,Rp!=null?Rp:"")));let s;t&&e&&yf==null?(s=q2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+q2.default.toString()],{type:"text/javascript"})):s=Tre.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Mp=!1,n({wasm:s})},s.onAbort=()=>{o||Mp||(Mp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Sre(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ere=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],yf=null,Rp=null,Dp={},Mp=!1,pw=!1;function Are(e,t=!1){if(Ly("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");yf=e,pw=t}function Fre(e,t=!1){if(Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rp=e;else{Dp=e;let n=Ere.filter(a=>Dp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pw=t}var $re="3.0.0",Dre=2;Nh("wasm",async()=>{let{wasm:e}=await _re();return new K2(e)},Dre);var Uf={};cc(Uf,{AnchorPosition:()=>ur,DrawBox:()=>Sf,DrawBoxOptions:()=>Iw,DrawFaceLandmarks:()=>Tw,DrawFaceLandmarksOptions:()=>Nw,DrawTextField:()=>bs,DrawTextFieldOptions:()=>Pp,drawContour:()=>_r,drawDetections:()=>Vre,drawFaceExpressions:()=>Ure,drawFaceLandmarks:()=>Gre});function _r(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var bf={};cc(bf,{computeReshapedDimensions:()=>mw,getCenterPoint:()=>to,isDimensions:()=>vf,isEven:()=>xf,isFloat:()=>hw,isTensor:()=>Qi,isTensor1D:()=>Rre,isTensor2D:()=>dw,isTensor3D:()=>Er,isTensor4D:()=>ta,isValidNumber:()=>Oa,isValidProbablitiy:()=>_u,range:()=>or,round:()=>eo});var ln=class{constructor(t,n){if(!Oa(t)||!Oa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new ln(1/this.width,1/this.height)}};function Qi(e,t){return e instanceof Ae&&e.shape.length===t}function Rre(e){return Qi(e,1)}function dw(e){return Qi(e,2)}function Er(e){return Qi(e,3)}function ta(e){return Qi(e,4)}function hw(e){return e%1!=0}function xf(e){return e%2==0}function eo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function vf(e){return e&&e.width&&e.height}function mw({width:e,height:t},n){let a=n/Math.max(t,e);return new ln(Math.round(e*a),Math.round(t*a))}function to(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function or(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Oa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function _u(e){return Oa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Oa)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Oa),s=[a.x,a.y,a.width,a.height].every(Oa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var no=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ar=class{constructor(t,n,a,r,s){this._imageDims=new ln(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ar(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends Ar{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new yt(a,r,s)}};function wf(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function kf(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;cl[u]<=n)}return s}function va(e,t){return D(()=>{let[n,a,r]=t,s=kn([...e.shape.slice(0,3),1],n,"float32"),i=kn([...e.shape.slice(0,3),1],a,"float32"),o=kn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function Nf(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,kn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function Y2(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Eu(e){return 1/(1+Math.exp(-e))}function Z2(e){return Math.log(e/(1-e))}var ao=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Mre=.5,Pre=.43,Ore=.45,Un=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new ln(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof yt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Ore),l=to(t),c=Math.floor(Math.max(0,l.x-Mre*o)),u=Math.floor(Math.max(0,l.y-Pre*o));return new ao(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=kf(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var fw=class extends Un{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],to([t[3],t[4]])]}};var ro=class extends Un{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(to)}};var Au=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${eo(this.distance)})`:""}`}};var Fu=class extends ot{static assertIsValidLabeledBox(t,n){if(ot.assertIsValidBox(t,n),!Oa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var lr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new lr(t.label,n)}};var gw=class extends Fu{static assertIsValidPredictedBox(t,n){if(Fu.assertIsValidLabeledBox(t,n),!_u(t.score)||!_u(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function La(e){return e.detection instanceof yt}function gs(e,t){return{...e,...{detection:t}}}function yw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function Tf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function bw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=Tf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function xw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var vw=EE(Q2()),Jt;function Bre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function ww(e){Jt=e}function kw(){return xw()?ww(yw()):vw.isNodejs()?ww(bw()):null}function Wre(e){if(Jt||kw(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var rt={getEnv:Bre,setEnv:ww,initialize:kw,createBrowserEnv:yw,createFileSystem:Tf,createNodejsEnv:bw,monkeyPatch:Wre,isBrowser:xw,isNodejs:vw.isNodejs};kw();function ys(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function yn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=ys(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ur;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ur||(ur={}));var Pp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ur.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},bs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof bs?t.text:t,this.anchor=n,this.options=new Pp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var Iw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ur.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Pp({...i,...s})}},Sf=class{constructor(t,n={}){this.box=new ot(t),this.options=new Iw(n)}draw(t){let n=yn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new bs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Vre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof yt?a.score:La(a)?a.detection.score:void 0,s=a instanceof yt?a.box:La(a)?a.detection.box:new ot(a),i=r?`${eo(r)}`:void 0;new Sf(s,{label:i}).draw(e)})}function $u(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Cf(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||$u(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function _f(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function xs(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new ln(e.naturalWidth,e.naturalHeight):e instanceof n?new ln(e.videoWidth,e.videoHeight):new ln(e.width,e.height)}function so({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Du(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!$u(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||xs(e),s=so({width:a,height:r});return e instanceof n?yn(s).putImageData(e,0,0):yn(s).drawImage(e,0,0,a,r),s}async function Ef(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ta(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await _i.toPixels(i,n),i.dispose(),n}function Op(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Af(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=xs(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=so({width:t,height:t}),u=e instanceof r?e:Du(e),p=Math.abs(o-l)/2,d=n&&o{if(Er(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ta(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Du(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return or(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return mw({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=or(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ta(i)?i:i.expandDims();return o=Nf(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ja.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return _i.fromPixels(Af(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof cr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(ys);return a.forEach((r,s)=>{if(!Op(r)&&!Er(r)&&!ta(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ta(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Op(r)&&Cf(r))),new cr(a,Array.isArray(e))}async function io(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Ef(o)}let r=yn(a);return t.map(i=>i instanceof yt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=so({width:l,height:c});return yn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function oo(e,t){if(!Er(e)&&!ta(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ta(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ta(e)?1:0);return t.map(o=>o instanceof yt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Ql(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function vs(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function eC(e){let t=await vs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return _f(n)}async function Ff(e){return(await vs(e)).json()}async function tC(e){return new Float32Array(await(await vs(e)).arrayBuffer())}function $f(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Df(e,t){let{manifestUri:n,modelBaseUri:a}=$f(e,t),r=await Ff(n);return Ht.loadWeights(r,a)}function nC(e,t,n=!1){let{width:a,height:r}=n?xs(t):t;return e.width=a,e.height=r,{width:a,height:r}}var Qt=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof jr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof jr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Kn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Df(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=$f(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Cn(e,t,n){return D(()=>{let a=Mi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function Rf(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Cn(e,t.conv0,[2,2])),r=Cn(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=Cn(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function Lp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Cn(e,t.conv0,a?[2,2]:[1,1])),s=Cn(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=Cn(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=Cn(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function lo(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Ru(e,t){return(n,a,r,s)=>{let i=Ca(e(n*a*r*r),[r,r,n,a]),o=nt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Mf(e,t){return(n,a,r)=>{let s=Sa(e(n*a),[n,a]),i=nt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Pf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Mu(e,t){return(n,a,r)=>{let s=Ca(e(3*3*n),[3,3,n,1]),i=Ca(e(n*a),[1,1,n,a]),o=nt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Pf(s,i,o)}}function Pu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Pf(n,a,r)}}function Gn(e,t){return(n,a,r)=>{let s=e[n];if(!Qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Of(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function aC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Lf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function zf(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function rC(e){let t=[],{extractDenseBlock4Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var zp=class extends Qt{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Lp(s,n.dense0,!0);return i=Lp(i,n.dense1),i=Lp(i,n.dense2),i=Lp(i,n.dense3),i=Yn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return rC(t)}extractParams(t){return aC(t)}};function Bp(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function sC(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Mf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function iC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function Bf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Wp=class extends Qt{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t;return Bp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return sC(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),iC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Wf=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Fr=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Wf.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Wf.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Vp=class extends Wp{constructor(t=new zp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Ta(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Fr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Vf(e){return e.expressions instanceof Fr}function Up(e,t){return{...e,...{expressions:t}}}function Ure(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Fr?s:Vf(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=La(s)?s.detection.box.bottomLeft:a||new De(0,0);new bs(l.map(p=>`${p.expression} (${eo(p.probability)})`),c).draw(e)})}function ws(e){return La(e)&&e.landmarks instanceof Un&&e.unshiftedLandmarks instanceof Un&&e.alignedRect instanceof yt}function uo(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new yt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var Nw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Tw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Nw(n)}draw(t){let n=yn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof ro&&(n.strokeStyle=i,n.lineWidth=s,_r(n,this.faceLandmarks.getJawOutline()),_r(n,this.faceLandmarks.getLeftEyeBrow()),_r(n,this.faceLandmarks.getRightEyeBrow()),_r(n,this.faceLandmarks.getNose()),_r(n,this.faceLandmarks.getLeftEye(),!0),_r(n,this.faceLandmarks.getRightEye(),!0),_r(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function Gre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Un?a:ws(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Tw(r).draw(e)})}var oC="0.12.1";function Hre(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function lC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Hre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};or(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function jre(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function uC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=jre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};or(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function cC(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function Sw(e,t,n=!0){let a=n?Ye(e):e;return a=Cn(a,t.separable_conv0,[1,1]),a=Cn(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,cC(e,t.expansion_conv,[2,2])),a}function qre(e,t){let n=Cn(Ye(e),t.separable_conv0,[1,1]);return n=Cn(Ye(n),t.separable_conv1,[1,1]),n=Cn(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Cw=class extends Qt{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(cC(s,n.entry_flow.conv_in,[2,2]));return i=Sw(i,n.entry_flow.reduction_block_0,!1),i=Sw(i,n.entry_flow.reduction_block_1),or(this._numMainBlocks,0,1).forEach(o=>{i=qre(i,n.middle_flow[`main_block_${o}`])}),i=Sw(i,n.exit_flow.reduction_block),i=Ye(Cn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return uC(t,this._numMainBlocks)}extractParams(t){return lC(t,this._numMainBlocks)}};function pC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Mf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function dC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var pr;(function(e){e.FEMALE="female",e.MALE="male"})(pr||(pr={}));var Gp=class extends Qt{constructor(t=new Cw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t,r=Yn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Bp(r,n.fc.age).as1D(),i=Bp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ta(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?pr.MALE:pr.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return pC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Hp=class extends Wp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([kn([68],p,"float32"),kn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>do(p,(d,h)=>hi(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>xf(p)),c=o.filter((u,p)=>!xf(p));return new ro(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var co=class extends Hp{constructor(t=new zp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function hC(e){let t=[],{extractDenseBlock3Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function mC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var _w=class extends Qt{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Rf(s,n.dense0,!0);return i=Rf(i,n.dense1),i=Rf(i,n.dense2),i=Yn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return hC(t)}extractParams(t){return mC(t)}};var jp=class extends Hp{constructor(t=new _w){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Ew=class extends co{};function fC(e,t){return Z(L(e,t.weights),t.biases)}function Aw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=fC(o,t.scale),a?Ye(o):o}function gC(e,t){return Aw(e,t,[1,1],!0)}function Fw(e,t){return Aw(e,t,[1,1],!1)}function Gf(e,t){return Aw(e,t,[2,2],!0,"valid")}function Kre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(hw(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(Ca(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=nt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=nt(e(o)),u=nt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function yC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Kre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Sa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Xre(e,t){let n=Gn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function bC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Xre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!dw(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return bn(e,t),{params:x,paramMappings:t}}function za(e,t){let n=gC(e,t.conv1);return n=Fw(n,t.conv2),n=Z(n,e),n=Ye(n),n}function qp(e,t){let n=Gf(e,t.conv1);n=Fw(n,t.conv2);let a=Yn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var po=class extends Qt{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Gf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=za(i,n.conv32_1),i=za(i,n.conv32_2),i=za(i,n.conv32_3),i=qp(i,n.conv64_down),i=za(i,n.conv64_1),i=za(i,n.conv64_2),i=za(i,n.conv64_3),i=qp(i,n.conv128_down),i=za(i,n.conv128_1),i=za(i,n.conv128_2),i=qp(i,n.conv256_down),i=za(i,n.conv256_1),i=za(i,n.conv256_2),i=qp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return bC(t)}extractParams(t){return yC(t)}};function xC(e){let t=new po;return t.extractWeights(e),t}function Kp(e,t){return{...e,...{descriptor:t}}}function vC(e){return typeof e.age=="number"}function Xp(e,t){return{...e,...{age:t}}}function wC(e){return(e.gender===pr.MALE||e.gender===pr.FEMALE)&&_u(e.genderProbability)}function Yp(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Yre(e,t){function n(l,c){let u=Ca(e(3*3*l),[3,3,l,1]),p=nt(e(l)),d=nt(e(l)),h=nt(e(l)),m=nt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Ca(e(l*c*u*u),[u,u,l,c]),m=nt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:$,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function kC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Yre(n,t),i=r(),o=s(),c={extra_dim:wh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function Zre(e,t){let n=Gn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function IC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zre(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Er(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function wa(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var Jre=.0010000000474974513;function Qre(e,t,n){return D(()=>{let a=es(e,t.filters,n,"same");return a=br(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Jre),qt(a,0,6)})}function ese(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function NC(e,t){return D(()=>{let n,a=wa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=ese(o);a=Qre(a,s.depthwise_conv,l),a=wa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function tse(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function TC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=tse(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function nse(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function ase(e,t){let{sizes:n,centers:a}=nse(e),r=dt(Ue(t,[1,0])),s=ve(L(dn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(dn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function SC(e,t,n){return D(()=>{let a=e.shape[0],r=ase(j(Ka(n.extra_dim,[a,1,1]),[-1,4]),j(e,[-1,4]));r=j(r,[a,r.shape[0]/a,4]);let s=pa(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=j(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ho(e,t){return D(()=>{let n=e.shape[0],a=j(lo(e,t.box_encoding_predictor),[n,-1,1,4]),r=j(lo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function CC(e,t,n){return D(()=>{let a=wa(e,n.conv_0,[1,1]),r=wa(a,n.conv_1,[2,2]),s=wa(r,n.conv_2,[1,1]),i=wa(s,n.conv_3,[2,2]),o=wa(i,n.conv_4,[1,1]),l=wa(o,n.conv_5,[2,2]),c=wa(l,n.conv_6,[1,1]),u=wa(c,n.conv_7,[2,2]),p=ho(t,n.box_predictor_0),d=ho(e,n.box_predictor_1),h=ho(r,n.box_predictor_2),m=ho(i,n.box_predictor_3),f=ho(l,n.box_predictor_4),g=ho(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var na=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ks=class extends Qt{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=NC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=CC(s.out,s.conv11,n.prediction_layer);return SC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new na(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map($=>$*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map($=>$*f);return new yt(u[v],new ao(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return IC(t)}extractParams(t){return kC(t)}};function $w(e){let t=new ks;return t.extractWeights(e),t}function _C(e){return $w(e)}var Dw=class extends ks{};var EC=.4,AC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],FC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],$C=[117.001,114.697,97.404],DC="tiny_yolov2_model",RC="tiny_yolov2_separable_conv_model";var Hf=e=>typeof e=="number";function jf(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Hf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Hf(t.x)&&Hf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Hf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Ou(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function $r(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Ou(n)})}function Dr(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Mi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Ou(n)})}function rse(e,t){let n=Ru(e,t);function a(i,o){let l=nt(e(i)),c=nt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Mu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function MC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=rse(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),$=c(f,g,"conv4"),F=c(g,y,"conv5"),O=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),$=l(f,g,"conv4"),F=l(g,y,"conv5"),O=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function sse(e,t){let n=Gn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Pu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function PC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=sse(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var Ba=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Rw=class extends Qt{constructor(t){super("TinyYolov2");jf(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=$r(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=$r(a,n.conv6),a=$r(a,n.conv7),lo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Ou(lo(t,n.conv0,"valid",!1)):Dr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Dr(a,n.conv6):a,a=n.conv7?Dr(a,n.conv7):a,lo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?va(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ba(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return If(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new Ar(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return PC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Rw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return MC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Ta(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;ya){let N=(b+Eu(g[y][b][v][0]))/c*o,T=(y+Eu(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,$=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,F=N-C/2,O=T-$/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new no(F,O,F+C,O+$),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Lu=Rw;Lu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var mo=class extends Lu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:EC,classes:["face"],...t?{anchors:FC,meanRgb:$C}:{anchors:AC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?RC:DC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function OC(e,t=!0){let n=new mo(t);return n.extractWeights(e),n}var Zp=class extends Ba{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var aa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function fo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ws(l)?r(l):l.detection),i=a||(t instanceof Ae?await oo(t,s):await io(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function zu(e,t,n,a,r){return fo([e],t,async s=>n(s[0]),a,r)}var LC=.4,zC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],BC=[117.001,114.697,97.404];var go=class extends Lu{constructor(){let t={withSeparableConvs:!0,iouThreshold:LC,classes:["face"],anchors:zC,meanRgb:BC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new ks,tinyFaceDetector:new go,tinyYolov2:new mo,faceLandmark68Net:new co,faceLandmark68TinyNet:new jp,faceRecognitionNet:new po,faceExpressionNet:new Vp,ageGenderNet:new Gp},Mw=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),WC=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),VC=(e,t)=>et.tinyYolov2.locateFaces(e,t),Pw=e=>et.faceLandmark68Net.detectLandmarks(e),UC=e=>et.faceLandmark68TinyNet.detectLandmarks(e),GC=e=>et.faceRecognitionNet.computeFaceDescriptor(e),HC=e=>et.faceExpressionNet.predictExpressions(e),jC=e=>et.ageGenderNet.predictAgeAndGender(e),Ow=e=>et.ssdMobilenetv1.load(e),qC=e=>et.tinyFaceDetector.load(e),KC=e=>et.tinyYolov2.load(e),XC=e=>et.faceLandmark68Net.load(e),YC=e=>et.faceLandmark68TinyNet.load(e),ZC=e=>et.faceRecognitionNet.load(e),JC=e=>et.faceExpressionNet.load(e),QC=e=>et.ageGenderNet.load(e),e_=Ow,t_=Mw,n_=Pw;var Lw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Vu=class extends Lw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Up(a,n[r]))}withAgeAndGender(){return new Bu(this,this.input)}},Uu=class extends Lw{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Up(t,n)}withAgeAndGender(){return new Wu(this,this.input)}},xo=class extends Vu{withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},vo=class extends Uu{withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var zw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Bu=class extends zw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Xp(Yp(a,i,o),s)})}withFaceExpressions(){return new Vu(this,this.input)}},Wu=class extends zw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zu(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Xp(Yp(t,a,r),n)}withFaceExpressions(){return new Uu(this,this.input)}},yo=class extends Bu{withFaceExpressions(){return new xo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},bo=class extends Wu{withFaceExpressions(){return new vo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var Jp=class extends aa{constructor(t,n){super();this.parentTask=t;this.input=n}},Rr=class extends Jp{async run(){let t=await this.parentTask;return(await fo(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Kp(t[r],a))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}},Mr=class extends Jp{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Kp(t,n)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}};var Qp=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},ed=class extends Qp{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await oo(this.input,n):await io(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>uo(s,r[i]))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},td=class extends Qp{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await oo(this.input,[n]):await io(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),uo(t,r)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var nd=class extends aa{constructor(t,n=new na){super();this.input=t;this.options=n}},Gu=class extends nd{async run(){let{input:t,options:n}=this,a=n instanceof Zp?r=>et.tinyFaceDetector.locateFaces(r,n):n instanceof na?r=>et.ssdMobilenetv1.locateFaces(r,n):n instanceof Ba?r=>et.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>gs({},a)))})}withFaceLandmarks(t=!1){return new ed(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Vu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Bu(this.runAndExtendWithFaceDetections(),this.input)}},ad=class extends nd{async run(){let t=await new Gu(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?gs({},n):void 0)})}withFaceLandmarks(t=!1){return new td(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Uu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Wu(this.runAndExtendWithFaceDetection(),this.input)}};function a_(e,t=new na){return new ad(e,t)}function rd(e,t=new na){return new Gu(e,t)}async function Bw(e,t){return rd(e,new na(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function r_(e,t={}){return rd(e,new Ba(t)).withFaceLandmarks().withFaceDescriptors()}var s_=Bw;function qf(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var sd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof lr)return i;if(i instanceof Float32Array)return new lr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new lr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>qf(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Au(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>lr.fromJSON(a));return new sd(n,t.distanceThreshold)}};function i_(e){let t=new go;return t.extractWeights(e),t}function Ww(e,t){let{width:n,height:a}=new ln(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Ww(r,{width:n,height:a}));if(ws(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return uo(gs(e,r),s)}return La(e)?gs(e,e.detection.forSize(n,a)):e instanceof Un||e instanceof yt?e.forSize(n,a):e}var ose=typeof process!="undefined",lse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",o_={faceapi:oC,node:ose,browser:lse};return ise;})(); + `}};function Mee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],c=0,u=_.getAxesPermutation([c],o),p=r;u!=null&&(p=Sn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),c=_.getInnerMostAxes(1,o)[0]);let d=_.segment_util.computeOutShape(p.shape,c,i),h=k.sizeFromShape([p.shape[c]]),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=yh(r.dtype),g=(x,N,T,C,$)=>{let F=x.shape[0],O=x.shape[1],B=_.segment_util.segOpComputeOptimalWindowSize(O,$),W={windowSize:B,inSize:O,batchSize:F,numSegments:$},G=new Ree(W,N),q=n.compileAndRun(G,[x,T],C);if(l.push(q),q.shape[1]===$)return q;let H=QS({backend:n,attrs:{start:0,stop:$,step:1,dtype:"float32"}}),K=n2({inputs:{x:H},backend:n,attrs:{reps:[O/B]}});return l.push(H),l.push(K),g(q,N,K,C,$)},y=g(m,"unsortedSegmentSum",s,f,i),b=be({inputs:{x:y},backend:n,attrs:{shape:d}}),v=b;if(u!=null){l.push(b);let x=_.getUndoAxesPermutation(u);v=Sn({inputs:{x:v},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Pee={kernelName:Fc,backendName:"webgl",kernelFunc:Mee},Oee=[E9,$9,yX,xX,kX,TX,CX,AX,$X,RX,LX,BX,UX,jX,QX,XX,nY,iY,rY,cY,dY,mY,bY,TY,CY,DY,MY,zY,VY,JK,jY,n7,r7,YY,l7,c7,i7,h7,g7,x7,w7,I7,S7,$7,R7,_7,O7,B7,G7,K7,J7,tZ,nZ,aZ,sZ,oZ,uZ,pZ,hZ,yZ,wZ,IZ,TZ,_Z,$Z,PZ,BZ,ZK,VZ,HY,HZ,KZ,ZZ,eX,t9,s9,o9,m9,p9,b9,w9,T9,R9,V9,B9,j9,K9,Y9,L9,J9,eJ,rJ,lJ,dJ,vJ,sX,kJ,TJ,_J,FJ,EY,RJ,PJ,LJ,WJ,HJ,nX,qJ,KJ,AY,gJ,ZJ,sQ,tQ,oX,uQ,dQ,fQ,bQ,kQ,NQ,CQ,AQ,$Q,MQ,LQ,WQ,GQ,qQ,YQ,IY,bJ,QQ,tee,aee,see,lee,pee,hee,fee,bee,yJ,mX,wee,Nee,Cee,Eee,fX,Fee,Dee,Pee,MJ];for(let e of Oee)Dc(e);var Lee="3.0.0",zee={"tfjs-core":i1,"tfjs-backend-cpu":fG,"tfjs-backend-webgl":YK,"tfjs-data":$N,"tfjs-layers":$m,"tfjs-converter":SN,tfjs:Lee},Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var $p;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})($p||($p={}));var a2;function Bee(e){a2=e.wasm.cwrap(ki,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Wee(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:p}=a,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let $=n.dataIdMap.get(i.dataId);if($.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${$.shape.length}.`);m=$.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=$p[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],b=c?s.shape[1]:s.shape[2],v=r.shape[0],x=n.makeOutput([v,y,b],r.dtype),N=n.dataIdMap.get(x.dataId).id,T=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(s.shape).buffer);return a2(d,T,r.shape.length,h,C,s.shape.length,l,c,g,m,f,p||0,N),x}var Vee={kernelName:ki,backendName:"wasm",setupFunc:Bee,kernelFunc:Wee};function Vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var Uee=Vn(Oo);function gn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,p=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,m=_.assertAndGetBroadcastShape(c.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),b=o.dataIdMap.get(f.dataId).id,v=()=>a(p,g,c.shape.length,d,y,u.shape.length,Wn[c.dtype],b);if(t&&c.dtype==="float32")return v(),f;let x=_.getBroadcastDims(c.shape,m),N=_.getBroadcastDims(u.shape,m),T=x.every(($,F)=>$===F),C=N.every(($,F)=>$===F);if(T&&C)return v(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var Gee=!0,Hee=gn(Vr,Gee),r2;function jee(e){r2=e.wasm.cwrap($s,null,["array","number","number","number"])}function qee(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return r2(s,r.length,Wn[a.dtype],i),a}var Kee={kernelName:$s,backendName:"wasm",setupFunc:jee,kernelFunc:qee};function hf(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var Xee={kernelName:sl,backendName:"wasm",kernelFunc:hf},s2;function Yee(e){s2=e.wasm.cwrap(wi,null,["number","array","number","number","number","array","number"])}function mf(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=Jee(t.x.shape,a.perm),i=!0;for(let m=0;m=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var Qee={kernelName:wi,backendName:"wasm",kernelFunc:mf,setupFunc:Yee};function Cu(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=_.getAxesPermutation(i,r),l=null,c=!1;if(o!=null){let u=new Array(r);for(let d=0;d`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),{dataId:a.dataId,shape:i,dtype:a.dtype}}var ite={kernelName:Il,backendName:"wasm",kernelFunc:Pa},l2;function ote(e){l2=e.wasm.cwrap(Ms,null,["number","array","number","number","array","number","number","number","number"])}function lte(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[c-1]:s.shape[c-2],d=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[c-2]:s.shape[c-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),b=g===y||g===1||y===1;k.assert(l>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let v=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,u,d]:[g,d,u],N=o?[y,h,p]:[y,p,h],T=Pa({inputs:{x:r},backend:n,attrs:{shape:x}}),C=Pa({inputs:{x:s},backend:n,attrs:{shape:N}}),$=n.dataIdMap.get(T.dataId).id,F=n.dataIdMap.get(C.dataId).id,O=i?T.shape[2]:T.shape[1],B=o?C.shape[1]:C.shape[2],W=Math.max(g,y),G=n.makeOutput([W,O,B],T.dtype),q=n.dataIdMap.get(G.dataId).id,H=new Uint8Array(new Int32Array(T.shape).buffer),K=new Uint8Array(new Int32Array(C.shape).buffer);return l2($,H,T.shape.length,F,K,C.shape.length,i,o,q),G.shape=v,G}var ute={kernelName:Ms,backendName:"wasm",setupFunc:ote,kernelFunc:lte};function ff(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var cte={kernelName:Ps,backendName:"wasm",kernelFunc:ff},u2;function pte(e){u2=e.wasm.cwrap(Ur,null,["number","number","number","number"])}function dte(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return u2(o,s,i,c),l}var hte={kernelName:Ur,backendName:"wasm",setupFunc:pte,kernelFunc:dte};function c2(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return hf({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(_.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(v=>{let x=k.sizeFromShape(v.shape.slice(a));return Pa({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),m=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=_.computeOutShape(h.map(v=>v.shape),1);let f=h[0].shape[0]===1,g=Fv(m,r,t[0].dtype,f),y=_.computeOutShape(s.map(v=>v.shape),a);i.shape=y;let b=n.dataIdMap.get(i.dataId);return b.stringBytes=_.fromStringArrayToUint8(g),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),c=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return c+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=_.getAxesPermutation([s],l),u=r;c!==null&&(u=mf({inputs:{x:r},attrs:{perm:c},backend:n}));let p=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(d.dataId).id;m2(m,i?1:0,o?1:0,h,f,Wn[r.dtype]);let g=d;if(c!==null){let y=_.getUndoAxesPermutation(c);g=mf({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return g}var Cte={kernelName:Bs,backendName:"wasm",setupFunc:Tte,kernelFunc:Ste},f2;function _te(e){f2=e.wasm.cwrap(Xo,null,["number","number","number","array","number","array","array","number","number"])}function Ete(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],c=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,d=c*s,h=u/(s*s),m=i==="NHWC"?[o,p,d,h]:[o,h,p,d],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),b=new Uint8Array(new Int32Array(m).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),x=t.dataIdMap.get(f.dataId).id;return f2(g,s,i==="NHWC"?1:0,y,r.shape.length-1,b,v,m.length,x),f}var Ate={kernelName:Xo,backendName:"wasm",setupFunc:_te,kernelFunc:Ete},g2;function Fte(e){g2=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $te(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:p}=n,d=c==null?[1,1]:c,h=_.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,b=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,N=h.dilationWidth,T=h.strideHeight,C=h.strideWidth,$=h.inChannels,F=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let B=a.makeOutput(h.outShape,"float32"),W=a.dataIdMap.get(B.dataId).id;return g2(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,b,v,O,x,N,T,C,$,F,W),B}var Dte={kernelName:Ws,backendName:"wasm",setupFunc:Fte,kernelFunc:$te},Rte=!1,Mte=gn(Jo,Rte,"bool"),Pte=Vn(Us);function lw(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Pa({inputs:{x:r},backend:a,attrs:{shape:o}})}var Ote={kernelName:Qo,backendName:"wasm",kernelFunc:lw};function Lte(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var zte={kernelName:wc,backendName:"wasm",kernelFunc:Lte},y2;function Bte(e){y2=e.wasm.cwrap(tl,null,["number","number","number","number","number","number"])}function Wte(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,c,u]=a.shape;return y2(s,o,l,c,u,i),r}var Vte={kernelName:tl,backendName:"wasm",kernelFunc:Wte,setupFunc:Bte},Ute=Vn(Gs),Gte=!1,Hte=gn(Hs,Gte),b2;function jte(e){b2=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number"])}function qte(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=c!=null?t.dataIdMap.get(c.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return b2(u,p,d,h,m,r,g),f}var Kte={kernelName:js,backendName:"wasm",setupFunc:jte,kernelFunc:qte},x2;function Xte(e){x2=e.wasm.cwrap(Ii,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Yte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return x2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var Zte={kernelName:Ii,backendName:"wasm",setupFunc:Xte,kernelFunc:Yte},v2;function Jte(e){v2=e.wasm.cwrap(Ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qte(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:m}=n,f=_.computeConv2DInfo(r.shape,s.shape,l,u,c,d,!0),g=$p[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,b=a.dataIdMap.get(s.dataId).id,v=f.outChannels,x=0;if(i!=null){let ae=a.dataIdMap.get(i.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${v})`);x=ae.id}let N=f.filterHeight,T=f.filterWidth,C=f.padInfo.top,$=f.padInfo.right,F=f.padInfo.bottom,O=f.padInfo.left,B=f.dilationHeight,W=f.dilationWidth,G=f.strideHeight,q=f.strideWidth,H=f.inChannels,K=f.padInfo.type==="SAME"?1:0,X=f.batchSize,ne=f.inHeight,J=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let se=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(se.dataId).id,oe=o==null?0:a.dataIdMap.get(o.dataId).id;return v2(y,X,ne,J,b,N,T,x,C,$,F,O,K,B,W,G,q,H,v,g,oe,m||0,Q),se}var ene={kernelName:Ni,backendName:"wasm",setupFunc:Jte,kernelFunc:Qte},w2;function tne(e){w2=e.wasm.cwrap(al,null,["number","number","number","number","number","number","array","number"])}function nne(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Fy.prepareAndValidate(a,r),c=t.makeOutput(s,a.dtype);if(i===0)return c;let u=r.shape,p=u[u.length-1],d=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(c.dataId).id;return w2(d,Wn[a.dtype],h,i,p,o,m,f),c}var ane={kernelName:al,backendName:"wasm",setupFunc:tne,kernelFunc:nne},k2;function rne(e){k2=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function sne(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],c=_.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=Pa({inputs:{x:r},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),d=Pa({inputs:{x:s},attrs:{shape:[c.batchSize,p/c.batchSize]},backend:t}),h=[c.batchSize,c.outerSize,p/c.batchSize,c.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,g=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,b=t.dataIdMap.get(m.dataId).id,v=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return k2(g,Wn[r.dtype],v,f,y,c.batchSize,x,b),m.shape=c.outputShape,m}var ine={kernelName:nl,backendName:"wasm",setupFunc:rne,kernelFunc:sne},one=!1,lne=gn(rl,one,"bool"),une=!1,cne=gn(qs,une,"bool"),I2;function pne(e){I2=e.wasm.cwrap(Ks,null,["number","number","number"])}function dne(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;I2(r,n,i)}return s}var hne={kernelName:Ks,backendName:"wasm",setupFunc:pne,kernelFunc:dne},mne=!1,fne=gn(ul,mne,"bool"),gne=!1,yne=gn(cl,gne,"bool"),bne=Vn(Xs),xne=!1,vne=gn(dl,xne,"bool"),N2;function wne(e){N2=e.wasm.cwrap(Ys,null,["number, number, number"])}function kne(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:p,inputWasTransposed:d}=Cu(i,r,t);if(d){let b=t.dataIdMap.get(c.dataId).id;l=c,o=b}let h=l.shape.length;_.assertAxesAreInnerMostDims("max",u,h);let[m,f]=_.computeOutAndReduceShapes(l.shape,u),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let b=t.dataIdMap.get(y.dataId).id;N2(o,g,b)}if(d&&t.disposeData(c.dataId),s){let b=_.expandShapeToKeepDim(y.shape,p);y.shape=b}return y}var Ine={kernelName:Ys,backendName:"wasm",setupFunc:wne,kernelFunc:kne},Nne=!1,Tne=gn(Zs,Nne),T2;function Sne(e){T2=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Cne(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=_.computePool2DInfo(r.shape,i,o,1,l,c),p=u.filterHeight,d=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,g=u.padInfo.left,y=u.dilationHeight,b=u.dilationWidth,v=u.strideHeight,x=u.strideWidth,N=u.inChannels,T=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let C=a.makeOutput(u.outShape,"float32"),$=a.dataIdMap.get(C.dataId).id;return T2(s,r.shape[0],r.shape[1],r.shape[2],p,d,h,m,f,g,y,b,v,x,N,T,$),C}var _ne={kernelName:Js,backendName:"wasm",setupFunc:Sne,kernelFunc:Cne},S2;function Ene(e){S2=e.wasm.cwrap(Qs,null,["number, number, number"])}function Ane(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("mean",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=c;c.dtype!=="float32"&&(b=ff({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(b.dataId).id);let v=t.makeOutput(f,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;S2(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=_.expandShapeToKeepDim(v.shape,d);v.shape=x}return c.dtype!=="float32"&&t.disposeData(b.dataId),v}var Fne={kernelName:Qs,backendName:"wasm",setupFunc:Ene,kernelFunc:Ane},C2;function $ne(e){C2=e.wasm.cwrap(ei,null,["number, number, number"])}function Dne(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t);if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v)}let m=c.shape.length;_.assertAxesAreInnerMostDims("min",p,m);let[f,g]=_.computeOutAndReduceShapes(c.shape,p),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;C2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var Rne={kernelName:ei,backendName:"wasm",setupFunc:$ne,kernelFunc:Dne},Mne=!1,Pne=gn(ti,Mne),One=!0,Lne=gn(ni,One),zne=Vn(ml);function uw(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var _2;function Bne(e){_2=e.wasm.cwrap(gl,"number",["number","number","number","number","number"])}function Wne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=_2(c,u,s,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=uw(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",d)}var Vne={kernelName:gl,backendName:"wasm",setupFunc:Bne,kernelFunc:Wne},E2;function Une(e){E2=e.wasm.cwrap(yl,"number",["number","number","number","number","number","bool"])}function Gne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=E2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([],"int32",g);return[y,b]}var Hne={kernelName:yl,backendName:"wasm",setupFunc:Une,kernelFunc:Gne},A2;function jne(e){A2=e.wasm.cwrap(bl,"number",["number","number","number","number","number","number"])}function qne(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(c.dataId).id,d=A2(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=uw(t,d);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),b=t.makeOutput([m],"float32",f);return[y,b]}var Kne={kernelName:bl,backendName:"wasm",setupFunc:jne,kernelFunc:qne},Xne=!1,Yne=gn(fl,Xne,"bool"),F2;function Zne(e){F2=e.wasm.cwrap(ai,null,["number","number","number","number","number"])}function Jne(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return F2(u,s,i,o,c),l}var Qne={kernelName:ai,backendName:"wasm",setupFunc:Zne,kernelFunc:Jne};function eae(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var tae={kernelName:xl,backendName:"wasm",kernelFunc:eae};function nae(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return lw({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>lw({inputs:{input:l},backend:n,attrs:{dim:r}}));return c2({inputs:o,backend:n,attrs:{axis:r}})}var aae={kernelName:vl,backendName:"wasm",kernelFunc:nae},$2;function rae(e){$2=e.wasm.cwrap(ri,null,["number","array","number","number","array","array","number","number"])}function sae(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),d=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return $2(i,c,t.shape.length,Wn[t.dtype],d,h,r,l),o}var iae={kernelName:ri,backendName:"wasm",kernelFunc:sae,setupFunc:rae},oae=!1,lae=gn(si,oae),D2;function uae(e){D2=e.wasm.cwrap(ii,null,["number","number","number"])}function cae(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return D2(s,i,l),o}var pae={kernelName:ii,backendName:"wasm",setupFunc:uae,kernelFunc:cae},R2;function dae(e){R2=e.wasm.cwrap(wl,null,["number","number","number","number"])}function hae(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("prod",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;R2(l,y,Wn[b.dtype],v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var mae={kernelName:wl,backendName:"wasm",setupFunc:dae,kernelFunc:hae},fae=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Rv(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},gae={kernelName:Cc,backendName:"wasm",kernelFunc:fae},yae=!0,bae=gn(Vs,yae),xae=Vn(oi),vae=Vn(ui),M2;function wae(e){M2=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number"])}function kae(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,c]=o,[u,p,d,h]=r.shape,m=[u,l,c,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=ff({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,b=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return b;let v=t.dataIdMap.get(b.dataId).id;return M2(y,u,p,d,h,l,c,s?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),b}var Iae={kernelName:li,backendName:"wasm",setupFunc:wae,kernelFunc:kae},P2;function Nae(e){P2=e.wasm.cwrap(ci,null,["number","array","number","array","number","number"])}function Tae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return hf({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);return P2(l,u,i.length,p,r.shape.length,c),Pa({inputs:{x:o},attrs:{shape:r.shape},backend:n})}var Sae={kernelName:ci,backendName:"wasm",kernelFunc:Tae,setupFunc:Nae},O2;function Cae(e){O2=e.wasm.cwrap(Ol,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _ae(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,d,h,m]=r.shape,[f,g]=_.getImageCenter(o,d,h),y=i===0,b=255,v=typeof i=="number"?[i,i,i,y?0:b]:[...i,b],x=new Uint8Array(new Int32Array(v).buffer);return O2(c,p,d,h,m,s,f,g,x,v.length,u),l}var Eae={kernelName:Ol,backendName:"wasm",kernelFunc:_ae,setupFunc:Cae},Aae=Vn(pi),Fae=Vn(di),L2;function $ae(e){L2=e.wasm.cwrap(Nl,null,["number","number","number","number","number","number","array","number","number"])}function Dae(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:p,outputSize:d}=$y.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return L2(h,m,Wn[s.dtype],l,c,u,f,d,g),o}var Rae={kernelName:Nl,backendName:"wasm",setupFunc:$ae,kernelFunc:Dae},z2;function Mae(e){z2=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Pae(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,p=a.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:k.sizeFromShape(r.shape.slice(1));return z2(i,o,l,h,u),c}var Oae={kernelName:Tl,backendName:"wasm",kernelFunc:Pae,setupFunc:Mae},B2;function Lae(e){B2=e.wasm.cwrap(mi,null,["number","number"])}function zae(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||B2(a,s),r}var Bae={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Lae,kernelFunc:zae},Wae=Vn(hi);function gf(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=pn.parseSliceParams(t,n,a),o=pn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),c=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(c.dataId);if(o){let m=pn.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(c).set(l.subarray(m,m+k.sizeFromShape(i))),c}if(t.dtype==="string"){let m=Km(l,s,i,t.shape,t.dtype);return p.stringBytes=m,c}let d=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)Vae(l,u[0],d,s,i);else if(h===3)Uae(l,u[0],u[1],d,s,i);else if(h===4)Gae(l,u[0],u[1],u[2],d,s,i);else{let m=Km(l,s,i,t.shape,t.dtype);d.set(m)}return c}function Vae(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let c=i;c{let d=[...u];d[o]=p;let h=gf({inputs:{x:r},attrs:{begin:c,size:d},backend:a});return c[o]+=p,h})}var Yae={kernelName:Fl,backendName:"wasm",kernelFunc:Xae},Zae=Vn(fi),Jae=Vn(Ac),Qae=!0,ere=gn(bi,Qae),V2;function tre(e){V2=e.wasm.cwrap(Hr,null,["number","number","number"])}function nre(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return V2(i,r,l),o}var are={kernelName:Hr,backendName:"wasm",setupFunc:tre,kernelFunc:nre},U2;function rre(e){U2=e.wasm.cwrap($l,null,["number","array","number","array","array","array","array","array","number","number"])}function sre(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:d}=a,h=_.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=_.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(F=>{s[F]=0,i[F]=1,g.splice(F,0,1)});let y=Pa({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:b,end:v,strides:x}=_.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,c,u);s=b,i=v,o=x;let N=_.slice_util.maskToAxes(d);N.forEach(F=>{i[F]=s[F]+1,o[F]=1});let T=_.slice_util.computeOutShape(s,i,o),C=T.filter((F,O)=>N.indexOf(O)===-1);if(o.every(F=>F===1)){let F=gf({inputs:{x:r},attrs:{begin:s,size:T},backend:t});return Pa({inputs:{x:F},attrs:{shape:C},backend:t})}let $=t.makeOutput(C,"float32");if(!C.some(F=>F===0)){let F=t.dataIdMap.get(y.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),G=new Uint8Array(new Int32Array(o).buffer),q=new Uint8Array(new Int32Array(C).buffer),H=new Uint8Array(new Int32Array(k.computeStrides(C)).buffer),K=t.dataIdMap.get($.dataId).id;U2(F,O,y.shape.length,B,W,G,q,H,C.length,K)}return Pa({inputs:{x:$},attrs:{shape:C},backend:t})}var ire={kernelName:$l,backendName:"wasm",setupFunc:rre,kernelFunc:sre},ore=!0,lre=gn(xi,ore),G2;function ure(e){G2=e.wasm.cwrap(gi,null,["number, number, number"])}function cre(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:p,originalAxes:d,inputWasTransposed:h}=Cu(i,r,t),m=p;if(h){let v=t.dataIdMap.get(u.dataId).id;v!==o&&(c=u,l=v,m=_.getInnerMostAxes(m.length,c.shape.length))}_.assertAxesAreInnerMostDims("sum",m,c.shape.length);let[f,g]=_.computeOutAndReduceShapes(c.shape,m),y=k.sizeFromShape(g),b=t.makeOutput(f,c.dtype);if(k.sizeFromShape(c.shape)!==0){let v=t.dataIdMap.get(b.dataId).id;G2(l,y,v)}if(h&&t.disposeData(u.dataId),s){let v=_.expandShapeToKeepDim(b.shape,d);b.shape=v}return b}var pre={kernelName:gi,backendName:"wasm",setupFunc:ure,kernelFunc:cre},dre=Vn(vi),H2;function hre(e){H2=e.wasm.cwrap(Gr,null,["number","array","number","array","number","number"])}function mre(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let d=0;d{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(c.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return j2(i,o,a.shape.length,Wn[a.dtype],r,s,u,d),[c,p]},bre={kernelName:Rl,backendName:"wasm",setupFunc:gre,kernelFunc:yre};function xre(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),c=0;for(let h=0;h({dataId:h,dtype:m,shape:l}))}var vre={kernelName:Ml,backendName:"wasm",kernelFunc:xre};function wre(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var kre={kernelName:Pl,backendName:"wasm",kernelFunc:wre},Ire=[Uee,Hee,Kee,nte,ste,ute,cte,hte,mte,yte,vte,wte,Nte,Cte,Ate,Dte,Mte,Pte,Ote,zte,Vte,Ute,Hte,Vee,Kte,Zte,ene,ane,ine,lne,cne,Xee,hne,fne,yne,bne,vne,Ine,Tne,_ne,Fne,Rne,Pne,Lne,zne,Vne,Hne,Kne,Yne,Qne,tae,aae,iae,lae,pae,mae,gae,bae,xae,vae,ite,Iae,Sae,Eae,Fae,Aae,Rae,Oae,Bae,Wae,Hae,Kae,Yae,Zae,Jae,ere,are,ire,lre,pre,dre,fre,bre,Qee,vre,kre];for(let e of Ire)Dc(e);var cw=ee();cw.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));cw.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(cw.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var q2=Ro(KE()),Nre='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Tre=Ro(XE()),K2=class extends dc{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Fd(this,Jr())}write(e,t,n){let a={};return this.move(a,e,t,n),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a){let r=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:r,stringBytes:l,shape:n,dtype:a,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(a),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:r,memoryOffset:o,shape:n,dtype:a}),this.wasm.tfjs.registerTensor(r,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Sre(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{a={};let r=this.dataIdNextNumber++;this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Cre(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance)})})}),{})}function X2(e,t,n){if(yf!=null)return yf;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Dp!=null&&Dp[a]!=null?Dp[a]:n+a}async function _re(){let[e,t]=await Promise.all([ee().getAsync("WASM_HAS_SIMD_SUPPORT"),ee().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=Nre,p=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(p)}return l.endsWith(".wasm")?X2(e,t,Rp!=null?Rp:c):c+l},pw&&(r.instantiateWasm=Cre(X2(e,t,Rp!=null?Rp:"")));let s;t&&e&&yf==null?(s=q2.default(r),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+q2.default.toString()],{type:"text/javascript"})):s=Tre.default(r);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,Mp=!1,n({wasm:s})},s.onAbort=()=>{o||Mp||(Mp=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function Sre(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ere=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],yf=null,Rp=null,Dp={},Mp=!1,pw=!1;function Are(e,t=!1){if(Ly("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");yf=e,pw=t}function Fre(e,t=!1){if(Mp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rp=e;else{Dp=e;let n=Ere.filter(a=>Dp[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}pw=t}var $re="3.0.0",Dre=2;Nh("wasm",async()=>{let{wasm:e}=await _re();return new K2(e)},Dre);var Uf={};cc(Uf,{AnchorPosition:()=>ur,DrawBox:()=>Sf,DrawBoxOptions:()=>Iw,DrawFaceLandmarks:()=>Tw,DrawFaceLandmarksOptions:()=>Nw,DrawTextField:()=>bs,DrawTextFieldOptions:()=>Pp,drawContour:()=>_r,drawDetections:()=>Vre,drawFaceExpressions:()=>Ure,drawFaceLandmarks:()=>Gre});function _r(e,t,n=!1){if(e.beginPath(),t.slice(1).forEach(({x:a,y:r},s)=>{let i=t[s];e.moveTo(i.x,i.y),e.lineTo(a,r)}),n){let a=t[t.length-1],r=t[0];if(!a||!r)return;e.moveTo(a.x,a.y),e.lineTo(r.x,r.y)}e.stroke()}var bf={};cc(bf,{computeReshapedDimensions:()=>mw,getCenterPoint:()=>to,isDimensions:()=>vf,isEven:()=>xf,isFloat:()=>hw,isTensor:()=>Qi,isTensor1D:()=>Rre,isTensor2D:()=>dw,isTensor3D:()=>Er,isTensor4D:()=>ta,isValidNumber:()=>Oa,isValidProbablitiy:()=>_u,range:()=>or,round:()=>eo});var ln=class{constructor(t,n){if(!Oa(t)||!Oa(n))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:n})}`);this._width=t,this._height=n}get width(){return this._width}get height(){return this._height}reverse(){return new ln(1/this.width,1/this.height)}};function Qi(e,t){return e instanceof Ae&&e.shape.length===t}function Rre(e){return Qi(e,1)}function dw(e){return Qi(e,2)}function Er(e){return Qi(e,3)}function ta(e){return Qi(e,4)}function hw(e){return e%1!=0}function xf(e){return e%2==0}function eo(e,t=2){let n=10**t;return Math.floor(e*n)/n}function vf(e){return e&&e.width&&e.height}function mw({width:e,height:t},n){let a=n/Math.max(t,e);return new ln(Math.round(e*a),Math.round(t*a))}function to(e){return e.reduce((t,n)=>t.add(n),new De(0,0)).div(new De(e.length,e.length))}function or(e,t,n){return Array(e).fill(0).map((a,r)=>t+r*n)}function Oa(e){return!!e&&e!==Infinity&&e!==-Infinity&&!Number.isNaN(e)||e===0}function _u(e){return Oa(e)&&e>=0&&e<=1}var De=class{constructor(t,n){this._x=t,this._y=n}get x(){return this._x}get y(){return this._y}add(t){return new De(this.x+t.x,this.y+t.y)}sub(t){return new De(this.x-t.x,this.y-t.y)}mul(t){return new De(this.x*t.x,this.y*t.y)}div(t){return new De(this.x/t.x,this.y/t.y)}abs(){return new De(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new De(Math.floor(this.x),Math.floor(this.y))}};var ot=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(Oa)}static assertIsValidBox(t,n,a=!1){if(!ot.isRect(t))throw new Error(`${n} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!a&&(t.width<0||t.height<0))throw new Error(`${n} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,n=!0){let a=t||{},r=[a.left,a.top,a.right,a.bottom].every(Oa),s=[a.x,a.y,a.width,a.height].every(Oa);if(!s&&!r)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(a)}`);let[i,o,l,c]=s?[a.x,a.y,a.width,a.height]:[a.left,a.top,a.right-a.left,a.bottom-a.top];ot.assertIsValidBox({x:i,y:o,width:l,height:c},"Box.constructor",n),this._x=i,this._y=o,this._width=l,this._height=c}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new De(this.left,this.top)}get topRight(){return new De(this.right,this.top)}get bottomLeft(){return new De(this.left,this.bottom)}get bottomRight(){return new De(this.right,this.bottom)}round(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.round(s));return new ot({x:t,y:n,width:a,height:r})}floor(){let[t,n,a,r]=[this.x,this.y,this.width,this.height].map(s=>Math.floor(s));return new ot({x:t,y:n,width:a,height:r})}toSquare(){let{x:t,y:n,width:a,height:r}=this,s=Math.abs(a-r);return an&&(o=-p+n+a,p=n),d>t&&(l=-d+t+r,d=t),c<1&&(l=2-c,c=1),u<1&&(l=2-u,u=1),{dy:i,edy:l,dx:s,edx:o,y:u,ey:d,x:c,ex:p,w:a,h:r}}calibrate(t){return new ot({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var no=class extends ot{constructor(t,n,a,r,s=!1){super({left:t,top:n,right:a,bottom:r},s)}};var Ar=class{constructor(t,n,a,r,s){this._imageDims=new ln(s.width,s.height),this._score=t,this._classScore=n,this._className=a,this._box=new ot(r).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new ot(this._box).rescale(this.imageDims.reverse())}forSize(t,n){return new Ar(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:n})}};var yt=class extends Ar{constructor(t,n,a){super(t,t,"",n,a)}forSize(t,n){let{score:a,relativeBox:r,imageDims:s}=super.forSize(t,n);return new yt(a,r,s)}};function wf(e,t,n=!0){let a=Math.max(0,Math.min(e.right,t.right)-Math.max(e.left,t.left)),r=Math.max(0,Math.min(e.bottom,t.bottom)-Math.max(e.top,t.top)),s=a*r;return n?s/(e.area+t.area-s):s/Math.min(e.area,t.area)}function kf(e){let t=e.map(o=>o.x),n=e.map(o=>o.y),a=t.reduce((o,l)=>lloo({score:i,boxIndex:o})).sort((i,o)=>i.score-o.score).map(i=>i.boxIndex),s=[];for(;r.length>0;){let i=r.pop();s.push(i);let o=r,l=[];for(let c=0;cl[u]<=n)}return s}function va(e,t){return D(()=>{let[n,a,r]=t,s=kn([...e.shape.slice(0,3),1],n,"float32"),i=kn([...e.shape.slice(0,3),1],a,"float32"),o=kn([...e.shape.slice(0,3),1],r,"float32"),l=Qe([s,i,o],3);return fe(e,l)})}function Nf(e,t=!1){return D(()=>{let[n,a]=e.shape.slice(1);if(n===a)return e;let r=Math.abs(n-a),s=Math.round(r*(t?.5:1)),i=n>a?2:1,o=d=>{let h=e.shape.slice();return h[i]=d,kn(h,0,"float32")},l=o(s),c=r-l.shape[i],p=[t&&c?o(c):null,e,l].filter(d=>!!d).map(d=>ce(d,"float32"));return Qe(p,i)})}function Y2(e){let t=e.slice();for(let n=t.length-1;n>0;n--){let a=Math.floor(Math.random()*(n+1)),r=t[n];t[n]=t[a],t[a]=r}return t}function Eu(e){return 1/(1+Math.exp(-e))}function Z2(e){return Math.log(e/(1-e))}var ao=class extends ot{constructor(t,n,a,r,s=!1){super({x:t,y:n,width:a,height:r},s)}};var Mre=.5,Pre=.43,Ore=.45,Un=class{constructor(t,n,a=new De(0,0)){let{width:r,height:s}=n;this._imgDims=new ln(r,s),this._shift=a,this._positions=t.map(i=>i.mul(new De(r,s)).add(a))}get shift(){return new De(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new De(this.imageWidth,this.imageHeight)))}forSize(t,n){return new this.constructor(this.relativePositions,{width:t,height:n})}shiftBy(t,n){return new this.constructor(this.relativePositions,this._imgDims,new De(t,n))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,n={}){if(t){let s=t instanceof yt?t.box.floor():new ot(t);return this.shiftBy(s.x,s.y).align(null,n)}let{useDlibAlignment:a,minBoxPadding:r}={useDlibAlignment:!1,minBoxPadding:.2,...n};return a?this.alignDlib():this.alignMinBbox(r)}alignDlib(){let t=this.getRefPointsForAlignment(),[n,a,r]=t,s=p=>r.sub(p).magnitude(),i=(s(n)+s(a))/2,o=Math.floor(i/Ore),l=to(t),c=Math.floor(Math.max(0,l.x-Mre*o)),u=Math.floor(Math.max(0,l.y-Pre*o));return new ao(c,u,Math.min(o,this.imageWidth+c),Math.min(o,this.imageHeight+u))}alignMinBbox(t){let n=kf(this.positions);return n.pad(n.width*t,n.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var fw=class extends Un{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],to([t[3],t[4]])]}};var ro=class extends Un{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(to)}};var Au=class{constructor(t,n){this._label=t,this._distance=n}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${eo(this.distance)})`:""}`}};var Fu=class extends ot{static assertIsValidLabeledBox(t,n){if(ot.assertIsValidBox(t,n),!Oa(t.label))throw new Error(`${n} - expected property label (${t.label}) to be a number`)}constructor(t,n){super(t);this._label=n}get label(){return this._label}};var lr=class{constructor(t,n){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(n)||n.some(a=>!(a instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=n}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let n=t.descriptors.map(a=>new Float32Array(a));return new lr(t.label,n)}};var gw=class extends Fu{static assertIsValidPredictedBox(t,n){if(Fu.assertIsValidLabeledBox(t,n),!_u(t.score)||!_u(t.classScore))throw new Error(`${n} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,n,a,r){super(t,n);this._score=a,this._classScore=r}get score(){return this._score}get classScore(){return this._classScore}};function La(e){return e.detection instanceof yt}function gs(e,t){return{...e,...{detection:t}}}function yw(){let e=window.fetch;if(!e)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:e,readFile:t}}function Tf(e){let t="";if(!e)try{e=require("fs")}catch(a){t=a.toString()}return{readFile:e?a=>new Promise((r,s)=>{e.readFile(a,(i,o)=>i?s(i):r(o))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function bw(){let e=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,n=()=>{if(e)return new e;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},a=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},r=global.fetch,s=Tf();return{Canvas:e||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:n,createImageElement:a,fetch:r,...s}}function xw(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var vw=EE(Q2()),Jt;function Bre(){if(!Jt)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return Jt}function ww(e){Jt=e}function kw(){return xw()?ww(yw()):vw.isNodejs()?ww(bw()):null}function Wre(e){if(Jt||kw(),!Jt)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=Jt.Canvas,Image:n=Jt.Image}=e;Jt.Canvas=t,Jt.Image=n,Jt.createCanvasElement=e.createCanvasElement||(()=>new t),Jt.createImageElement=e.createImageElement||(()=>new n),Jt.ImageData=e.ImageData||Jt.ImageData,Jt.Video=e.Video||Jt.Video,Jt.fetch=e.fetch||Jt.fetch,Jt.readFile=e.readFile||Jt.readFile}var rt={getEnv:Bre,setEnv:ww,initialize:kw,createBrowserEnv:yw,createFileSystem:Tf,createNodejsEnv:bw,monkeyPatch:Wre,isBrowser:xw,isNodejs:vw.isNodejs};kw();function ys(e){return!rt.isNodejs()&&typeof e=="string"?document.getElementById(e):e}function yn(e){let{Canvas:t,CanvasRenderingContext2D:n}=rt.getEnv();if(e instanceof n)return e;let a=ys(e);if(!(a instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let r=a.getContext("2d");if(!r)throw new Error("resolveContext2d - canvas 2d context is null");return r}var ur;(function(e){e.TOP_LEFT="TOP_LEFT",e.TOP_RIGHT="TOP_RIGHT",e.BOTTOM_LEFT="BOTTOM_LEFT",e.BOTTOM_RIGHT="BOTTOM_RIGHT"})(ur||(ur={}));var Pp=class{constructor(t={}){let{anchorPosition:n,backgroundColor:a,fontColor:r,fontSize:s,fontStyle:i,padding:o}=t;this.anchorPosition=n||ur.TOP_LEFT,this.backgroundColor=a||"rgba(0, 0, 0, 0.5)",this.fontColor=r||"rgba(255, 255, 255, 1)",this.fontSize=s||14,this.fontStyle=i||"Georgia",this.padding=o||4}},bs=class{constructor(t,n,a={}){this.text=typeof t=="string"?[t]:t instanceof bs?t.text:t,this.anchor=n,this.options=new Pp(a)}measureWidth(t){let{padding:n}=this.options;return this.text.map(a=>t.measureText(a).width).reduce((a,r)=>a{let m=l+p.x,f=l+p.y+(h+1)*i;a.fillText(d,m,f)})}};var Iw=class{constructor(t={}){let{boxColor:n,lineWidth:a,label:r,drawLabelOptions:s}=t;this.boxColor=n||"rgba(0, 0, 255, 1)",this.lineWidth=a||2,this.label=r;let i={anchorPosition:ur.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Pp({...i,...s})}},Sf=class{constructor(t,n={}){this.box=new ot(t),this.options=new Iw(n)}draw(t){let n=yn(t),{boxColor:a,lineWidth:r}=this.options,{x:s,y:i,width:o,height:l}=this.box;n.strokeStyle=a,n.lineWidth=r,n.strokeRect(s,i,o,l);let{label:c}=this.options;c&&new bs([c],{x:s-r/2,y:i},this.options.drawLabelOptions).draw(t)}};function Vre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof yt?a.score:La(a)?a.detection.score:void 0,s=a instanceof yt?a.box:La(a)?a.detection.box:new ot(a),i=r?`${eo(r)}`:void 0;new Sf(s,{label:i}).draw(e)})}function $u(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t&&e.complete||e instanceof n&&e.readyState>=3}function Cf(e){return new Promise((t,n)=>{if(e instanceof rt.getEnv().Canvas||$u(e))return t(null);function a(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),n(s))}function r(s){!s.currentTarget||(s.currentTarget.removeEventListener("load",r),s.currentTarget.removeEventListener("error",a),t(s))}e.addEventListener("load",r),e.addEventListener("error",a)})}function _f(e){return new Promise((t,n)=>{e instanceof Blob||n(new Error("bufferToImage - expected buf to be of type: Blob"));let a=new FileReader;a.onload=()=>{typeof a.result!="string"&&n(new Error("bufferToImage - expected reader.result to be a string, in onload"));let r=rt.getEnv().createImageElement();r.onload=()=>t(r),r.onerror=n,r.src=a.result},a.onerror=n,a.readAsDataURL(e)})}function xs(e){let{Image:t,Video:n}=rt.getEnv();return e instanceof t?new ln(e.naturalWidth,e.naturalHeight):e instanceof n?new ln(e.videoWidth,e.videoHeight):new ln(e.width,e.height)}function so({width:e,height:t}){let{createCanvasElement:n}=rt.getEnv(),a=n();return a.width=e,a.height=t,a}function Du(e,t){let{ImageData:n}=rt.getEnv();if(!(e instanceof n)&&!$u(e))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:a,height:r}=t||xs(e),s=so({width:a,height:r});return e instanceof n?yn(s).putImageData(e,0,0):yn(s).drawImage(e,0,0,a,r),s}async function Ef(e,t){let n=t||rt.getEnv().createCanvasElement(),[a,r,s]=e.shape.slice(ta(e)?1:0),i=D(()=>e.as3D(a,r,s).toInt());return await _i.toPixels(i,n),i.dispose(),n}function Op(e){let{Image:t,Canvas:n,Video:a}=rt.getEnv();return e instanceof t||e instanceof n||e instanceof a}function Af(e,t,n=!1){let{Image:a,Canvas:r}=rt.getEnv();if(!(e instanceof a||e instanceof r))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let s=xs(e),i=t/Math.max(s.height,s.width),o=i*s.width,l=i*s.height,c=so({width:t,height:t}),u=e instanceof r?e:Du(e),p=Math.abs(o-l)/2,d=n&&o{if(Er(a)){this._imageTensors[r]=a,this._inputDimensions[r]=a.shape;return}if(ta(a)){let i=a.shape[0];if(i!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${i} passed, but not supported in input array`);this._imageTensors[r]=a,this._inputDimensions[r]=a.shape.slice(1);return}let s=a instanceof rt.getEnv().Canvas?a:Du(a);this._canvases[r]=s,this._inputDimensions[r]=[s.height,s.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return or(this.batchSize,0,1).map((t,n)=>this.getReshapedInputDimensions(n))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let n=this.getInputWidth(t),a=this.getInputHeight(t);return mw({width:n,height:a},this.inputSize)}toBatchTensor(t,n=!0){return this._inputSize=t,D(()=>{let a=or(this.batchSize,0,1).map(s=>{let i=this.getInput(s);if(i instanceof Ae){let o=ta(i)?i:i.expandDims();return o=Nf(o,n),(o.shape[1]!==t||o.shape[2]!==t)&&(o=Ja.resizeBilinear(o,[t,t])),o.as3D(t,t,3)}if(i instanceof rt.getEnv().Canvas)return _i.fromPixels(Af(i,t,n));throw new Error(`toBatchTensor - at batchIdx ${s}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${i}`)});return $t(a.map(s=>ce(s,"float32"))).as4D(this.batchSize,t,t,3)})}};async function gt(e){if(e instanceof cr)return e;let t=Array.isArray(e)?e:[e];if(!t.length)throw new Error("toNetInput - empty array passed as input");let n=r=>Array.isArray(e)?` at input index ${r}:`:"",a=t.map(ys);return a.forEach((r,s)=>{if(!Op(r)&&!Er(r)&&!ta(r))throw typeof t[s]=="string"?new Error(`toNetInput -${n(s)} string passed, but could not resolve HTMLElement for element id ${t[s]}`):new Error(`toNetInput -${n(s)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(ta(r)){let i=r.shape[0];if(i!==1)throw new Error(`toNetInput -${n(s)} tf.Tensor4D with batchSize ${i} passed, but not supported in input array`)}}),await Promise.all(a.map(r=>Op(r)&&Cf(r))),new cr(a,Array.isArray(e))}async function io(e,t){let{Canvas:n}=rt.getEnv(),a=e;if(!(e instanceof n)){let i=await gt(e);if(i.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let o=i.getInput(0);a=o instanceof n?o:await Ef(o)}let r=yn(a);return t.map(i=>i instanceof yt?i.forSize(a.width,a.height).box.floor():i).map(i=>i.clipAtImageBorders(a.width,a.height)).map(({x:i,y:o,width:l,height:c})=>{let u=so({width:l,height:c});return yn(u).putImageData(r.getImageData(i,o,l,c),0,0),u})}async function oo(e,t){if(!Er(e)&&!ta(e))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(ta(e)&&e.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return D(()=>{let[n,a,r]=e.shape.slice(ta(e)?1:0);return t.map(o=>o instanceof yt?o.forSize(a,n).box:o).map(o=>o.clipAtImageBorders(a,n)).map(({x:o,y:l,width:c,height:u})=>Ql(e.as3D(n,a,r),[l,o,0],[u,c,r]))})}async function vs(e,t){let{fetch:n}=rt.getEnv(),a=await n(e,t);if(!(a.status<400))throw new Error(`failed to fetch: (${a.status}) ${a.statusText}, from url: ${a.url}`);return a}async function eC(e){let t=await vs(e),n=await t.blob();if(!n.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${n.type}, for url: ${t.url}`);return _f(n)}async function Ff(e){return(await vs(e)).json()}async function tC(e){return new Float32Array(await(await vs(e)).arrayBuffer())}function $f(e,t){let n=`${t}-weights_manifest.json`;if(!e)return{modelBaseUri:"",manifestUri:n};if(e==="/")return{modelBaseUri:"/",manifestUri:`/${n}`};let a=e.startsWith("http://")?"http://":e.startsWith("https://")?"https://":"";e=e.replace(a,"");let r=e.split("/").filter(o=>o),s=e.endsWith(".json")?r[r.length-1]:n,i=a+(e.endsWith(".json")?r.slice(0,r.length-1):r).join("/");return i=e.startsWith("/")?`/${i}`:i,{modelBaseUri:i,manifestUri:i==="/"?`/${s}`:`${i}/${s}`}}async function Df(e,t){let{manifestUri:n,modelBaseUri:a}=$f(e,t),r=await Ff(n);return Ht.loadWeights(r,a)}function nC(e,t,n=!1){let{width:a,height:r}=n?xs(t):t;return e.width=a,e.height=r,{width:a,height:r}}var Qt=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:n,objProp:a}=this.traversePropertyPath(t);return n[a]}reassignParamFromPath(t,n){let{obj:a,objProp:r}=this.traversePropertyPath(t);a[r].dispose(),a[r]=n}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof jr)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof jr))}variable(){this.getFrozenParams().forEach(({path:t,tensor:n})=>{this.reassignParamFromPath(t,n.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:n})=>{let a=Kn(n.dataSync());n.dispose(),this.reassignParamFromPath(t,a)})}dispose(t=!0){this.getParamList().forEach(n=>{if(t&&n.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${n.path}`);n.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,n)=>t.concat(n)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let n=await Df(t,this.getDefaultModelName());this.loadFromWeightMap(n)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:n}=rt.getEnv(),{manifestUri:a,modelBaseUri:r}=$f(t,this.getDefaultModelName()),s=c=>Promise.all(c.map(u=>n(u).then(p=>p.buffer))),i=Ht.weightsLoaderFactory(s),o=JSON.parse((await n(a)).toString()),l=await i(o,r);this.loadFromWeightMap(l)}loadFromWeightMap(t){let{paramMappings:n,params:a}=this.extractParamsFromWeightMap(t);this._paramMappings=n,this._params=a}extractWeights(t){let{paramMappings:n,params:a}=this.extractParams(t);this._paramMappings=n,this._params=a}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let n=t.split("/").reduce((s,i)=>{if(!s.nextObj.hasOwnProperty(i))throw new Error(`traversePropertyPath - object does not have property ${i}, for path ${t}`);return{obj:s.nextObj,objProp:i,nextObj:s.nextObj[i]}},{nextObj:this.params}),{obj:a,objProp:r}=n;if(!a||!r||!(a[r]instanceof Ae))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:a,objProp:r}}};function Cn(e,t,n){return D(()=>{let a=Mi(e,t.depthwise_filter,t.pointwise_filter,n,"same");return a=Z(a,t.bias),a})}function Rf(e,t,n=!1){return D(()=>{let a=Ye(n?Z(At(e,t.conv0.filters,[2,2],"same"),t.conv0.bias):Cn(e,t.conv0,[2,2])),r=Cn(a,t.conv1,[1,1]),s=Ye(Z(a,r)),i=Cn(s,t.conv2,[1,1]);return Ye(Z(a,Z(r,i)))})}function Lp(e,t,n=!1,a=!0){return D(()=>{let r=Ye(n?Z(At(e,t.conv0.filters,a?[2,2]:[1,1],"same"),t.conv0.bias):Cn(e,t.conv0,a?[2,2]:[1,1])),s=Cn(r,t.conv1,[1,1]),i=Ye(Z(r,s)),o=Cn(i,t.conv2,[1,1]),l=Ye(Z(r,Z(s,o))),c=Cn(l,t.conv3,[1,1]);return Ye(Z(r,Z(s,Z(o,c))))})}function lo(e,t,n="same",a=!1){return D(()=>{let r=Z(At(e,t.filters,[1,1],n),t.bias);return a?Ye(r):r})}function bn(e,t){Object.keys(e).forEach(n=>{t.some(a=>a.originalPath===n)||e[n].dispose()})}function Ru(e,t){return(n,a,r,s)=>{let i=Ca(e(n*a*r*r),[r,r,n,a]),o=nt(e(a));return t.push({paramPath:`${s}/filters`},{paramPath:`${s}/bias`}),{filters:i,bias:o}}}function Mf(e,t){return(n,a,r)=>{let s=Sa(e(n*a),[n,a]),i=nt(e(a));return t.push({paramPath:`${r}/weights`},{paramPath:`${r}/bias`}),{weights:s,bias:i}}}var Pf=class{constructor(t,n,a){this.depthwise_filter=t;this.pointwise_filter=n;this.bias=a}};function Mu(e,t){return(n,a,r)=>{let s=Ca(e(3*3*n),[3,3,n,1]),i=Ca(e(n*a),[1,1,n,a]),o=nt(e(a));return t.push({paramPath:`${r}/depthwise_filter`},{paramPath:`${r}/pointwise_filter`},{paramPath:`${r}/bias`}),new Pf(s,i,o)}}function Pu(e){return t=>{let n=e(`${t}/depthwise_filter`,4),a=e(`${t}/pointwise_filter`,4),r=e(`${t}/bias`,1);return new Pf(n,a,r)}}function Gn(e,t){return(n,a,r)=>{let s=e[n];if(!Qi(s,a))throw new Error(`expected weightMap[${n}] to be a Tensor${a}D, instead have ${s}`);return t.push({originalPath:n,paramPath:r||n}),s}}function xn(e){let t=e;function n(r){let s=t.slice(0,r);return t=t.slice(r),s}function a(){return t}return{extractWeights:n,getRemainingWeights:a}}function Of(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l,c=!1){let u=c?n(i,o,3,`${l}/conv0`):a(i,o,`${l}/conv0`),p=a(o,o,`${l}/conv1`),d=a(o,o,`${l}/conv2`);return{conv0:u,conv1:p,conv2:d}}function s(i,o,l,c=!1){let{conv0:u,conv1:p,conv2:d}=r(i,o,l,c),h=a(o,o,`${l}/conv3`);return{conv0:u,conv1:p,conv2:d,conv3:h}}return{extractDenseBlock3Params:r,extractDenseBlock4Params:s}}function aC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock4Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2"),l=r(128,256,"dense3");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o,dense3:l}}}function Lf(e){return t=>{let n=e(`${t}/filters`,4),a=e(`${t}/bias`,1);return{filters:n,bias:a}}}function zf(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`);return{conv0:c,conv1:u,conv2:p}}function i(o,l=!1){let c=l?a(`${o}/conv0`):r(`${o}/conv0`),u=r(`${o}/conv1`),p=r(`${o}/conv2`),d=r(`${o}/conv3`);return{conv0:c,conv1:u,conv2:p,conv3:d}}return{extractDenseBlock3Params:s,extractDenseBlock4Params:i}}function rC(e){let t=[],{extractDenseBlock4Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2"),dense3:n("dense3")};return bn(e,t),{params:a,paramMappings:t}}var zp=class extends Qt{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Lp(s,n.dense0,!0);return i=Lp(i,n.dense1),i=Lp(i,n.dense2),i=Lp(i,n.dense3),i=Yn(i,[7,7],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return rC(t)}extractParams(t){return aC(t)}};function Bp(e,t){return D(()=>Z(ze(e,t.weights),t.bias))}function sC(e,t,n){let a=[],{extractWeights:r,getRemainingWeights:s}=xn(e),o=Mf(r,a)(t,n,"fc");if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{paramMappings:a,params:{fc:o}}}function iC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:a("fc")};return bn(e,t),{params:r,paramMappings:t}}function Bf(e){let t={},n={};return Object.keys(e).forEach(a=>{let r=a.startsWith("fc")?n:t;r[a]=e[a]}),{featureExtractorMap:t,classifierMap:n}}var Wp=class extends Qt{constructor(t,n){super(t);this._faceFeatureExtractor=n}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t;return Bp(a.as2D(a.shape[0],-1),n.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return sC(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),iC(a)}extractParams(t){let n=this.getClassifierChannelsIn(),a=this.getClassifierChannelsOut(),r=a*n+a,s=t.slice(0,t.length-r),i=t.slice(t.length-r);return this.faceFeatureExtractor.extractWeights(s),this.extractClassifierParams(i)}};var Wf=["neutral","happy","sad","angry","fearful","disgusted","surprised"],Fr=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Wf.forEach((n,a)=>{this[n]=t[a]})}asSortedArray(){return Wf.map(t=>({expression:t,probability:this[t]})).sort((t,n)=>n.probability-t.probability)}};var Vp=class extends Wp{constructor(t=new zp){super("FaceExpressionNet",t)}forwardInput(t){return D(()=>Ta(this.runNet(t)))}async forward(t){return this.forwardInput(await gt(t))}async predictExpressions(t){let n=await gt(t),a=await this.forwardInput(n),r=await Promise.all(dt(a).map(async i=>{let o=await i.data();return i.dispose(),o}));a.dispose();let s=r.map(i=>new Fr(i));return n.isBatchInput?s:s[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function Vf(e){return e.expressions instanceof Fr}function Up(e,t){return{...e,...{expressions:t}}}function Ure(e,t,n=.1,a){(Array.isArray(t)?t:[t]).forEach(s=>{let i=s instanceof Fr?s:Vf(s)?s.expressions:void 0;if(!i)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let l=i.asSortedArray().filter(p=>p.probability>n),c=La(s)?s.detection.box.bottomLeft:a||new De(0,0);new bs(l.map(p=>`${p.expression} (${eo(p.probability)})`),c).draw(e)})}function ws(e){return La(e)&&e.landmarks instanceof Un&&e.unshiftedLandmarks instanceof Un&&e.alignedRect instanceof yt}function uo(e,t){let{box:n}=e.detection,a=t.shiftBy(n.x,n.y),r=a.align(),{imageDims:s}=e.detection,i=new yt(e.detection.score,r.rescale(s.reverse()),s);return{...e,...{landmarks:a,unshiftedLandmarks:t,alignedRect:i}}}var Nw=class{constructor(t={}){let{drawLines:n=!0,drawPoints:a=!0,lineWidth:r,lineColor:s,pointSize:i,pointColor:o}=t;this.drawLines=n,this.drawPoints=a,this.lineWidth=r||1,this.pointSize=i||2,this.lineColor=s||"rgba(0, 255, 255, 1)",this.pointColor=o||"rgba(255, 0, 255, 1)"}},Tw=class{constructor(t,n={}){this.faceLandmarks=t,this.options=new Nw(n)}draw(t){let n=yn(t),{drawLines:a,drawPoints:r,lineWidth:s,lineColor:i,pointSize:o,pointColor:l}=this.options;if(a&&this.faceLandmarks instanceof ro&&(n.strokeStyle=i,n.lineWidth=s,_r(n,this.faceLandmarks.getJawOutline()),_r(n,this.faceLandmarks.getLeftEyeBrow()),_r(n,this.faceLandmarks.getRightEyeBrow()),_r(n,this.faceLandmarks.getNose()),_r(n,this.faceLandmarks.getLeftEye(),!0),_r(n,this.faceLandmarks.getRightEye(),!0),_r(n,this.faceLandmarks.getMouth(),!0)),r){n.strokeStyle=l,n.fillStyle=l;let c=u=>{n.beginPath(),n.arc(u.x,u.y,o,0,2*Math.PI),n.fill()};this.faceLandmarks.positions.forEach(c)}}};function Gre(e,t){(Array.isArray(t)?t:[t]).forEach(a=>{let r=a instanceof Un?a:ws(a)?a.landmarks:void 0;if(!r)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Tw(r).draw(e)})}var oC="0.12.3";function Hre(e,t){let n=Ru(e,t),a=Mu(e,t);function r(i,o,l){let c=a(i,o,`${l}/separable_conv0`),u=a(o,o,`${l}/separable_conv1`),p=n(i,o,1,`${l}/expansion_conv`);return{separable_conv0:c,separable_conv1:u,expansion_conv:p}}function s(i,o){let l=a(i,i,`${o}/separable_conv0`),c=a(i,i,`${o}/separable_conv1`),u=a(i,i,`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:n,extractSeparableConvParams:a,extractReductionBlockParams:r,extractMainBlockParams:s}}function lC(e,t){let n=[],{extractWeights:a,getRemainingWeights:r}=xn(e),{extractConvParams:s,extractSeparableConvParams:i,extractReductionBlockParams:o,extractMainBlockParams:l}=Hre(a,n),c=s(3,32,3,"entry_flow/conv_in"),u=o(32,64,"entry_flow/reduction_block_0"),p=o(64,128,"entry_flow/reduction_block_1"),d={conv_in:c,reduction_block_0:u,reduction_block_1:p},h={};or(t,0,1).forEach(y=>{h[`main_block_${y}`]=l(128,`middle_flow/main_block_${y}`)});let m=o(128,256,"exit_flow/reduction_block"),f=i(256,512,"exit_flow/separable_conv"),g={reduction_block:m,separable_conv:f};if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:n,params:{entry_flow:d,middle_flow:h,exit_flow:g}}}function jre(e,t){let n=Gn(e,t),a=Lf(n),r=Pu(n);function s(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=a(`${o}/expansion_conv`);return{separable_conv0:l,separable_conv1:c,expansion_conv:u}}function i(o){let l=r(`${o}/separable_conv0`),c=r(`${o}/separable_conv1`),u=r(`${o}/separable_conv2`);return{separable_conv0:l,separable_conv1:c,separable_conv2:u}}return{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}}function uC(e,t){let n=[],{extractConvParams:a,extractSeparableConvParams:r,extractReductionBlockParams:s,extractMainBlockParams:i}=jre(e,n),o=a("entry_flow/conv_in"),l=s("entry_flow/reduction_block_0"),c=s("entry_flow/reduction_block_1"),u={conv_in:o,reduction_block_0:l,reduction_block_1:c},p={};or(t,0,1).forEach(f=>{p[`main_block_${f}`]=i(`middle_flow/main_block_${f}`)});let d=s("exit_flow/reduction_block"),h=r("exit_flow/separable_conv"),m={reduction_block:d,separable_conv:h};return bn(e,n),{params:{entry_flow:u,middle_flow:p,exit_flow:m},paramMappings:n}}function cC(e,t,n){return Z(At(e,t.filters,n,"same"),t.bias)}function Sw(e,t,n=!0){let a=n?Ye(e):e;return a=Cn(a,t.separable_conv0,[1,1]),a=Cn(Ye(a),t.separable_conv1,[1,1]),a=Ft(a,[3,3],[2,2],"same"),a=Z(a,cC(e,t.expansion_conv,[2,2])),a}function qre(e,t){let n=Cn(Ye(e),t.separable_conv0,[1,1]);return n=Cn(Ye(n),t.separable_conv1,[1,1]),n=Cn(Ye(n),t.separable_conv2,[1,1]),n=Z(n,e),n}var Cw=class extends Qt{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyXception - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Ye(cC(s,n.entry_flow.conv_in,[2,2]));return i=Sw(i,n.entry_flow.reduction_block_0,!1),i=Sw(i,n.entry_flow.reduction_block_1),or(this._numMainBlocks,0,1).forEach(o=>{i=qre(i,n.middle_flow[`main_block_${o}`])}),i=Sw(i,n.exit_flow.reduction_block),i=Ye(Cn(i,n.exit_flow.separable_conv,[1,1])),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return uC(t,this._numMainBlocks)}extractParams(t){return lC(t,this._numMainBlocks)}};function pC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),r=Mf(n,t),s=r(512,1,"fc/age"),i=r(512,2,"fc/gender");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{fc:{age:s,gender:i}}}}function dC(e){let t=[],n=Gn(e,t);function a(s){let i=n(`${s}/weights`,2),o=n(`${s}/bias`,1);return{weights:i,bias:o}}let r={fc:{age:a("fc/age"),gender:a("fc/gender")}};return bn(e,t),{params:r,paramMappings:t}}var pr;(function(e){e.FEMALE="female",e.MALE="male"})(pr||(pr={}));var Gp=class extends Qt{constructor(t=new Cw(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:n}=this;if(!n)throw new Error(`${this._name} - load model before inference`);return D(()=>{let a=t instanceof cr?this.faceFeatureExtractor.forwardInput(t):t,r=Yn(a,[7,7],[2,2],"valid").as2D(a.shape[0],-1),s=Bp(r,n.fc.age).as1D(),i=Bp(r,n.fc.gender);return{age:s,gender:i}})}forwardInput(t){return D(()=>{let{age:n,gender:a}=this.runNet(t);return{age:n,gender:Ta(a)}})}async forward(t){return this.forwardInput(await gt(t))}async predictAgeAndGender(t){let n=await gt(t),a=await this.forwardInput(n),r=dt(a.age),s=dt(a.gender),i=r.map((l,c)=>({ageTensor:l,genderTensor:s[c]})),o=await Promise.all(i.map(async({ageTensor:l,genderTensor:c})=>{let u=(await l.data())[0],p=(await c.data())[0],d=p>.5,h=d?pr.MALE:pr.FEMALE,m=d?p:1-p;return l.dispose(),c.dispose(),{age:u,gender:h,genderProbability:m}}));return a.age.dispose(),a.gender.dispose(),n.isBatchInput?o:o[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:n,paramMappings:a}=this.extractClassifierParams(t);this._params=n,this._paramMappings=a}extractClassifierParams(t){return pC(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:n,classifierMap:a}=Bf(t);return this.faceFeatureExtractor.loadFromWeightMap(n),dC(a)}extractParams(t){let n=512*1+1+(512*2+2),a=t.slice(0,t.length-n),r=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(r)}};var Hp=class extends Wp{postProcess(t,n,a){let r=a.map(({width:i,height:o})=>{let l=n/Math.max(o,i);return{width:i*l,height:o*l}}),s=r.length;return D(()=>{let i=(p,d)=>$t([kn([68],p,"float32"),kn([68],d,"float32")],1).as2D(1,136).as1D(),o=(p,d)=>{let{width:h,height:m}=r[p];return d(h,m)?Math.abs(h-m)/2:0},l=p=>o(p,(d,h)=>do(p,(d,h)=>hi(l(d),c(d))))).div($t(Array.from(Array(s),(p,d)=>i(r[d].width,r[d].height))))})}forwardInput(t){return D(()=>{let n=this.runNet(t);return this.postProcess(n,t.inputSize,t.inputDimensions.map(([a,r])=>({height:a,width:r})))})}async forward(t){return this.forwardInput(await gt(t))}async detectLandmarks(t){let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(async(s,i)=>{let o=Array.from(await s.data()),l=o.filter((u,p)=>xf(p)),c=o.filter((u,p)=>!xf(p));return new ro(Array(68).fill(0).map((u,p)=>new De(l[p],c[p])),{height:n.getInputHeight(i),width:n.getInputWidth(i)})}));return a.forEach(s=>s.dispose()),n.isBatchInput?r:r[0]}getClassifierChannelsOut(){return 136}};var co=class extends Hp{constructor(t=new zp){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};function hC(e){let t=[],{extractDenseBlock3Params:n}=zf(e,t),a={dense0:n("dense0",!0),dense1:n("dense1"),dense2:n("dense2")};return bn(e,t),{params:a,paramMappings:t}}function mC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractDenseBlock3Params:r}=Of(n,t),s=r(3,32,"dense0",!0),i=r(32,64,"dense1"),o=r(64,128,"dense2");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:t,params:{dense0:s,dense1:i,dense2:o}}}var _w=class extends Qt{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("TinyFaceFeatureExtractor - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(112,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(255)),i=Rf(s,n.dense0,!0);return i=Rf(i,n.dense1),i=Rf(i,n.dense2),i=Yn(i,[14,14],[2,2],"valid"),i})}async forward(t){return this.forwardInput(await gt(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return hC(t)}extractParams(t){return mC(t)}};var jp=class extends Hp{constructor(t=new _w){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Ew=class extends co{};function fC(e,t){return Z(L(e,t.weights),t.biases)}function Aw(e,t,n,a,r="same"){let{filters:s,bias:i}=t.conv,o=At(e,s,n,r);return o=Z(o,i),o=fC(o,t.scale),a?Ye(o):o}function gC(e,t){return Aw(e,t,[1,1],!0)}function Fw(e,t){return Aw(e,t,[1,1],!1)}function Gf(e,t){return Aw(e,t,[2,2],!0,"valid")}function Kre(e,t){function n(o,l,c){let u=e(o),p=u.length/(l*c*c);if(hw(p))throw new Error(`depth has to be an integer: ${p}, weights.length: ${u.length}, numFilters: ${l}, filterSize: ${c}`);return D(()=>Ue(Ca(u,[l,p,c,c]),[2,3,1,0]))}function a(o,l,c,u){let p=n(o,l,c),d=nt(e(l));return t.push({paramPath:`${u}/filters`},{paramPath:`${u}/bias`}),{filters:p,bias:d}}function r(o,l){let c=nt(e(o)),u=nt(e(o));return t.push({paramPath:`${l}/weights`},{paramPath:`${l}/biases`}),{weights:c,biases:u}}function s(o,l,c,u){let p=a(o,l,c,`${u}/conv`),d=r(l,`${u}/scale`);return{conv:p,scale:d}}function i(o,l,c,u,p=!1){let d=s((p?.5:1)*o,l,c,`${u}/conv1`),h=s(o,l,c,`${u}/conv2`);return{conv1:d,conv2:h}}return{extractConvLayerParams:s,extractResidualLayerParams:i}}function yC(e){let{extractWeights:t,getRemainingWeights:n}=xn(e),a=[],{extractConvLayerParams:r,extractResidualLayerParams:s}=Kre(t,a),i=r(4704,32,7,"conv32_down"),o=s(9216,32,3,"conv32_1"),l=s(9216,32,3,"conv32_2"),c=s(9216,32,3,"conv32_3"),u=s(36864,64,3,"conv64_down",!0),p=s(36864,64,3,"conv64_1"),d=s(36864,64,3,"conv64_2"),h=s(36864,64,3,"conv64_3"),m=s(147456,128,3,"conv128_down",!0),f=s(147456,128,3,"conv128_1"),g=s(147456,128,3,"conv128_2"),y=s(589824,256,3,"conv256_down",!0),b=s(589824,256,3,"conv256_1"),v=s(589824,256,3,"conv256_2"),x=s(589824,256,3,"conv256_down_out"),N=D(()=>Ue(Sa(t(256*128),[128,256]),[1,0]));if(a.push({paramPath:"fc"}),n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{params:{conv32_down:i,conv32_1:o,conv32_2:l,conv32_3:c,conv64_down:u,conv64_1:p,conv64_2:d,conv64_3:h,conv128_down:m,conv128_1:f,conv128_2:g,conv256_down:y,conv256_1:b,conv256_2:v,conv256_down_out:x,fc:N},paramMappings:a}}function Xre(e,t){let n=Gn(e,t);function a(i){let o=n(`${i}/scale/weights`,1),l=n(`${i}/scale/biases`,1);return{weights:o,biases:l}}function r(i){let o=n(`${i}/conv/filters`,4),l=n(`${i}/conv/bias`,1),c=a(i);return{conv:{filters:o,bias:l},scale:c}}function s(i){return{conv1:r(`${i}/conv1`),conv2:r(`${i}/conv2`)}}return{extractConvLayerParams:r,extractResidualLayerParams:s}}function bC(e){let t=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=Xre(e,t),r=n("conv32_down"),s=a("conv32_1"),i=a("conv32_2"),o=a("conv32_3"),l=a("conv64_down"),c=a("conv64_1"),u=a("conv64_2"),p=a("conv64_3"),d=a("conv128_down"),h=a("conv128_1"),m=a("conv128_2"),f=a("conv256_down"),g=a("conv256_1"),y=a("conv256_2"),b=a("conv256_down_out"),{fc:v}=e;if(t.push({originalPath:"fc",paramPath:"fc"}),!dw(v))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${v}`);let x={conv32_down:r,conv32_1:s,conv32_2:i,conv32_3:o,conv64_down:l,conv64_1:c,conv64_2:u,conv64_3:p,conv128_down:d,conv128_1:h,conv128_2:m,conv256_down:f,conv256_1:g,conv256_2:y,conv256_down_out:b,fc:v};return bn(e,t),{params:x,paramMappings:t}}function za(e,t){let n=gC(e,t.conv1);return n=Fw(n,t.conv2),n=Z(n,e),n=Ye(n),n}function qp(e,t){let n=Gf(e,t.conv1);n=Fw(n,t.conv2);let a=Yn(e,2,2,"valid"),r=vt(a.shape),s=a.shape[3]!==n.shape[3];if(a.shape[1]!==n.shape[1]||a.shape[2]!==n.shape[2]){let o=[...n.shape];o[1]=1;let l=vt(o);n=Qe([n,l],1);let c=[...n.shape];c[2]=1;let u=vt(c);n=Qe([n,u],2)}return a=s?Qe([a,r],3):a,n=Z(a,n),n=Ye(n),n}var po=class extends Qt{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("FaceRecognitionNet - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(150,!0),"float32"),s=va(a,[122.782,117.001,104.298]).div(de(256)),i=Gf(s,n.conv32_down);i=Ft(i,3,2,"valid"),i=za(i,n.conv32_1),i=za(i,n.conv32_2),i=za(i,n.conv32_3),i=qp(i,n.conv64_down),i=za(i,n.conv64_1),i=za(i,n.conv64_2),i=za(i,n.conv64_3),i=qp(i,n.conv128_down),i=za(i,n.conv128_1),i=za(i,n.conv128_2),i=qp(i,n.conv256_down),i=za(i,n.conv256_1),i=za(i,n.conv256_2),i=qp(i,n.conv256_down_out);let o=i.mean([1,2]);return ze(o,n.fc)})}async forward(t){return this.forwardInput(await gt(t))}async computeFaceDescriptor(t){var s;if((s=t==null?void 0:t.shape)==null?void 0:s.some(i=>i<=0))return new Float32Array(128);let n=await gt(t),a=D(()=>dt(this.forwardInput(n))),r=await Promise.all(a.map(i=>i.data()));return a.forEach(i=>i.dispose()),n.isBatchInput?r:r[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return bC(t)}extractParams(t){return yC(t)}};function xC(e){let t=new po;return t.extractWeights(e),t}function Kp(e,t){return{...e,...{descriptor:t}}}function vC(e){return typeof e.age=="number"}function Xp(e,t){return{...e,...{age:t}}}function wC(e){return(e.gender===pr.MALE||e.gender===pr.FEMALE)&&_u(e.genderProbability)}function Yp(e,t,n){return{...e,...{gender:t,genderProbability:n}}}function Yre(e,t){function n(l,c){let u=Ca(e(3*3*l),[3,3,l,1]),p=nt(e(l)),d=nt(e(l)),h=nt(e(l)),m=nt(e(l));return t.push({paramPath:`${c}/filters`},{paramPath:`${c}/batch_norm_scale`},{paramPath:`${c}/batch_norm_offset`},{paramPath:`${c}/batch_norm_mean`},{paramPath:`${c}/batch_norm_variance`}),{filters:u,batch_norm_scale:p,batch_norm_offset:d,batch_norm_mean:h,batch_norm_variance:m}}function a(l,c,u,p,d){let h=Ca(e(l*c*u*u),[u,u,l,c]),m=nt(e(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/${d?"batch_norm_offset":"bias"}`}),{filters:h,bias:m}}function r(l,c,u,p){let{filters:d,bias:h}=a(l,c,u,p,!0);return{filters:d,batch_norm_offset:h}}function s(l,c,u){let p=n(l,`${u}/depthwise_conv`),d=r(l,c,1,`${u}/pointwise_conv`);return{depthwise_conv:p,pointwise_conv:d}}function i(){let l=r(3,32,3,"mobilenetv1/conv_0"),c=s(32,64,"mobilenetv1/conv_1"),u=s(64,128,"mobilenetv1/conv_2"),p=s(128,128,"mobilenetv1/conv_3"),d=s(128,256,"mobilenetv1/conv_4"),h=s(256,256,"mobilenetv1/conv_5"),m=s(256,512,"mobilenetv1/conv_6"),f=s(512,512,"mobilenetv1/conv_7"),g=s(512,512,"mobilenetv1/conv_8"),y=s(512,512,"mobilenetv1/conv_9"),b=s(512,512,"mobilenetv1/conv_10"),v=s(512,512,"mobilenetv1/conv_11"),x=s(512,1024,"mobilenetv1/conv_12"),N=s(1024,1024,"mobilenetv1/conv_13");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,conv_8:g,conv_9:y,conv_10:b,conv_11:v,conv_12:x,conv_13:N}}function o(){let l=r(1024,256,1,"prediction_layer/conv_0"),c=r(256,512,3,"prediction_layer/conv_1"),u=r(512,128,1,"prediction_layer/conv_2"),p=r(128,256,3,"prediction_layer/conv_3"),d=r(256,128,1,"prediction_layer/conv_4"),h=r(128,256,3,"prediction_layer/conv_5"),m=r(256,64,1,"prediction_layer/conv_6"),f=r(64,128,3,"prediction_layer/conv_7"),g=a(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=a(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),b=a(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),v=a(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),x=a(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),N=a(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),T=a(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),C=a(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),$=a(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),F=a(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),O=a(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),B=a(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:l,conv_1:c,conv_2:u,conv_3:p,conv_4:d,conv_5:h,conv_6:m,conv_7:f,box_predictor_0:{box_encoding_predictor:g,class_predictor:y},box_predictor_1:{box_encoding_predictor:b,class_predictor:v},box_predictor_2:{box_encoding_predictor:x,class_predictor:N},box_predictor_3:{box_encoding_predictor:T,class_predictor:C},box_predictor_4:{box_encoding_predictor:$,class_predictor:F},box_predictor_5:{box_encoding_predictor:O,class_predictor:B}}}return{extractMobilenetV1Params:i,extractPredictionLayerParams:o}}function kC(e){let t=[],{extractWeights:n,getRemainingWeights:a}=xn(e),{extractMobilenetV1Params:r,extractPredictionLayerParams:s}=Yre(n,t),i=r(),o=s(),c={extra_dim:wh(n(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:{mobilenetv1:i,prediction_layer:o,output_layer:c},paramMappings:t}}function Zre(e,t){let n=Gn(e,t);function a(c,u,p){let d=n(`${c}/Conv2d_${u}_pointwise/weights`,4,`${p}/filters`),h=n(`${c}/Conv2d_${u}_pointwise/convolution_bn_offset`,1,`${p}/batch_norm_offset`);return{filters:d,batch_norm_offset:h}}function r(c){let u=`mobilenetv1/conv_${c}`,p=`MobilenetV1/Conv2d_${c}_depthwise`,d=`${u}/depthwise_conv`,h=`${u}/pointwise_conv`,m=n(`${p}/depthwise_weights`,4,`${d}/filters`),f=n(`${p}/BatchNorm/gamma`,1,`${d}/batch_norm_scale`),g=n(`${p}/BatchNorm/beta`,1,`${d}/batch_norm_offset`),y=n(`${p}/BatchNorm/moving_mean`,1,`${d}/batch_norm_mean`),b=n(`${p}/BatchNorm/moving_variance`,1,`${d}/batch_norm_variance`);return{depthwise_conv:{filters:m,batch_norm_scale:f,batch_norm_offset:g,batch_norm_mean:y,batch_norm_variance:b},pointwise_conv:a("MobilenetV1",c,h)}}function s(){return{conv_0:a("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:r(1),conv_2:r(2),conv_3:r(3),conv_4:r(4),conv_5:r(5),conv_6:r(6),conv_7:r(7),conv_8:r(8),conv_9:r(9),conv_10:r(10),conv_11:r(11),conv_12:r(12),conv_13:r(13)}}function i(c,u){let p=n(`${c}/weights`,4,`${u}/filters`),d=n(`${c}/biases`,1,`${u}/bias`);return{filters:p,bias:d}}function o(c){let u=i(`Prediction/BoxPredictor_${c}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${c}/box_encoding_predictor`),p=i(`Prediction/BoxPredictor_${c}/ClassPredictor`,`prediction_layer/box_predictor_${c}/class_predictor`);return{box_encoding_predictor:u,class_predictor:p}}function l(){return{conv_0:a("Prediction",0,"prediction_layer/conv_0"),conv_1:a("Prediction",1,"prediction_layer/conv_1"),conv_2:a("Prediction",2,"prediction_layer/conv_2"),conv_3:a("Prediction",3,"prediction_layer/conv_3"),conv_4:a("Prediction",4,"prediction_layer/conv_4"),conv_5:a("Prediction",5,"prediction_layer/conv_5"),conv_6:a("Prediction",6,"prediction_layer/conv_6"),conv_7:a("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:o(0),box_predictor_1:o(1),box_predictor_2:o(2),box_predictor_3:o(3),box_predictor_4:o(4),box_predictor_5:o(5)}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:l}}function IC(e){let t=[],{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=Zre(e,t),r=e["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!Er(r))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${r}`);let s={mobilenetv1:n(),prediction_layer:a(),output_layer:{extra_dim:r}};return bn(e,t),{params:s,paramMappings:t}}function wa(e,t,n){return D(()=>{let a=At(e,t.filters,n,"same");return a=Z(a,t.batch_norm_offset),qt(a,0,6)})}var Jre=.0010000000474974513;function Qre(e,t,n){return D(()=>{let a=es(e,t.filters,n,"same");return a=br(a,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Jre),qt(a,0,6)})}function ese(e){return[2,4,6,12].some(t=>t===e)?[2,2]:[1,1]}function NC(e,t){return D(()=>{let n,a=wa(e,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((s,i)=>{let o=i+1,l=ese(o);a=Qre(a,s.depthwise_conv,l),a=wa(a,s.pointwise_conv,[1,1]),o===11&&(n=a)}),n===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:a,conv11:n}})}function tse(e,t,n){let a=e.arraySync(),r=Math.min(a[t][0],a[t][2]),s=Math.min(a[t][1],a[t][3]),i=Math.max(a[t][0],a[t][2]),o=Math.max(a[t][1],a[t][3]),l=Math.min(a[n][0],a[n][2]),c=Math.min(a[n][1],a[n][3]),u=Math.max(a[n][0],a[n][2]),p=Math.max(a[n][1],a[n][3]),d=(i-r)*(o-s),h=(u-l)*(p-c);if(d<=0||h<=0)return 0;let m=Math.max(r,l),f=Math.max(s,c),g=Math.min(i,u),y=Math.min(o,p),b=Math.max(g-m,0)*Math.max(y-f,0);return b/(d+h-b)}function TC(e,t,n,a,r){let s=e.shape[0],i=Math.min(n,s),o=t.map((u,p)=>({score:u,boxIndex:p})).filter(u=>u.score>r).sort((u,p)=>p.score-u.score),l=u=>u<=a?1:0,c=[];return o.forEach(u=>{if(c.length>=i)return;let p=u.score;for(let d=c.length-1;d>=0;--d){let h=tse(e,u.boxIndex,c[d]);if(h!==0&&(u.score*=l(h),u.score<=r))break}p===u.score&&c.push(u.boxIndex)}),c}function nse(e){let t=dt(Ue(e,[1,0])),n=[fe(t[2],t[0]),fe(t[3],t[1])],a=[Z(t[0],ve(n[0],de(2))),Z(t[1],ve(n[1],de(2)))];return{sizes:n,centers:a}}function ase(e,t){let{sizes:n,centers:a}=nse(e),r=dt(Ue(t,[1,0])),s=ve(L(dn(ve(r[2],de(5))),n[0]),de(2)),i=Z(L(ve(r[0],de(10)),n[0]),a[0]),o=ve(L(dn(ve(r[3],de(5))),n[1]),de(2)),l=Z(L(ve(r[1],de(10)),n[1]),a[1]);return Ue($t([fe(i,s),fe(l,o),Z(i,s),Z(l,o)]),[1,0])}function SC(e,t,n){return D(()=>{let a=e.shape[0],r=ase(j(Ka(n.extra_dim,[a,1,1]),[-1,4]),j(e,[-1,4]));r=j(r,[a,r.shape[0]/a,4]);let s=pa(We(t,[0,0,1],[-1,-1,-1])),i=We(s,[0,0,0],[-1,-1,1]);i=j(i,[a,i.shape[1]]);let o=dt(r),l=dt(i);return{boxes:o,scores:l}})}function ho(e,t){return D(()=>{let n=e.shape[0],a=j(lo(e,t.box_encoding_predictor),[n,-1,1,4]),r=j(lo(e,t.class_predictor),[n,-1,3]);return{boxPredictionEncoding:a,classPrediction:r}})}function CC(e,t,n){return D(()=>{let a=wa(e,n.conv_0,[1,1]),r=wa(a,n.conv_1,[2,2]),s=wa(r,n.conv_2,[1,1]),i=wa(s,n.conv_3,[2,2]),o=wa(i,n.conv_4,[1,1]),l=wa(o,n.conv_5,[2,2]),c=wa(l,n.conv_6,[1,1]),u=wa(c,n.conv_7,[2,2]),p=ho(t,n.box_predictor_0),d=ho(e,n.box_predictor_1),h=ho(r,n.box_predictor_2),m=ho(i,n.box_predictor_3),f=ho(l,n.box_predictor_4),g=ho(u,n.box_predictor_5),y=Qe([p.boxPredictionEncoding,d.boxPredictionEncoding,h.boxPredictionEncoding,m.boxPredictionEncoding,f.boxPredictionEncoding,g.boxPredictionEncoding],1),b=Qe([p.classPrediction,d.classPrediction,h.classPrediction,m.classPrediction,f.classPrediction,g.classPrediction],1);return{boxPredictions:y,classPredictions:b}})}var na=class{constructor({minConfidence:t,maxResults:n}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=n||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var ks=class extends Qt{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:n}=this;if(!n)throw new Error("SsdMobilenetv1 - load model before inference");return D(()=>{let a=ce(t.toBatchTensor(512,!1),"float32"),r=fe(L(a,de(.007843137718737125)),de(1)),s=NC(r,n.mobilenetv1),{boxPredictions:i,classPredictions:o}=CC(s.out,s.conv11,n.prediction_layer);return SC(i,o,n.output_layer)})}async forward(t){return this.forwardInput(await gt(t))}async locateFaces(t,n={}){let{maxResults:a,minConfidence:r}=new na(n),s=await gt(t),{boxes:i,scores:o}=this.forwardInput(s),l=i[0],c=o[0];for(let v=1;v{let[x,N]=[Math.max(0,y[v][0]),Math.min(1,y[v][2])].map($=>$*g),[T,C]=[Math.max(0,y[v][1]),Math.min(1,y[v][3])].map($=>$*f);return new yt(u[v],new ao(T,x,C-T,N-x),{height:s.getInputHeight(0),width:s.getInputWidth(0)})});return l.dispose(),c.dispose(),b}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return IC(t)}extractParams(t){return kC(t)}};function $w(e){let t=new ks;return t.extractWeights(e),t}function _C(e){return $w(e)}var Dw=class extends ks{};var EC=.4,AC=[new De(.738768,.874946),new De(2.42204,2.65704),new De(4.30971,7.04493),new De(10.246,4.59428),new De(12.6868,11.8741)],FC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],$C=[117.001,114.697,97.404],DC="tiny_yolov2_model",RC="tiny_yolov2_separable_conv_model";var Hf=e=>typeof e=="number";function jf(e){if(!e)throw new Error(`invalid config: ${e}`);if(typeof e.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${e.withSeparableConvs}`);if(!Hf(e.iouThreshold)||e.iouThreshold<0||e.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${e.iouThreshold}`);if(!Array.isArray(e.classes)||!e.classes.length||!e.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(e.classes)}`);if(!Array.isArray(e.anchors)||!e.anchors.length||!e.anchors.map(t=>t||{}).every(t=>Hf(t.x)&&Hf(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(e.anchors)}`);if(e.meanRgb&&(!Array.isArray(e.meanRgb)||e.meanRgb.length!==3||!e.meanRgb.every(Hf)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(e.meanRgb)}`)}function Ou(e){return D(()=>{let t=L(e,de(.10000000149011612));return Z(Ye(fe(e,t)),t)})}function $r(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=At(n,t.conv.filters,[1,1],"valid"),n=fe(n,t.bn.sub),n=L(n,t.bn.truediv),n=Z(n,t.conv.bias),Ou(n)})}function Dr(e,t){return D(()=>{let n=Jn(e,[[0,0],[1,1],[1,1],[0,0]]);return n=Mi(n,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),n=Z(n,t.bias),Ou(n)})}function rse(e,t){let n=Ru(e,t);function a(i,o){let l=nt(e(i)),c=nt(e(i));return t.push({paramPath:`${o}/sub`},{paramPath:`${o}/truediv`}),{sub:l,truediv:c}}function r(i,o,l){let c=n(i,o,3,`${l}/conv`),u=a(o,`${l}/bn`);return{conv:c,bn:u}}let s=Mu(e,t);return{extractConvParams:n,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}}function MC(e,t,n,a){let{extractWeights:r,getRemainingWeights:s}=xn(e),i=[],{extractConvParams:o,extractConvWithBatchNormParams:l,extractSeparableConvParams:c}=rse(r,i),u;if(t.withSeparableConvs){let[p,d,h,m,f,g,y,b,v]=a,x=t.isFirstLayerConv2d?o(p,d,3,"conv0"):c(p,d,"conv0"),N=c(d,h,"conv1"),T=c(h,m,"conv2"),C=c(m,f,"conv3"),$=c(f,g,"conv4"),F=c(g,y,"conv5"),O=b?c(y,b,"conv6"):void 0,B=v?c(b,v,"conv7"):void 0,W=o(v||b||y,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}else{let[p,d,h,m,f,g,y,b,v]=a,x=l(p,d,"conv0"),N=l(d,h,"conv1"),T=l(h,m,"conv2"),C=l(m,f,"conv3"),$=l(f,g,"conv4"),F=l(g,y,"conv5"),O=l(y,b,"conv6"),B=l(b,v,"conv7"),W=o(v,5*n,1,"conv8");u={conv0:x,conv1:N,conv2:T,conv3:C,conv4:$,conv5:F,conv6:O,conv7:B,conv8:W}}if(s().length!==0)throw new Error(`weights remaing after extract: ${s().length}`);return{params:u,paramMappings:i}}function sse(e,t){let n=Gn(e,t);function a(o){let l=n(`${o}/sub`,1),c=n(`${o}/truediv`,1);return{sub:l,truediv:c}}function r(o){let l=n(`${o}/filters`,4),c=n(`${o}/bias`,1);return{filters:l,bias:c}}function s(o){let l=r(`${o}/conv`),c=a(`${o}/bn`);return{conv:l,bn:c}}let i=Pu(n);return{extractConvParams:r,extractConvWithBatchNormParams:s,extractSeparableConvParams:i}}function PC(e,t){let n=[],{extractConvParams:a,extractConvWithBatchNormParams:r,extractSeparableConvParams:s}=sse(e,n),i;if(t.withSeparableConvs){let o=t.filterSizes&&t.filterSizes.length||9;i={conv0:t.isFirstLayerConv2d?a("conv0"):s("conv0"),conv1:s("conv1"),conv2:s("conv2"),conv3:s("conv3"),conv4:s("conv4"),conv5:s("conv5"),conv6:o>7?s("conv6"):void 0,conv7:o>8?s("conv7"):void 0,conv8:a("conv8")}}else i={conv0:r("conv0"),conv1:r("conv1"),conv2:r("conv2"),conv3:r("conv3"),conv4:r("conv4"),conv5:r("conv5"),conv6:r("conv6"),conv7:r("conv7"),conv8:a("conv8")};return bn(e,n),{params:i,paramMappings:n}}var Ba=class{constructor({inputSize:t,scoreThreshold:n}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=n||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var Rw=class extends Qt{constructor(t){super("TinyYolov2");jf(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,n){let a=$r(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=$r(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=$r(a,n.conv6),a=$r(a,n.conv7),lo(a,n.conv8,"valid",!1)}runMobilenet(t,n){let a=this.config.isFirstLayerConv2d?Ou(lo(t,n.conv0,"valid",!1)):Dr(t,n.conv0);return a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv1),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv2),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv3),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv4),a=Ft(a,[2,2],[2,2],"same"),a=Dr(a,n.conv5),a=Ft(a,[2,2],[1,1],"same"),a=n.conv6?Dr(a,n.conv6):a,a=n.conv7?Dr(a,n.conv7):a,lo(a,n.conv8,"valid",!1)}forwardInput(t,n){let{params:a}=this;if(!a)throw new Error("TinyYolov2 - load model before inference");return D(()=>{let r=ce(t.toBatchTensor(n,!1),"float32");return r=this.config.meanRgb?va(r,this.config.meanRgb):r,r=r.div(de(256)),this.config.withSeparableConvs?this.runMobilenet(r,a):this.runTinyYolov2(r,a)})}async forward(t,n){return this.forwardInput(await gt(t),n)}async detect(t,n={}){let{inputSize:a,scoreThreshold:r}=new Ba(n),s=await gt(t),i=await this.forwardInput(s,a),o=D(()=>dt(i)[0].expandDims()),l={width:s.getInputWidth(0),height:s.getInputHeight(0)},c=await this.extractBoxes(o,s.getReshapedInputDimensions(0),r);i.dispose(),o.dispose();let u=c.map(g=>g.box),p=c.map(g=>g.score),d=c.map(g=>g.classScore),h=c.map(g=>this.config.classes[g.label]);return If(u.map(g=>g.rescale(a)),p,this.config.iouThreshold,!0).map(g=>new Ar(p[g],d[g],h[g],u[g],l))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return PC(t,this.config)}extractParams(t){let n=this.config.filterSizes||Rw.DEFAULT_FILTER_SIZES,a=n?n.length:void 0;if(a!==7&&a!==8&&a!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${a} filterSizes in config`);return MC(t,this.config,this.boxEncodingSize,n)}async extractBoxes(t,n,a){let{width:r,height:s}=n,i=Math.max(r,s),o=i/r,l=i/s,c=t.shape[1],u=this.config.anchors.length,[p,d,h]=D(()=>{let y=t.reshape([c,c,u,this.boxEncodingSize]),b=y.slice([0,0,0,0],[c,c,u,4]),v=y.slice([0,0,0,4],[c,c,u,1]),x=this.withClassScores?Ta(y.slice([0,0,0,5],[c,c,u,this.config.classes.length]),3):de(0);return[b,v,x]}),m=[],f=await d.array(),g=await p.array();for(let y=0;ya){let N=(b+Eu(g[y][b][v][0]))/c*o,T=(y+Eu(g[y][b][v][1]))/c*l,C=Math.exp(g[y][b][v][2])*this.config.anchors[v].x/c*o,$=Math.exp(g[y][b][v][3])*this.config.anchors[v].y/c*l,F=N-C/2,O=T-$/2,B={row:y,col:b,anchor:v},{classScore:W,label:G}=this.withClassScores?await this.extractPredictedClass(h,B):{classScore:1,label:0};m.push({box:new no(F,O,F+C,O+$),score:x,classScore:x*W,label:G,...B})}}return p.dispose(),d.dispose(),h.dispose(),m}async extractPredictedClass(t,n){let{row:a,col:r,anchor:s}=n,i=await t.array();return Array(this.config.classes.length).fill(0).map((o,l)=>i[a][r][s][l]).map((o,l)=>({classScore:o,label:l})).reduce((o,l)=>o.classScore>l.classScore?o:l)}},Lu=Rw;Lu.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var mo=class extends Lu{constructor(t=!0){let n={withSeparableConvs:t,iouThreshold:EC,classes:["face"],...t?{anchors:FC,meanRgb:$C}:{anchors:AC,withClassScores:!0}};super(n)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?RC:DC}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function OC(e,t=!0){let n=new mo(t);return n.extractWeights(e),n}var Zp=class extends Ba{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var aa=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};async function fo(e,t,n,a,r=({alignedRect:s})=>s){let s=e.map(l=>ws(l)?r(l):l.detection),i=a||(t instanceof Ae?await oo(t,s):await io(t,s)),o=await n(i);return i.forEach(l=>l instanceof Ae&&l.dispose()),o}async function zu(e,t,n,a,r){return fo([e],t,async s=>n(s[0]),a,r)}var LC=.4,zC=[new De(1.603231,2.094468),new De(6.041143,7.080126),new De(2.882459,3.518061),new De(4.266906,5.178857),new De(9.041765,10.66308)],BC=[117.001,114.697,97.404];var go=class extends Lu{constructor(){let t={withSeparableConvs:!0,iouThreshold:LC,classes:["face"],anchors:zC,meanRgb:BC,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,n){return(await this.detect(t,n)).map(r=>new yt(r.score,r.relativeBox,{width:r.imageWidth,height:r.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var et={ssdMobilenetv1:new ks,tinyFaceDetector:new go,tinyYolov2:new mo,faceLandmark68Net:new co,faceLandmark68TinyNet:new jp,faceRecognitionNet:new po,faceExpressionNet:new Vp,ageGenderNet:new Gp},Mw=(e,t)=>et.ssdMobilenetv1.locateFaces(e,t),WC=(e,t)=>et.tinyFaceDetector.locateFaces(e,t),VC=(e,t)=>et.tinyYolov2.locateFaces(e,t),Pw=e=>et.faceLandmark68Net.detectLandmarks(e),UC=e=>et.faceLandmark68TinyNet.detectLandmarks(e),GC=e=>et.faceRecognitionNet.computeFaceDescriptor(e),HC=e=>et.faceExpressionNet.predictExpressions(e),jC=e=>et.ageGenderNet.predictAgeAndGender(e),Ow=e=>et.ssdMobilenetv1.load(e),qC=e=>et.tinyFaceDetector.load(e),KC=e=>et.tinyYolov2.load(e),XC=e=>et.faceLandmark68Net.load(e),YC=e=>et.faceLandmark68TinyNet.load(e),ZC=e=>et.faceRecognitionNet.load(e),JC=e=>et.faceExpressionNet.load(e),QC=e=>et.ageGenderNet.load(e),e_=Ow,t_=Mw,n_=Pw;var Lw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Vu=class extends Lw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.faceExpressionNet.predictExpressions(r))),this.extractedFaces);return t.map((a,r)=>Up(a,n[r]))}withAgeAndGender(){return new Bu(this,this.input)}},Uu=class extends Lw{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceExpressionNet.predictExpressions(a),this.extractedFaces);return Up(t,n)}withAgeAndGender(){return new Wu(this,this.input)}},xo=class extends Vu{withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},vo=class extends Uu{withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var zw=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.extractedFaces=a}},Bu=class extends zw{async run(){let t=await this.parentTask,n=await fo(t,this.input,async a=>Promise.all(a.map(r=>et.ageGenderNet.predictAgeAndGender(r))),this.extractedFaces);return t.map((a,r)=>{let{age:s,gender:i,genderProbability:o}=n[r];return Xp(Yp(a,i,o),s)})}withFaceExpressions(){return new Vu(this,this.input)}},Wu=class extends zw{async run(){let t=await this.parentTask;if(!t)return;let{age:n,gender:a,genderProbability:r}=await zu(t,this.input,s=>et.ageGenderNet.predictAgeAndGender(s),this.extractedFaces);return Xp(Yp(t,a,r),n)}withFaceExpressions(){return new Uu(this,this.input)}},yo=class extends Bu{withFaceExpressions(){return new xo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},bo=class extends Wu{withFaceExpressions(){return new vo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var Jp=class extends aa{constructor(t,n){super();this.parentTask=t;this.input=n}},Rr=class extends Jp{async run(){let t=await this.parentTask;return(await fo(t,this.input,a=>Promise.all(a.map(r=>et.faceRecognitionNet.computeFaceDescriptor(r))),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}))).map((a,r)=>Kp(t[r],a))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}},Mr=class extends Jp{async run(){let t=await this.parentTask;if(!t)return;let n=await zu(t,this.input,a=>et.faceRecognitionNet.computeFaceDescriptor(a),null,a=>a.landmarks.align(null,{useDlibAlignment:!0}));return Kp(t,n)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}};var Qp=class extends aa{constructor(t,n,a){super();this.parentTask=t;this.input=n;this.useTinyLandmarkNet=a}get landmarkNet(){return this.useTinyLandmarkNet?et.faceLandmark68TinyNet:et.faceLandmark68Net}},ed=class extends Qp{async run(){let t=await this.parentTask,n=t.map(s=>s.detection),a=this.input instanceof Ae?await oo(this.input,n):await io(this.input,n),r=await Promise.all(a.map(s=>this.landmarkNet.detectLandmarks(s)));return a.forEach(s=>s instanceof Ae&&s.dispose()),t.map((s,i)=>uo(s,r[i]))}withFaceExpressions(){return new xo(this,this.input)}withAgeAndGender(){return new yo(this,this.input)}withFaceDescriptors(){return new Rr(this,this.input)}},td=class extends Qp{async run(){let t=await this.parentTask;if(!t)return;let{detection:n}=t,a=this.input instanceof Ae?await oo(this.input,[n]):await io(this.input,[n]),r=await this.landmarkNet.detectLandmarks(a[0]);return a.forEach(s=>s instanceof Ae&&s.dispose()),uo(t,r)}withFaceExpressions(){return new vo(this,this.input)}withAgeAndGender(){return new bo(this,this.input)}withFaceDescriptor(){return new Mr(this,this.input)}};var nd=class extends aa{constructor(t,n=new na){super();this.input=t;this.options=n}},Gu=class extends nd{async run(){let{input:t,options:n}=this,a=n instanceof Zp?r=>et.tinyFaceDetector.locateFaces(r,n):n instanceof na?r=>et.ssdMobilenetv1.locateFaces(r,n):n instanceof Ba?r=>et.tinyYolov2.locateFaces(r,n):null;if(!a)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return a(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let n=await this.run();t(n.map(a=>gs({},a)))})}withFaceLandmarks(t=!1){return new ed(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new Vu(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Bu(this.runAndExtendWithFaceDetections(),this.input)}},ad=class extends nd{async run(){let t=await new Gu(this.input,this.options),n=t[0];return t.forEach(a=>{a.score>n.score&&(n=a)}),n}runAndExtendWithFaceDetection(){return new Promise(async t=>{let n=await this.run();t(n?gs({},n):void 0)})}withFaceLandmarks(t=!1){return new td(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new Uu(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Wu(this.runAndExtendWithFaceDetection(),this.input)}};function a_(e,t=new na){return new ad(e,t)}function rd(e,t=new na){return new Gu(e,t)}async function Bw(e,t){return rd(e,new na(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function r_(e,t={}){return rd(e,new Ba(t)).withFaceLandmarks().withFaceDescriptors()}var s_=Bw;function qf(e,t){if(e.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let n=Array.from(e),a=Array.from(t);return Math.sqrt(n.map((r,s)=>r-a[s]).reduce((r,s)=>r+s**2,0))}var sd=class{constructor(t,n=.6){this._distanceThreshold=n;let a=Array.isArray(t)?t:[t];if(!a.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let r=1,s=()=>`person ${r++}`;this._labeledDescriptors=a.map(i=>{if(i instanceof lr)return i;if(i instanceof Float32Array)return new lr(s(),[i]);if(i.descriptor&&i.descriptor instanceof Float32Array)return new lr(s(),[i.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,n){return n.map(a=>qf(a,t)).reduce((a,r)=>a+r,0)/(n.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:n,label:a})=>new Au(a,this.computeMeanDistance(t,n))).reduce((n,a)=>n.distancet.toJSON())}}static fromJSON(t){let n=t.labeledDescriptors.map(a=>lr.fromJSON(a));return new sd(n,t.distanceThreshold)}};function i_(e){let t=new go;return t.extractWeights(e),t}function Ww(e,t){let{width:n,height:a}=new ln(t.width,t.height);if(n<=0||a<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:n,height:a})}`);if(Array.isArray(e))return e.map(r=>Ww(r,{width:n,height:a}));if(ws(e)){let r=e.detection.forSize(n,a),s=e.unshiftedLandmarks.forSize(r.box.width,r.box.height);return uo(gs(e,r),s)}return La(e)?gs(e,e.detection.forSize(n,a)):e instanceof Un||e instanceof yt?e.forSize(n,a):e}var ose=typeof process!="undefined",lse=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",o_={faceapi:oC,node:ose,browser:lse};return ise;})(); /** * @license * Copyright 2017 Google LLC. All Rights Reserved. diff --git a/dist/face-api.node-gpu.js b/dist/face-api.node-gpu.js index 59eafe2..2d233a2 100644 --- a/dist/face-api.node-gpu.js +++ b/dist/face-api.node-gpu.js @@ -5,5 +5,5 @@ author: ' */ -var ln=Object.create,Ye=Object.defineProperty,fn=Object.getPrototypeOf,hn=Object.prototype.hasOwnProperty,xn=Object.getOwnPropertyNames,bn=Object.getOwnPropertyDescriptor;var fo=o=>Ye(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Ge=(o,t)=>{fo(o);for(var e in t)Ye(o,e,{get:t[e],enumerable:!0})},gn=(o,t,e)=>{if(fo(o),t&&typeof t=="object"||typeof t=="function")for(let r of xn(t))!hn.call(o,r)&&r!=="default"&&Ye(o,r,{get:()=>t[r],enumerable:!(e=bn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:gn(Ye(o!=null?ln(fn(o)):{},"default",{value:o,enumerable:!0}),o);var g=ho(xo=>{var vn=Object.create,Er=Object.defineProperty,yn=Object.getPrototypeOf,Fn=Object.prototype.hasOwnProperty,Tn=Object.getOwnPropertyNames,Pn=Object.getOwnPropertyDescriptor,_n=o=>Er(o,"__esModule",{value:!0}),bo=(o,t,e)=>{if(_n(o),t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!Fn.call(o,r)&&r!=="default"&&Er(o,r,{get:()=>t[r],enumerable:!(e=Pn(t,r))||e.enumerable});return o},wn=o=>o&&o.__esModule?o:bo(Er(o!=null?vn(yn(o)):{},"default",{value:o,enumerable:!0}),o);bo(xo,wn(require("@tensorflow/tfjs-node-gpu")))});var To=ho((Ln,Fo)=>{Ge(Ln,{isNodejs:()=>kn});function kn(){return typeof global=="object"&&!0&&typeof Fo!="undefined"&&typeof process!="undefined"&&!!process.version}});Ge(exports,{AgeGenderNet:()=>pr,BoundingBox:()=>ee,Box:()=>D,ComposableTask:()=>tt,ComputeAllFaceDescriptorsTask:()=>At,ComputeFaceDescriptorsTaskBase:()=>vr,ComputeSingleFaceDescriptorTask:()=>Wt,DetectAllFaceLandmarksTask:()=>Fr,DetectAllFacesTask:()=>He,DetectFaceLandmarksTaskBase:()=>yr,DetectFacesTaskBase:()=>Pr,DetectSingleFaceLandmarksTask:()=>Tr,DetectSingleFaceTask:()=>_r,Dimensions:()=>A,FACE_EXPRESSION_LABELS:()=>Jr,FaceDetection:()=>M,FaceDetectionNet:()=>Jo,FaceExpressionNet:()=>cr,FaceExpressions:()=>It,FaceLandmark68Net:()=>fe,FaceLandmark68TinyNet:()=>dr,FaceLandmarkNet:()=>Bo,FaceLandmarks:()=>V,FaceLandmarks5:()=>vo,FaceLandmarks68:()=>oe,FaceMatch:()=>Ee,FaceMatcher:()=>Dr,FaceRecognitionNet:()=>xe,Gender:()=>vt,LabeledBox:()=>Me,LabeledFaceDescriptors:()=>xt,NetInput:()=>bt,NeuralNetwork:()=>S,ObjectDetection:()=>Dt,Point:()=>x,PredictedBox:()=>yo,Rect:()=>re,SsdMobilenetv1:()=>Ut,SsdMobilenetv1Options:()=>Z,TinyFaceDetector:()=>Fe,TinyFaceDetectorOptions:()=>gr,TinyYolov2:()=>ve,TinyYolov2Options:()=>lt,allFaces:()=>Da,allFacesSsdMobilenetv1:()=>dn,allFacesTinyYolov2:()=>wa,awaitMediaLoaded:()=>Yr,bufferToImage:()=>Gr,computeFaceDescriptor:()=>da,createCanvas:()=>ne,createCanvasFromMedia:()=>Ie,createFaceDetectionNet:()=>na,createFaceRecognitionNet:()=>Un,createSsdMobilenetv1:()=>Xo,createTinyFaceDetector:()=>Ea,createTinyYolov2:()=>ia,detectAllFaces:()=>wr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>pa,detectLandmarks:()=>Pa,detectSingleFace:()=>_a,draw:()=>Qr,env:()=>w,euclideanDistance:()=>uo,extendWithAge:()=>hr,extendWithFaceDescriptor:()=>fr,extendWithFaceDetection:()=>$t,extendWithFaceExpressions:()=>mr,extendWithFaceLandmarks:()=>le,extendWithGender:()=>xr,extractFaceTensors:()=>se,extractFaces:()=>ae,fetchImage:()=>Bn,fetchJson:()=>Ur,fetchNetWeights:()=>Rn,fetchOrThrow:()=>Yt,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Ht,imageTensorToCanvas:()=>zr,imageToSquare:()=>Vr,inverseSigmoid:()=>Mn,iou:()=>Lr,isMediaElement:()=>qe,isMediaLoaded:()=>Ne,isWithAge:()=>Xn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>qr,isWithFaceLandmarks:()=>zt,isWithGender:()=>Jn,loadAgeGenderModel:()=>ya,loadFaceDetectionModel:()=>Fa,loadFaceExpressionModel:()=>va,loadFaceLandmarkModel:()=>xa,loadFaceLandmarkTinyModel:()=>ba,loadFaceRecognitionModel:()=>ga,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>fa,loadTinyYolov2Model:()=>ha,loadWeightMap:()=>Xr,locateFaces:()=>Ta,matchDimensions:()=>On,minBbox:()=>kr,nets:()=>P,nonMaxSuppression:()=>Sr,normalize:()=>ot,padToSquare:()=>Ar,predictAgeAndGender:()=>la,recognizeFaceExpressions:()=>ua,resizeResults:()=>un,resolveInput:()=>jt,shuffleArray:()=>En,sigmoid:()=>De,ssdMobilenetv1:()=>cn,tf:()=>Ma,tinyFaceDetector:()=>ca,tinyYolov2:()=>ma,toNetInput:()=>E,utils:()=>Mr,validateConfig:()=>ao,version:()=>Ia});var Ma=b(g());var Qr={};Ge(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ce,drawContour:()=>ft,drawDetections:()=>Wn,drawFaceExpressions:()=>$n,drawFaceLandmarks:()=>jn});function ft(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Ge(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Bt,isTensor1D:()=>Dn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>te,range:()=>ct,round:()=>Rt});var go=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof go.Tensor&&o.shape.length===t}function Dn(o){return Bt(o,1)}function Cr(o){return Bt(o,2)}function ht(o){return Bt(o,3)}function z(o){return Bt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function te(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ee=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let l=o.shape.slice();return l[s]=u,Et.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function En(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function De(o){return 1/(1+Math.exp(-o))}function Mn(o){return Math.log(o/(1-o))}var re=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Cn=.5,Nn=.43,In=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=Ot(t),m=Math.floor(Math.max(0,c.x-Cn*i)),p=Math.floor(Math.max(0,c.y-Nn*i));return new re(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var vo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var oe=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Ee=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var Me=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var yo=class extends Me{static assertIsValidPredictedBox(t,e){if(Me.assertIsValidLabeledBox(t,e),!te(t.score)||!te(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function $t(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Or=b(To()),k;function Sn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function $r(o){k=o}function jr(){return Rr()?$r(Wr()):Or.isNodejs()?$r(Br()):null}function An(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:Sn,setEnv:$r,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:An,isBrowser:Rr,isNodejs:Or.isNodejs};jr();function jt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=jt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ce=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ce(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(l+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ce({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Wn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${Rt(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var ue=b(g());function Ne(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ne(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ht(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ne({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Ie(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ne(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ht(o),a=ne({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Ht(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ne({width:t,height:t}),p=o instanceof n?o:Ie(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Ie(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(jt);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function ae(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ne({width:c,height:m});return O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function se(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Yt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Bn(o){let t=await Yt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Yt(o)).json()}async function Rn(o){return new Float32Array(await(await Yt(o)).arrayBuffer())}var Po=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Po.io.loadWeights(n,r)}function On(o,t,e=!1){let{width:r,height:n}=e?Ht(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ie=b(g());function $(o,t,e){return ie.tidy(()=>{let r=ie.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ie.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):$(o,t.conv0,[2,2])),n=$(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=$(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function Le(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):$(o,t.conv0,r?[2,2]:[1,1])),a=$(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=$(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=$(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function Gt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function ce(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var ke=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function me(o,t){return(e,r,n)=>{let a=ke.tensor4d(o(3*3*e),[3,3,e,1]),s=ke.tensor4d(o(e*r),[1,1,e,r]),i=ke.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function pe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Bt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function _o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function wo(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Se=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=Le(a,e.dense0,!0);return s=Le(s,e.dense1),s=Le(s,e.dense2),s=Le(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return wo(t)}extractParams(t){return _o(t)}};var Mo=b(g());var de=b(g());function Ae(o,t){return de.tidy(()=>de.add(de.matMul(o,t.weights),t.bias))}function Do(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Eo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var We=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Mo.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return Ae(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Do(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Eo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends We{constructor(t=new Se){super("FaceExpressionNet",t)}forwardInput(t){return ue.tidy(()=>ue.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(ue.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function $n(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${Rt(d.probability)})`),m).draw(o)})}function zt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof oe&&(e.strokeStyle=s,e.lineWidth=a,ft(e,this.faceLandmarks.getJawOutline()),ft(e,this.faceLandmarks.getLeftEyeBrow()),ft(e,this.faceLandmarks.getRightEyeBrow()),ft(e,this.faceLandmarks.getNose()),ft(e,this.faceLandmarks.getLeftEye(),!0),ft(e,this.faceLandmarks.getRightEye(),!0),ft(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Co="0.12.1";var ut=b(g());var I=b(g());function Hn(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function No(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Hn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},l={};ct(t,0,1).forEach(y=>{l[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:l,exit_flow:h}}}function Yn(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Io(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function Lo(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=$(r,t.separable_conv0,[1,1]),r=$(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,Lo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=$(I.relu(o),t.separable_conv0,[1,1]);return e=$(I.relu(e),t.separable_conv1,[1,1]),e=$(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(Lo(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=Gn(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu($(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Io(t,this._numMainBlocks)}extractParams(t){return No(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function So(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Ae(n,e.fc.age).as1D(),s=Ae(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,l=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),So(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Be=class extends We{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:l,height:v}=n[d];return u(l,v)?Math.abs(l-v)/2:0},c=d=>i(d,(u,l)=>ui(d,(u,l)=>ls(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new oe(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var fe=class extends Be{constructor(t=new Se){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function Ao(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ao(t)}extractParams(t){return Wo(t)}};var dr=class extends Be{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Bo=class extends fe{};var U=b(g());var he=b(g());var ur=b(g());function Ro(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=he.conv2d(o,a,e,n);return i=he.add(i,s),i=Ro(i,t.scale),r?he.relu(i):i}function Oo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function lr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function zn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function $o(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=zn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:l,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Vn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function jo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Vn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),l=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:l,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Oo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function Re(o,t){let e=lr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var xe=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=lr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=Re(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=Re(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=Re(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=Re(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return $o(t)}};function Un(o){let t=new xe;return t.extractWeights(o),t}function fr(o,t){return{...o,...{descriptor:t}}}function Xn(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function Jn(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&te(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function qn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),l=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:l,batch_norm_variance:v}}function r(c,m,p,d,u){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:l,bias:v}}function n(c,m,p,d){let{filters:u,bias:l}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:l}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Ho(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Zn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Zn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Kn=.0010000000474974513;function Qn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kn),yt.clipByValue(r,0,6)})}function ta(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ta(i);r=Qn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ea(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),l=(p-c)*(d-m);if(u<=0||l<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+l-T)}function zo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let l=ea(o,p.boxIndex,m[u]);if(l!==0&&(p.score*=c(l),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var f=b(g());function ra(o){let t=f.unstack(f.transpose(o,[1,0])),e=[f.sub(t[2],t[0]),f.sub(t[3],t[1])],r=[f.add(t[0],f.div(e[0],f.scalar(2))),f.add(t[1],f.div(e[1],f.scalar(2)))];return{sizes:e,centers:r}}function oa(o,t){let{sizes:e,centers:r}=ra(o),n=f.unstack(f.transpose(t,[1,0])),a=f.div(f.mul(f.exp(f.div(n[2],f.scalar(5))),e[0]),f.scalar(2)),s=f.add(f.mul(f.div(n[0],f.scalar(10)),e[0]),r[0]),i=f.div(f.mul(f.exp(f.div(n[3],f.scalar(5))),e[1]),f.scalar(2)),c=f.add(f.mul(f.div(n[1],f.scalar(10)),e[1]),r[1]);return f.transpose(f.stack([f.sub(s,a),f.sub(c,i),f.add(s,a),f.add(c,i)]),[1,0])}function Vo(o,t,e){return f.tidy(()=>{let r=o.shape[0],n=oa(f.reshape(f.tile(e.extra_dim,[r,1,1]),[-1,4]),f.reshape(o,[-1,4]));n=f.reshape(n,[r,n.shape[0]/r,4]);let a=f.sigmoid(f.slice(t,[0,0,1],[-1,-1,-1])),s=f.slice(a,[0,0,0],[-1,-1,1]);s=f.reshape(s,[r,s.shape[1]]);let i=f.unstack(n),c=f.unstack(s);return{boxes:i,scores:c}})}var $e=b(g());var Oe=b(g());function Vt(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(Gt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(Gt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Uo(o,t,e){return $e.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Vt(t,e.box_predictor_0),u=Vt(o,e.box_predictor_1),l=Vt(n,e.box_predictor_2),v=Vt(s,e.box_predictor_3),_=Vt(c,e.box_predictor_4),h=Vt(p,e.box_predictor_5),y=$e.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,l.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=$e.concat([d.classPrediction,u.classPrediction,l.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ut=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Uo(a.out,a.conv11,e.prediction_layer);return Vo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new re(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Ho(t)}};function Xo(o){let t=new Ut;return t.extractWeights(o),t}function na(o){return Xo(o)}var Jo=class extends Ut{};var qo=.4,Zo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],Ko=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function be(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),be(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),be(e)})}var so=b(g());function aa(o,t){let e=ce(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=me(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=aa(n,s),p;if(t.withSeparableConvs){let[d,u,l,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,l,"conv1"),et=m(l,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,Qt=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}else{let[d,u,l,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,l,"conv1"),et=c(l,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),Qt=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function sa(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=pe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=sa(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var lt=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),Gt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?be(Gt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,Gt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new lt(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,l]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+De(h[y][T][F][0]))/m*i,et=(y+De(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:Qt,label:lo}=this.withClassScores?await this.extractPredictedClass(l,wt):{classScore:1,label:0};v.push({box:new ee(Pt,_t,Pt+it,_t+X),score:L,classScore:L*Qt,label:lo,...wt})}}return d.dispose(),u.dispose(),l.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ge=io;ge.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ve=class extends ge{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ia(o,t=!0){let e=new ve(t);return e.extractWeights(o),e}var gr=class extends lt{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var je=b(g());var co=b(g());async function Xt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>zt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await se(t,a):await ae(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function ye(o,t,e,r,n){return Xt([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],sn=[117.001,114.697,97.404];var Fe=class extends ge{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Ut,tinyFaceDetector:new Fe,tinyYolov2:new ve,faceLandmark68Net:new fe,faceLandmark68TinyNet:new dr,faceRecognitionNet:new xe,faceExpressionNet:new cr,ageGenderNet:new pr},cn=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),ca=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ma=(o,t)=>P.tinyYolov2.locateFaces(o,t),mn=o=>P.faceLandmark68Net.detectLandmarks(o),pa=o=>P.faceLandmark68TinyNet.detectLandmarks(o),da=o=>P.faceRecognitionNet.computeFaceDescriptor(o),ua=o=>P.faceExpressionNet.predictExpressions(o),la=o=>P.ageGenderNet.predictAgeAndGender(o),pn=o=>P.ssdMobilenetv1.load(o),fa=o=>P.tinyFaceDetector.load(o),ha=o=>P.tinyYolov2.load(o),xa=o=>P.faceLandmark68Net.load(o),ba=o=>P.faceLandmark68TinyNet.load(o),ga=o=>P.faceRecognitionNet.load(o),va=o=>P.faceExpressionNet.load(o),ya=o=>P.ageGenderNet.load(o),Fa=pn,Ta=cn,Pa=mn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},_e=class extends mo{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Te(this,this.input)}},we=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new Pe(this,this.input)}},Zt=class extends _e{withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Te=class extends po{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new _e(this,this.input)}},Pe=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await ye(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new we(this,this.input)}},Jt=class extends Te{withFaceExpressions(){return new Zt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Xt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>fr(t[n],r))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return fr(t,e)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof je.Tensor?await se(this.input,e):await ae(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof je.Tensor?await se(this.input,[e]):await ae(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},He=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof lt?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>$t({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new _e(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Te(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new He(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?$t({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetection(),this.input)}};function _a(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new He(o,t)}async function dn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function wa(o,t={}){return wr(o,new lt(t)).withFaceLandmarks().withFaceDescriptors()}var Da=dn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Ee(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function Ea(o){let t=new Fe;return t.extractWeights(o),t}function un(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>un(n,{width:e,height:r}));if(zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le($t(o,n),a)}return pt(o)?$t(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var Ca=typeof process!="undefined",Na=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ia={faceapi:Co,node:Ca,browser:Na}; +var ln=Object.create,Ye=Object.defineProperty,fn=Object.getPrototypeOf,hn=Object.prototype.hasOwnProperty,xn=Object.getOwnPropertyNames,bn=Object.getOwnPropertyDescriptor;var fo=o=>Ye(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Ge=(o,t)=>{fo(o);for(var e in t)Ye(o,e,{get:t[e],enumerable:!0})},gn=(o,t,e)=>{if(fo(o),t&&typeof t=="object"||typeof t=="function")for(let r of xn(t))!hn.call(o,r)&&r!=="default"&&Ye(o,r,{get:()=>t[r],enumerable:!(e=bn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:gn(Ye(o!=null?ln(fn(o)):{},"default",{value:o,enumerable:!0}),o);var g=ho(xo=>{var vn=Object.create,Er=Object.defineProperty,yn=Object.getPrototypeOf,Fn=Object.prototype.hasOwnProperty,Tn=Object.getOwnPropertyNames,Pn=Object.getOwnPropertyDescriptor,_n=o=>Er(o,"__esModule",{value:!0}),bo=(o,t,e)=>{if(_n(o),t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!Fn.call(o,r)&&r!=="default"&&Er(o,r,{get:()=>t[r],enumerable:!(e=Pn(t,r))||e.enumerable});return o},wn=o=>o&&o.__esModule?o:bo(Er(o!=null?vn(yn(o)):{},"default",{value:o,enumerable:!0}),o);bo(xo,wn(require("@tensorflow/tfjs-node-gpu")))});var To=ho((Ln,Fo)=>{Ge(Ln,{isNodejs:()=>kn});function kn(){return typeof global=="object"&&!0&&typeof Fo!="undefined"&&typeof process!="undefined"&&!!process.version}});Ge(exports,{AgeGenderNet:()=>pr,BoundingBox:()=>ee,Box:()=>D,ComposableTask:()=>tt,ComputeAllFaceDescriptorsTask:()=>At,ComputeFaceDescriptorsTaskBase:()=>vr,ComputeSingleFaceDescriptorTask:()=>Wt,DetectAllFaceLandmarksTask:()=>Fr,DetectAllFacesTask:()=>He,DetectFaceLandmarksTaskBase:()=>yr,DetectFacesTaskBase:()=>Pr,DetectSingleFaceLandmarksTask:()=>Tr,DetectSingleFaceTask:()=>_r,Dimensions:()=>A,FACE_EXPRESSION_LABELS:()=>Jr,FaceDetection:()=>M,FaceDetectionNet:()=>Jo,FaceExpressionNet:()=>cr,FaceExpressions:()=>It,FaceLandmark68Net:()=>fe,FaceLandmark68TinyNet:()=>dr,FaceLandmarkNet:()=>Bo,FaceLandmarks:()=>V,FaceLandmarks5:()=>vo,FaceLandmarks68:()=>oe,FaceMatch:()=>Ee,FaceMatcher:()=>Dr,FaceRecognitionNet:()=>xe,Gender:()=>vt,LabeledBox:()=>Me,LabeledFaceDescriptors:()=>xt,NetInput:()=>bt,NeuralNetwork:()=>S,ObjectDetection:()=>Dt,Point:()=>x,PredictedBox:()=>yo,Rect:()=>re,SsdMobilenetv1:()=>Ut,SsdMobilenetv1Options:()=>Z,TinyFaceDetector:()=>Fe,TinyFaceDetectorOptions:()=>gr,TinyYolov2:()=>ve,TinyYolov2Options:()=>lt,allFaces:()=>Da,allFacesSsdMobilenetv1:()=>dn,allFacesTinyYolov2:()=>wa,awaitMediaLoaded:()=>Yr,bufferToImage:()=>Gr,computeFaceDescriptor:()=>da,createCanvas:()=>ne,createCanvasFromMedia:()=>Ie,createFaceDetectionNet:()=>na,createFaceRecognitionNet:()=>Un,createSsdMobilenetv1:()=>Xo,createTinyFaceDetector:()=>Ea,createTinyYolov2:()=>ia,detectAllFaces:()=>wr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>pa,detectLandmarks:()=>Pa,detectSingleFace:()=>_a,draw:()=>Qr,env:()=>w,euclideanDistance:()=>uo,extendWithAge:()=>hr,extendWithFaceDescriptor:()=>fr,extendWithFaceDetection:()=>$t,extendWithFaceExpressions:()=>mr,extendWithFaceLandmarks:()=>le,extendWithGender:()=>xr,extractFaceTensors:()=>se,extractFaces:()=>ae,fetchImage:()=>Bn,fetchJson:()=>Ur,fetchNetWeights:()=>Rn,fetchOrThrow:()=>Yt,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Ht,imageTensorToCanvas:()=>zr,imageToSquare:()=>Vr,inverseSigmoid:()=>Mn,iou:()=>Lr,isMediaElement:()=>qe,isMediaLoaded:()=>Ne,isWithAge:()=>Xn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>qr,isWithFaceLandmarks:()=>zt,isWithGender:()=>Jn,loadAgeGenderModel:()=>ya,loadFaceDetectionModel:()=>Fa,loadFaceExpressionModel:()=>va,loadFaceLandmarkModel:()=>xa,loadFaceLandmarkTinyModel:()=>ba,loadFaceRecognitionModel:()=>ga,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>fa,loadTinyYolov2Model:()=>ha,loadWeightMap:()=>Xr,locateFaces:()=>Ta,matchDimensions:()=>On,minBbox:()=>kr,nets:()=>P,nonMaxSuppression:()=>Sr,normalize:()=>ot,padToSquare:()=>Ar,predictAgeAndGender:()=>la,recognizeFaceExpressions:()=>ua,resizeResults:()=>un,resolveInput:()=>jt,shuffleArray:()=>En,sigmoid:()=>De,ssdMobilenetv1:()=>cn,tf:()=>Ma,tinyFaceDetector:()=>ca,tinyYolov2:()=>ma,toNetInput:()=>E,utils:()=>Mr,validateConfig:()=>ao,version:()=>Ia});var Ma=b(g());var Qr={};Ge(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ce,drawContour:()=>ft,drawDetections:()=>Wn,drawFaceExpressions:()=>$n,drawFaceLandmarks:()=>jn});function ft(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Ge(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Bt,isTensor1D:()=>Dn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>te,range:()=>ct,round:()=>Rt});var go=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof go.Tensor&&o.shape.length===t}function Dn(o){return Bt(o,1)}function Cr(o){return Bt(o,2)}function ht(o){return Bt(o,3)}function z(o){return Bt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function te(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ee=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let l=o.shape.slice();return l[s]=u,Et.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function En(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function De(o){return 1/(1+Math.exp(-o))}function Mn(o){return Math.log(o/(1-o))}var re=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Cn=.5,Nn=.43,In=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=Ot(t),m=Math.floor(Math.max(0,c.x-Cn*i)),p=Math.floor(Math.max(0,c.y-Nn*i));return new re(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var vo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var oe=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Ee=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var Me=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var yo=class extends Me{static assertIsValidPredictedBox(t,e){if(Me.assertIsValidLabeledBox(t,e),!te(t.score)||!te(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function $t(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Or=b(To()),k;function Sn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function $r(o){k=o}function jr(){return Rr()?$r(Wr()):Or.isNodejs()?$r(Br()):null}function An(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:Sn,setEnv:$r,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:An,isBrowser:Rr,isNodejs:Or.isNodejs};jr();function jt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=jt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ce=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ce(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(l+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ce({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Wn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${Rt(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var ue=b(g());function Ne(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ne(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ht(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ne({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Ie(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ne(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ht(o),a=ne({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Ht(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ne({width:t,height:t}),p=o instanceof n?o:Ie(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Ie(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(jt);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function ae(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ne({width:c,height:m});return O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function se(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Yt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Bn(o){let t=await Yt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Yt(o)).json()}async function Rn(o){return new Float32Array(await(await Yt(o)).arrayBuffer())}var Po=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Po.io.loadWeights(n,r)}function On(o,t,e=!1){let{width:r,height:n}=e?Ht(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ie=b(g());function $(o,t,e){return ie.tidy(()=>{let r=ie.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ie.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):$(o,t.conv0,[2,2])),n=$(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=$(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function Le(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):$(o,t.conv0,r?[2,2]:[1,1])),a=$(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=$(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=$(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function Gt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function ce(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var ke=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function me(o,t){return(e,r,n)=>{let a=ke.tensor4d(o(3*3*e),[3,3,e,1]),s=ke.tensor4d(o(e*r),[1,1,e,r]),i=ke.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function pe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Bt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function _o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function wo(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Se=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=Le(a,e.dense0,!0);return s=Le(s,e.dense1),s=Le(s,e.dense2),s=Le(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return wo(t)}extractParams(t){return _o(t)}};var Mo=b(g());var de=b(g());function Ae(o,t){return de.tidy(()=>de.add(de.matMul(o,t.weights),t.bias))}function Do(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Eo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var We=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Mo.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return Ae(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Do(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Eo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends We{constructor(t=new Se){super("FaceExpressionNet",t)}forwardInput(t){return ue.tidy(()=>ue.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(ue.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function $n(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${Rt(d.probability)})`),m).draw(o)})}function zt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof oe&&(e.strokeStyle=s,e.lineWidth=a,ft(e,this.faceLandmarks.getJawOutline()),ft(e,this.faceLandmarks.getLeftEyeBrow()),ft(e,this.faceLandmarks.getRightEyeBrow()),ft(e,this.faceLandmarks.getNose()),ft(e,this.faceLandmarks.getLeftEye(),!0),ft(e,this.faceLandmarks.getRightEye(),!0),ft(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Co="0.12.3";var ut=b(g());var I=b(g());function Hn(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function No(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Hn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},l={};ct(t,0,1).forEach(y=>{l[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:l,exit_flow:h}}}function Yn(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Io(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function Lo(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=$(r,t.separable_conv0,[1,1]),r=$(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,Lo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=$(I.relu(o),t.separable_conv0,[1,1]);return e=$(I.relu(e),t.separable_conv1,[1,1]),e=$(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(Lo(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=Gn(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu($(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Io(t,this._numMainBlocks)}extractParams(t){return No(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function So(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Ae(n,e.fc.age).as1D(),s=Ae(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,l=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),So(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Be=class extends We{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:l,height:v}=n[d];return u(l,v)?Math.abs(l-v)/2:0},c=d=>i(d,(u,l)=>ui(d,(u,l)=>ls(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new oe(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var fe=class extends Be{constructor(t=new Se){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function Ao(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ao(t)}extractParams(t){return Wo(t)}};var dr=class extends Be{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Bo=class extends fe{};var U=b(g());var he=b(g());var ur=b(g());function Ro(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=he.conv2d(o,a,e,n);return i=he.add(i,s),i=Ro(i,t.scale),r?he.relu(i):i}function Oo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function lr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function zn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function $o(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=zn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:l,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Vn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function jo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Vn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),l=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:l,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Oo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function Re(o,t){let e=lr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var xe=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=lr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=Re(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=Re(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=Re(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=Re(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return $o(t)}};function Un(o){let t=new xe;return t.extractWeights(o),t}function fr(o,t){return{...o,...{descriptor:t}}}function Xn(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function Jn(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&te(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function qn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),l=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:l,batch_norm_variance:v}}function r(c,m,p,d,u){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:l,bias:v}}function n(c,m,p,d){let{filters:u,bias:l}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:l}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Ho(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Zn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Zn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Kn=.0010000000474974513;function Qn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kn),yt.clipByValue(r,0,6)})}function ta(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ta(i);r=Qn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ea(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),l=(p-c)*(d-m);if(u<=0||l<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+l-T)}function zo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let l=ea(o,p.boxIndex,m[u]);if(l!==0&&(p.score*=c(l),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var f=b(g());function ra(o){let t=f.unstack(f.transpose(o,[1,0])),e=[f.sub(t[2],t[0]),f.sub(t[3],t[1])],r=[f.add(t[0],f.div(e[0],f.scalar(2))),f.add(t[1],f.div(e[1],f.scalar(2)))];return{sizes:e,centers:r}}function oa(o,t){let{sizes:e,centers:r}=ra(o),n=f.unstack(f.transpose(t,[1,0])),a=f.div(f.mul(f.exp(f.div(n[2],f.scalar(5))),e[0]),f.scalar(2)),s=f.add(f.mul(f.div(n[0],f.scalar(10)),e[0]),r[0]),i=f.div(f.mul(f.exp(f.div(n[3],f.scalar(5))),e[1]),f.scalar(2)),c=f.add(f.mul(f.div(n[1],f.scalar(10)),e[1]),r[1]);return f.transpose(f.stack([f.sub(s,a),f.sub(c,i),f.add(s,a),f.add(c,i)]),[1,0])}function Vo(o,t,e){return f.tidy(()=>{let r=o.shape[0],n=oa(f.reshape(f.tile(e.extra_dim,[r,1,1]),[-1,4]),f.reshape(o,[-1,4]));n=f.reshape(n,[r,n.shape[0]/r,4]);let a=f.sigmoid(f.slice(t,[0,0,1],[-1,-1,-1])),s=f.slice(a,[0,0,0],[-1,-1,1]);s=f.reshape(s,[r,s.shape[1]]);let i=f.unstack(n),c=f.unstack(s);return{boxes:i,scores:c}})}var $e=b(g());var Oe=b(g());function Vt(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(Gt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(Gt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Uo(o,t,e){return $e.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Vt(t,e.box_predictor_0),u=Vt(o,e.box_predictor_1),l=Vt(n,e.box_predictor_2),v=Vt(s,e.box_predictor_3),_=Vt(c,e.box_predictor_4),h=Vt(p,e.box_predictor_5),y=$e.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,l.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=$e.concat([d.classPrediction,u.classPrediction,l.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ut=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Uo(a.out,a.conv11,e.prediction_layer);return Vo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new re(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Ho(t)}};function Xo(o){let t=new Ut;return t.extractWeights(o),t}function na(o){return Xo(o)}var Jo=class extends Ut{};var qo=.4,Zo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],Ko=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function be(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),be(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),be(e)})}var so=b(g());function aa(o,t){let e=ce(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=me(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=aa(n,s),p;if(t.withSeparableConvs){let[d,u,l,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,l,"conv1"),et=m(l,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,Qt=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}else{let[d,u,l,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,l,"conv1"),et=c(l,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),Qt=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function sa(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=pe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=sa(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var lt=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),Gt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?be(Gt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,Gt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new lt(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,l]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+De(h[y][T][F][0]))/m*i,et=(y+De(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:Qt,label:lo}=this.withClassScores?await this.extractPredictedClass(l,wt):{classScore:1,label:0};v.push({box:new ee(Pt,_t,Pt+it,_t+X),score:L,classScore:L*Qt,label:lo,...wt})}}return d.dispose(),u.dispose(),l.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ge=io;ge.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ve=class extends ge{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ia(o,t=!0){let e=new ve(t);return e.extractWeights(o),e}var gr=class extends lt{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var je=b(g());var co=b(g());async function Xt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>zt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await se(t,a):await ae(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function ye(o,t,e,r,n){return Xt([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],sn=[117.001,114.697,97.404];var Fe=class extends ge{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Ut,tinyFaceDetector:new Fe,tinyYolov2:new ve,faceLandmark68Net:new fe,faceLandmark68TinyNet:new dr,faceRecognitionNet:new xe,faceExpressionNet:new cr,ageGenderNet:new pr},cn=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),ca=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ma=(o,t)=>P.tinyYolov2.locateFaces(o,t),mn=o=>P.faceLandmark68Net.detectLandmarks(o),pa=o=>P.faceLandmark68TinyNet.detectLandmarks(o),da=o=>P.faceRecognitionNet.computeFaceDescriptor(o),ua=o=>P.faceExpressionNet.predictExpressions(o),la=o=>P.ageGenderNet.predictAgeAndGender(o),pn=o=>P.ssdMobilenetv1.load(o),fa=o=>P.tinyFaceDetector.load(o),ha=o=>P.tinyYolov2.load(o),xa=o=>P.faceLandmark68Net.load(o),ba=o=>P.faceLandmark68TinyNet.load(o),ga=o=>P.faceRecognitionNet.load(o),va=o=>P.faceExpressionNet.load(o),ya=o=>P.ageGenderNet.load(o),Fa=pn,Ta=cn,Pa=mn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},_e=class extends mo{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Te(this,this.input)}},we=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new Pe(this,this.input)}},Zt=class extends _e{withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Te=class extends po{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new _e(this,this.input)}},Pe=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await ye(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new we(this,this.input)}},Jt=class extends Te{withFaceExpressions(){return new Zt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Xt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>fr(t[n],r))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return fr(t,e)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof je.Tensor?await se(this.input,e):await ae(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof je.Tensor?await se(this.input,[e]):await ae(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},He=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof lt?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>$t({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new _e(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Te(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new He(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?$t({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetection(),this.input)}};function _a(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new He(o,t)}async function dn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function wa(o,t={}){return wr(o,new lt(t)).withFaceLandmarks().withFaceDescriptors()}var Da=dn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Ee(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function Ea(o){let t=new Fe;return t.extractWeights(o),t}function un(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>un(n,{width:e,height:r}));if(zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le($t(o,n),a)}return pt(o)?$t(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var Ca=typeof process!="undefined",Na=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ia={faceapi:Co,node:Ca,browser:Na}; //# sourceMappingURL=face-api.node-gpu.js.map diff --git a/dist/face-api.node.js b/dist/face-api.node.js index 35aa304..50f9f5d 100644 --- a/dist/face-api.node.js +++ b/dist/face-api.node.js @@ -5,5 +5,5 @@ author: ' */ -var ln=Object.create,Ye=Object.defineProperty,fn=Object.getPrototypeOf,hn=Object.prototype.hasOwnProperty,xn=Object.getOwnPropertyNames,bn=Object.getOwnPropertyDescriptor;var fo=o=>Ye(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Ge=(o,t)=>{fo(o);for(var e in t)Ye(o,e,{get:t[e],enumerable:!0})},gn=(o,t,e)=>{if(fo(o),t&&typeof t=="object"||typeof t=="function")for(let r of xn(t))!hn.call(o,r)&&r!=="default"&&Ye(o,r,{get:()=>t[r],enumerable:!(e=bn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:gn(Ye(o!=null?ln(fn(o)):{},"default",{value:o,enumerable:!0}),o);var g=ho(xo=>{var vn=Object.create,Er=Object.defineProperty,yn=Object.getPrototypeOf,Fn=Object.prototype.hasOwnProperty,Tn=Object.getOwnPropertyNames,Pn=Object.getOwnPropertyDescriptor,_n=o=>Er(o,"__esModule",{value:!0}),bo=(o,t,e)=>{if(_n(o),t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!Fn.call(o,r)&&r!=="default"&&Er(o,r,{get:()=>t[r],enumerable:!(e=Pn(t,r))||e.enumerable});return o},wn=o=>o&&o.__esModule?o:bo(Er(o!=null?vn(yn(o)):{},"default",{value:o,enumerable:!0}),o);bo(xo,wn(require("@tensorflow/tfjs-node")))});var To=ho((Ln,Fo)=>{Ge(Ln,{isNodejs:()=>kn});function kn(){return typeof global=="object"&&!0&&typeof Fo!="undefined"&&typeof process!="undefined"&&!!process.version}});Ge(exports,{AgeGenderNet:()=>pr,BoundingBox:()=>ee,Box:()=>D,ComposableTask:()=>tt,ComputeAllFaceDescriptorsTask:()=>At,ComputeFaceDescriptorsTaskBase:()=>vr,ComputeSingleFaceDescriptorTask:()=>Wt,DetectAllFaceLandmarksTask:()=>Fr,DetectAllFacesTask:()=>He,DetectFaceLandmarksTaskBase:()=>yr,DetectFacesTaskBase:()=>Pr,DetectSingleFaceLandmarksTask:()=>Tr,DetectSingleFaceTask:()=>_r,Dimensions:()=>A,FACE_EXPRESSION_LABELS:()=>Jr,FaceDetection:()=>M,FaceDetectionNet:()=>Jo,FaceExpressionNet:()=>cr,FaceExpressions:()=>It,FaceLandmark68Net:()=>fe,FaceLandmark68TinyNet:()=>dr,FaceLandmarkNet:()=>Bo,FaceLandmarks:()=>V,FaceLandmarks5:()=>vo,FaceLandmarks68:()=>oe,FaceMatch:()=>Ee,FaceMatcher:()=>Dr,FaceRecognitionNet:()=>xe,Gender:()=>vt,LabeledBox:()=>Me,LabeledFaceDescriptors:()=>xt,NetInput:()=>bt,NeuralNetwork:()=>S,ObjectDetection:()=>Dt,Point:()=>x,PredictedBox:()=>yo,Rect:()=>re,SsdMobilenetv1:()=>Ut,SsdMobilenetv1Options:()=>Z,TinyFaceDetector:()=>Fe,TinyFaceDetectorOptions:()=>gr,TinyYolov2:()=>ve,TinyYolov2Options:()=>lt,allFaces:()=>Da,allFacesSsdMobilenetv1:()=>dn,allFacesTinyYolov2:()=>wa,awaitMediaLoaded:()=>Yr,bufferToImage:()=>Gr,computeFaceDescriptor:()=>da,createCanvas:()=>ne,createCanvasFromMedia:()=>Ie,createFaceDetectionNet:()=>na,createFaceRecognitionNet:()=>Un,createSsdMobilenetv1:()=>Xo,createTinyFaceDetector:()=>Ea,createTinyYolov2:()=>ia,detectAllFaces:()=>wr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>pa,detectLandmarks:()=>Pa,detectSingleFace:()=>_a,draw:()=>Qr,env:()=>w,euclideanDistance:()=>uo,extendWithAge:()=>hr,extendWithFaceDescriptor:()=>fr,extendWithFaceDetection:()=>$t,extendWithFaceExpressions:()=>mr,extendWithFaceLandmarks:()=>le,extendWithGender:()=>xr,extractFaceTensors:()=>se,extractFaces:()=>ae,fetchImage:()=>Bn,fetchJson:()=>Ur,fetchNetWeights:()=>Rn,fetchOrThrow:()=>Yt,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Ht,imageTensorToCanvas:()=>zr,imageToSquare:()=>Vr,inverseSigmoid:()=>Mn,iou:()=>Lr,isMediaElement:()=>qe,isMediaLoaded:()=>Ne,isWithAge:()=>Xn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>qr,isWithFaceLandmarks:()=>zt,isWithGender:()=>Jn,loadAgeGenderModel:()=>ya,loadFaceDetectionModel:()=>Fa,loadFaceExpressionModel:()=>va,loadFaceLandmarkModel:()=>xa,loadFaceLandmarkTinyModel:()=>ba,loadFaceRecognitionModel:()=>ga,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>fa,loadTinyYolov2Model:()=>ha,loadWeightMap:()=>Xr,locateFaces:()=>Ta,matchDimensions:()=>On,minBbox:()=>kr,nets:()=>P,nonMaxSuppression:()=>Sr,normalize:()=>ot,padToSquare:()=>Ar,predictAgeAndGender:()=>la,recognizeFaceExpressions:()=>ua,resizeResults:()=>un,resolveInput:()=>jt,shuffleArray:()=>En,sigmoid:()=>De,ssdMobilenetv1:()=>cn,tf:()=>Ma,tinyFaceDetector:()=>ca,tinyYolov2:()=>ma,toNetInput:()=>E,utils:()=>Mr,validateConfig:()=>ao,version:()=>Ia});var Ma=b(g());var Qr={};Ge(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ce,drawContour:()=>ft,drawDetections:()=>Wn,drawFaceExpressions:()=>$n,drawFaceLandmarks:()=>jn});function ft(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Ge(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Bt,isTensor1D:()=>Dn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>te,range:()=>ct,round:()=>Rt});var go=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof go.Tensor&&o.shape.length===t}function Dn(o){return Bt(o,1)}function Cr(o){return Bt(o,2)}function ht(o){return Bt(o,3)}function z(o){return Bt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function te(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ee=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let l=o.shape.slice();return l[s]=u,Et.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function En(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function De(o){return 1/(1+Math.exp(-o))}function Mn(o){return Math.log(o/(1-o))}var re=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Cn=.5,Nn=.43,In=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=Ot(t),m=Math.floor(Math.max(0,c.x-Cn*i)),p=Math.floor(Math.max(0,c.y-Nn*i));return new re(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var vo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var oe=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Ee=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var Me=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var yo=class extends Me{static assertIsValidPredictedBox(t,e){if(Me.assertIsValidLabeledBox(t,e),!te(t.score)||!te(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function $t(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Or=b(To()),k;function Sn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function $r(o){k=o}function jr(){return Rr()?$r(Wr()):Or.isNodejs()?$r(Br()):null}function An(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:Sn,setEnv:$r,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:An,isBrowser:Rr,isNodejs:Or.isNodejs};jr();function jt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=jt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ce=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ce(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(l+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ce({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Wn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${Rt(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var ue=b(g());function Ne(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ne(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ht(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ne({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Ie(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ne(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ht(o),a=ne({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Ht(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ne({width:t,height:t}),p=o instanceof n?o:Ie(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Ie(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(jt);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function ae(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ne({width:c,height:m});return O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function se(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Yt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Bn(o){let t=await Yt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Yt(o)).json()}async function Rn(o){return new Float32Array(await(await Yt(o)).arrayBuffer())}var Po=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Po.io.loadWeights(n,r)}function On(o,t,e=!1){let{width:r,height:n}=e?Ht(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ie=b(g());function $(o,t,e){return ie.tidy(()=>{let r=ie.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ie.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):$(o,t.conv0,[2,2])),n=$(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=$(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function Le(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):$(o,t.conv0,r?[2,2]:[1,1])),a=$(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=$(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=$(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function Gt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function ce(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var ke=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function me(o,t){return(e,r,n)=>{let a=ke.tensor4d(o(3*3*e),[3,3,e,1]),s=ke.tensor4d(o(e*r),[1,1,e,r]),i=ke.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function pe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Bt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function _o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function wo(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Se=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=Le(a,e.dense0,!0);return s=Le(s,e.dense1),s=Le(s,e.dense2),s=Le(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return wo(t)}extractParams(t){return _o(t)}};var Mo=b(g());var de=b(g());function Ae(o,t){return de.tidy(()=>de.add(de.matMul(o,t.weights),t.bias))}function Do(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Eo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var We=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Mo.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return Ae(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Do(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Eo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends We{constructor(t=new Se){super("FaceExpressionNet",t)}forwardInput(t){return ue.tidy(()=>ue.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(ue.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function $n(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${Rt(d.probability)})`),m).draw(o)})}function zt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof oe&&(e.strokeStyle=s,e.lineWidth=a,ft(e,this.faceLandmarks.getJawOutline()),ft(e,this.faceLandmarks.getLeftEyeBrow()),ft(e,this.faceLandmarks.getRightEyeBrow()),ft(e,this.faceLandmarks.getNose()),ft(e,this.faceLandmarks.getLeftEye(),!0),ft(e,this.faceLandmarks.getRightEye(),!0),ft(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Co="0.12.1";var ut=b(g());var I=b(g());function Hn(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function No(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Hn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},l={};ct(t,0,1).forEach(y=>{l[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:l,exit_flow:h}}}function Yn(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Io(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function Lo(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=$(r,t.separable_conv0,[1,1]),r=$(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,Lo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=$(I.relu(o),t.separable_conv0,[1,1]);return e=$(I.relu(e),t.separable_conv1,[1,1]),e=$(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(Lo(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=Gn(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu($(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Io(t,this._numMainBlocks)}extractParams(t){return No(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function So(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Ae(n,e.fc.age).as1D(),s=Ae(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,l=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),So(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Be=class extends We{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:l,height:v}=n[d];return u(l,v)?Math.abs(l-v)/2:0},c=d=>i(d,(u,l)=>ui(d,(u,l)=>ls(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new oe(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var fe=class extends Be{constructor(t=new Se){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function Ao(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ao(t)}extractParams(t){return Wo(t)}};var dr=class extends Be{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Bo=class extends fe{};var U=b(g());var he=b(g());var ur=b(g());function Ro(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=he.conv2d(o,a,e,n);return i=he.add(i,s),i=Ro(i,t.scale),r?he.relu(i):i}function Oo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function lr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function zn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function $o(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=zn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:l,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Vn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function jo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Vn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),l=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:l,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Oo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function Re(o,t){let e=lr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var xe=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=lr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=Re(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=Re(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=Re(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=Re(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return $o(t)}};function Un(o){let t=new xe;return t.extractWeights(o),t}function fr(o,t){return{...o,...{descriptor:t}}}function Xn(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function Jn(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&te(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function qn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),l=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:l,batch_norm_variance:v}}function r(c,m,p,d,u){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:l,bias:v}}function n(c,m,p,d){let{filters:u,bias:l}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:l}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Ho(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Zn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Zn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Kn=.0010000000474974513;function Qn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kn),yt.clipByValue(r,0,6)})}function ta(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ta(i);r=Qn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ea(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),l=(p-c)*(d-m);if(u<=0||l<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+l-T)}function zo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let l=ea(o,p.boxIndex,m[u]);if(l!==0&&(p.score*=c(l),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var f=b(g());function ra(o){let t=f.unstack(f.transpose(o,[1,0])),e=[f.sub(t[2],t[0]),f.sub(t[3],t[1])],r=[f.add(t[0],f.div(e[0],f.scalar(2))),f.add(t[1],f.div(e[1],f.scalar(2)))];return{sizes:e,centers:r}}function oa(o,t){let{sizes:e,centers:r}=ra(o),n=f.unstack(f.transpose(t,[1,0])),a=f.div(f.mul(f.exp(f.div(n[2],f.scalar(5))),e[0]),f.scalar(2)),s=f.add(f.mul(f.div(n[0],f.scalar(10)),e[0]),r[0]),i=f.div(f.mul(f.exp(f.div(n[3],f.scalar(5))),e[1]),f.scalar(2)),c=f.add(f.mul(f.div(n[1],f.scalar(10)),e[1]),r[1]);return f.transpose(f.stack([f.sub(s,a),f.sub(c,i),f.add(s,a),f.add(c,i)]),[1,0])}function Vo(o,t,e){return f.tidy(()=>{let r=o.shape[0],n=oa(f.reshape(f.tile(e.extra_dim,[r,1,1]),[-1,4]),f.reshape(o,[-1,4]));n=f.reshape(n,[r,n.shape[0]/r,4]);let a=f.sigmoid(f.slice(t,[0,0,1],[-1,-1,-1])),s=f.slice(a,[0,0,0],[-1,-1,1]);s=f.reshape(s,[r,s.shape[1]]);let i=f.unstack(n),c=f.unstack(s);return{boxes:i,scores:c}})}var $e=b(g());var Oe=b(g());function Vt(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(Gt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(Gt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Uo(o,t,e){return $e.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Vt(t,e.box_predictor_0),u=Vt(o,e.box_predictor_1),l=Vt(n,e.box_predictor_2),v=Vt(s,e.box_predictor_3),_=Vt(c,e.box_predictor_4),h=Vt(p,e.box_predictor_5),y=$e.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,l.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=$e.concat([d.classPrediction,u.classPrediction,l.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ut=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Uo(a.out,a.conv11,e.prediction_layer);return Vo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new re(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Ho(t)}};function Xo(o){let t=new Ut;return t.extractWeights(o),t}function na(o){return Xo(o)}var Jo=class extends Ut{};var qo=.4,Zo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],Ko=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function be(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),be(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),be(e)})}var so=b(g());function aa(o,t){let e=ce(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=me(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=aa(n,s),p;if(t.withSeparableConvs){let[d,u,l,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,l,"conv1"),et=m(l,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,Qt=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}else{let[d,u,l,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,l,"conv1"),et=c(l,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),Qt=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function sa(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=pe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=sa(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var lt=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),Gt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?be(Gt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,Gt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new lt(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,l]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+De(h[y][T][F][0]))/m*i,et=(y+De(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:Qt,label:lo}=this.withClassScores?await this.extractPredictedClass(l,wt):{classScore:1,label:0};v.push({box:new ee(Pt,_t,Pt+it,_t+X),score:L,classScore:L*Qt,label:lo,...wt})}}return d.dispose(),u.dispose(),l.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ge=io;ge.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ve=class extends ge{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ia(o,t=!0){let e=new ve(t);return e.extractWeights(o),e}var gr=class extends lt{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var je=b(g());var co=b(g());async function Xt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>zt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await se(t,a):await ae(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function ye(o,t,e,r,n){return Xt([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],sn=[117.001,114.697,97.404];var Fe=class extends ge{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Ut,tinyFaceDetector:new Fe,tinyYolov2:new ve,faceLandmark68Net:new fe,faceLandmark68TinyNet:new dr,faceRecognitionNet:new xe,faceExpressionNet:new cr,ageGenderNet:new pr},cn=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),ca=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ma=(o,t)=>P.tinyYolov2.locateFaces(o,t),mn=o=>P.faceLandmark68Net.detectLandmarks(o),pa=o=>P.faceLandmark68TinyNet.detectLandmarks(o),da=o=>P.faceRecognitionNet.computeFaceDescriptor(o),ua=o=>P.faceExpressionNet.predictExpressions(o),la=o=>P.ageGenderNet.predictAgeAndGender(o),pn=o=>P.ssdMobilenetv1.load(o),fa=o=>P.tinyFaceDetector.load(o),ha=o=>P.tinyYolov2.load(o),xa=o=>P.faceLandmark68Net.load(o),ba=o=>P.faceLandmark68TinyNet.load(o),ga=o=>P.faceRecognitionNet.load(o),va=o=>P.faceExpressionNet.load(o),ya=o=>P.ageGenderNet.load(o),Fa=pn,Ta=cn,Pa=mn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},_e=class extends mo{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Te(this,this.input)}},we=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new Pe(this,this.input)}},Zt=class extends _e{withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Te=class extends po{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new _e(this,this.input)}},Pe=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await ye(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new we(this,this.input)}},Jt=class extends Te{withFaceExpressions(){return new Zt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Xt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>fr(t[n],r))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return fr(t,e)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof je.Tensor?await se(this.input,e):await ae(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof je.Tensor?await se(this.input,[e]):await ae(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},He=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof lt?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>$t({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new _e(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Te(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new He(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?$t({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetection(),this.input)}};function _a(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new He(o,t)}async function dn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function wa(o,t={}){return wr(o,new lt(t)).withFaceLandmarks().withFaceDescriptors()}var Da=dn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Ee(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function Ea(o){let t=new Fe;return t.extractWeights(o),t}function un(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>un(n,{width:e,height:r}));if(zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le($t(o,n),a)}return pt(o)?$t(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var Ca=typeof process!="undefined",Na=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ia={faceapi:Co,node:Ca,browser:Na}; +var ln=Object.create,Ye=Object.defineProperty,fn=Object.getPrototypeOf,hn=Object.prototype.hasOwnProperty,xn=Object.getOwnPropertyNames,bn=Object.getOwnPropertyDescriptor;var fo=o=>Ye(o,"__esModule",{value:!0});var ho=(o,t)=>()=>(t||(t={exports:{}},o(t.exports,t)),t.exports),Ge=(o,t)=>{fo(o);for(var e in t)Ye(o,e,{get:t[e],enumerable:!0})},gn=(o,t,e)=>{if(fo(o),t&&typeof t=="object"||typeof t=="function")for(let r of xn(t))!hn.call(o,r)&&r!=="default"&&Ye(o,r,{get:()=>t[r],enumerable:!(e=bn(t,r))||e.enumerable});return o},b=o=>o&&o.__esModule?o:gn(Ye(o!=null?ln(fn(o)):{},"default",{value:o,enumerable:!0}),o);var g=ho(xo=>{var vn=Object.create,Er=Object.defineProperty,yn=Object.getPrototypeOf,Fn=Object.prototype.hasOwnProperty,Tn=Object.getOwnPropertyNames,Pn=Object.getOwnPropertyDescriptor,_n=o=>Er(o,"__esModule",{value:!0}),bo=(o,t,e)=>{if(_n(o),t&&typeof t=="object"||typeof t=="function")for(let r of Tn(t))!Fn.call(o,r)&&r!=="default"&&Er(o,r,{get:()=>t[r],enumerable:!(e=Pn(t,r))||e.enumerable});return o},wn=o=>o&&o.__esModule?o:bo(Er(o!=null?vn(yn(o)):{},"default",{value:o,enumerable:!0}),o);bo(xo,wn(require("@tensorflow/tfjs-node")))});var To=ho((Ln,Fo)=>{Ge(Ln,{isNodejs:()=>kn});function kn(){return typeof global=="object"&&!0&&typeof Fo!="undefined"&&typeof process!="undefined"&&!!process.version}});Ge(exports,{AgeGenderNet:()=>pr,BoundingBox:()=>ee,Box:()=>D,ComposableTask:()=>tt,ComputeAllFaceDescriptorsTask:()=>At,ComputeFaceDescriptorsTaskBase:()=>vr,ComputeSingleFaceDescriptorTask:()=>Wt,DetectAllFaceLandmarksTask:()=>Fr,DetectAllFacesTask:()=>He,DetectFaceLandmarksTaskBase:()=>yr,DetectFacesTaskBase:()=>Pr,DetectSingleFaceLandmarksTask:()=>Tr,DetectSingleFaceTask:()=>_r,Dimensions:()=>A,FACE_EXPRESSION_LABELS:()=>Jr,FaceDetection:()=>M,FaceDetectionNet:()=>Jo,FaceExpressionNet:()=>cr,FaceExpressions:()=>It,FaceLandmark68Net:()=>fe,FaceLandmark68TinyNet:()=>dr,FaceLandmarkNet:()=>Bo,FaceLandmarks:()=>V,FaceLandmarks5:()=>vo,FaceLandmarks68:()=>oe,FaceMatch:()=>Ee,FaceMatcher:()=>Dr,FaceRecognitionNet:()=>xe,Gender:()=>vt,LabeledBox:()=>Me,LabeledFaceDescriptors:()=>xt,NetInput:()=>bt,NeuralNetwork:()=>S,ObjectDetection:()=>Dt,Point:()=>x,PredictedBox:()=>yo,Rect:()=>re,SsdMobilenetv1:()=>Ut,SsdMobilenetv1Options:()=>Z,TinyFaceDetector:()=>Fe,TinyFaceDetectorOptions:()=>gr,TinyYolov2:()=>ve,TinyYolov2Options:()=>lt,allFaces:()=>Da,allFacesSsdMobilenetv1:()=>dn,allFacesTinyYolov2:()=>wa,awaitMediaLoaded:()=>Yr,bufferToImage:()=>Gr,computeFaceDescriptor:()=>da,createCanvas:()=>ne,createCanvasFromMedia:()=>Ie,createFaceDetectionNet:()=>na,createFaceRecognitionNet:()=>Un,createSsdMobilenetv1:()=>Xo,createTinyFaceDetector:()=>Ea,createTinyYolov2:()=>ia,detectAllFaces:()=>wr,detectFaceLandmarks:()=>mn,detectFaceLandmarksTiny:()=>pa,detectLandmarks:()=>Pa,detectSingleFace:()=>_a,draw:()=>Qr,env:()=>w,euclideanDistance:()=>uo,extendWithAge:()=>hr,extendWithFaceDescriptor:()=>fr,extendWithFaceDetection:()=>$t,extendWithFaceExpressions:()=>mr,extendWithFaceLandmarks:()=>le,extendWithGender:()=>xr,extractFaceTensors:()=>se,extractFaces:()=>ae,fetchImage:()=>Bn,fetchJson:()=>Ur,fetchNetWeights:()=>Rn,fetchOrThrow:()=>Yt,getContext2dOrThrow:()=>O,getMediaDimensions:()=>Ht,imageTensorToCanvas:()=>zr,imageToSquare:()=>Vr,inverseSigmoid:()=>Mn,iou:()=>Lr,isMediaElement:()=>qe,isMediaLoaded:()=>Ne,isWithAge:()=>Xn,isWithFaceDetection:()=>pt,isWithFaceExpressions:()=>qr,isWithFaceLandmarks:()=>zt,isWithGender:()=>Jn,loadAgeGenderModel:()=>ya,loadFaceDetectionModel:()=>Fa,loadFaceExpressionModel:()=>va,loadFaceLandmarkModel:()=>xa,loadFaceLandmarkTinyModel:()=>ba,loadFaceRecognitionModel:()=>ga,loadSsdMobilenetv1Model:()=>pn,loadTinyFaceDetectorModel:()=>fa,loadTinyYolov2Model:()=>ha,loadWeightMap:()=>Xr,locateFaces:()=>Ta,matchDimensions:()=>On,minBbox:()=>kr,nets:()=>P,nonMaxSuppression:()=>Sr,normalize:()=>ot,padToSquare:()=>Ar,predictAgeAndGender:()=>la,recognizeFaceExpressions:()=>ua,resizeResults:()=>un,resolveInput:()=>jt,shuffleArray:()=>En,sigmoid:()=>De,ssdMobilenetv1:()=>cn,tf:()=>Ma,tinyFaceDetector:()=>ca,tinyYolov2:()=>ma,toNetInput:()=>E,utils:()=>Mr,validateConfig:()=>ao,version:()=>Ia});var Ma=b(g());var Qr={};Ge(Qr,{AnchorPosition:()=>dt,DrawBox:()=>Xe,DrawBoxOptions:()=>Hr,DrawFaceLandmarks:()=>Kr,DrawFaceLandmarksOptions:()=>Zr,DrawTextField:()=>Mt,DrawTextFieldOptions:()=>Ce,drawContour:()=>ft,drawDetections:()=>Wn,drawFaceExpressions:()=>$n,drawFaceLandmarks:()=>jn});function ft(o,t,e=!1){if(o.beginPath(),t.slice(1).forEach(({x:r,y:n},a)=>{let s=t[a];o.moveTo(s.x,s.y),o.lineTo(r,n)}),e){let r=t[t.length-1],n=t[0];if(!r||!n)return;o.moveTo(r.x,r.y),o.lineTo(n.x,n.y)}o.stroke()}var Mr={};Ge(Mr,{computeReshapedDimensions:()=>Ir,getCenterPoint:()=>Ot,isDimensions:()=>Ve,isEven:()=>ze,isFloat:()=>Nr,isTensor:()=>Bt,isTensor1D:()=>Dn,isTensor2D:()=>Cr,isTensor3D:()=>ht,isTensor4D:()=>z,isValidNumber:()=>rt,isValidProbablitiy:()=>te,range:()=>ct,round:()=>Rt});var go=b(g());var A=class{constructor(t,e){if(!rt(t)||!rt(e))throw new Error(`Dimensions.constructor - expected width and height to be valid numbers, instead have ${JSON.stringify({width:t,height:e})}`);this._width=t,this._height=e}get width(){return this._width}get height(){return this._height}reverse(){return new A(1/this.width,1/this.height)}};function Bt(o,t){return o instanceof go.Tensor&&o.shape.length===t}function Dn(o){return Bt(o,1)}function Cr(o){return Bt(o,2)}function ht(o){return Bt(o,3)}function z(o){return Bt(o,4)}function Nr(o){return o%1!=0}function ze(o){return o%2==0}function Rt(o,t=2){let e=10**t;return Math.floor(o*e)/e}function Ve(o){return o&&o.width&&o.height}function Ir({width:o,height:t},e){let r=e/Math.max(t,o);return new A(Math.round(o*r),Math.round(t*r))}function Ot(o){return o.reduce((t,e)=>t.add(e),new x(0,0)).div(new x(o.length,o.length))}function ct(o,t,e){return Array(o).fill(0).map((r,n)=>t+n*e)}function rt(o){return!!o&&o!==Infinity&&o!==-Infinity&&!Number.isNaN(o)||o===0}function te(o){return rt(o)&&o>=0&&o<=1}var x=class{constructor(t,e){this._x=t,this._y=e}get x(){return this._x}get y(){return this._y}add(t){return new x(this.x+t.x,this.y+t.y)}sub(t){return new x(this.x-t.x,this.y-t.y)}mul(t){return new x(this.x*t.x,this.y*t.y)}div(t){return new x(this.x/t.x,this.y/t.y)}abs(){return new x(Math.abs(this.x),Math.abs(this.y))}magnitude(){return Math.sqrt(this.x**2+this.y**2)}floor(){return new x(Math.floor(this.x),Math.floor(this.y))}};var D=class{static isRect(t){return!!t&&[t.x,t.y,t.width,t.height].every(rt)}static assertIsValidBox(t,e,r=!1){if(!D.isRect(t))throw new Error(`${e} - invalid box: ${JSON.stringify(t)}, expected object with properties x, y, width, height`);if(!r&&(t.width<0||t.height<0))throw new Error(`${e} - width (${t.width}) and height (${t.height}) must be positive numbers`)}constructor(t,e=!0){let r=t||{},n=[r.left,r.top,r.right,r.bottom].every(rt),a=[r.x,r.y,r.width,r.height].every(rt);if(!a&&!n)throw new Error(`Box.constructor - expected box to be IBoundingBox | IRect, instead have ${JSON.stringify(r)}`);let[s,i,c,m]=a?[r.x,r.y,r.width,r.height]:[r.left,r.top,r.right-r.left,r.bottom-r.top];D.assertIsValidBox({x:s,y:i,width:c,height:m},"Box.constructor",e),this._x=s,this._y=i,this._width=c,this._height=m}get x(){return this._x}get y(){return this._y}get width(){return this._width}get height(){return this._height}get left(){return this.x}get top(){return this.y}get right(){return this.x+this.width}get bottom(){return this.y+this.height}get area(){return this.width*this.height}get topLeft(){return new x(this.left,this.top)}get topRight(){return new x(this.right,this.top)}get bottomLeft(){return new x(this.left,this.bottom)}get bottomRight(){return new x(this.right,this.bottom)}round(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.round(a));return new D({x:t,y:e,width:r,height:n})}floor(){let[t,e,r,n]=[this.x,this.y,this.width,this.height].map(a=>Math.floor(a));return new D({x:t,y:e,width:r,height:n})}toSquare(){let{x:t,y:e,width:r,height:n}=this,a=Math.abs(r-n);return re&&(i=-d+e+r,d=e),u>t&&(c=-u+t+n,u=t),m<1&&(c=2-m,m=1),p<1&&(c=2-p,p=1),{dy:s,edy:c,dx:a,edx:i,y:p,ey:u,x:m,ex:d,w:r,h:n}}calibrate(t){return new D({left:this.left+t.left*this.width,top:this.top+t.top*this.height,right:this.right+t.right*this.width,bottom:this.bottom+t.bottom*this.height}).toSquare().round()}};var ee=class extends D{constructor(t,e,r,n,a=!1){super({left:t,top:e,right:r,bottom:n},a)}};var Dt=class{constructor(t,e,r,n,a){this._imageDims=new A(a.width,a.height),this._score=t,this._classScore=e,this._className=r,this._box=new D(n).rescale(this._imageDims)}get score(){return this._score}get classScore(){return this._classScore}get className(){return this._className}get box(){return this._box}get imageDims(){return this._imageDims}get imageWidth(){return this.imageDims.width}get imageHeight(){return this.imageDims.height}get relativeBox(){return new D(this._box).rescale(this.imageDims.reverse())}forSize(t,e){return new Dt(this.score,this.classScore,this.className,this.relativeBox,{width:t,height:e})}};var M=class extends Dt{constructor(t,e,r){super(t,t,"",e,r)}forSize(t,e){let{score:r,relativeBox:n,imageDims:a}=super.forSize(t,e);return new M(r,n,a)}};function Lr(o,t,e=!0){let r=Math.max(0,Math.min(o.right,t.right)-Math.max(o.left,t.left)),n=Math.max(0,Math.min(o.bottom,t.bottom)-Math.max(o.top,t.top)),a=r*n;return e?a/(o.area+t.area-a):a/Math.min(o.area,t.area)}function kr(o){let t=o.map(i=>i.x),e=o.map(i=>i.y),r=t.reduce((i,c)=>ccii({score:s,boxIndex:i})).sort((s,i)=>s.score-i.score).map(s=>s.boxIndex),a=[];for(;n.length>0;){let s=n.pop();a.push(s);let i=n,c=[];for(let m=0;mc[p]<=e)}return a}var mt=b(g());function ot(o,t){return mt.tidy(()=>{let[e,r,n]=t,a=mt.fill([...o.shape.slice(0,3),1],e,"float32"),s=mt.fill([...o.shape.slice(0,3),1],r,"float32"),i=mt.fill([...o.shape.slice(0,3),1],n,"float32"),c=mt.concat([a,s,i],3);return mt.sub(o,c)})}var Et=b(g());function Ar(o,t=!1){return Et.tidy(()=>{let[e,r]=o.shape.slice(1);if(e===r)return o;let n=Math.abs(e-r),a=Math.round(n*(t?.5:1)),s=e>r?2:1,i=u=>{let l=o.shape.slice();return l[s]=u,Et.fill(l,0,"float32")},c=i(a),m=n-c.shape[s],d=[t&&m?i(m):null,o,c].filter(u=>!!u).map(u=>Et.cast(u,"float32"));return Et.concat(d,s)})}function En(o){let t=o.slice();for(let e=t.length-1;e>0;e--){let r=Math.floor(Math.random()*(e+1)),n=t[e];t[e]=t[r],t[r]=n}return t}function De(o){return 1/(1+Math.exp(-o))}function Mn(o){return Math.log(o/(1-o))}var re=class extends D{constructor(t,e,r,n,a=!1){super({x:t,y:e,width:r,height:n},a)}};var Cn=.5,Nn=.43,In=.45,V=class{constructor(t,e,r=new x(0,0)){let{width:n,height:a}=e;this._imgDims=new A(n,a),this._shift=r,this._positions=t.map(s=>s.mul(new x(n,a)).add(r))}get shift(){return new x(this._shift.x,this._shift.y)}get imageWidth(){return this._imgDims.width}get imageHeight(){return this._imgDims.height}get positions(){return this._positions}get relativePositions(){return this._positions.map(t=>t.sub(this._shift).div(new x(this.imageWidth,this.imageHeight)))}forSize(t,e){return new this.constructor(this.relativePositions,{width:t,height:e})}shiftBy(t,e){return new this.constructor(this.relativePositions,this._imgDims,new x(t,e))}shiftByPoint(t){return this.shiftBy(t.x,t.y)}align(t,e={}){if(t){let a=t instanceof M?t.box.floor():new D(t);return this.shiftBy(a.x,a.y).align(null,e)}let{useDlibAlignment:r,minBoxPadding:n}={useDlibAlignment:!1,minBoxPadding:.2,...e};return r?this.alignDlib():this.alignMinBbox(n)}alignDlib(){let t=this.getRefPointsForAlignment(),[e,r,n]=t,a=d=>n.sub(d).magnitude(),s=(a(e)+a(r))/2,i=Math.floor(s/In),c=Ot(t),m=Math.floor(Math.max(0,c.x-Cn*i)),p=Math.floor(Math.max(0,c.y-Nn*i));return new re(m,p,Math.min(i,this.imageWidth+m),Math.min(i,this.imageHeight+p))}alignMinBbox(t){let e=kr(this.positions);return e.pad(e.width*t,e.height*t)}getRefPointsForAlignment(){throw new Error("getRefPointsForAlignment not implemented by base class")}};var vo=class extends V{getRefPointsForAlignment(){let t=this.positions;return[t[0],t[1],Ot([t[3],t[4]])]}};var oe=class extends V{getJawOutline(){return this.positions.slice(0,17)}getLeftEyeBrow(){return this.positions.slice(17,22)}getRightEyeBrow(){return this.positions.slice(22,27)}getNose(){return this.positions.slice(27,36)}getLeftEye(){return this.positions.slice(36,42)}getRightEye(){return this.positions.slice(42,48)}getMouth(){return this.positions.slice(48,68)}getRefPointsForAlignment(){return[this.getLeftEye(),this.getRightEye(),this.getMouth()].map(Ot)}};var Ee=class{constructor(t,e){this._label=t,this._distance=e}get label(){return this._label}get distance(){return this._distance}toString(t=!0){return`${this.label}${t?` (${Rt(this.distance)})`:""}`}};var Me=class extends D{static assertIsValidLabeledBox(t,e){if(D.assertIsValidBox(t,e),!rt(t.label))throw new Error(`${e} - expected property label (${t.label}) to be a number`)}constructor(t,e){super(t);this._label=e}get label(){return this._label}};var xt=class{constructor(t,e){if(typeof t!="string")throw new Error("LabeledFaceDescriptors - constructor expected label to be a string");if(!Array.isArray(e)||e.some(r=>!(r instanceof Float32Array)))throw new Error("LabeledFaceDescriptors - constructor expected descriptors to be an array of Float32Array");this._label=t,this._descriptors=e}get label(){return this._label}get descriptors(){return this._descriptors}toJSON(){return{label:this.label,descriptors:this.descriptors.map(t=>Array.from(t))}}static fromJSON(t){let e=t.descriptors.map(r=>new Float32Array(r));return new xt(t.label,e)}};var yo=class extends Me{static assertIsValidPredictedBox(t,e){if(Me.assertIsValidLabeledBox(t,e),!te(t.score)||!te(t.classScore))throw new Error(`${e} - expected properties score (${t.score}) and (${t.classScore}) to be a number between [0, 1]`)}constructor(t,e,r,n){super(t,e);this._score=r,this._classScore=n}get score(){return this._score}get classScore(){return this._classScore}};function pt(o){return o.detection instanceof M}function $t(o,t){return{...o,...{detection:t}}}function Wr(){let o=window.fetch;if(!o)throw new Error("fetch - missing fetch implementation for browser environment");let t=()=>{throw new Error("readFile - filesystem not available for browser environment")};return{Canvas:HTMLCanvasElement,CanvasRenderingContext2D,Image:HTMLImageElement,ImageData,Video:HTMLVideoElement,createCanvasElement:()=>document.createElement("canvas"),createImageElement:()=>document.createElement("img"),fetch:o,readFile:t}}function Ue(o){let t="";if(!o)try{o=require("fs")}catch(r){t=r.toString()}return{readFile:o?r=>new Promise((n,a)=>{o.readFile(r,(s,i)=>s?a(s):n(i))}):()=>{throw new Error(`readFile - failed to require fs in nodejs environment with error: ${t}`)}}}function Br(){let o=global.Canvas||global.HTMLCanvasElement,t=global.Image||global.HTMLImageElement,e=()=>{if(o)return new o;throw new Error("createCanvasElement - missing Canvas implementation for nodejs environment")},r=()=>{if(t)return new t;throw new Error("createImageElement - missing Image implementation for nodejs environment")},n=global.fetch,a=Ue();return{Canvas:o||class{},CanvasRenderingContext2D:global.CanvasRenderingContext2D||class{},Image:t||class{},ImageData:global.ImageData||class{},Video:global.HTMLVideoElement||class{},createCanvasElement:e,createImageElement:r,fetch:n,...a}}function Rr(){return typeof window=="object"&&typeof document!="undefined"&&typeof HTMLImageElement!="undefined"&&typeof HTMLCanvasElement!="undefined"&&typeof HTMLVideoElement!="undefined"&&typeof ImageData!="undefined"&&typeof CanvasRenderingContext2D!="undefined"}var Or=b(To()),k;function Sn(){if(!k)throw new Error("getEnv - environment is not defined, check isNodejs() and isBrowser()");return k}function $r(o){k=o}function jr(){return Rr()?$r(Wr()):Or.isNodejs()?$r(Br()):null}function An(o){if(k||jr(),!k)throw new Error("monkeyPatch - environment is not defined, check isNodejs() and isBrowser()");let{Canvas:t=k.Canvas,Image:e=k.Image}=o;k.Canvas=t,k.Image=e,k.createCanvasElement=o.createCanvasElement||(()=>new t),k.createImageElement=o.createImageElement||(()=>new e),k.ImageData=o.ImageData||k.ImageData,k.Video=o.Video||k.Video,k.fetch=o.fetch||k.fetch,k.readFile=o.readFile||k.readFile}var w={getEnv:Sn,setEnv:$r,initialize:jr,createBrowserEnv:Wr,createFileSystem:Ue,createNodejsEnv:Br,monkeyPatch:An,isBrowser:Rr,isNodejs:Or.isNodejs};jr();function jt(o){return!w.isNodejs()&&typeof o=="string"?document.getElementById(o):o}function O(o){let{Canvas:t,CanvasRenderingContext2D:e}=w.getEnv();if(o instanceof e)return o;let r=jt(o);if(!(r instanceof t))throw new Error("resolveContext2d - expected canvas to be of instance of Canvas");let n=r.getContext("2d");if(!n)throw new Error("resolveContext2d - canvas 2d context is null");return n}var dt;(function(o){o.TOP_LEFT="TOP_LEFT",o.TOP_RIGHT="TOP_RIGHT",o.BOTTOM_LEFT="BOTTOM_LEFT",o.BOTTOM_RIGHT="BOTTOM_RIGHT"})(dt||(dt={}));var Ce=class{constructor(t={}){let{anchorPosition:e,backgroundColor:r,fontColor:n,fontSize:a,fontStyle:s,padding:i}=t;this.anchorPosition=e||dt.TOP_LEFT,this.backgroundColor=r||"rgba(0, 0, 0, 0.5)",this.fontColor=n||"rgba(255, 255, 255, 1)",this.fontSize=a||14,this.fontStyle=s||"Georgia",this.padding=i||4}},Mt=class{constructor(t,e,r={}){this.text=typeof t=="string"?[t]:t instanceof Mt?t.text:t,this.anchor=e,this.options=new Ce(r)}measureWidth(t){let{padding:e}=this.options;return this.text.map(r=>t.measureText(r).width).reduce((r,n)=>r{let v=c+d.x,_=c+d.y+(l+1)*s;r.fillText(u,v,_)})}};var Hr=class{constructor(t={}){let{boxColor:e,lineWidth:r,label:n,drawLabelOptions:a}=t;this.boxColor=e||"rgba(0, 0, 255, 1)",this.lineWidth=r||2,this.label=n;let s={anchorPosition:dt.BOTTOM_LEFT,backgroundColor:this.boxColor};this.drawLabelOptions=new Ce({...s,...a})}},Xe=class{constructor(t,e={}){this.box=new D(t),this.options=new Hr(e)}draw(t){let e=O(t),{boxColor:r,lineWidth:n}=this.options,{x:a,y:s,width:i,height:c}=this.box;e.strokeStyle=r,e.lineWidth=n,e.strokeRect(a,s,i,c);let{label:m}=this.options;m&&new Mt([m],{x:a-n/2,y:s},this.options.drawLabelOptions).draw(t)}};function Wn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof M?r.score:pt(r)?r.detection.score:void 0,a=r instanceof M?r.box:pt(r)?r.detection.box:new D(r),s=n?`${Rt(n)}`:void 0;new Xe(a,{label:s}).draw(o)})}var ue=b(g());function Ne(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t&&o.complete||o instanceof e&&o.readyState>=3}function Yr(o){return new Promise((t,e)=>{if(o instanceof w.getEnv().Canvas||Ne(o))return t(null);function r(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),e(a))}function n(a){!a.currentTarget||(a.currentTarget.removeEventListener("load",n),a.currentTarget.removeEventListener("error",r),t(a))}o.addEventListener("load",n),o.addEventListener("error",r)})}function Gr(o){return new Promise((t,e)=>{o instanceof Blob||e(new Error("bufferToImage - expected buf to be of type: Blob"));let r=new FileReader;r.onload=()=>{typeof r.result!="string"&&e(new Error("bufferToImage - expected reader.result to be a string, in onload"));let n=w.getEnv().createImageElement();n.onload=()=>t(n),n.onerror=e,n.src=r.result},r.onerror=e,r.readAsDataURL(o)})}function Ht(o){let{Image:t,Video:e}=w.getEnv();return o instanceof t?new A(o.naturalWidth,o.naturalHeight):o instanceof e?new A(o.videoWidth,o.videoHeight):new A(o.width,o.height)}function ne({width:o,height:t}){let{createCanvasElement:e}=w.getEnv(),r=e();return r.width=o,r.height=t,r}function Ie(o,t){let{ImageData:e}=w.getEnv();if(!(o instanceof e)&&!Ne(o))throw new Error("createCanvasFromMedia - media has not finished loading yet");let{width:r,height:n}=t||Ht(o),a=ne({width:r,height:n});return o instanceof e?O(a).putImageData(o,0,0):O(a).drawImage(o,0,0,r,n),a}var Je=b(g());async function zr(o,t){let e=t||w.getEnv().createCanvasElement(),[r,n,a]=o.shape.slice(z(o)?1:0),s=Je.tidy(()=>o.as3D(r,n,a).toInt());return await Je.browser.toPixels(s,e),s.dispose(),e}function qe(o){let{Image:t,Canvas:e,Video:r}=w.getEnv();return o instanceof t||o instanceof e||o instanceof r}var J=b(g());function Vr(o,t,e=!1){let{Image:r,Canvas:n}=w.getEnv();if(!(o instanceof r||o instanceof n))throw new Error("imageToSquare - expected arg0 to be HTMLImageElement | HTMLCanvasElement");let a=Ht(o),s=t/Math.max(a.height,a.width),i=s*a.width,c=s*a.height,m=ne({width:t,height:t}),p=o instanceof n?o:Ie(o),d=Math.abs(i-c)/2,u=e&&i{if(ht(r)){this._imageTensors[n]=r,this._inputDimensions[n]=r.shape;return}if(z(r)){let s=r.shape[0];if(s!==1)throw new Error(`NetInput - tf.Tensor4D with batchSize ${s} passed, but not supported in input array`);this._imageTensors[n]=r,this._inputDimensions[n]=r.shape.slice(1);return}let a=r instanceof w.getEnv().Canvas?r:Ie(r);this._canvases[n]=a,this._inputDimensions[n]=[a.height,a.width,3]})}get imageTensors(){return this._imageTensors}get canvases(){return this._canvases}get isBatchInput(){return this.batchSize>1||this._treatAsBatchInput}get batchSize(){return this._batchSize}get inputDimensions(){return this._inputDimensions}get inputSize(){return this._inputSize}get reshapedInputDimensions(){return ct(this.batchSize,0,1).map((t,e)=>this.getReshapedInputDimensions(e))}getInput(t){return this.canvases[t]||this.imageTensors[t]}getInputDimensions(t){return this._inputDimensions[t]}getInputHeight(t){return this._inputDimensions[t][0]}getInputWidth(t){return this._inputDimensions[t][1]}getReshapedInputDimensions(t){if(typeof this.inputSize!="number")throw new Error("getReshapedInputDimensions - inputSize not set, toBatchTensor has not been called yet");let e=this.getInputWidth(t),r=this.getInputHeight(t);return Ir({width:e,height:r},this.inputSize)}toBatchTensor(t,e=!0){return this._inputSize=t,J.tidy(()=>{let r=ct(this.batchSize,0,1).map(a=>{let s=this.getInput(a);if(s instanceof J.Tensor){let i=z(s)?s:s.expandDims();return i=Ar(i,e),(i.shape[1]!==t||i.shape[2]!==t)&&(i=J.image.resizeBilinear(i,[t,t])),i.as3D(t,t,3)}if(s instanceof w.getEnv().Canvas)return J.browser.fromPixels(Vr(s,t,e));throw new Error(`toBatchTensor - at batchIdx ${a}, expected input to be instanceof tf.Tensor or instanceof HTMLCanvasElement, instead have ${s}`)});return J.stack(r.map(a=>J.cast(a,"float32"))).as4D(this.batchSize,t,t,3)})}};async function E(o){if(o instanceof bt)return o;let t=Array.isArray(o)?o:[o];if(!t.length)throw new Error("toNetInput - empty array passed as input");let e=n=>Array.isArray(o)?` at input index ${n}:`:"",r=t.map(jt);return r.forEach((n,a)=>{if(!qe(n)&&!ht(n)&&!z(n))throw typeof t[a]=="string"?new Error(`toNetInput -${e(a)} string passed, but could not resolve HTMLElement for element id ${t[a]}`):new Error(`toNetInput -${e(a)} expected media to be of type HTMLImageElement | HTMLVideoElement | HTMLCanvasElement | tf.Tensor3D, or to be an element id`);if(z(n)){let s=n.shape[0];if(s!==1)throw new Error(`toNetInput -${e(a)} tf.Tensor4D with batchSize ${s} passed, but not supported in input array`)}}),await Promise.all(r.map(n=>qe(n)&&Yr(n))),new bt(r,Array.isArray(o))}async function ae(o,t){let{Canvas:e}=w.getEnv(),r=o;if(!(o instanceof e)){let s=await E(o);if(s.batchSize>1)throw new Error("extractFaces - batchSize > 1 not supported");let i=s.getInput(0);r=i instanceof e?i:await zr(i)}let n=O(r);return t.map(s=>s instanceof M?s.forSize(r.width,r.height).box.floor():s).map(s=>s.clipAtImageBorders(r.width,r.height)).map(({x:s,y:i,width:c,height:m})=>{let p=ne({width:c,height:m});return O(p).putImageData(n.getImageData(s,i,c,m),0,0),p})}var Ze=b(g());async function se(o,t){if(!ht(o)&&!z(o))throw new Error("extractFaceTensors - expected image tensor to be 3D or 4D");if(z(o)&&o.shape[0]>1)throw new Error("extractFaceTensors - batchSize > 1 not supported");return Ze.tidy(()=>{let[e,r,n]=o.shape.slice(z(o)?1:0);return t.map(i=>i instanceof M?i.forSize(r,e).box:i).map(i=>i.clipAtImageBorders(r,e)).map(({x:i,y:c,width:m,height:p})=>Ze.slice3d(o.as3D(e,r,n),[c,i,0],[p,m,n]))})}async function Yt(o,t){let{fetch:e}=w.getEnv(),r=await e(o,t);if(!(r.status<400))throw new Error(`failed to fetch: (${r.status}) ${r.statusText}, from url: ${r.url}`);return r}async function Bn(o){let t=await Yt(o),e=await t.blob();if(!e.type.startsWith("image/"))throw new Error(`fetchImage - expected blob type to be of type image/*, instead have: ${e.type}, for url: ${t.url}`);return Gr(e)}async function Ur(o){return(await Yt(o)).json()}async function Rn(o){return new Float32Array(await(await Yt(o)).arrayBuffer())}var Po=b(g());function Ke(o,t){let e=`${t}-weights_manifest.json`;if(!o)return{modelBaseUri:"",manifestUri:e};if(o==="/")return{modelBaseUri:"/",manifestUri:`/${e}`};let r=o.startsWith("http://")?"http://":o.startsWith("https://")?"https://":"";o=o.replace(r,"");let n=o.split("/").filter(i=>i),a=o.endsWith(".json")?n[n.length-1]:e,s=r+(o.endsWith(".json")?n.slice(0,n.length-1):n).join("/");return s=o.startsWith("/")?`/${s}`:s,{modelBaseUri:s,manifestUri:s==="/"?`/${a}`:`${s}/${a}`}}async function Xr(o,t){let{manifestUri:e,modelBaseUri:r}=Ke(o,t),n=await Ur(e);return Po.io.loadWeights(n,r)}function On(o,t,e=!1){let{width:r,height:n}=e?Ht(t):t;return o.width=r,o.height=n,{width:r,height:n}}var Nt=b(g());var gt=b(g());var S=class{constructor(t){this._params=void 0;this._paramMappings=[];this._name=t}get params(){return this._params}get paramMappings(){return this._paramMappings}get isLoaded(){return!!this.params}getParamFromPath(t){let{obj:e,objProp:r}=this.traversePropertyPath(t);return e[r]}reassignParamFromPath(t,e){let{obj:r,objProp:n}=this.traversePropertyPath(t);r[n].dispose(),r[n]=e}getParamList(){return this._paramMappings.map(({paramPath:t})=>({path:t,tensor:this.getParamFromPath(t)}))}getTrainableParams(){return this.getParamList().filter(t=>t.tensor instanceof gt.Variable)}getFrozenParams(){return this.getParamList().filter(t=>!(t.tensor instanceof gt.Variable))}variable(){this.getFrozenParams().forEach(({path:t,tensor:e})=>{this.reassignParamFromPath(t,e.variable())})}freeze(){this.getTrainableParams().forEach(({path:t,tensor:e})=>{let r=gt.tensor(e.dataSync());e.dispose(),this.reassignParamFromPath(t,r)})}dispose(t=!0){this.getParamList().forEach(e=>{if(t&&e.tensor.isDisposed)throw new Error(`param tensor has already been disposed for path ${e.path}`);e.tensor.dispose()}),this._params=void 0}serializeParams(){return new Float32Array(this.getParamList().map(({tensor:t})=>Array.from(t.dataSync())).reduce((t,e)=>t.concat(e)))}async load(t){if(t instanceof Float32Array){this.extractWeights(t);return}await this.loadFromUri(t)}async loadFromUri(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromUri - expected model uri`);let e=await Xr(t,this.getDefaultModelName());this.loadFromWeightMap(e)}async loadFromDisk(t){if(t&&typeof t!="string")throw new Error(`${this._name}.loadFromDisk - expected model file path`);let{readFile:e}=w.getEnv(),{manifestUri:r,modelBaseUri:n}=Ke(t,this.getDefaultModelName()),a=m=>Promise.all(m.map(p=>e(p).then(d=>d.buffer))),s=gt.io.weightsLoaderFactory(a),i=JSON.parse((await e(r)).toString()),c=await s(i,n);this.loadFromWeightMap(c)}loadFromWeightMap(t){let{paramMappings:e,params:r}=this.extractParamsFromWeightMap(t);this._paramMappings=e,this._params=r}extractWeights(t){let{paramMappings:e,params:r}=this.extractParams(t);this._paramMappings=e,this._params=r}traversePropertyPath(t){if(!this.params)throw new Error("traversePropertyPath - model has no loaded params");let e=t.split("/").reduce((a,s)=>{if(!a.nextObj.hasOwnProperty(s))throw new Error(`traversePropertyPath - object does not have property ${s}, for path ${t}`);return{obj:a.nextObj,objProp:s,nextObj:a.nextObj[s]}},{nextObj:this.params}),{obj:r,objProp:n}=e;if(!r||!n||!(r[n]instanceof gt.Tensor))throw new Error(`traversePropertyPath - parameter is not a tensor, for path ${t}`);return{obj:r,objProp:n}}};var C=b(g());var ie=b(g());function $(o,t,e){return ie.tidy(()=>{let r=ie.separableConv2d(o,t.depthwise_filter,t.pointwise_filter,e,"same");return r=ie.add(r,t.bias),r})}function Qe(o,t,e=!1){return C.tidy(()=>{let r=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,[2,2],"same"),t.conv0.bias):$(o,t.conv0,[2,2])),n=$(r,t.conv1,[1,1]),a=C.relu(C.add(r,n)),s=$(a,t.conv2,[1,1]);return C.relu(C.add(r,C.add(n,s)))})}function Le(o,t,e=!1,r=!0){return C.tidy(()=>{let n=C.relu(e?C.add(C.conv2d(o,t.conv0.filters,r?[2,2]:[1,1],"same"),t.conv0.bias):$(o,t.conv0,r?[2,2]:[1,1])),a=$(n,t.conv1,[1,1]),s=C.relu(C.add(n,a)),i=$(s,t.conv2,[1,1]),c=C.relu(C.add(n,C.add(a,i))),m=$(c,t.conv3,[1,1]);return C.relu(C.add(n,C.add(a,C.add(i,m))))})}var Ct=b(g());function Gt(o,t,e="same",r=!1){return Ct.tidy(()=>{let n=Ct.add(Ct.conv2d(o,t.filters,[1,1],e),t.bias);return r?Ct.relu(n):n})}function W(o,t){Object.keys(o).forEach(e=>{t.some(r=>r.originalPath===e)||o[e].dispose()})}var tr=b(g());function ce(o,t){return(e,r,n,a)=>{let s=tr.tensor4d(o(e*r*n*n),[n,n,e,r]),i=tr.tensor1d(o(r));return t.push({paramPath:`${a}/filters`},{paramPath:`${a}/bias`}),{filters:s,bias:i}}}var er=b(g());function rr(o,t){return(e,r,n)=>{let a=er.tensor2d(o(e*r),[e,r]),s=er.tensor1d(o(r));return t.push({paramPath:`${n}/weights`},{paramPath:`${n}/bias`}),{weights:a,bias:s}}}var ke=b(g());var or=class{constructor(t,e,r){this.depthwise_filter=t;this.pointwise_filter=e;this.bias=r}};function me(o,t){return(e,r,n)=>{let a=ke.tensor4d(o(3*3*e),[3,3,e,1]),s=ke.tensor4d(o(e*r),[1,1,e,r]),i=ke.tensor1d(o(r));return t.push({paramPath:`${n}/depthwise_filter`},{paramPath:`${n}/pointwise_filter`},{paramPath:`${n}/bias`}),new or(a,s,i)}}function pe(o){return t=>{let e=o(`${t}/depthwise_filter`,4),r=o(`${t}/pointwise_filter`,4),n=o(`${t}/bias`,1);return new or(e,r,n)}}function j(o,t){return(e,r,n)=>{let a=o[e];if(!Bt(a,r))throw new Error(`expected weightMap[${e}] to be a Tensor${r}D, instead have ${a}`);return t.push({originalPath:e,paramPath:n||e}),a}}function B(o){let t=o;function e(n){let a=t.slice(0,n);return t=t.slice(n),a}function r(){return t}return{extractWeights:e,getRemainingWeights:r}}function nr(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c,m=!1){let p=m?e(s,i,3,`${c}/conv0`):r(s,i,`${c}/conv0`),d=r(i,i,`${c}/conv1`),u=r(i,i,`${c}/conv2`);return{conv0:p,conv1:d,conv2:u}}function a(s,i,c,m=!1){let{conv0:p,conv1:d,conv2:u}=n(s,i,c,m),l=r(i,i,`${c}/conv3`);return{conv0:p,conv1:d,conv2:u,conv3:l}}return{extractDenseBlock3Params:n,extractDenseBlock4Params:a}}function _o(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock4Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2"),c=n(128,256,"dense3");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i,dense3:c}}}function ar(o){return t=>{let e=o(`${t}/filters`,4),r=o(`${t}/bias`,1);return{filters:e,bias:r}}}function sr(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`);return{conv0:m,conv1:p,conv2:d}}function s(i,c=!1){let m=c?r(`${i}/conv0`):n(`${i}/conv0`),p=n(`${i}/conv1`),d=n(`${i}/conv2`),u=n(`${i}/conv3`);return{conv0:m,conv1:p,conv2:d,conv3:u}}return{extractDenseBlock3Params:a,extractDenseBlock4Params:s}}function wo(o){let t=[],{extractDenseBlock4Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2"),dense3:e("dense3")};return W(o,t),{params:r,paramMappings:t}}var Se=class extends S{constructor(){super("FaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceFeatureExtractor - load model before inference");return Nt.tidy(()=>{let r=Nt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Nt.scalar(255)),s=Le(a,e.dense0,!0);return s=Le(s,e.dense1),s=Le(s,e.dense2),s=Le(s,e.dense3),s=Nt.avgPool(s,[7,7],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_model"}extractParamsFromWeightMap(t){return wo(t)}extractParams(t){return _o(t)}};var Mo=b(g());var de=b(g());function Ae(o,t){return de.tidy(()=>de.add(de.matMul(o,t.weights),t.bias))}function Do(o,t,e){let r=[],{extractWeights:n,getRemainingWeights:a}=B(o),i=rr(n,r)(t,e,"fc");if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{paramMappings:r,params:{fc:i}}}function Eo(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:r("fc")};return W(o,t),{params:n,paramMappings:t}}function ir(o){let t={},e={};return Object.keys(o).forEach(r=>{let n=r.startsWith("fc")?e:t;n[r]=o[r]}),{featureExtractorMap:t,classifierMap:e}}var We=class extends S{constructor(t,e){super(t);this._faceFeatureExtractor=e}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return Mo.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t;return Ae(r.as2D(r.shape[0],-1),e.fc)})}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return Do(t,this.getClassifierChannelsIn(),this.getClassifierChannelsOut())}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),Eo(r)}extractParams(t){let e=this.getClassifierChannelsIn(),r=this.getClassifierChannelsOut(),n=r*e+r,a=t.slice(0,t.length-n),s=t.slice(t.length-n);return this.faceFeatureExtractor.extractWeights(a),this.extractClassifierParams(s)}};var Jr=["neutral","happy","sad","angry","fearful","disgusted","surprised"],It=class{constructor(t){if(t.length!==7)throw new Error(`FaceExpressions.constructor - expected probabilities.length to be 7, have: ${t.length}`);Jr.forEach((e,r)=>{this[e]=t[r]})}asSortedArray(){return Jr.map(t=>({expression:t,probability:this[t]})).sort((t,e)=>e.probability-t.probability)}};var cr=class extends We{constructor(t=new Se){super("FaceExpressionNet",t)}forwardInput(t){return ue.tidy(()=>ue.softmax(this.runNet(t)))}async forward(t){return this.forwardInput(await E(t))}async predictExpressions(t){let e=await E(t),r=await this.forwardInput(e),n=await Promise.all(ue.unstack(r).map(async s=>{let i=await s.data();return s.dispose(),i}));r.dispose();let a=n.map(s=>new It(s));return e.isBatchInput?a:a[0]}getDefaultModelName(){return"face_expression_model"}getClassifierChannelsIn(){return 256}getClassifierChannelsOut(){return 7}};function qr(o){return o.expressions instanceof It}function mr(o,t){return{...o,...{expressions:t}}}function $n(o,t,e=.1,r){(Array.isArray(t)?t:[t]).forEach(a=>{let s=a instanceof It?a:qr(a)?a.expressions:void 0;if(!s)throw new Error("drawFaceExpressions - expected faceExpressions to be FaceExpressions | WithFaceExpressions<{}> or array thereof");let c=s.asSortedArray().filter(d=>d.probability>e),m=pt(a)?a.detection.box.bottomLeft:r||new x(0,0);new Mt(c.map(d=>`${d.expression} (${Rt(d.probability)})`),m).draw(o)})}function zt(o){return pt(o)&&o.landmarks instanceof V&&o.unshiftedLandmarks instanceof V&&o.alignedRect instanceof M}function le(o,t){let{box:e}=o.detection,r=t.shiftBy(e.x,e.y),n=r.align(),{imageDims:a}=o.detection,s=new M(o.detection.score,n.rescale(a.reverse()),a);return{...o,...{landmarks:r,unshiftedLandmarks:t,alignedRect:s}}}var Zr=class{constructor(t={}){let{drawLines:e=!0,drawPoints:r=!0,lineWidth:n,lineColor:a,pointSize:s,pointColor:i}=t;this.drawLines=e,this.drawPoints=r,this.lineWidth=n||1,this.pointSize=s||2,this.lineColor=a||"rgba(0, 255, 255, 1)",this.pointColor=i||"rgba(255, 0, 255, 1)"}},Kr=class{constructor(t,e={}){this.faceLandmarks=t,this.options=new Zr(e)}draw(t){let e=O(t),{drawLines:r,drawPoints:n,lineWidth:a,lineColor:s,pointSize:i,pointColor:c}=this.options;if(r&&this.faceLandmarks instanceof oe&&(e.strokeStyle=s,e.lineWidth=a,ft(e,this.faceLandmarks.getJawOutline()),ft(e,this.faceLandmarks.getLeftEyeBrow()),ft(e,this.faceLandmarks.getRightEyeBrow()),ft(e,this.faceLandmarks.getNose()),ft(e,this.faceLandmarks.getLeftEye(),!0),ft(e,this.faceLandmarks.getRightEye(),!0),ft(e,this.faceLandmarks.getMouth(),!0)),n){e.strokeStyle=c,e.fillStyle=c;let m=p=>{e.beginPath(),e.arc(p.x,p.y,i,0,2*Math.PI),e.fill()};this.faceLandmarks.positions.forEach(m)}}};function jn(o,t){(Array.isArray(t)?t:[t]).forEach(r=>{let n=r instanceof V?r:zt(r)?r.landmarks:void 0;if(!n)throw new Error("drawFaceLandmarks - expected faceExpressions to be FaceLandmarks | WithFaceLandmarks> or array thereof");new Kr(n).draw(o)})}var Co="0.12.3";var ut=b(g());var I=b(g());function Hn(o,t){let e=ce(o,t),r=me(o,t);function n(s,i,c){let m=r(s,i,`${c}/separable_conv0`),p=r(i,i,`${c}/separable_conv1`),d=e(s,i,1,`${c}/expansion_conv`);return{separable_conv0:m,separable_conv1:p,expansion_conv:d}}function a(s,i){let c=r(s,s,`${i}/separable_conv0`),m=r(s,s,`${i}/separable_conv1`),p=r(s,s,`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:e,extractSeparableConvParams:r,extractReductionBlockParams:n,extractMainBlockParams:a}}function No(o,t){let e=[],{extractWeights:r,getRemainingWeights:n}=B(o),{extractConvParams:a,extractSeparableConvParams:s,extractReductionBlockParams:i,extractMainBlockParams:c}=Hn(r,e),m=a(3,32,3,"entry_flow/conv_in"),p=i(32,64,"entry_flow/reduction_block_0"),d=i(64,128,"entry_flow/reduction_block_1"),u={conv_in:m,reduction_block_0:p,reduction_block_1:d},l={};ct(t,0,1).forEach(y=>{l[`main_block_${y}`]=c(128,`middle_flow/main_block_${y}`)});let v=i(128,256,"exit_flow/reduction_block"),_=s(256,512,"exit_flow/separable_conv"),h={reduction_block:v,separable_conv:_};if(n().length!==0)throw new Error(`weights remaing after extract: ${n().length}`);return{paramMappings:e,params:{entry_flow:u,middle_flow:l,exit_flow:h}}}function Yn(o,t){let e=j(o,t),r=ar(e),n=pe(e);function a(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=r(`${i}/expansion_conv`);return{separable_conv0:c,separable_conv1:m,expansion_conv:p}}function s(i){let c=n(`${i}/separable_conv0`),m=n(`${i}/separable_conv1`),p=n(`${i}/separable_conv2`);return{separable_conv0:c,separable_conv1:m,separable_conv2:p}}return{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}}function Io(o,t){let e=[],{extractConvParams:r,extractSeparableConvParams:n,extractReductionBlockParams:a,extractMainBlockParams:s}=Yn(o,e),i=r("entry_flow/conv_in"),c=a("entry_flow/reduction_block_0"),m=a("entry_flow/reduction_block_1"),p={conv_in:i,reduction_block_0:c,reduction_block_1:m},d={};ct(t,0,1).forEach(_=>{d[`main_block_${_}`]=s(`middle_flow/main_block_${_}`)});let u=a("exit_flow/reduction_block"),l=n("exit_flow/separable_conv"),v={reduction_block:u,separable_conv:l};return W(o,e),{params:{entry_flow:p,middle_flow:d,exit_flow:v},paramMappings:e}}function Lo(o,t,e){return I.add(I.conv2d(o,t.filters,e,"same"),t.bias)}function to(o,t,e=!0){let r=e?I.relu(o):o;return r=$(r,t.separable_conv0,[1,1]),r=$(I.relu(r),t.separable_conv1,[1,1]),r=I.maxPool(r,[3,3],[2,2],"same"),r=I.add(r,Lo(o,t.expansion_conv,[2,2])),r}function Gn(o,t){let e=$(I.relu(o),t.separable_conv0,[1,1]);return e=$(I.relu(e),t.separable_conv1,[1,1]),e=$(I.relu(e),t.separable_conv2,[1,1]),e=I.add(e,o),e}var eo=class extends S{constructor(t){super("TinyXception");this._numMainBlocks=t}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyXception - load model before inference");return I.tidy(()=>{let r=I.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(I.scalar(256)),s=I.relu(Lo(a,e.entry_flow.conv_in,[2,2]));return s=to(s,e.entry_flow.reduction_block_0,!1),s=to(s,e.entry_flow.reduction_block_1),ct(this._numMainBlocks,0,1).forEach(i=>{s=Gn(s,e.middle_flow[`main_block_${i}`])}),s=to(s,e.exit_flow.reduction_block),s=I.relu($(s,e.exit_flow.separable_conv,[1,1])),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"tiny_xception_model"}extractParamsFromWeightMap(t){return Io(t,this._numMainBlocks)}extractParams(t){return No(t,this._numMainBlocks)}};function ko(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),n=rr(e,t),a=n(512,1,"fc/age"),s=n(512,2,"fc/gender");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{fc:{age:a,gender:s}}}}function So(o){let t=[],e=j(o,t);function r(a){let s=e(`${a}/weights`,2),i=e(`${a}/bias`,1);return{weights:s,bias:i}}let n={fc:{age:r("fc/age"),gender:r("fc/gender")}};return W(o,t),{params:n,paramMappings:t}}var vt;(function(o){o.FEMALE="female",o.MALE="male"})(vt||(vt={}));var pr=class extends S{constructor(t=new eo(2)){super("AgeGenderNet");this._faceFeatureExtractor=t}get faceFeatureExtractor(){return this._faceFeatureExtractor}runNet(t){let{params:e}=this;if(!e)throw new Error(`${this._name} - load model before inference`);return ut.tidy(()=>{let r=t instanceof bt?this.faceFeatureExtractor.forwardInput(t):t,n=ut.avgPool(r,[7,7],[2,2],"valid").as2D(r.shape[0],-1),a=Ae(n,e.fc.age).as1D(),s=Ae(n,e.fc.gender);return{age:a,gender:s}})}forwardInput(t){return ut.tidy(()=>{let{age:e,gender:r}=this.runNet(t);return{age:e,gender:ut.softmax(r)}})}async forward(t){return this.forwardInput(await E(t))}async predictAgeAndGender(t){let e=await E(t),r=await this.forwardInput(e),n=ut.unstack(r.age),a=ut.unstack(r.gender),s=n.map((c,m)=>({ageTensor:c,genderTensor:a[m]})),i=await Promise.all(s.map(async({ageTensor:c,genderTensor:m})=>{let p=(await c.data())[0],d=(await m.data())[0],u=d>.5,l=u?vt.MALE:vt.FEMALE,v=u?d:1-d;return c.dispose(),m.dispose(),{age:p,gender:l,genderProbability:v}}));return r.age.dispose(),r.gender.dispose(),e.isBatchInput?i:i[0]}getDefaultModelName(){return"age_gender_model"}dispose(t=!0){this.faceFeatureExtractor.dispose(t),super.dispose(t)}loadClassifierParams(t){let{params:e,paramMappings:r}=this.extractClassifierParams(t);this._params=e,this._paramMappings=r}extractClassifierParams(t){return ko(t)}extractParamsFromWeightMap(t){let{featureExtractorMap:e,classifierMap:r}=ir(t);return this.faceFeatureExtractor.loadFromWeightMap(e),So(r)}extractParams(t){let e=512*1+1+(512*2+2),r=t.slice(0,t.length-e),n=t.slice(t.length-e);return this.faceFeatureExtractor.extractWeights(r),this.extractClassifierParams(n)}};var H=b(g());var Be=class extends We{postProcess(t,e,r){let n=r.map(({width:s,height:i})=>{let c=e/Math.max(i,s);return{width:s*c,height:i*c}}),a=n.length;return H.tidy(()=>{let s=(d,u)=>H.stack([H.fill([68],d,"float32"),H.fill([68],u,"float32")],1).as2D(1,136).as1D(),i=(d,u)=>{let{width:l,height:v}=n[d];return u(l,v)?Math.abs(l-v)/2:0},c=d=>i(d,(u,l)=>ui(d,(u,l)=>ls(c(u),m(u))))).div(H.stack(Array.from(Array(a),(d,u)=>s(n[u].width,n[u].height))))})}forwardInput(t){return H.tidy(()=>{let e=this.runNet(t);return this.postProcess(e,t.inputSize,t.inputDimensions.map(([r,n])=>({height:r,width:n})))})}async forward(t){return this.forwardInput(await E(t))}async detectLandmarks(t){let e=await E(t),r=H.tidy(()=>H.unstack(this.forwardInput(e))),n=await Promise.all(r.map(async(a,s)=>{let i=Array.from(await a.data()),c=i.filter((p,d)=>ze(d)),m=i.filter((p,d)=>!ze(d));return new oe(Array(68).fill(0).map((p,d)=>new x(c[d],m[d])),{height:e.getInputHeight(s),width:e.getInputWidth(s)})}));return r.forEach(a=>a.dispose()),e.isBatchInput?n:n[0]}getClassifierChannelsOut(){return 136}};var fe=class extends Be{constructor(t=new Se){super("FaceLandmark68Net",t)}getDefaultModelName(){return"face_landmark_68_model"}getClassifierChannelsIn(){return 256}};var Lt=b(g());function Ao(o){let t=[],{extractDenseBlock3Params:e}=sr(o,t),r={dense0:e("dense0",!0),dense1:e("dense1"),dense2:e("dense2")};return W(o,t),{params:r,paramMappings:t}}function Wo(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractDenseBlock3Params:n}=nr(e,t),a=n(3,32,"dense0",!0),s=n(32,64,"dense1"),i=n(64,128,"dense2");if(r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{paramMappings:t,params:{dense0:a,dense1:s,dense2:i}}}var ro=class extends S{constructor(){super("TinyFaceFeatureExtractor")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("TinyFaceFeatureExtractor - load model before inference");return Lt.tidy(()=>{let r=Lt.cast(t.toBatchTensor(112,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(Lt.scalar(255)),s=Qe(a,e.dense0,!0);return s=Qe(s,e.dense1),s=Qe(s,e.dense2),s=Lt.avgPool(s,[14,14],[2,2],"valid"),s})}async forward(t){return this.forwardInput(await E(t))}getDefaultModelName(){return"face_feature_extractor_tiny_model"}extractParamsFromWeightMap(t){return Ao(t)}extractParams(t){return Wo(t)}};var dr=class extends Be{constructor(t=new ro){super("FaceLandmark68TinyNet",t)}getDefaultModelName(){return"face_landmark_68_tiny_model"}getClassifierChannelsIn(){return 128}};var Bo=class extends fe{};var U=b(g());var he=b(g());var ur=b(g());function Ro(o,t){return ur.add(ur.mul(o,t.weights),t.biases)}function oo(o,t,e,r,n="same"){let{filters:a,bias:s}=t.conv,i=he.conv2d(o,a,e,n);return i=he.add(i,s),i=Ro(i,t.scale),r?he.relu(i):i}function Oo(o,t){return oo(o,t,[1,1],!0)}function no(o,t){return oo(o,t,[1,1],!1)}function lr(o,t){return oo(o,t,[2,2],!0,"valid")}var Y=b(g());function zn(o,t){function e(i,c,m){let p=o(i),d=p.length/(c*m*m);if(Nr(d))throw new Error(`depth has to be an integer: ${d}, weights.length: ${p.length}, numFilters: ${c}, filterSize: ${m}`);return Y.tidy(()=>Y.transpose(Y.tensor4d(p,[c,d,m,m]),[2,3,1,0]))}function r(i,c,m,p){let d=e(i,c,m),u=Y.tensor1d(o(c));return t.push({paramPath:`${p}/filters`},{paramPath:`${p}/bias`}),{filters:d,bias:u}}function n(i,c){let m=Y.tensor1d(o(i)),p=Y.tensor1d(o(i));return t.push({paramPath:`${c}/weights`},{paramPath:`${c}/biases`}),{weights:m,biases:p}}function a(i,c,m,p){let d=r(i,c,m,`${p}/conv`),u=n(c,`${p}/scale`);return{conv:d,scale:u}}function s(i,c,m,p,d=!1){let u=a((d?.5:1)*i,c,m,`${p}/conv1`),l=a(i,c,m,`${p}/conv2`);return{conv1:u,conv2:l}}return{extractConvLayerParams:a,extractResidualLayerParams:s}}function $o(o){let{extractWeights:t,getRemainingWeights:e}=B(o),r=[],{extractConvLayerParams:n,extractResidualLayerParams:a}=zn(t,r),s=n(4704,32,7,"conv32_down"),i=a(9216,32,3,"conv32_1"),c=a(9216,32,3,"conv32_2"),m=a(9216,32,3,"conv32_3"),p=a(36864,64,3,"conv64_down",!0),d=a(36864,64,3,"conv64_1"),u=a(36864,64,3,"conv64_2"),l=a(36864,64,3,"conv64_3"),v=a(147456,128,3,"conv128_down",!0),_=a(147456,128,3,"conv128_1"),h=a(147456,128,3,"conv128_2"),y=a(589824,256,3,"conv256_down",!0),T=a(589824,256,3,"conv256_1"),F=a(589824,256,3,"conv256_2"),L=a(589824,256,3,"conv256_down_out"),G=Y.tidy(()=>Y.transpose(Y.tensor2d(t(256*128),[128,256]),[1,0]));if(r.push({paramPath:"fc"}),e().length!==0)throw new Error(`weights remaing after extract: ${e().length}`);return{params:{conv32_down:s,conv32_1:i,conv32_2:c,conv32_3:m,conv64_down:p,conv64_1:d,conv64_2:u,conv64_3:l,conv128_down:v,conv128_1:_,conv128_2:h,conv256_down:y,conv256_1:T,conv256_2:F,conv256_down_out:L,fc:G},paramMappings:r}}function Vn(o,t){let e=j(o,t);function r(s){let i=e(`${s}/scale/weights`,1),c=e(`${s}/scale/biases`,1);return{weights:i,biases:c}}function n(s){let i=e(`${s}/conv/filters`,4),c=e(`${s}/conv/bias`,1),m=r(s);return{conv:{filters:i,bias:c},scale:m}}function a(s){return{conv1:n(`${s}/conv1`),conv2:n(`${s}/conv2`)}}return{extractConvLayerParams:n,extractResidualLayerParams:a}}function jo(o){let t=[],{extractConvLayerParams:e,extractResidualLayerParams:r}=Vn(o,t),n=e("conv32_down"),a=r("conv32_1"),s=r("conv32_2"),i=r("conv32_3"),c=r("conv64_down"),m=r("conv64_1"),p=r("conv64_2"),d=r("conv64_3"),u=r("conv128_down"),l=r("conv128_1"),v=r("conv128_2"),_=r("conv256_down"),h=r("conv256_1"),y=r("conv256_2"),T=r("conv256_down_out"),{fc:F}=o;if(t.push({originalPath:"fc",paramPath:"fc"}),!Cr(F))throw new Error(`expected weightMap[fc] to be a Tensor2D, instead have ${F}`);let L={conv32_down:n,conv32_1:a,conv32_2:s,conv32_3:i,conv64_down:c,conv64_1:m,conv64_2:p,conv64_3:d,conv128_down:u,conv128_1:l,conv128_2:v,conv256_down:_,conv256_1:h,conv256_2:y,conv256_down_out:T,fc:F};return W(o,t),{params:L,paramMappings:t}}var R=b(g());function nt(o,t){let e=Oo(o,t.conv1);return e=no(e,t.conv2),e=R.add(e,o),e=R.relu(e),e}function Re(o,t){let e=lr(o,t.conv1);e=no(e,t.conv2);let r=R.avgPool(o,2,2,"valid"),n=R.zeros(r.shape),a=r.shape[3]!==e.shape[3];if(r.shape[1]!==e.shape[1]||r.shape[2]!==e.shape[2]){let i=[...e.shape];i[1]=1;let c=R.zeros(i);e=R.concat([e,c],1);let m=[...e.shape];m[2]=1;let p=R.zeros(m);e=R.concat([e,p],2)}return r=a?R.concat([r,n],3):r,e=R.add(r,e),e=R.relu(e),e}var xe=class extends S{constructor(){super("FaceRecognitionNet")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("FaceRecognitionNet - load model before inference");return U.tidy(()=>{let r=U.cast(t.toBatchTensor(150,!0),"float32"),a=ot(r,[122.782,117.001,104.298]).div(U.scalar(256)),s=lr(a,e.conv32_down);s=U.maxPool(s,3,2,"valid"),s=nt(s,e.conv32_1),s=nt(s,e.conv32_2),s=nt(s,e.conv32_3),s=Re(s,e.conv64_down),s=nt(s,e.conv64_1),s=nt(s,e.conv64_2),s=nt(s,e.conv64_3),s=Re(s,e.conv128_down),s=nt(s,e.conv128_1),s=nt(s,e.conv128_2),s=Re(s,e.conv256_down),s=nt(s,e.conv256_1),s=nt(s,e.conv256_2),s=Re(s,e.conv256_down_out);let i=s.mean([1,2]);return U.matMul(i,e.fc)})}async forward(t){return this.forwardInput(await E(t))}async computeFaceDescriptor(t){var a;if((a=t==null?void 0:t.shape)==null?void 0:a.some(s=>s<=0))return new Float32Array(128);let e=await E(t),r=U.tidy(()=>U.unstack(this.forwardInput(e))),n=await Promise.all(r.map(s=>s.data()));return r.forEach(s=>s.dispose()),e.isBatchInput?n:n[0]}getDefaultModelName(){return"face_recognition_model"}extractParamsFromWeightMap(t){return jo(t)}extractParams(t){return $o(t)}};function Un(o){let t=new xe;return t.extractWeights(o),t}function fr(o,t){return{...o,...{descriptor:t}}}function Xn(o){return typeof o.age=="number"}function hr(o,t){return{...o,...{age:t}}}function Jn(o){return(o.gender===vt.MALE||o.gender===vt.FEMALE)&&te(o.genderProbability)}function xr(o,t,e){return{...o,...{gender:t,genderProbability:e}}}var st=b(g());var at=b(g());function qn(o,t){function e(c,m){let p=at.tensor4d(o(3*3*c),[3,3,c,1]),d=at.tensor1d(o(c)),u=at.tensor1d(o(c)),l=at.tensor1d(o(c)),v=at.tensor1d(o(c));return t.push({paramPath:`${m}/filters`},{paramPath:`${m}/batch_norm_scale`},{paramPath:`${m}/batch_norm_offset`},{paramPath:`${m}/batch_norm_mean`},{paramPath:`${m}/batch_norm_variance`}),{filters:p,batch_norm_scale:d,batch_norm_offset:u,batch_norm_mean:l,batch_norm_variance:v}}function r(c,m,p,d,u){let l=at.tensor4d(o(c*m*p*p),[p,p,c,m]),v=at.tensor1d(o(m));return t.push({paramPath:`${d}/filters`},{paramPath:`${d}/${u?"batch_norm_offset":"bias"}`}),{filters:l,bias:v}}function n(c,m,p,d){let{filters:u,bias:l}=r(c,m,p,d,!0);return{filters:u,batch_norm_offset:l}}function a(c,m,p){let d=e(c,`${p}/depthwise_conv`),u=n(c,m,1,`${p}/pointwise_conv`);return{depthwise_conv:d,pointwise_conv:u}}function s(){let c=n(3,32,3,"mobilenetv1/conv_0"),m=a(32,64,"mobilenetv1/conv_1"),p=a(64,128,"mobilenetv1/conv_2"),d=a(128,128,"mobilenetv1/conv_3"),u=a(128,256,"mobilenetv1/conv_4"),l=a(256,256,"mobilenetv1/conv_5"),v=a(256,512,"mobilenetv1/conv_6"),_=a(512,512,"mobilenetv1/conv_7"),h=a(512,512,"mobilenetv1/conv_8"),y=a(512,512,"mobilenetv1/conv_9"),T=a(512,512,"mobilenetv1/conv_10"),F=a(512,512,"mobilenetv1/conv_11"),L=a(512,1024,"mobilenetv1/conv_12"),G=a(1024,1024,"mobilenetv1/conv_13");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,conv_8:h,conv_9:y,conv_10:T,conv_11:F,conv_12:L,conv_13:G}}function i(){let c=n(1024,256,1,"prediction_layer/conv_0"),m=n(256,512,3,"prediction_layer/conv_1"),p=n(512,128,1,"prediction_layer/conv_2"),d=n(128,256,3,"prediction_layer/conv_3"),u=n(256,128,1,"prediction_layer/conv_4"),l=n(128,256,3,"prediction_layer/conv_5"),v=n(256,64,1,"prediction_layer/conv_6"),_=n(64,128,3,"prediction_layer/conv_7"),h=r(512,12,1,"prediction_layer/box_predictor_0/box_encoding_predictor"),y=r(512,9,1,"prediction_layer/box_predictor_0/class_predictor"),T=r(1024,24,1,"prediction_layer/box_predictor_1/box_encoding_predictor"),F=r(1024,18,1,"prediction_layer/box_predictor_1/class_predictor"),L=r(512,24,1,"prediction_layer/box_predictor_2/box_encoding_predictor"),G=r(512,18,1,"prediction_layer/box_predictor_2/class_predictor"),et=r(256,24,1,"prediction_layer/box_predictor_3/box_encoding_predictor"),it=r(256,18,1,"prediction_layer/box_predictor_3/class_predictor"),X=r(256,24,1,"prediction_layer/box_predictor_4/box_encoding_predictor"),Pt=r(256,18,1,"prediction_layer/box_predictor_4/class_predictor"),_t=r(128,24,1,"prediction_layer/box_predictor_5/box_encoding_predictor"),wt=r(128,18,1,"prediction_layer/box_predictor_5/class_predictor");return{conv_0:c,conv_1:m,conv_2:p,conv_3:d,conv_4:u,conv_5:l,conv_6:v,conv_7:_,box_predictor_0:{box_encoding_predictor:h,class_predictor:y},box_predictor_1:{box_encoding_predictor:T,class_predictor:F},box_predictor_2:{box_encoding_predictor:L,class_predictor:G},box_predictor_3:{box_encoding_predictor:et,class_predictor:it},box_predictor_4:{box_encoding_predictor:X,class_predictor:Pt},box_predictor_5:{box_encoding_predictor:_t,class_predictor:wt}}}return{extractMobilenetV1Params:s,extractPredictionLayerParams:i}}function Ho(o){let t=[],{extractWeights:e,getRemainingWeights:r}=B(o),{extractMobilenetV1Params:n,extractPredictionLayerParams:a}=qn(e,t),s=n(),i=a(),m={extra_dim:at.tensor3d(e(5118*4),[1,5118,4])};if(t.push({paramPath:"output_layer/extra_dim"}),r().length!==0)throw new Error(`weights remaing after extract: ${r().length}`);return{params:{mobilenetv1:s,prediction_layer:i,output_layer:m},paramMappings:t}}function Zn(o,t){let e=j(o,t);function r(m,p,d){let u=e(`${m}/Conv2d_${p}_pointwise/weights`,4,`${d}/filters`),l=e(`${m}/Conv2d_${p}_pointwise/convolution_bn_offset`,1,`${d}/batch_norm_offset`);return{filters:u,batch_norm_offset:l}}function n(m){let p=`mobilenetv1/conv_${m}`,d=`MobilenetV1/Conv2d_${m}_depthwise`,u=`${p}/depthwise_conv`,l=`${p}/pointwise_conv`,v=e(`${d}/depthwise_weights`,4,`${u}/filters`),_=e(`${d}/BatchNorm/gamma`,1,`${u}/batch_norm_scale`),h=e(`${d}/BatchNorm/beta`,1,`${u}/batch_norm_offset`),y=e(`${d}/BatchNorm/moving_mean`,1,`${u}/batch_norm_mean`),T=e(`${d}/BatchNorm/moving_variance`,1,`${u}/batch_norm_variance`);return{depthwise_conv:{filters:v,batch_norm_scale:_,batch_norm_offset:h,batch_norm_mean:y,batch_norm_variance:T},pointwise_conv:r("MobilenetV1",m,l)}}function a(){return{conv_0:r("MobilenetV1",0,"mobilenetv1/conv_0"),conv_1:n(1),conv_2:n(2),conv_3:n(3),conv_4:n(4),conv_5:n(5),conv_6:n(6),conv_7:n(7),conv_8:n(8),conv_9:n(9),conv_10:n(10),conv_11:n(11),conv_12:n(12),conv_13:n(13)}}function s(m,p){let d=e(`${m}/weights`,4,`${p}/filters`),u=e(`${m}/biases`,1,`${p}/bias`);return{filters:d,bias:u}}function i(m){let p=s(`Prediction/BoxPredictor_${m}/BoxEncodingPredictor`,`prediction_layer/box_predictor_${m}/box_encoding_predictor`),d=s(`Prediction/BoxPredictor_${m}/ClassPredictor`,`prediction_layer/box_predictor_${m}/class_predictor`);return{box_encoding_predictor:p,class_predictor:d}}function c(){return{conv_0:r("Prediction",0,"prediction_layer/conv_0"),conv_1:r("Prediction",1,"prediction_layer/conv_1"),conv_2:r("Prediction",2,"prediction_layer/conv_2"),conv_3:r("Prediction",3,"prediction_layer/conv_3"),conv_4:r("Prediction",4,"prediction_layer/conv_4"),conv_5:r("Prediction",5,"prediction_layer/conv_5"),conv_6:r("Prediction",6,"prediction_layer/conv_6"),conv_7:r("Prediction",7,"prediction_layer/conv_7"),box_predictor_0:i(0),box_predictor_1:i(1),box_predictor_2:i(2),box_predictor_3:i(3),box_predictor_4:i(4),box_predictor_5:i(5)}}return{extractMobilenetV1Params:a,extractPredictionLayerParams:c}}function Yo(o){let t=[],{extractMobilenetV1Params:e,extractPredictionLayerParams:r}=Zn(o,t),n=o["Output/extra_dim"];if(t.push({originalPath:"Output/extra_dim",paramPath:"output_layer/extra_dim"}),!ht(n))throw new Error(`expected weightMap['Output/extra_dim'] to be a Tensor3D, instead have ${n}`);let a={mobilenetv1:e(),prediction_layer:r(),output_layer:{extra_dim:n}};return W(o,t),{params:a,paramMappings:t}}var yt=b(g());var kt=b(g());function q(o,t,e){return kt.tidy(()=>{let r=kt.conv2d(o,t.filters,e,"same");return r=kt.add(r,t.batch_norm_offset),kt.clipByValue(r,0,6)})}var Kn=.0010000000474974513;function Qn(o,t,e){return yt.tidy(()=>{let r=yt.depthwiseConv2d(o,t.filters,e,"same");return r=yt.batchNorm(r,t.batch_norm_mean,t.batch_norm_variance,t.batch_norm_offset,t.batch_norm_scale,Kn),yt.clipByValue(r,0,6)})}function ta(o){return[2,4,6,12].some(t=>t===o)?[2,2]:[1,1]}function Go(o,t){return yt.tidy(()=>{let e,r=q(o,t.conv_0,[2,2]);if([t.conv_1,t.conv_2,t.conv_3,t.conv_4,t.conv_5,t.conv_6,t.conv_7,t.conv_8,t.conv_9,t.conv_10,t.conv_11,t.conv_12,t.conv_13].forEach((a,s)=>{let i=s+1,c=ta(i);r=Qn(r,a.depthwise_conv,c),r=q(r,a.pointwise_conv,[1,1]),i===11&&(e=r)}),e===null)throw new Error("mobileNetV1 - output of conv layer 11 is null");return{out:r,conv11:e}})}function ea(o,t,e){let r=o.arraySync(),n=Math.min(r[t][0],r[t][2]),a=Math.min(r[t][1],r[t][3]),s=Math.max(r[t][0],r[t][2]),i=Math.max(r[t][1],r[t][3]),c=Math.min(r[e][0],r[e][2]),m=Math.min(r[e][1],r[e][3]),p=Math.max(r[e][0],r[e][2]),d=Math.max(r[e][1],r[e][3]),u=(s-n)*(i-a),l=(p-c)*(d-m);if(u<=0||l<=0)return 0;let v=Math.max(n,c),_=Math.max(a,m),h=Math.min(s,p),y=Math.min(i,d),T=Math.max(h-v,0)*Math.max(y-_,0);return T/(u+l-T)}function zo(o,t,e,r,n){let a=o.shape[0],s=Math.min(e,a),i=t.map((p,d)=>({score:p,boxIndex:d})).filter(p=>p.score>n).sort((p,d)=>d.score-p.score),c=p=>p<=r?1:0,m=[];return i.forEach(p=>{if(m.length>=s)return;let d=p.score;for(let u=m.length-1;u>=0;--u){let l=ea(o,p.boxIndex,m[u]);if(l!==0&&(p.score*=c(l),p.score<=n))break}d===p.score&&m.push(p.boxIndex)}),m}var f=b(g());function ra(o){let t=f.unstack(f.transpose(o,[1,0])),e=[f.sub(t[2],t[0]),f.sub(t[3],t[1])],r=[f.add(t[0],f.div(e[0],f.scalar(2))),f.add(t[1],f.div(e[1],f.scalar(2)))];return{sizes:e,centers:r}}function oa(o,t){let{sizes:e,centers:r}=ra(o),n=f.unstack(f.transpose(t,[1,0])),a=f.div(f.mul(f.exp(f.div(n[2],f.scalar(5))),e[0]),f.scalar(2)),s=f.add(f.mul(f.div(n[0],f.scalar(10)),e[0]),r[0]),i=f.div(f.mul(f.exp(f.div(n[3],f.scalar(5))),e[1]),f.scalar(2)),c=f.add(f.mul(f.div(n[1],f.scalar(10)),e[1]),r[1]);return f.transpose(f.stack([f.sub(s,a),f.sub(c,i),f.add(s,a),f.add(c,i)]),[1,0])}function Vo(o,t,e){return f.tidy(()=>{let r=o.shape[0],n=oa(f.reshape(f.tile(e.extra_dim,[r,1,1]),[-1,4]),f.reshape(o,[-1,4]));n=f.reshape(n,[r,n.shape[0]/r,4]);let a=f.sigmoid(f.slice(t,[0,0,1],[-1,-1,-1])),s=f.slice(a,[0,0,0],[-1,-1,1]);s=f.reshape(s,[r,s.shape[1]]);let i=f.unstack(n),c=f.unstack(s);return{boxes:i,scores:c}})}var $e=b(g());var Oe=b(g());function Vt(o,t){return Oe.tidy(()=>{let e=o.shape[0],r=Oe.reshape(Gt(o,t.box_encoding_predictor),[e,-1,1,4]),n=Oe.reshape(Gt(o,t.class_predictor),[e,-1,3]);return{boxPredictionEncoding:r,classPrediction:n}})}function Uo(o,t,e){return $e.tidy(()=>{let r=q(o,e.conv_0,[1,1]),n=q(r,e.conv_1,[2,2]),a=q(n,e.conv_2,[1,1]),s=q(a,e.conv_3,[2,2]),i=q(s,e.conv_4,[1,1]),c=q(i,e.conv_5,[2,2]),m=q(c,e.conv_6,[1,1]),p=q(m,e.conv_7,[2,2]),d=Vt(t,e.box_predictor_0),u=Vt(o,e.box_predictor_1),l=Vt(n,e.box_predictor_2),v=Vt(s,e.box_predictor_3),_=Vt(c,e.box_predictor_4),h=Vt(p,e.box_predictor_5),y=$e.concat([d.boxPredictionEncoding,u.boxPredictionEncoding,l.boxPredictionEncoding,v.boxPredictionEncoding,_.boxPredictionEncoding,h.boxPredictionEncoding],1),T=$e.concat([d.classPrediction,u.classPrediction,l.classPrediction,v.classPrediction,_.classPrediction,h.classPrediction],1);return{boxPredictions:y,classPredictions:T}})}var Z=class{constructor({minConfidence:t,maxResults:e}={}){this._name="SsdMobilenetv1Options";if(this._minConfidence=t||.5,this._maxResults=e||100,typeof this._minConfidence!="number"||this._minConfidence<=0||this._minConfidence>=1)throw new Error(`${this._name} - expected minConfidence to be a number between 0 and 1`);if(typeof this._maxResults!="number")throw new Error(`${this._name} - expected maxResults to be a number`)}get minConfidence(){return this._minConfidence}get maxResults(){return this._maxResults}};var Ut=class extends S{constructor(){super("SsdMobilenetv1")}forwardInput(t){let{params:e}=this;if(!e)throw new Error("SsdMobilenetv1 - load model before inference");return st.tidy(()=>{let r=st.cast(t.toBatchTensor(512,!1),"float32"),n=st.sub(st.mul(r,st.scalar(.007843137718737125)),st.scalar(1)),a=Go(n,e.mobilenetv1),{boxPredictions:s,classPredictions:i}=Uo(a.out,a.conv11,e.prediction_layer);return Vo(s,i,e.output_layer)})}async forward(t){return this.forwardInput(await E(t))}async locateFaces(t,e={}){let{maxResults:r,minConfidence:n}=new Z(e),a=await E(t),{boxes:s,scores:i}=this.forwardInput(a),c=s[0],m=i[0];for(let F=1;F{let[L,G]=[Math.max(0,y[F][0]),Math.min(1,y[F][2])].map(X=>X*h),[et,it]=[Math.max(0,y[F][1]),Math.min(1,y[F][3])].map(X=>X*_);return new M(p[F],new re(et,L,it-et,G-L),{height:a.getInputHeight(0),width:a.getInputWidth(0)})});return c.dispose(),m.dispose(),T}getDefaultModelName(){return"ssd_mobilenetv1_model"}extractParamsFromWeightMap(t){return Yo(t)}extractParams(t){return Ho(t)}};function Xo(o){let t=new Ut;return t.extractWeights(o),t}function na(o){return Xo(o)}var Jo=class extends Ut{};var qo=.4,Zo=[new x(.738768,.874946),new x(2.42204,2.65704),new x(4.30971,7.04493),new x(10.246,4.59428),new x(12.6868,11.8741)],Ko=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],Qo=[117.001,114.697,97.404],tn="tiny_yolov2_model",en="tiny_yolov2_separable_conv_model";var N=b(g());var br=o=>typeof o=="number";function ao(o){if(!o)throw new Error(`invalid config: ${o}`);if(typeof o.withSeparableConvs!="boolean")throw new Error(`config.withSeparableConvs has to be a boolean, have: ${o.withSeparableConvs}`);if(!br(o.iouThreshold)||o.iouThreshold<0||o.iouThreshold>1)throw new Error(`config.iouThreshold has to be a number between [0, 1], have: ${o.iouThreshold}`);if(!Array.isArray(o.classes)||!o.classes.length||!o.classes.every(t=>typeof t=="string"))throw new Error(`config.classes has to be an array class names: string[], have: ${JSON.stringify(o.classes)}`);if(!Array.isArray(o.anchors)||!o.anchors.length||!o.anchors.map(t=>t||{}).every(t=>br(t.x)&&br(t.y)))throw new Error(`config.anchors has to be an array of { x: number, y: number }, have: ${JSON.stringify(o.anchors)}`);if(o.meanRgb&&(!Array.isArray(o.meanRgb)||o.meanRgb.length!==3||!o.meanRgb.every(br)))throw new Error(`config.meanRgb has to be an array of shape [number, number, number], have: ${JSON.stringify(o.meanRgb)}`)}var Q=b(g());var K=b(g());function be(o){return K.tidy(()=>{let t=K.mul(o,K.scalar(.10000000149011612));return K.add(K.relu(K.sub(o,t)),t)})}function Ft(o,t){return Q.tidy(()=>{let e=Q.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=Q.conv2d(e,t.conv.filters,[1,1],"valid"),e=Q.sub(e,t.bn.sub),e=Q.mul(e,t.bn.truediv),e=Q.add(e,t.conv.bias),be(e)})}var St=b(g());function Tt(o,t){return St.tidy(()=>{let e=St.pad(o,[[0,0],[1,1],[1,1],[0,0]]);return e=St.separableConv2d(e,t.depthwise_filter,t.pointwise_filter,[1,1],"valid"),e=St.add(e,t.bias),be(e)})}var so=b(g());function aa(o,t){let e=ce(o,t);function r(s,i){let c=so.tensor1d(o(s)),m=so.tensor1d(o(s));return t.push({paramPath:`${i}/sub`},{paramPath:`${i}/truediv`}),{sub:c,truediv:m}}function n(s,i,c){let m=e(s,i,3,`${c}/conv`),p=r(i,`${c}/bn`);return{conv:m,bn:p}}let a=me(o,t);return{extractConvParams:e,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}}function rn(o,t,e,r){let{extractWeights:n,getRemainingWeights:a}=B(o),s=[],{extractConvParams:i,extractConvWithBatchNormParams:c,extractSeparableConvParams:m}=aa(n,s),p;if(t.withSeparableConvs){let[d,u,l,v,_,h,y,T,F]=r,L=t.isFirstLayerConv2d?i(d,u,3,"conv0"):m(d,u,"conv0"),G=m(u,l,"conv1"),et=m(l,v,"conv2"),it=m(v,_,"conv3"),X=m(_,h,"conv4"),Pt=m(h,y,"conv5"),_t=T?m(y,T,"conv6"):void 0,wt=F?m(T,F,"conv7"):void 0,Qt=i(F||T||y,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}else{let[d,u,l,v,_,h,y,T,F]=r,L=c(d,u,"conv0"),G=c(u,l,"conv1"),et=c(l,v,"conv2"),it=c(v,_,"conv3"),X=c(_,h,"conv4"),Pt=c(h,y,"conv5"),_t=c(y,T,"conv6"),wt=c(T,F,"conv7"),Qt=i(F,5*e,1,"conv8");p={conv0:L,conv1:G,conv2:et,conv3:it,conv4:X,conv5:Pt,conv6:_t,conv7:wt,conv8:Qt}}if(a().length!==0)throw new Error(`weights remaing after extract: ${a().length}`);return{params:p,paramMappings:s}}function sa(o,t){let e=j(o,t);function r(i){let c=e(`${i}/sub`,1),m=e(`${i}/truediv`,1);return{sub:c,truediv:m}}function n(i){let c=e(`${i}/filters`,4),m=e(`${i}/bias`,1);return{filters:c,bias:m}}function a(i){let c=n(`${i}/conv`),m=r(`${i}/bn`);return{conv:c,bn:m}}let s=pe(e);return{extractConvParams:n,extractConvWithBatchNormParams:a,extractSeparableConvParams:s}}function on(o,t){let e=[],{extractConvParams:r,extractConvWithBatchNormParams:n,extractSeparableConvParams:a}=sa(o,e),s;if(t.withSeparableConvs){let i=t.filterSizes&&t.filterSizes.length||9;s={conv0:t.isFirstLayerConv2d?r("conv0"):a("conv0"),conv1:a("conv1"),conv2:a("conv2"),conv3:a("conv3"),conv4:a("conv4"),conv5:a("conv5"),conv6:i>7?a("conv6"):void 0,conv7:i>8?a("conv7"):void 0,conv8:r("conv8")}}else s={conv0:n("conv0"),conv1:n("conv1"),conv2:n("conv2"),conv3:n("conv3"),conv4:n("conv4"),conv5:n("conv5"),conv6:n("conv6"),conv7:n("conv7"),conv8:r("conv8")};return W(o,e),{params:s,paramMappings:e}}var lt=class{constructor({inputSize:t,scoreThreshold:e}={}){this._name="TinyYolov2Options";if(this._inputSize=t||416,this._scoreThreshold=e||.5,typeof this._inputSize!="number"||this._inputSize%32!=0)throw new Error(`${this._name} - expected inputSize to be a number divisible by 32`);if(typeof this._scoreThreshold!="number"||this._scoreThreshold<=0||this._scoreThreshold>=1)throw new Error(`${this._name} - expected scoreThreshold to be a number between 0 and 1`)}get inputSize(){return this._inputSize}get scoreThreshold(){return this._scoreThreshold}};var io=class extends S{constructor(t){super("TinyYolov2");ao(t),this._config=t}get config(){return this._config}get withClassScores(){return this.config.withClassScores||this.config.classes.length>1}get boxEncodingSize(){return 5+(this.withClassScores?this.config.classes.length:0)}runTinyYolov2(t,e){let r=Ft(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Ft(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=Ft(r,e.conv6),r=Ft(r,e.conv7),Gt(r,e.conv8,"valid",!1)}runMobilenet(t,e){let r=this.config.isFirstLayerConv2d?be(Gt(t,e.conv0,"valid",!1)):Tt(t,e.conv0);return r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv1),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv2),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv3),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv4),r=N.maxPool(r,[2,2],[2,2],"same"),r=Tt(r,e.conv5),r=N.maxPool(r,[2,2],[1,1],"same"),r=e.conv6?Tt(r,e.conv6):r,r=e.conv7?Tt(r,e.conv7):r,Gt(r,e.conv8,"valid",!1)}forwardInput(t,e){let{params:r}=this;if(!r)throw new Error("TinyYolov2 - load model before inference");return N.tidy(()=>{let n=N.cast(t.toBatchTensor(e,!1),"float32");return n=this.config.meanRgb?ot(n,this.config.meanRgb):n,n=n.div(N.scalar(256)),this.config.withSeparableConvs?this.runMobilenet(n,r):this.runTinyYolov2(n,r)})}async forward(t,e){return this.forwardInput(await E(t),e)}async detect(t,e={}){let{inputSize:r,scoreThreshold:n}=new lt(e),a=await E(t),s=await this.forwardInput(a,r),i=N.tidy(()=>N.unstack(s)[0].expandDims()),c={width:a.getInputWidth(0),height:a.getInputHeight(0)},m=await this.extractBoxes(i,a.getReshapedInputDimensions(0),n);s.dispose(),i.dispose();let p=m.map(h=>h.box),d=m.map(h=>h.score),u=m.map(h=>h.classScore),l=m.map(h=>this.config.classes[h.label]);return Sr(p.map(h=>h.rescale(r)),d,this.config.iouThreshold,!0).map(h=>new Dt(d[h],u[h],l[h],p[h],c))}getDefaultModelName(){return""}extractParamsFromWeightMap(t){return on(t,this.config)}extractParams(t){let e=this.config.filterSizes||io.DEFAULT_FILTER_SIZES,r=e?e.length:void 0;if(r!==7&&r!==8&&r!==9)throw new Error(`TinyYolov2 - expected 7 | 8 | 9 convolutional filters, but found ${r} filterSizes in config`);return rn(t,this.config,this.boxEncodingSize,e)}async extractBoxes(t,e,r){let{width:n,height:a}=e,s=Math.max(n,a),i=s/n,c=s/a,m=t.shape[1],p=this.config.anchors.length,[d,u,l]=N.tidy(()=>{let y=t.reshape([m,m,p,this.boxEncodingSize]),T=y.slice([0,0,0,0],[m,m,p,4]),F=y.slice([0,0,0,4],[m,m,p,1]),L=this.withClassScores?N.softmax(y.slice([0,0,0,5],[m,m,p,this.config.classes.length]),3):N.scalar(0);return[T,F,L]}),v=[],_=await u.array(),h=await d.array();for(let y=0;yr){let G=(T+De(h[y][T][F][0]))/m*i,et=(y+De(h[y][T][F][1]))/m*c,it=Math.exp(h[y][T][F][2])*this.config.anchors[F].x/m*i,X=Math.exp(h[y][T][F][3])*this.config.anchors[F].y/m*c,Pt=G-it/2,_t=et-X/2,wt={row:y,col:T,anchor:F},{classScore:Qt,label:lo}=this.withClassScores?await this.extractPredictedClass(l,wt):{classScore:1,label:0};v.push({box:new ee(Pt,_t,Pt+it,_t+X),score:L,classScore:L*Qt,label:lo,...wt})}}return d.dispose(),u.dispose(),l.dispose(),v}async extractPredictedClass(t,e){let{row:r,col:n,anchor:a}=e,s=await t.array();return Array(this.config.classes.length).fill(0).map((i,c)=>s[r][n][a][c]).map((i,c)=>({classScore:i,label:c})).reduce((i,c)=>i.classScore>c.classScore?i:c)}},ge=io;ge.DEFAULT_FILTER_SIZES=[3,16,32,64,128,256,512,1024,1024];var ve=class extends ge{constructor(t=!0){let e={withSeparableConvs:t,iouThreshold:qo,classes:["face"],...t?{anchors:Ko,meanRgb:Qo}:{anchors:Zo,withClassScores:!0}};super(e)}get withSeparableConvs(){return this.config.withSeparableConvs}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return this.withSeparableConvs?en:tn}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};function ia(o,t=!0){let e=new ve(t);return e.extractWeights(o),e}var gr=class extends lt{constructor(){super(...arguments);this._name="TinyFaceDetectorOptions"}};var tt=class{async then(t){return t(await this.run())}async run(){throw new Error("ComposableTask - run is not implemented")}};var je=b(g());var co=b(g());async function Xt(o,t,e,r,n=({alignedRect:a})=>a){let a=o.map(c=>zt(c)?n(c):c.detection),s=r||(t instanceof co.Tensor?await se(t,a):await ae(t,a)),i=await e(s);return s.forEach(c=>c instanceof co.Tensor&&c.dispose()),i}async function ye(o,t,e,r,n){return Xt([o],t,async a=>e(a[0]),r,n)}var nn=.4,an=[new x(1.603231,2.094468),new x(6.041143,7.080126),new x(2.882459,3.518061),new x(4.266906,5.178857),new x(9.041765,10.66308)],sn=[117.001,114.697,97.404];var Fe=class extends ge{constructor(){let t={withSeparableConvs:!0,iouThreshold:nn,classes:["face"],anchors:an,meanRgb:sn,isFirstLayerConv2d:!0,filterSizes:[3,16,32,64,128,256,512]};super(t)}get anchors(){return this.config.anchors}async locateFaces(t,e){return(await this.detect(t,e)).map(n=>new M(n.score,n.relativeBox,{width:n.imageWidth,height:n.imageHeight}))}getDefaultModelName(){return"tiny_face_detector_model"}extractParamsFromWeightMap(t){return super.extractParamsFromWeightMap(t)}};var P={ssdMobilenetv1:new Ut,tinyFaceDetector:new Fe,tinyYolov2:new ve,faceLandmark68Net:new fe,faceLandmark68TinyNet:new dr,faceRecognitionNet:new xe,faceExpressionNet:new cr,ageGenderNet:new pr},cn=(o,t)=>P.ssdMobilenetv1.locateFaces(o,t),ca=(o,t)=>P.tinyFaceDetector.locateFaces(o,t),ma=(o,t)=>P.tinyYolov2.locateFaces(o,t),mn=o=>P.faceLandmark68Net.detectLandmarks(o),pa=o=>P.faceLandmark68TinyNet.detectLandmarks(o),da=o=>P.faceRecognitionNet.computeFaceDescriptor(o),ua=o=>P.faceExpressionNet.predictExpressions(o),la=o=>P.ageGenderNet.predictAgeAndGender(o),pn=o=>P.ssdMobilenetv1.load(o),fa=o=>P.tinyFaceDetector.load(o),ha=o=>P.tinyYolov2.load(o),xa=o=>P.faceLandmark68Net.load(o),ba=o=>P.faceLandmark68TinyNet.load(o),ga=o=>P.faceRecognitionNet.load(o),va=o=>P.faceExpressionNet.load(o),ya=o=>P.ageGenderNet.load(o),Fa=pn,Ta=cn,Pa=mn;var mo=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},_e=class extends mo{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.faceExpressionNet.predictExpressions(n))),this.extractedFaces);return t.map((r,n)=>mr(r,e[n]))}withAgeAndGender(){return new Te(this,this.input)}},we=class extends mo{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceExpressionNet.predictExpressions(r),this.extractedFaces);return mr(t,e)}withAgeAndGender(){return new Pe(this,this.input)}},Zt=class extends _e{withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Kt=class extends we{withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var po=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.extractedFaces=r}},Te=class extends po{async run(){let t=await this.parentTask,e=await Xt(t,this.input,async r=>Promise.all(r.map(n=>P.ageGenderNet.predictAgeAndGender(n))),this.extractedFaces);return t.map((r,n)=>{let{age:a,gender:s,genderProbability:i}=e[n];return hr(xr(r,s,i),a)})}withFaceExpressions(){return new _e(this,this.input)}},Pe=class extends po{async run(){let t=await this.parentTask;if(!t)return;let{age:e,gender:r,genderProbability:n}=await ye(t,this.input,a=>P.ageGenderNet.predictAgeAndGender(a),this.extractedFaces);return hr(xr(t,r,n),e)}withFaceExpressions(){return new we(this,this.input)}},Jt=class extends Te{withFaceExpressions(){return new Zt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},qt=class extends Pe{withFaceExpressions(){return new Kt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var vr=class extends tt{constructor(t,e){super();this.parentTask=t;this.input=e}},At=class extends vr{async run(){let t=await this.parentTask;return(await Xt(t,this.input,r=>Promise.all(r.map(n=>P.faceRecognitionNet.computeFaceDescriptor(n))),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}))).map((r,n)=>fr(t[n],r))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}},Wt=class extends vr{async run(){let t=await this.parentTask;if(!t)return;let e=await ye(t,this.input,r=>P.faceRecognitionNet.computeFaceDescriptor(r),null,r=>r.landmarks.align(null,{useDlibAlignment:!0}));return fr(t,e)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}};var yr=class extends tt{constructor(t,e,r){super();this.parentTask=t;this.input=e;this.useTinyLandmarkNet=r}get landmarkNet(){return this.useTinyLandmarkNet?P.faceLandmark68TinyNet:P.faceLandmark68Net}},Fr=class extends yr{async run(){let t=await this.parentTask,e=t.map(a=>a.detection),r=this.input instanceof je.Tensor?await se(this.input,e):await ae(this.input,e),n=await Promise.all(r.map(a=>this.landmarkNet.detectLandmarks(a)));return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),t.map((a,s)=>le(a,n[s]))}withFaceExpressions(){return new Zt(this,this.input)}withAgeAndGender(){return new Jt(this,this.input)}withFaceDescriptors(){return new At(this,this.input)}},Tr=class extends yr{async run(){let t=await this.parentTask;if(!t)return;let{detection:e}=t,r=this.input instanceof je.Tensor?await se(this.input,[e]):await ae(this.input,[e]),n=await this.landmarkNet.detectLandmarks(r[0]);return r.forEach(a=>a instanceof je.Tensor&&a.dispose()),le(t,n)}withFaceExpressions(){return new Kt(this,this.input)}withAgeAndGender(){return new qt(this,this.input)}withFaceDescriptor(){return new Wt(this,this.input)}};var Pr=class extends tt{constructor(t,e=new Z){super();this.input=t;this.options=e}},He=class extends Pr{async run(){let{input:t,options:e}=this,r=e instanceof gr?n=>P.tinyFaceDetector.locateFaces(n,e):e instanceof Z?n=>P.ssdMobilenetv1.locateFaces(n,e):e instanceof lt?n=>P.tinyYolov2.locateFaces(n,e):null;if(!r)throw new Error("detectFaces - expected options to be instance of TinyFaceDetectorOptions | SsdMobilenetv1Options | MtcnnOptions | TinyYolov2Options");return r(t)}runAndExtendWithFaceDetections(){return new Promise(async t=>{let e=await this.run();t(e.map(r=>$t({},r)))})}withFaceLandmarks(t=!1){return new Fr(this.runAndExtendWithFaceDetections(),this.input,t)}withFaceExpressions(){return new _e(this.runAndExtendWithFaceDetections(),this.input)}withAgeAndGender(){return new Te(this.runAndExtendWithFaceDetections(),this.input)}},_r=class extends Pr{async run(){let t=await new He(this.input,this.options),e=t[0];return t.forEach(r=>{r.score>e.score&&(e=r)}),e}runAndExtendWithFaceDetection(){return new Promise(async t=>{let e=await this.run();t(e?$t({},e):void 0)})}withFaceLandmarks(t=!1){return new Tr(this.runAndExtendWithFaceDetection(),this.input,t)}withFaceExpressions(){return new we(this.runAndExtendWithFaceDetection(),this.input)}withAgeAndGender(){return new Pe(this.runAndExtendWithFaceDetection(),this.input)}};function _a(o,t=new Z){return new _r(o,t)}function wr(o,t=new Z){return new He(o,t)}async function dn(o,t){return wr(o,new Z(t?{minConfidence:t}:{})).withFaceLandmarks().withFaceDescriptors()}async function wa(o,t={}){return wr(o,new lt(t)).withFaceLandmarks().withFaceDescriptors()}var Da=dn;function uo(o,t){if(o.length!==t.length)throw new Error("euclideanDistance: arr1.length !== arr2.length");let e=Array.from(o),r=Array.from(t);return Math.sqrt(e.map((n,a)=>n-r[a]).reduce((n,a)=>n+a**2,0))}var Dr=class{constructor(t,e=.6){this._distanceThreshold=e;let r=Array.isArray(t)?t:[t];if(!r.length)throw new Error("FaceRecognizer.constructor - expected atleast one input");let n=1,a=()=>`person ${n++}`;this._labeledDescriptors=r.map(s=>{if(s instanceof xt)return s;if(s instanceof Float32Array)return new xt(a(),[s]);if(s.descriptor&&s.descriptor instanceof Float32Array)return new xt(a(),[s.descriptor]);throw new Error("FaceRecognizer.constructor - expected inputs to be of type LabeledFaceDescriptors | WithFaceDescriptor | Float32Array | Array | Float32Array>")})}get labeledDescriptors(){return this._labeledDescriptors}get distanceThreshold(){return this._distanceThreshold}computeMeanDistance(t,e){return e.map(r=>uo(r,t)).reduce((r,n)=>r+n,0)/(e.length||1)}matchDescriptor(t){return this.labeledDescriptors.map(({descriptors:e,label:r})=>new Ee(r,this.computeMeanDistance(t,e))).reduce((e,r)=>e.distancet.toJSON())}}static fromJSON(t){let e=t.labeledDescriptors.map(r=>xt.fromJSON(r));return new Dr(e,t.distanceThreshold)}};function Ea(o){let t=new Fe;return t.extractWeights(o),t}function un(o,t){let{width:e,height:r}=new A(t.width,t.height);if(e<=0||r<=0)throw new Error(`resizeResults - invalid dimensions: ${JSON.stringify({width:e,height:r})}`);if(Array.isArray(o))return o.map(n=>un(n,{width:e,height:r}));if(zt(o)){let n=o.detection.forSize(e,r),a=o.unshiftedLandmarks.forSize(n.box.width,n.box.height);return le($t(o,n),a)}return pt(o)?$t(o,o.detection.forSize(e,r)):o instanceof V||o instanceof M?o.forSize(e,r):o}var Ca=typeof process!="undefined",Na=typeof navigator!="undefined"&&typeof navigator.userAgent!="undefined",Ia={faceapi:Co,node:Ca,browser:Na}; //# sourceMappingURL=face-api.node.js.map